

TEXAS INSTRUMENTS

SLVSAO2C - NOVEMBER 2012 - REVISED MARCH 2013

32-MBIT HIGH-TEMPERATURE FLASH MEMORY WITH SERIAL PERIPHERAL INTERFACE (SPI) BUS

Check for Samples: SM28VLT32-HT

FEATURES

- 32-Megabit Flash for High-Temperature Applications
- Serial Peripheral Interface (SPI) Compatible (Mode 0 and 3)
- 3.3-V Supply for IO, 1.9 V for Core
- 2-M x 16-Bit Word Access
- Asynchronous Read, Write, and Erase Operations
- Erase Operation Supported Only for -55°C to 125°C
- 12-MHz Maximum Clock Frequency
- Endurance: 1000 Program and Erase Cycles
- Data Retention: 1000 hrs
- ESD Protection: 2-kV HBM, 500-V CDM
- 8-mm x 20-mm 14-Pin Ceramic HKN Package and KGD (Bare Die) Package

APPLICATIONS

- Down-Hole Energy Drilling
- Test and Measurement Equipment
- Seismic Data Collection at Extreme Temperatures
- General Data Collection Applications at Extreme High- and Low-Temperatures

SUPPORTS EXTREME TEMPERATURE APPLICATIONS

- Controlled Baseline
- · One Assembly and Test Site
- One Fabrication Site
- Available in Extreme (-55°C to 210°C)
 Temperature Range (1)
- Extended Product Life Cycle
- Extended Product-Change Notification
- Product Traceability
- Texas Instruments high temperature products utilize highly optimized silicon (die) solutions with design and process enhancements to maximize performance over extended temperatures. All devices are characterized and qualified for 1000 hours continuous operating life at maximum rated temperature.

HKN PACKAGE (TOP VIEW)

(1) Custom temperature ranges available

DESCRIPTION

SM28VLT32 is a 32-Megabit Flash Memory designed to store program code and/or data from acquisition. The wide temperature rating of this device makes it ideal for applications that need to perform reliably in harsh environments. SM28VLT32 with its serial peripheral interface (SPI) offers low pin count for additional reliability and easy assembly in these applications.

The memory is partitioned as sectors to provide addressing of 2-M words of 16 bits each. Thus, the memory address is 21 bits wide.

SM28VLT32 supports serial peripheral interface to read/write/erase data in the flash memory. The interface is compliant with mode 0 (CPOL = 0, CPHA = 0) and 3 (CPOL = 1, CPHA = 1). Asserting CS# enables the device to enter communication mode. With CS# de-asserted, the device ignores all activity on the SPI pins. As shown in Figure 1, multiple SM28VLT32 devices can be controlled from a single Master by independently controlling CS# pins in order to realize larger memory in the application. Asserting the HOLD# pin (while CS# is also asserted) will let the device ignore activity on the other SPI input pins (SCK and SI).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

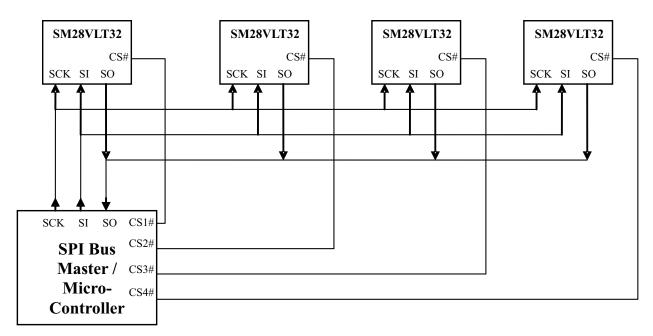


Figure 1. System Block Diagram That Shows Configuration to Use Multiple SM28VLT32 Devices to Realize Larger Memory

The SM28LVT32 supports a hardware data protection scheme using the WP# pin. Erase and program operations are inhibited if WP# is low.

www.ti.com

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION(1)

TJ	PACKAGE	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
5500 to 04000	14-Pin HKN	SM28VLT32SHKN	28VLT32SHKN	
–55°C to 210°C	KGD (Bare Die)	SM28LVT32SKGD3	N/A	

For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
web site at www.ti.com.

ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

		UNIT
VIO	Supply voltage range (for IO)	−0.3 V to 4.5 V
VCORE	Supply voltage range (for Core)	−0.3 V to 2.5 V
V_{I}	Input voltage range	$-0.2 \text{ V to } (V_{IO} + 0.2)$
Vo	Output voltage range	$-0.2 \text{ V to } (V_{IO} + 0.2)$
ESD	Electrostatic discharge (HBM, 1.5 kΩ, 100 pF)	> 2000 V
T _J	Operating junction temperature range	−55°C to 215°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

PACKAGE DISSIPATION RATINGS

PACKAGE	θ _{JA} THERMAL IMPEDANCE JUNCTION TO AMBIENT	θ_{JC} THERMAL IMPEDANCE JUNCTION TO CASE (THERMAL PAD)	θ _{JB} THERMAL IMPEDANCE JUNCTION TO BOARD	
HKN	63°C/W	0.84°C/W	55°C/W	

RECOMMENDED OPERATING CONDITIONS

		MIN	TYP	MAX	UNIT
VIO	Device supply voltage for IO	3.1	3.3	3.6	V
VCORE	Device supply voltage for Core	1.8	1.9	1.98	V
TJ	Junction temperature	-55		210	°C

ELECTRICAL CHARACTERISTICS: IO

 $V_{IO} = 3.1 \text{ V to } 3.6 \text{ V}, V_{Core} = 1.8 \text{ V to } 1.98 \text{ V}, T_{J} = -55^{\circ}\text{C} \text{ to } 210^{\circ}\text{C} \text{ (unless otherwise noted)}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{IH}	Input high voltage		2.5			V
V_{IL}	Input low voltage				0.9	V
I _{OH}	Output high current	$V_{OH} = V_{OHmin}$	-8			mA
I_{OL}	Output low current	$V_{OL} = V_{OLmax}$			8	mA
V_{OH}	Output high voltage	$I_{OH} = I_{OHmin}$	2.8			V
V _{OL}	Output low voltage	$I_{OL} = I_{OLmax}$			0.8	V
CI	Input capacitance			6.5		pF

ELECTRICAL CHARACTERISTICS: MEMORY

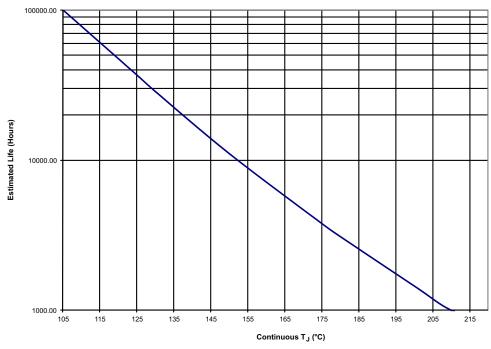
 V_{IO} = 3.1 V to 3.6 V, V_{Core} = 1.8 V to 1.98 V, T_{J} = -55°C to 210°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{Life}	Continuous operating life		1000			hrs
I _{DDVCORE}	:			127	160	mA
I _{DDVIO}				14	22	mA
	Erase current	-55°C to 125°C		76		mA
	Program current			85		mA
	Sector erase time	-55°C to 125°C		2	3	s
	Program time 1 16-bit word			30	300	μs
N _f	Flash endurance for the array (write/erase cycles)	T _J = 30°C		1000		cycles

ELECTRICAL CHARACTERISTICS: SPI⁽¹⁾⁽²⁾

 V_{IO} = 3.1 V to 3.6 V, V_{Core} = 1.8 V to 1.98 V, T_{J} = -55°C to 210°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{SCK}	SPI input clock frequency ⁽³⁾				10	MHz
f _{CLK}	Flash clock ⁽³⁾				12	MHz
t _{WH}	Clock high time		25			ns
t _{WL}	Clock low time		25			ns
t _{SU1}	CS# setup time before SCK		15			ns
t _{SU2}	SI setup time before SCK		10			ns
t _{OEN}	CS# to SO enabled	CL = 16 pF	5		16.5	ns
t _{DIS}	CS# to SO disabled ⁽⁴⁾	CL = 16 pF	5		16.5	ns
t _{HD}	Data hold time after SCK		5			ns
t _r /t _f		10% to 90% on all input pins			20	ns
t _V	Clock low to data valid	CL = 50 pF		15	30	ns


⁽¹⁾ See Figure 3.

(4) Disable parameters are specified when the outputs are no longer driven.

⁽²⁾ AC parameters apply to t_r/t_f of 5 ns.

⁽³⁾ The ratio of f_{CLK}/f_{SCK} must be 6/5 or higher to insure proper asynchronous operation. Operation below 12 MHz is acceptable, however, some configuration changes are required to set proper internal timing. See Provisions for Operating With f_{CLK} Frequencies Less than 12 MHz for details if planned f_{CLK} usage is below 12 MHz.

- (1) See datasheet for absolute maximum and minimum recommended operating conditions.
- (2) Silicon operating life design goal is 10 years at 105°C junction temperature (does not include package interconnect life).
- (3) The predicted operating lifetime vs. junction temperature is based on reliability modeling and available qualification data.

Figure 2. SM28VLT32-HT Operating Life Derating Chart

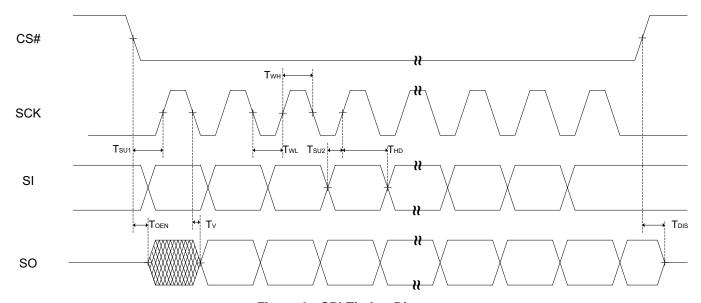
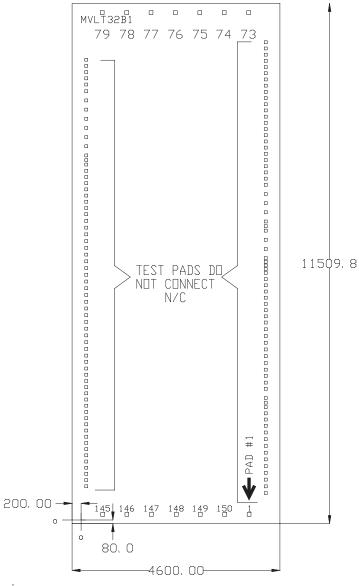



Figure 3. SPI Timing Diagram

DIE LAYOUT

- A. All dimensions are in microns
- B. Substrate can either float or be grounded
- C. Die thickness = 381 µm

Table 1. Bare Die Information

DIE	DIE PAD	BACKSIDE FINISH	BACKSIDE	
THICKNESS	COMPOSITION		POTENTIAL	
15 Mils	AlCu/TiN	Silicon with backgrind	Float	

www.ti.com


Table 2. Bond Pad Coordinates

DAD NO	DECODIDEION	BOND PAD COORDINATES (µm)					
PAD NO.	DESCRIPTION	X MIN	Y MIN	X MAX	Y MAX		
1	VCORE	439.985	11182.64	525.035	11267.69		
73	VSS	449.715	82.11	534.765	167.16		
74	HOLD#	989.765	82.11	1074.815	167.16		
75	RST#	1529.815	82.11	1614.865	167.16		
76	WP#	2069.865	82.11	2154.915	167.16		
77	FLCLK	2609.915	82.11	2694.965	167.16		
78	VIO	3149.965	82.11	3235.015	167.16		
79	VCORE	3690.015	82.11	3775.065	167.16		
145	VSS	3680.285	11182.64	3765.335	11267.69		
146	SCK	3144.155	11182.64	3229.205	11267.69		
147	SI	2600.185	11182.64	2685.235	11267.69		
148	SO	2049.985	11182.64	2135.035	11267.69		
149	CS#	1520.085	11182.64	1605.135	11267.69		
150	VIO	980.035	11182.64	1065.085	11267.69		

DEVICE INFORMATION

HKN PACKAGE PIN ASSIGNMENT (TOP VIEW)

TERMINAL FUNCTIONS

TERM	TERMINAL		DESCRIPTION			
NAME	NO.	TYPE	DESCRIPTION			
VIO	6, 13	Power	3.3-V supply for IO			
VCORE	7, 14	Power	1.9-V supply for core			
VSS	1, 8	Ground	Device ground			
CS#	12	Input	Active low SPI chip select			
SCK	9	Input	SPI clock for serial communication			
SI	10	Input	SPI data input to device			
SO	11	Output	SPI data output from device (Hi impedance when CS# is 1)			
HOLD#	2	Input	Active low hold input to freeze SPI communication			
WP#	4	Input	Active low input for sector protection			
RST#	3	Input	Active low reset to IC			
FLCLK	5	Input	Flash pump clock			

FUNCTIONAL BLOCK DIAGRAM

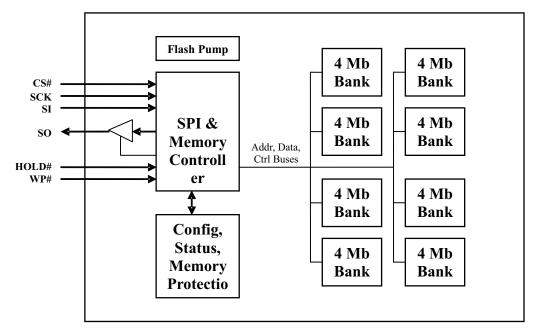


Figure 4. Block Diagram of SM28VLT32 and Memory Architecture

DETAILED DESCRIPTION

SERIAL COMMUNICATION

SM28VLT32 supports mode 0 and mode 3 SPI protocols. In mode 0, the inactive state of SCK is 0 whereas, in mode 3, the state is 1. The input data on SI is always latched on rising edge of SCK and data on SO is output on falling edge of SCK in both modes. CS# is brought low to start a new SPI data frame. The SPI data frame consists of an 8-bit command byte followed by a variable number of bytes of input data as shown in Table 3. The first 8 bits of SO always output the quick status bits. These bits define error conditions and status of the FLASH (see Table 4). These bits should be evaluated after each command is executed to determine if the preceding command completed successfully. This can be implemented as part of the SPI communication protocol with the host device. For more information see the Application Information section. The output data on SO follows after the complete data is provided to the device on SI pin. Invalid command bytes are ignored. Also, any additional SCK clock cycles and additional data on SI beyond the depicted frame size are ignored. CS# going high delineates the end of current data frame.

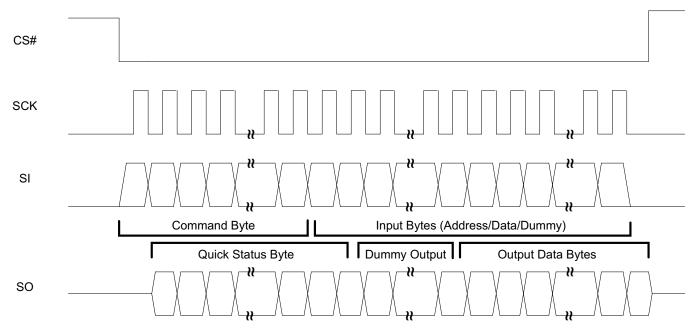


Figure 5. SPI Data Frame to Read, Write, Erase Memory Data and to Access Config/Status Registers

Copyright © 2012–2013, Texas Instruments Incorporated

Table 3. Serial Peripheral Interface (SPI) Data Frame⁽¹⁾

COMMAND NAME	COMMAND BYTE ON SI	ADDRESS BYTES ON SI	DATA BYTES ON SI	DUMMY BYTES ON SI ⁽²⁾	DATA BYTES ON SO	TOTAL BYTES IN FRAME	DESCRIPTION
Read Word	15h	3	0	1 (3)	2	7	Read word at given address
Read Word with auto addressing	16h	0	0	1 (3)	2	4	Burst read from previous address
Write Word	17h	3	2	1 (1)	0	7	Write word at given address
Write Word with auto addressing	18h	0	2	1 (1)	0	4	Burst write from previous address
Erase Segment ⁽³⁾	19h	3	0	1 (1)	0	5	Erase addressed segment
Read Status Register	22	0	0	0 (2)	2	3	Read SPI status register
Validate Segment	1A	3	0	1 (1)	0	5	Validates addressed segment
Write Register	1D	3	2	1 (1)	0	7	Writes to address in configuration register
Read Register	1E	3	0	1 (3)	2	7	Reads from address in configuration register
Write Command	1F	0	2	1 (1)	0	4	Flash controller command interface for special functions. See Application Information section.

- Multi-byte inputs and results are MSB first, LSB last.
- (#) indicates total number of dummy SI bytes including overlap with SO output.

 Permanent damage to flash array may occur if erase is executed when T_J exceeds 125°C.

REGISTER DEFINITIONS

Table 4. Quick Status Register

BITS	DEFAULT VALUE	TYPE	DESCRIPTION
7	0	R	Unused
6	0	R	SPI Frame error: indicates frame ended with less than required bytes to complete
5	0	R	Write Busy: indicates that a program operation is in progress
4	0	R	Erase Busy: indicates that a sector is being erased
3	0	R	Device Busy
2	0	R	Invalid Data: indicates that an attempt was made to set a bit to 1 that has already been programmed to 0
1	0	R	Read error: indicates that read was attempted on address when data was not available
0	0	R	Command error: indicates that a prior command failed. Must be cleared.

Table 5. Status Register (Command 22h)

BITS	DEFAULT VALUE	TYPE	DESCRIPTION
15:12	0	R	Reserved
11:08	RevID	R	Revision ID (current revision 1001)
7	0	R	Unused
6	0	R	Read Busy
5	0	R	Write Busy
4	0	R	Erase Busy
3	0	R	Write Suspend
2	0	R	Erase Suspend
1	0	R	Flash Pump Ready
0	0	R	SPI Frame error

www.ti.com

APPLICATION INFORMATION

The quick status register is intended to be used as feedback of device and command status. The host should evaluate the quick status results at each command execution to determine device status. Additionally, two of the error fields in the quick status are sticky. They will need to be intentionally cleared by the host once detected. The Command and Invalid Data error flags will not self clear. The command error bit indicates that a command failed. This can be either an erase or program command. If this was a program attempt, then the data written may not be valid. The host may decide to re-write this data or pursue some other error recovery path. The Invalid data bit will get set if an attempt to write a bit to a logical 1 (erased state) in a word that has that bit already programmed to a 0. This would likely be the first error seen when writing to an array that contains data. To clear a Command error or Invalid Data error, the host must execute the following SPI command sequence: 1F 00 40 xx. xx is a dummy byte and values are don't care. This SPI command is a special command that is sent to the internal flash controller to clear errors.

It is important to note that the quick status capture of the internal setting of the Command error and the Invalid Data flags are delayed by one transaction. Similarly, the Device Busy flag does not get cleared until a second transaction. For example, in the case of polling after a write. If this write generated an Invalid Data error, the sequence would be as follows.

SPI WRITE SPI READ		DESCRIPTION		
0x17_0000_FFFF		Write to address 0 with erased value This will cause Invalid Data error if word has been programmed.		
0xFF	08	Execute quick status. This result is Device Busy.		
0xFF	04	Execute quick status with Invalid Data error.		

Similarly, if a write or program fails, then the Command error status will show on the second transaction after the failed command. To effectively deal with this in a protocol, the best method is to poll the quick status twice to validate no error occurred. For applications that this method is too costly for SPI bandwidth, the error can be trapped on execution of the following commands with the knowledge that the error belonged to the command 2 transactions earlier.

The SPI Frame error and the Read error are errors that return correct status on the next quick status. These two errors are not sticky and only apply to the prior transaction.

Provisions for Operating With f_{CLK} Frequencies Less than 12 MHz

The SM28VLT32 uses a state machine and registers to implement the correct algorithms for programing, erasure and validation. The register values define counters and loops that determine appropriate setup and hold times, maximum attempts, pulse widths, and other critical parameters. The default values of these registers are defined for f_{CLK} operation in the 10 MHz to 12 MHz range. Operating below 10 MHhz requires changing key registers to properly implement the algorithm. See Table 6 for register settings for specific f_{CLK} ranges. Note, the 10 MHz to 12 MHz values are provided, but are not required to be written as they are the reset defaults. Additionally, the SPI S_{CLK} frequency must be 5/6ths of f_{CLK} or slower for reliable operation.

The values below represent the address and value that should be written using the 1D command. Note that first line is a write to F004. This must be first, as it unlocks the test control register and allows modification of the memory mapped registers. Without this write, the contents of the register would not change. It is recommended to follow the register writes with a read to verify that change was properly implemented. The last line is a write back to the test control register to relock it preventing accidental modification of the registers.

Table 6. Required Register Modifications for Operating at Frequencies Below 10 MHz⁽¹⁾

ADDRESS	12-10 MHz	10-8 MHz	8-6 MHz	6-4 MHz	4-2 MHz	
F004	2BC0	2BC0	2BC0	2BC0	2BC0	Unlock TCR
8006	0764	0654	0544	0434	0324	
8008	307D	3064 3050		303C	3028	
8009	0D0D	0D0D 0A0A 0808 0606		0606	0404	
8010	0D0D	0A0A	0808 060		0404	
8014	0032	0028	0020	0018	0010	
8015	83D6	6978	5460	3F48	2A30	
8016	186A	1388	0FA0	0BB8	07D0	
8017	0D0D	0A0A	0808	0606	0404	
8018	0064	0050	0040	0030	0020	
800D	0D0D	0A0A	0808	0606	0404	
800E	01F4	0190	0140	00F0	00A0	
F004	03C0	03C0	03C0	03C0	03C0	Lock TCR

⁽¹⁾ f_{CLK} cannot be operated lower than 2 MHz.

Initialization of the register values must be repeated on power cycle or RST assertion.

Power Supply Sequencing

The ideal power supply sequence is VCORE coming up before VIO (VCORE > 1.65 V before V_{IO} greater than 0.8 V).

For powerdown, the reverse is also true. VIO should be below 0.8 V before VCORE is < 1.65 V.

Alternatively, VIO can come up first or simultaneously with VCORE if RST is asserted low until both supplies are within recommended operating range. Similarly if device is active, it is necessary to assert RST prior to powering down to minimize chance of corrupting the flash array.

Power Saving Features

The device has power saving capabilities that allow it to be put into either standby or sleep states for the banks and flash pump when periods of inactivity are detected. When an access is initiated during sleep or standby, the pump and banks will transition to the active state automatically. Use of these features does not have protocol impact on programming (other than additional time required to wake up), as the device will report Write Busy. However, during read operations, the device will report Read error on next quick status read. This is due to the fact that a read transaction is immediate, while a write is queued. The value read from an address that is in standby or sleep will be 00 00. Reference Application Note: "Using the SM28VLT32-HT With Power Saving Features" (SLVA550).

Copyright © 2012–2013, Texas Instruments Incorporated Product Folder Links: SM28VLT32-HT

www.ti.com 2-Dec-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
SM28VLT32SKGD3	Active	Production	XCEPT (KGD) 0	12 TUBE	Yes	(4) Call TI	N/A for Pkg Type	-55 to 210	
SM28VLT32SKGD3.A	Active	Production	XCEPT (KGD) 0	12 TUBE	Yes	Call TI	N/A for Pkg Type	-55 to 210	

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025