
6-1

To
pi

c
6

Using PMBus™ for Improved System-Level
Power Management

Kurt Hesse

Abstract

This topic provides a brief high-level introduction to the PMBus Standard for controlling a power supply
using an enhanced serial interface, and then describes the more common and basic PMBus commands.
Several system level tasks are presented with possible ways to implement them using the facilities that may
be available to the designer using a PMBus-enabled converter or controller with the salient features of the
PMBus highlighted. Finally, an example specification and the PMBus commands required for its
implementation are illustrated with an application incorporating a suitable controller.

I. Introduction

Power-supply technology keeps evolving,
albeit at a slower general pace than some of the
more dynamic fields like processor development.
Over the last few years, requirements in some
applications for power-supply size, integration,
functionality, flexibility, monitoring, and control
have brought about the need for a system to go
beyond the traditional power supply of the past.
One of the results of this has been the introduction
of the Power Management Bus, or PMBus™.

What is this PMBus? Simply put, it is a
specification to allow digital control of a power
supply over a specified physical bus, commun
ications protocol, and command language (see
Reference [1]). A conceptual diagram of several
PMBus-capable power supplies controlled from a
central location is shown in Fig. 1. Figs. 2 and 3
respectively show the block diagrams of typical
nonisolated and isolated converters that might be
found in the system shown in Fig. 1.

Central Control Unit:
System Host /Bus Master

Power Supply:
Bus Slave

Power Supply:
Bus Slave

Power Supply:
Bus Slave

CLK
DATA
CNTL
SMBALRT

CLK
DATA
CNTL
SMBALRT

CLK
DATA
CNTL
SMBALRT

Write Protect

Write Protect

Write Protect

Address 1

Address 2

Address 3

Fig. 1. PMBus conceptual diagram.

6-2

To
pi

c
6

The typical system employing a PMBus will
have a central control unit and at least one PMBus-
enabled power supply attached to it. The connected
power supplies are always slaves, and the central
control unit is always the master. The central
control unit initiates all communication on the
bus, and the slave power supplies respond to the
master when they are addressed.

The PMBus specification governs the way in
which the central control unit and the slave power
supplies communicate with one another—and that
is all. The PMBus specification does not put
constraints on power-supply architecture, form
factor, pinout, power input, power output, or any
other characteristics of the supply. The specifica
tion is also divided into two parts. Part I deals with

Reference
Error Amplifier
and Pulse-Width

Modulator

Current Sense

PMBus Interface

Input
Power Current

Sense

Nonvolatile
Memory

Voltage
Sense

Output
Power

CLK
DATA
SMBALRT
CNTL

PMBus to
System

Host

Voltage Sense

Power Stage

Fig. 2. Block diagram of typical nonisolated PMBus converter.

Isolation Isolation

Isolation

Reference
Error Amplifier
and Pulse-Width

Modulator

Current Sense

PMBus Interface

Input
Power Current

Sense

Nonvolatile
Memory

Voltage
Sense

Output
Power

CLK
DATA
SMBALRT
CNTL

To
System

Host

Voltage Sense

Power Stage

Fig. 3. Block diagram of typical isolated PMBus converter.

6-3

To
pi

c
6

physical implementation and electrical specifi
cations, and Part II deals with the protocol,
communication, and command language.

For a power supply to be PMBus-compliant, it
must do several things:

Meet all requirements of Part I of the PMBus •	
specification.
Implement at least one of the PMBus commands •	
that is not a manufacturer-specific command.
If a PMBus command is supported, execute that •	
command as specified in Part II of the PMBus
specification.
If a PMBus command is not supported, respond •	
as described in the “Fault Management and
Reporting” section of Part II of the PMBus
specification.

Additionally, the device must be capable of
starting up unassisted and without any com
munication with or connection to the PMBus. This
behavior may be overridden by programming new
defaults for the device, but the capability to start
up unassisted must be present. This implies that
the PMBus device must be able to store operating
defaults for its configurable parameters on the
device itself in some form of nonvolatile storage.
Doing so can significantly decrease the amount of
time required for the system to start up, since no
communication is required to configure the device
for its operating parameters. If the central control
unit gets power from a PMBus device that it is
controlling, then that PMBus device must
obviously be set to start up automatically, or the
central control unit would never start and the
system would not function.

II. Implementation Specifics

To get the latest and most complete specification
for PMBus, download it from the PMBus Web site
at http://pmbus.org/specs.html. The PMBus is
derived from the System Management Bus
(SMBus) Specification Version 1.1 which is an
improvement over the I2C bus. I2C is a simple

two-line, synchronous serial communication bus
originally designed to allow communication
between two or more integrated circuits that are in
close proximity to each other [2]. SMBus
extensions and improvements over I2C include
host notification via the SMBALRT bus line and
packet error checking (PEC) to help prevent
erroneous operation from noise issues.

There are several differences between the
PMBus and SMBus specifications. Those most
notable from a system-design perspective are the
optional host notify protocol and the group
command protocol.

Host notification is required for SMBus
compliance, but is optional for PMBus compliance.
However, most PMBus devices will support this
feature, since it tells the host that a problem exists
so it can take appropriate action without having to
continually poll each slave device to check for
problems. This lightens the load on both the host
and the bus itself, providing greater system
capability. Host notification is done using a single
line (SMBALRT) that is passively pulled high.
When a slave has information that the host is
likely to need, the slave pulls the SMBALRT line
low. The host can then poll each device individually
or use the protocol described in the “SMBus Host
Notify Protocol” section of the SMBus 2.0
specification (see Reference [3]).

The group command protocol is designed to
allow several PMBus-compliant devices to
simultaneously execute commands. For more
specific information on this feature, refer to Part I,
section 5.2 of the PMBus Specification, (see
Reference [1]).

6-4

To
pi

c
6

III. Types of PMBus Commands

For some power-supply designers, the thought
of controlling the supply using a processor may be
a foreign concept and may raise questions on the
mechanics of doing so. The flow is simple and
straightforward. For example, Fig. 4 shows a
sequence of commands in pseudocode that would
cause a specific converter (converter A) to change
its overcurrent limit, undervoltage-lockout
(UVLO) value, and start-up time and to store these
new values as the default operating parameters.
The actual syntax will, of course, change depending
on the programming environment and libraries
available.

ON_OFF_CONFIG, VOUT_MARGIN_HIGH, and
VOUT_MARGIN_LOW. Voltage margining is the
intentional variation of voltages in the system to
check for functionality at extremes of operating
tolerances to ensure overall system reliability in
the field. The VOUT_MARGIN_HIGH and VOUT_
MARGIN_LOW commands tell the converter what
the margin output voltages will be when output
margining is commanded. The OPERATION
command is used to command the converter to
start, stop, and change the output voltage to one of
the previously configured margin voltages. ON_
OFF_CONFIG is used to determine what conditions
must be met for the converter to start operation
and how it shuts down. Some possibilities for
start-up include starting as soon as power is applied
or waiting for a signal from either the CONTROL
pin or the PMBus (or both); for turnoff the
controller could use the preprogrammed turn-off
delay or just stop as quickly as possible.

Several commands are available that relate to
setting the output voltage for the converter. Some
of the more useful commands in this group include
VOUT_COMMAND, VOUT_TRIM, VOUT_CAL_
OFFSET, VOUT_SCALE_LOOP, and VOUT_
SCALE_MONITOR. These commands have several
functions, including changing and calibrating the
converter output voltage and calibrating the output-
voltage monitor.

Addressing, memory, communication, and
capability commands deal with storing and
retrieving default operating parameters in
nonvolatile memory on the controller. They can
protect the controller from inadvertent changes to
operating parameters. For controllers that support
multiple rails, these commands also specify which
rail (or which phase of a multiphase converter)
subsequent commands apply to. There is even a
command for querying the converter about what it
supports. Some commands that fall into this group
include STORE_DEFAULT_ALL, RESTORE_
DEFAULT_ALL, STORE_DEFAULT_CODE,
RESTORE_DEFAULT_CODE, WRITE_PROTECT,
PAGE, PHASE, and QUERY.

Fault-management commands allow the user
to determine how the converter responds to fault
conditions and to define what those fault conditions
are. The PMBus specification allows for very
flexible handling of a variety of faults including

Prior parts of
the Host
Program

Remainder
of the Host
Program

IOUT_OC_FAULT_LIMIT (Converter A, 10 A);
VIN_ON (Converter A, 10 V);
TON_RISE (Converter A, 5 ms);
STORE_DEFAULT_ALL (Converter A);

Fig. 4. Simple PMBus command sequence.

PMBus commands can generally be grouped
into several categories. Some typical categories are:

On, off, and margin testing•	
Output-voltage related•	
Addressing, memory, communication, and •	
capability
Fault management•	
Sequencing•	
Status•	
Telemetry•	
Other•	

Commands for on, off, and margin testing deal
with turning the converter on and off as well as
setting up parameters for margin testing, and for
startup and shutdown timing. The commands in
this relatively small group are OPERATION,

6-5

To
pi

c
6

both overcurrent and overpower on the input and
output, over- and undervoltage on the input and
output, and over temperature. The response can
generally be programmed to ignore the fault; shut
down and try to restart; or latch off and require a
restart to be initiated by a PMBus command, a
power cycle, or toggling the control (CNTL) pin.
Additionally, the action taken on the fault can
generally be programmed to be immediate or to
take place after the fault condition persists for a
period of time. Some of the commands that would
fall into this fault-management category are IOUT_
OC_FAULT_LIMIT, IOUT_OC_FAULT_
RESPONSE, IOUT_OC_WARN_LIMIT, OT_WARN_
LIMIT, OT_FAULT_LIMIT, OT_FAULT_
RESPONSE, VIN_UV_WARN_LIMIT, VIN_UV_
FAULT_LIMIT, and VIN_UV_FAULT_RESPONSE.
There are many other commands in this category
for the other types of faults that are supported.

For example, the commands IOUT_OC_
FAULT_LIMIT and IOUT_OC_FAULT_RESPONSE
allow the user to program the overcurrent trip
threshold and to specify how the converter should
respond when the overcurrent limit has been
exceeded. The options for response to an
overcurrent event include continuing operation
while maintaining the output current set by the
IOUT_OC_FAULT_LIMIT command; maintaining
the preset current output and shutting down when
the output undervoltage threshold has been
reached; maintaining the output current and
shutting down after a preset timeout; and shutting
down immediately. The converter can also be
programmed to restart in a variety of ways,

indicators and allow the controller to restart when
commanded to by the OPERATION command or
when the control line is toggled. If the fault
condition still exists after the CLEAR_FAULTS
command is given, the status bit for that fault will
immediately reset, and the converter will respond
as programmed by the appropriate fault-response
command.

Sequencing commands control the timing of
converter start-up and shutdown. These commands
set how long the converter waits after receiving a
command to start before it begins ramping up its
output voltage; how long the ramp-up time itself
is; and possibly even how long to wait before
beginning to shut down after receiving a command
to do so. There are also commands that can specify
how long a converter is allowed to try to start up
and that can throw a fault condition if it takes too
long, as well as commands that set a time limit for
the output voltage to fall once the command to
shut down has been given. Commands in this
group include TON_DELAY and TON_RISE, which
affect the start-up of the converter. With the TON_
DELAY command, a converter can be set to start
up at a preset time after it is enabled, which can be
useful for power-supply sequencing. TON_RISE
controls the start-up ramp rate of the converter
after it begins operation. The effect of these two
commands is shown conceptually in Fig. 5. The
enable signal can come from several sources:
meeting the input UVLO threshold (also
programmable with VIN_ON), using the CONTROL
pin, or controlling the PMBus with the OPERATION
command.

Fig. 5. Relationship of TON_DELAY and TON_RISE.

TON_DELAY

TON_RISE

Time
0

Output
Voltage

Enable

including staying shut down until the fault is
cleared in the controller; trying to restart a
preset number of times and, if that fails,
staying off until commanded to restart; and
trying to restart indefinitely. Although the
response to overcurrent faults is very
flexible, not all possibilities can be
implemented in all converters.

When a fault occurs, a status register bit
is set and remains set so that it can be read
by the user. If the fault response is set to
require user interaction to restart the
converter, these fault indication bits must be
reset with a command called CLEAR_
FAULTS. This will reset all the fault

6-6

To
pi

c
6

Similarly, TOFF_DELAY and
TOFF_FALL affect the time delay from
the removal or de-assertion of the
enable signal until the output begins to
fall, and the amount of time it takes for
the output to fall to zero. The effect of
these two commands is shown
graphically in Fig. 6. The source of the
enable signal is the same as before.

Status commands allow the user to
query the converter and receive
information about its state. Some of
these commands include STATUS_
BYTE, STATUS_WORD, STATUS_
VOUT, STATUS_IOUT, and STATUS_
CML (communication, memory and
logic), among others. STATUS_BYTE
and STATUS_WORD return a single byte and two
bytes, respectively, that give a snapshot of the
state of the converter as shown in Fig. 7. Note that
STATUS_BYTE is simply the low-order byte in
STATUS_WORD and contains the flags for the
most common problems that are likely to occur. If
the system host is busy or the PMBus has a lot of
traffic, using STATUS_BYTE instead of STATUS_
WORD when querying controllers could prove
beneficial. Depending on the results of the
STATUS_WORD or STATUS_BYTE command, the
user can obtain further detail by using one of the
other status commands. For example, if the
STATUS_BYTE has bit 4 (the overcurrent flag) set,
issuing the STATUS_IOUT command will return a
byte describing the indication in more detail.

Telemetry commands allow the user to query
the device about various operating parameters of
the converter. Commands in this group include
READ_VIN, READ_VOUT, READ_IIN, READ_
IOUT, READ_TEMPERATURE, READ_DUTY_
CYCLE, READ_PIN, and READ_POUT, among a
few others. These commands are useful for
monitoring the converter and the load operation
over time for data logging, system health
monitoring or the prediction of failure of either the
load or the converter, and general troubleshooting.

Commands that fall into the "other" group
category have varied functions. A few examples
are FREQUENCY_SWITCH, VIN_ON, VIN_OFF,
POUT_MAX, and the fan-control commands.
FREQUENCY_SWITCH is used to alter the

Fig. 6. Relationship of TOFF_DELAY and TOFF_FALL.

Fig. 7. STATUS_WORD and STATUS_BYTE.

STATUS_BYTE

STATUS_WORD

7– VOUT
6– IOUT/POUT
5– INPUT
4–MFR

2– FANS
1– OTHER

7– BUSY7– BUSY
6–OFF6–OFF

1–CML1–CML
2– TEMPERATURE2– TEMPERATURE
3–VIN_UV3– VIN_UV
4– IOUT_OC4– IOUT_OC
5–VOUT_OV5–VOUT_OV

0–UNKNOWN

3–POWER_GOOD

High Byte

Low Byte

0–None of the above0–None of the above

switching frequency of the converter, while VIN_
ON and VIN_OFF set the input UVLO turn-on and
turn-off thresholds, allowing complete flexibility
for power and other variations in any given system.
POUT_MAX is used to define the maximum power
that the converter is allowed to provide. Exceeding
the limit set here will trigger a fault with a
programmable response similar to those described
earlier.

TOFF_ DELAY
TOFF_FALL

Time
0

Output
Voltage

Enable

6-7

To
pi

c
6

IV. Using PMBus in the System

The preceding brief introduction to PMBus
describes only a portion of the commands available
to the user. It is worth noting that any individual
PMBus-enabled device will probably not support
all of the commands previously listed. The
command set is diverse; some commands are
targeted toward off-line power conversion, others
toward point-of-load conversion, and still others
toward both. When choosing a converter for use in
any given application, it is best to first determine
what tasks the device will need to perform and
what it will require to perform them. Then those
requirements can be balanced against what the
available devices offer and at what cost—just like
any other engineering decision.

A. Sequencing
A very common requirement of power supplies

is that they sequence, or start up and shut down, in
a particular order. If the converter supports the
required commands, this task is easy. There are
several ways in which PMBus converters may be
sequenced:
1.	 Remote or system host enable
	 a.	 With the CNTL pins
	 b.	 With the OPERATION command
2.	 Time-delay sequencing with TON_DELAY and

TOFF_DELAY
3.	 Open-loop tracking by manipulation of

TON_RISE, TOFF_DELAY, and TOFF_FALL

Case 1a is illustrated in Fig. 8 and really does
not require a PMBus; all that is required is a
converter with a hardware pin for enabling and
shutting down. This will control the power-up
sequence and to some extent the power-down
sequence. Power-up starts when the host enables
converter A. Once converter A has started and is
operating, it will assert its Power Good signal,
alerting the host that it can enable converter B.
Converter B will assert its Power Good signal
after it has successfully started. Power-down
sequencing (if a reverse sequence is assumed) can
be accomplished by the host disabling converter
B. After some time the host can disable converter
A. The amount of time it needs to wait between
disabling each converter is dependent on the
system and must be known by the host. This

places a burden on the host to time the converter
shutdowns.

Case 1b is a similar scenario. Here the host
enables and disables the converters by sending the
appropriate data byte to each converter with the
OPERATION command. This method of control is
also illustrated in Fig. 8, except that the CNTL
lines are not required to be routed on the printed
circuit board (PCB). To accomplish this method of
sequencing, the host sends converter A the
OPERATION command with the bits in the data-
byte set to cause the converter to start up. After a
sufficient amount of time has passed, the host
sends the same OPERATION command to controller
B. It is incumbent upon the host to know how long
to wait and to keep track of the time between
commands, just as in the shutdown phase of Case
1a. The trade-off in using the OPERATION
command rather than the CNTL pins is a little less
PCB routing for a little more overhead in the
system’s host software.

Case 2, which accomplishes time-delay
sequencing using the TON_DELAY and TOFF_
DELAY commands, gives results similar to those
in Case 1 but eliminates the need for the host to
keep track of the time between issuing commands
to the converters. Instead, the converters are
initialized with preset turn-on and turn-off delays
that they use to determine how long to wait after
receiving an enable or disable command before
actually turning on or off. The host sends only one
command sequence to enable/disable both (or
more) converters.

Fig. 8. Hardware sequencing.

Converter A

Converter B

CNTL

CNTL

Power Good

Power Good

Vout

Vout

System
Host

PMBus

PMBus

6-8

To
pi

c
6

To sequence converters in this manner, each
converter must be initialized correctly. First, the
ON_OFF_CONFIG command must be issued to
each converter to cause it to use the delays set by
TOFF_DELAY. Next, for the converter that is to
start first, TON_DELAY should be set to zero or
some small value. For the converter that is to start
next, TON_DELAY is set to some time longer than
the start-up time for the first converter. This start-
up time is typically set with the TON_RISE
command or by hardware programming via some
external resistor or capacitor. Once these values
are set in the converter, they can be commanded to
start and will sequence their power up properly.

Tracking is a feature designed to keep multiple
voltage rails close together during start-up and
shutdown. The purpose is to prevent unwanted
current that may be destructive to the load from
flowing from one rail to the other during power-up
and power-down. Tracking start-up can be defined
as two or more rails following each other closely
as they rise, with the lowest voltage rail stopping
its rise as it reaches its final regulation value. The
other rails continue to rise together, and each one
stops as it reaches its final regulation value.
Tracking shutdown is similar. The highest voltage
rail is brought down at a controlled rate. As it
reaches the value of the next lower rail, both of

Fig. 9. Time-delay start-up sequencing.
Time

0

Output
Voltage

Enable

Converter B

Converter A

TON_DELAY(B)
TON_RISE(B)

TON_RISE(A)

Time

0

Output
Voltage

Enable

TOFF_FALL(B)
TOFF_FALL(A)TOFF_DELAY(A)

Converter B

Converter A

Fig. 10. Time-delay power-down sequencing.

This is illustrated in Fig. 9. Note that
the enable signal can come either
from the PMBus or from a hardware-
enable pin.

The setup and execution for the
power-down sequence is similar.
The TOFF_DELAY settings deter
mine which converter will shut
down first and which will shut down
later. Fig. 10 illustrates the timing
relationships.

Here the fall time of each power
supply is determined by the para
meter TOFF_FALL. Setting TOFF_
FALL properly depends on the
characteristics of the load the
converters are supplying. If the
converter is not allowed to sink
current from the load at any time,
the TOFF_FALL times must be set
longer than the natural decay times
that the converters have when
operating at the minimum expected
load. If the converter is allowed to
sink current, the TOFF_FALL time
may be set as the user desires. Of
course, the converters may be set to
ignore the fall-time parameters and
allowed to decay naturally as in the
previous examples. If supported by
the converters, and if required, the
previous examples may incorporate
the TOFF_FALL parameter for more
deterministic control of the power-
down sequence.

6-9

To
pi

c
6

the parameters for power-down tracking, given
the conditions in Fig. 12.

V

TOFF FALL A

V

TOFF FALL B
OUT A OUT B() ()

_ () _ ()
=

	
(2)

TOFF DELAY A V V

TOFF FALL B

V

OUT B OUT A

OUT B

_ ()

_ ()

() ()

()

= −()
×











	

(3)

The tolerances required for a converter's timing
and output voltage to meet specific targets for
tracking accuracy are beyond this topic's scope.

these rails continue down together and maintain a
negligible voltage difference between them. The
process can be extended to any number of voltage
rails.

 Tracking can be done with PMBus converters
that support the TON_RISE command for start-up
and the TOFF_DELAY and TOFF_FALL commands
for power-down. Fig. 11 illustrates this and the
required settings for start-up. The TON_RISE
setting for the two (or more) converters is set so
that the slope of the output-voltage-rise waveforms
is the same. If both converters receive the enable
signal at the same time, the output voltages will
track one another until converter A reaches its

Fig. 11. PMBus tracking start-up.
Time

0

Output
Voltage

Enable

Converter B

Converter A

TON_RISE(B)

TON_RISE(A)

steady-state voltage. The output of
converter B will then continue on to
its steady-state output voltage at the
same slope. This will require
converters that allow fairly fine
control of the TON_RISE parameter.
The setting for TON_RISE can be
calculated by making the slopes of
the two start-up waveforms equal:

V

TON RISE A

V

TON RISE B
OUT A OUT B() ()

_ () _ ()
=

(1)

The converters can be set up to
track on a power-down as well.
Adjusting the TOFF_DELAY para
meter of the lower-output-voltage
supply and the TOFF_FALL para
meters of both converters causes the
output voltages to track each other
when the converters are shut down.
The waveform slopes of the TOFF_
FALL parameters must be set to match
each other like the TON_RISE
parameters in tracking start-up. The
TOFF_DELAY parameter of the
converter with the lower output
voltage must be set so that that voltage
starts to fall as soon as the higher
output voltage of the other converter
falls enough to match it. This is
illustrated in Fig. 12. Equations (2)
and (3) show the calculations to set

Fig. 12. PMBus tracking shutdown.
Time

0

TOFF_FALL(B)

TOFF_FALL(A)

Output
Voltage

Enable

TOFF_DELAY(A)
Converter B

Converter A

6-10

To
pi

c
6

The astute observer will notice that the nature
of the PMBus as a serial communication bus
seems to preclude sending these startup and
shutdown commands simultaneously to both
converters. This would introduce some unknown
variability in the timing that would have to be
accounted for when the delays for start-up and
shutdown are set. PMBus has a mechanism for
overcoming this limitation called the group
command protocol. With this protocol, it is possible
to issue commands to several converters in
sequence and then have the converters execute the
commands simultaneously.

The normal way a command is written to a
PMBus device is shown in Fig. 13a. The host puts
a START on the bus, followed by the address of
the device with which it wishes to communicate.
The device then signals an acknowledgement
(ACK) of the address. The host responds by
sending the command, after which the device
signals another ACK. The host then sends the data
for the command, followed by the slave-device's
ACK. The packet error check byte (PEC) is then
sent and an ACK is received. The host then puts a
STOP on the bus, causing the target device to
execute the command.

Slightly modifying this procedure makes the

first PMBus converter(s) delay execution of the
command so that all can execute a command
simultaneously. This is done as follows. The
sequence is the same as before, except that instead
of putting a STOP on the bus when writing the
command to the first target is completed, the host
puts another START on the bus followed by the
address of another target. The new target
acknowledges the address, and the sequence
proceeds as before until writing the command is
completed. The host can then put a STOP on the
bus or continue writing commands to other targets
by placing another START on the bus and
beginning the sequence for another target. When
the host has finished writing all commands to all
targets that are to be executed simultaneously, it
puts a STOP on the bus. At this point, all converters
will execute the commands that they were given
(see Fig. 13b). The key point is that the STOP on
the PMBus is the signal for a target converter to
execute the command it was given. There are a
couple of key points to remember when using the
group command protocol. First, only one command
can be given to any one target device in any one
group command. Second, the commands given
must not require the target to transmit data back to
the host.

S Device Address W A Command Code A Data Byte A Data Byte A PEC A P...
1 1 1 1 1 1 17 8 8 8 8

One or more Data Bytes
1

One or more Data Bytes

One or more Data Bytes

One or more Data Bytes

S Device 1 Address W A Command Code A Data Byte A Data Byte A PEC 1 A...
1 1 1 1 1 1 17 8 8 8 8

...

S Device 2 Address W A Command Code A Data Byte A Data Byte A PEC 2 A...
1 1 1 1 1 1 17 8 8 8 8

...

S Device N Address W A Command Code A Data Byte A Data Byte A PEC N A...
1 1 1 1 1 1 17 8 8 8 8

P
1

S START Bit P STOP Bit A ACK Bit Device N Address
Seven-bit
device
address

WPEC
Read/Write eighth
bit of address byte
set to WRITE mode.

Packet-error
check byte.

a. Single command to a PMBus target.

b. Group command to multiple PMBus targets.

Fig. 13. Single and group commands on PMBus.

6-11

To
pi

c
6

Fig. 14 shows the typical CLK/DATA timing
relationships required to assure that the DATA
signals are valid during CLK-signal transitions.

Fig. 15 shows two examples of a command-
byte exchange between the transmitter and
receiver. Each byte has 9 bits, the 8 data bits and
an ACK/NACK bit. The transmitting device places
the 8 data bits on the bus, then stops. Before the
9th CLK pulse, the receiving device pulls the
DATA line low to signal an acknowledgment
(ACK) of the byte or leaves it high to signal a
negative acknowledgment (NACK) of the byte.

In the group-command protocol, the system
host will be the only transmitter. In some other
command transactions, the converter or slave can
transmit data to the host. Therefore, the role of
transmitter and receiver in Fig. 15 depends on the
type of command. In all cases, the host will control
the CLK line.

B. Voltage Margining
Another task that is made easier with a PMBus

converter is voltage margining. As stated earlier,
voltage margining is the intentional variation of
voltages in the system to check for functionality at
extremes of operating tolerances to ensure overall
system reliability in the field. Normally,
implementing margining requires a converter that
specifically offers this feature. However, a

CLK

DATA

“0” “1”

CLK

DATA

CLK

DATA

Fig. 14. PMBus data bits during normal
transmission and under START and STOP
conditions.

c. STOP condition:
Low-to-high transition

of DATA while CLK
is high.

b. START condition:
High-to-low transition

of DATA while CLK
is high.

a. Normal data-transmission timing:
DATA moves while CLK is low.

Fig. 15. PMBus data byte with ACK and NACK acknowledgements.

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

ACK/
NACK

ACK/
NACK

CLK

DATA

Data byte is 00010010 followed by an ACK from the receiver
DATA line under
transmitter control

CLK

DATA

Data byte is 00010010 followed by a NACK from the receiver
DATA line under
transmitter control

DATA line under
receiver control

DATA line under
receiver control

secondary integrated device can be used instead,
or a few discrete components that can control or
offset the output voltage of the converter via a bias
injected into its feedback loop or a change of
components on the test board. Each of these
alternatives has advantages and disadvantages in
terms of size, cost, and ease of implementation.

6-12

To
pi

c
6

Margining can be implemented with a PMBus
converter that supports VOUT_MARGIN_HIGH,
VOUT_MARGIN_LOW, and the margin-related
bits in the OPERATION command data byte. The
desired margin voltage for the target device must
first be set with a VOUT_MARGIN_HIGH or
VOUT_MARGIN_LOW command; then the
OPERATION command is given with the bits set to
tell the converter to change to the margin output
voltage.

There are a couple of unique features in the
PMBus implementation of margining that are
noteworthy to the system designer. First, the
margin transition rate can be adjusted. The VOUT_
TRANSITION_RATE command can be used to set
the rate of change of the output voltage when the
margin command is issued. This can be helpful in
some circumstances to avoid fault conditions in
the system. Second, the converter can be set to
ignore faults while the margin is in effect. The
margin bits in the operation data byte allow four
settings for the margin command:
1. Margin high, acting on faults
2. Margin high, ignoring faults
3. Margin low, acting on faults
4. Margin low, ignoring faults

These commands allow system testing beyond
normal operating parameters without the controller
generating a fault signal that would otherwise
cause the system to halt operation or reset. Testing
is therefore faster, and tests that otherwise might
not be conducted are possible. An example of such
testing would be to set the margin’s high voltage
above the operating limit for output overvoltage.
Multiple converters can obviously participate in
margin testing, and the group command protocol
allows several converters to adjust their output
voltages at the same time.

C. Programmable Parameters
The PMBus also allows a system’s power

parameters to be changed either during factory
testing or in the field at any time without the need
for hardware modification. Most changes can be
accomplished with a simple software update or a
one-time parameter update of the converter during
testing. For some applications powering power-
hungry, low-voltage ASICs, the output voltage of

the converter can be changed to match the specific
requirements of the ASIC. This allows use of a
standard converter circuit to power ASICs whose
input-voltage requirements to meet performance
specifications may vary from ASIC to ASIC. A
feature of the PMBus converter that is particularly
beneficial here is its ability to store user settings as
the default that will be used every subsequent time
the converter is powered up. For example, during
system testing, if it is known that a particular
ASIC needs a certain voltage to perform to
specifications, the controller’s output voltage can
be set to that value and written to nonvolatile
memory for later use as the default setting.

Another use of this feature would be to trim the
converter’s operating characteristics at test time to
allow tighter specification of overall tolerances for
the converter. Specific parameters that could be
trimmed to offer a more competitive advantage
would include overcurrent threshold, output
voltage, current-sense gain and offset for the
READ_IOUT command to be more accurate, etc.

When adjusting the output voltage of a
converter, especially when it is in a system, the
user must take care to observe the voltage
limitations of any devices connected to the output
of the converter. Accidents do happen, especially
during the development phases of a project, and a
transposed number or other error could cause the
converter’s output voltage to be greater than the
load can withstand. A command designed to deal
with this issue, VOUT_MAX, is supported by some
converters. This command places a strict upper
limit on the output voltage that the converter can
command, irrespective of what the user tries to
have the converter do. This can save valuable
system prototypes and repair time, speeding the
development process.

D. System Monitoring
System monitoring is another common PMBus

task, but maybe not one usually associated with
the power converter in the system. Depending on
what the converter supports, there are several
important system parameters that can be
obtained from it using PMBus. The READ_
TEMPERATURE_X commands can be used to flag
a rise in the temperature of either the converter
itself or some other point in the system designated

6-13

To
pi

c
6

by the system designer and converter manufacturer.
This information, along with other information
available via the PMBus, can help pinpoint and
diagnose common system issues that might occur
in the field, adding value to the overall system. For
instance, if a converter has fans that are under
PMBus control, a high temperature reading
combined with a READ_FAN_SPEED_N that is too
low could indicate a failed fan or possibly a
blocked air filter if the fan-speed reading is too
high. An alert could be sent to maintenance
personnel by the system host if desired. If
temperatures are high and the fan speeds are
normal, a high ambient temperature could be the
cause. One of the readings from the READ_
TEMPERATURE_X commands could report this
directly if the ambient temperature was one of the
temperatures being sensed. For converters that
support reading the input and output power (or
reading the input and output voltages and currents
and letting the system host do more of the
calculating), converter efficiency can be computed.
Over time, a drop in converter efficiency can
signal a converter with problems that might need
to be addressed, such as corroded or loose
connectors, mechanical damage, or dust buildup
that might cause ineffective cooling of the power
semiconductors, or some other condition. This
trend could be analyzed and preventative mainten
ance scheduled before a system failure occurs.

The PMBus specification has defined specific
commands to deal with controlling and monitoring
four cooling fans. Conventional thinking would
have the user place these fans in the converter
itself, but there is no reason why they could not be
placed outside its physical boundaries. If the
overall configuration of the system is amenable,
the PMBus power converter can be used as a
source of information to drive cooling fans for the
whole system. The converter could be made to
accommodate fans that are primarily for system
cooling as well as fans that are primarily for
cooling the converter. Along with the ability to
read temperatures outside the converter itself
(depending on what temperatures the READ_
TEMPERATURE_X commands are monitoring),
the system host has a single place to control up to
four system cooling fans. If supported by the
hardware, PMBus allows for complete variable-

speed fan control, allowing the user to optimize
the system power used for cooling versus the
amount of cooling required. This could provide
benefits such as reduced power consumption and
lower acoustic noise output from the system.

E. Other PMBus Features
A significant problem for the manufacturer of

power modules is accommodating the wide
variation possible in external capacitive loading.
The control loop of the module will work optimally
only for a relatively small range of external output
capacitance. Performance will degrade and could
become unstable for capacitive loadings beyond
this range. PMBus, along with a digital control
scheme, can be used to overcome these limitations
and optimize the module for the particular load
conditions. The converter manufacturer can use
some of the undefined manufacturer-specific
commands to set the feedback-loop parameters.
Or, if the controller has some processing capability,
as would be likely in a digitally controlled loop
application, a manufacturer-specific command
could be set up to calculate the optimal feedback-
loop parameters from the amount of external load
capacitance. Either case would allow optimization
of the loop response for the particular application
at hand, maximizing system performance.

PMBus-enabled converters could also be
useful for tracking faults and correlating failures
to specific manufacturing runs, certain suppliers,
particular revisions of converters or silicon, or
even a particular silicon lot. This can be done
through two groups of commands, the
manufacturer-information commands and the user-
data commands.

The manufacture-information commands
allow the user to retrieve identifying information
stored by the converter manufacturer in nonvolatile
memory. These commands—MFR_ID, MFR_
MODEL, MFR_REVISION, MFR_LOCATION,
MFR_DATE, and MFR_SERIAL—provide a
complete electronic description of the converter
that can be used to trace it as far back as desired in
the manufacturing process. For those applications
that have an embedded converter built from
discrete components, the manufacturer-information
commands could pertain to silicon and not to the
entire converter.

6-14

To
pi

c
6

User-data commands are 16 general-purpose
commands that enable the user to store arbitrary
data in nonvolatile memory in the converter. This
data can be anything from a copy of the operating
parameters as a backup in case of a programming
accident, to identifying system information as an
aid in tracking performance and failures, or
anything else that the user desires. The
implementation of these commands is not defined
in the PMBus specification and is left to device
manufacturers to decide. It is therefore paramount
that the user understand the limitations and
capabilities of a particular device if this
functionality is needed.

This topic is not by any means a complete
treatment of the PMBus or the capabilities and
application possibilities of a PMBus-enabled
converter. It is intended to illustrate only some of
the more common and potentially useful application
aids that PMBus supports. In the interest of saving
space, no mention has been made of multiple-
phase capabilities or of converters with multiple
output rails and the specific advantages the PMBus
provides for them. Also, as mentioned earlier, not
all converters will implement all commands, and
the commands that are implemented are dependent
on the target application. With that said, a look at
an application and the selection of a converter or
controller for a converter would be in order.

V. Example Application and Converter
Selection

A hypothetical application might be for a
converter to power two processors on a board in a
communications rack. The processors both require
a 1.2-V nominal core voltage and separate 3.3-V
I/O voltage rails so each processor can be shut
down independently. Output-current requirements
are 10 A per processor core and 3 A per I/O rail.
The core voltages must be present before the I/O
voltages are applied. A processor's specified
optimum operating voltage can vary from 1.1 to
1.2 V on a device-by-device basis to balance
performance and power dissipation. It is desirable
to use this core-voltage range to lower overall
system power requirements and avoid unnecessary
heat loading in the rack. In addition, the testing
and qualification requirements require that power
supply rails in the system be varied over a specified

operating range during factory testing and during
field testing by service personnel. To monitor
power consumption, it is desirable to monitor
output voltage and current, however, cost is always
an important concern. With the given objectives,
the converter should support the following:

Nonvolatile memory. All PMBus devices 1.	
should have this feature, however, some low-
cost offerings may not. This memory feature
allows device settings to remain as defaults so
the device does not need to be configured each
time the device is powered.

Sequencing. There are four rails (two sets of 2.	
two, a core and an I/O rail in each set) that
have to be supplied with the stipulation that in
the two sets of rails, the I/O voltage must not
start until the core voltage has been established.

VOUT_TRIM command. This will allow the 3.	
user to set up a default operating voltage that
matches the requirements of the particular
processor on the system board.

Margining commands—VOUT_MARGIN_4.	
HIGH, VOUT_MARGIN_LOW, and the
support of the margin bits in the OPERATION
command (which would be implied by the
implementation of the first two commands).
Support for the VOUT_TRANSITION_RATE
command could be useful but is not absolutely
necessary.

READ_VOUT and READ_IOUT commands 5.	
that let the host calculate power output. If the
host is severely limited in processing power,
READ_POUT is a nice option to place some
of the processing load on the converter.

With these requirements, a full blown imple
mentation of PMBus is not necessary for the
converter. With the low-cost objective, a multiple-
rail controller can provide a more compact, cost-
effective total-system solution. One controller that
can support all the requirements of this application
is the UCD9240. Additional features in the
UCD9240 that could benefit the overall system
and off-load tasks from the main system host
include temperature measurement and cooling fan
control.

The UCD9240 is a digital synchronous-buck
PWM controller that can control up to four power
rails at a time. It also has PWM outputs to drive a

6-15

To
pi

c
6

total of eight power stages. The power stages can
be configured as combinations of single- and
multiple-phase power rails for up to the four
supported rails. Each of the four high-speed
digital-control loops have dedicated 3-pole/
3-zero compensators and pulse-width modulators
with 250-ps resolution. This architecture enables
wide input-to-output voltage-conversion ratios at a
switching frequency of up to 2 MHz. The UCD9240
is also able to monitor and manage power-supply
operating conditions and report the status to the

host system through the PMBus interface. The
device operating parameters are configurable using
the Power+ Designer tool available from Texas
Instruments. This PC-based design tool allows the
power-supply designer to easily configure the
control-loop characteristics and generate the
expected performance by displaying Bode plots
for each controlled power stage.

Figures 16 and 17 show the block diagram of
the UCD9240 and a schematic that would satisfy
the previously specified requirements.

Fig. 16. UCD9240 block diagram.

ADDR-00
ADDR-01

CS-1A
CS-1B
CS-2A
CS-2B
CS-3A
CS-3B
CS-4A
CS-4B

VIN
Vtrack

Temperature

PWR

GND

BPCAP

EAP1
EAN1

EAP2
EAN2

EAP3
EAN3

EAP4
EAN4

Error ADC

Fusion Power Peripherals

6

6

6

6

5

6

16

16

16

16

Error ADC

Error ADC

Error ADC

Diff
Amp

Ref
Error
Amp

6-Bit
ADC

ARM-7
Core

Flash
Memory
with ECC

SRE
Control

ADC
Analog Comparators

Ref 1

Ref 2

Ref 3

Ref 4

TRIP 1

TRIP 2

Vreg

Osc

POR/BOR

TRIP 3

PMBus
TRIP 4

12-Bit
200 ksps

IIR
3P/3Z
Coeff.
Regs

Compensator
3P/3Z IIR

Compensator
3P/3Z IIR

Compensator
3P/3Z IIR

Compensator

Digital
High-Res
PWM

Digital
High-Res
PWM

Digital
High-Res
PWM

Digital
High-Res
PWM

DPWM-4A
DPWM-4B
FAULT-4A
FAULT-4B

DPWM-3A
DPWM-3B
FAULT-3A
FAULT-3B

DPWM-2A
DPWM-2B
FAULT-2A
FAULT-2B

DPWM-1A
DPWM-1B
FAULT-1A
FAULT-1B

SYNC-IN
SYNC-OUT

SRE-4B
SRE-4A
SRE-3B
SRE-3A
SRE-2B
SRE-2A
SRE-1B
SRE-1A

PMBus-Clk
PMBus-Data
PMBus-Alert
PMBus-Cntl

6-16

To
pi

c
6 Fig. 17. Schematic of UCD9240-based solution.

UCD9240

3.3V

3.3V

DPWM-1A
DPWM-1B
DPWM-2A
DPWM-2B
DPWM-3A
DPWM-4A

17
18
19
20
21
23

FAULT-1A
FAULT-1B
FAULT-2A
FAULT-2B
FAULT-3A
FAULT-4A

11
12
13
14
25
34

SRE-1A
SRE-1B
SRE-2A
SRE-2B
SRE-3A
SRE-4A

22
24
33
35
29
30

TMUX-0
TMUX-1
TMUX-2

31
32
42

FAN-PWM
FAN-TACH

41
36

SYNC-IN
SYNC-OUT

38
37

40
10

/TRST
TRCK

EAp1
EAn1
EAp2
EAn2
EAp3
EAn3
EAp4
EAn4

50
51
52
53
54
55
56
57

61
60

AddrSens0
AddrSens1

CS-1A (COMP1)
CS-2A (COMP2)
CS-3A (COMP3)
CS-4A (COMP4)
CS-1B
CS-2B

59
3
2
1
63
62

Vin
Vtrack
Temp

4
5
6

15
16
27
28
39

PMBus-CLK
PMBus-DATA
PMBus-ALERT
PMBus-CTRL
PowerGood

9 /Reset

AG
N
D
-1

AG
N
D
-2

AG
N
D
-3

DG
ND
-1

DG
ND
-2

DG
ND
-3

49 48 64 8 26 43

V3
3F
B

V3
3A

V3
3D

V3
3D
IO
-1

V3
3D
IO
-2

BP
C
ap

58 46 45 7 44 47

Vin

TLV1117 -ADJ
VoutVin

8V

+Vsens-rail2
-Vsens-rail2

UCD72XX

Vcore2

Isens-rail2

8V

+Vsens-rail1
-Vsens-rail1

UCD72XX

Vcore1

Isens-rail1

8V

+Vsens-rail4
-Vsens-rail4

UCD72XX

Vio2

Isens-rail4

8V

+Vsens-rail3
-Vsens-rail3

UCD72XX

Vio1

Isens-rail3

8V
To

PMBus
host

Power
Good

Isens-rail1
Isens-rail2
Isens-rail3
Isens-rail4

Vin

Vin

Vin

+Vsens-rail1
-Vsens-rail1
+Vsens-rail2
-Vsens-rail2
+Vsens-rail3
-Vsens-rail3
+Vsens-rail4
-Vsens-rail4

VI. References

[1]	 PMBus Specification Version 1.1, Feb. 5,
2007. [Online.] Available: http://pmbus.org/
specs.html

[2]	 I2C-Bus Specification, Version 2.1, Jan. 2000.
[Online.] Available: http://www.
semiconductors .phi l ips .com/acrobat_
download/literature/9398/39340011.pdf

[3]	 SMBus Specification Version 2.0, Aug. 3,
2000. [Online.] Available: http://smbus.org/
specs/

[4]	 Bob White, “PMBus Offers Open-Standard
Power Management,” Power Electron.
Technology, Sept. 2005. [Online.] Available:
http://powerelectronics.com/mag/power_
pmbus_offers_openstandard/

[5]	 Dave Freeman, “Power System Communi
cations Support Digital-Power Growth,”
Electron. Design News, March 26, 2005.
[Online.] Available: http://www.ednasia.com/
article-3232-powersystemscommunicationssu
pportdigitalpowergrowth-Asia.html

[6]	 UCD9240 datasheet, April 2007. [Online.]
Available: http://www.ti.com/lit/gpn/ucd9240

