SN74AHC125-Q1 SCLS525C - JULY 2003 - REVISED APRIL 2024 ### SN74AHC125-Q1 Automotive Quadruple Bus Buffer Gate with 3-State Outputs #### 1 Features - Qualified for automotive applications - EPIC™ (Enhanced-Performance Implanted CMOS) process - Operating range 2-V to 5.5-V V_{CC} - Latch-up performance exceeds 250 mA per JESD 17 ### 2 Applications - Flow meters - Programmable logic controllers - Power on Ethernet® (PoE) - Motor drives and controls - Electronic point-of-sale #### 3 Description The SN74AHC125-Q1 is a quadruple bus buffer gate featuring independent line drivers with 3-state outputs. Each output is disabled when the associated outputenable (\overline{OE}) input is high. When \overline{OE} is low, the respective gate passes the data from the A input to its Y output. To put the device in the high-impedance state during power up or power down, tie \overline{OE} to V_{CC} through a pullup resistor; the current-sinking capability of the driver determines the minimum value of the resistor. #### **Package Information** | PART NUMBER | | | | | |---------------|----------------|--------------|--|--| | | D (SOIC, 14) | 8.65mm × 6mm | | | | SN74AHC125-Q1 | PW (TSSOP, 14) | 5mm × 6.4mm | | | | | BQA (WQFN, 14) | 3mm × 2.5mm | | | - For more information, see Section 9 - The package size (length × width) is a nominal value and includes pins, where applicable. Logic Diagram (Positive Logic) ### **Table of Contents** | 1 Features1 | 6 Parameter Measurement Information7 | |---|--| | 2 Applications | 7 Detailed Description8 | | 3 Description1 | 7.1 Functional Block Diagram8 | | 4 Pin Configuration and Functions3 | 7.2 Device Functional Modes8 | | 5 Specifications4 | 8 Device and Documentation Support9 | | 5.1 Absolute Maximum Ratings4 | 8.1 Documentation Support9 | | 5.2 ESD Ratings4 | 8.2 Receiving Notification of Documentation Updates9 | | 5.3 Recommended Operating Conditions4 | 8.3 Support Resources9 | | 5.4 Thermal Information5 | 8.4 Trademarks9 | | 5.5 Electrical Characteristics5 | 8.5 Electrostatic Discharge Caution9 | | 5.6 Switching Characteristics, V _{CC} = 3.3 V ± 0.3 V5 | 8.6 Glossary9 | | 5.7 Switching Characteristics, V _{CC} = 5 V ± 0.5 V6 | 9 Mechanical, Packaging, and Orderable Information9 | | 5.8 Noise Characteristics6 | 10 Revision History9 | | 5.9 Operating Characteristics6 | - | ### **4 Pin Configuration and Functions** Figure 4-1. D or PW Package, 14-Pin SOIC or TSSOP (Top View) Figure 4-2. BQA Package, 14-Pin WQFN (Top View) **Table 4-1. Pin Functions** | P | PIN | TYPE ⁽¹⁾ | DESCRIPTION | |---------------------------|-----|---------------------|---| | NAME | NO. | - ITPE | DESCRIPTION | | 1 OE | 1 | I | Output enable | | 1A | 2 | I | Input | | 1Y | 3 | 0 | Output | | 2 OE | 4 | I | Output enable | | 2A | 5 | I | Input | | 2Y | 6 | 0 | Output | | 3 OE | 8 | I | Output enable | | 3A | 9 | I | Input | | 3Y | 10 | I | Output | | 4 ŌE | 13 | I | Output enable | | 4A | 12 | I | Input | | 4Y | 11 | 0 | Output | | GND | 7 | _ | Ground | | V _{CC} | 14 | I | Supply voltage | | Thermal Pad ⁽² | 2) | _ | The thermal pad can be connected to GND or left floating. Do not connect to any other signal or supply. | - (1) I = input, O = output - (2) For BQA package only. ### **5 Specifications** ### 5.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)⁽¹⁾ | | | | MIN | MAX | UNIT | |-----------------------------|---|--------------------------------------|------|-----------------------|------| | V _{CC} | Supply voltage range | | -0.5 | 7 | V | | V _I ¹ | Input voltage range | | -0.5 | 7 | V | | V _O ¹ | Output voltage range | | -0.5 | V _{CC} + 0.5 | V | | I _{IK} | Input clamp current | (V _I < 0) | | -20 | mA | | I _{OK} | Output clamp current | $(V_O < 0 \text{ or } V_O > V_{CC})$ | | ±20 | mA | | Io | Continuous output current | $(V_O = 0 \text{ to } V_{CC})$ | | ±25 | mA | | | Continuous current through V _{CC} or GND |) | | ±50 | mA | | T _{stg} | Storage temperature range | | -65 | 150 | °C | ⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. #### 5.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|---------------|--|-------|------| | | Electrostatic | Human body model (HBM), per AEC Q100-002 HBM ESD Classification Level 2 ⁽¹⁾ | ±2000 | | | V _(ESD) | discharge | Charged device model (CDM), per AEC Q100-011 CDM ESD Classification Level C4B | ±1000 | V | | V | Electrostatic | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽²⁾ | ±2000 | V | | V _(ESD) | discharge | Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002 ⁽³⁾ | ±1000 | V | - (1) AEC Q100-002 indicate that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification. - (2) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. - (3) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. #### 5.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted)¹ | | | | MIN | MAX | UNIT | |-----------------|------------------------------------|--|------|-----------------|--------| | V _{CC} | Supply voltage | | 2 | 5.5 | V | | | | V _{CC} = 2 V | 1.5 | | | | V _{IH} | High-level input voltage | V _{CC} = 3 V | 2.1 | | V | | | | V _{CC} = 5.5 V | 3.85 | | | | | | V _{CC} = 2 V | | 0.5 | | | V _{IL} | Low-level input voltage | V _{CC} = 3 V | | 0.9 | V | | | | V _{CC} = 5.5 V | | 1.65 | | | VI | Input voltage | · | 0 | 5.5 | V | | Vo | Output voltage | | 0 | V _{CC} | V | | | | V _{CC} = 2 V | | -50 | μA | | I _{OH} | High-level output current | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | | -4 | m A | | | | V _{CC} = 5 V ± 0.5 V | | -8 | mA | | | | V _{CC} = 2 V | | 50 | mA | | I _{OL} | Low-level output current | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 4 | | m A | | | | V _{CC} = 5 V ± 0.5 V | | 8 | mA | | 44/4 | Input transition rise or fall rate | V _{CC} = 3.3 V ± 0.3 V | | 100 | ns/V | | Δt/Δv | Input transition rise or fall rate | V _{CC} = 5 V ± 0.5 V | | 20 | 115/ V | Submit Document Feedback Copyright © 2024 Texas Instruments Incorporated ⁽²⁾ The input and output voltage ratings may be exceeded if the input and output current ratings are observed. over operating free-air temperature range (unless otherwise noted)¹ | | | MIN | MAX | UNIT | |----------------|--------------------------------|-----|-----|------| | T _A | Operating free-air temperature | -40 | 125 | °C | ⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. #### **5.4 Thermal Information** | | | | SN74AHC125-Q | 1 | | |-----------------|---|----------|--------------|------------|------| | | THERMAL METRIC | D (SOIC) | PW (TSSOP) | BQA (WQFN) | UNIT | | | | 14 PINS | 14 PINS | 14 PINS | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance ⁽¹⁾ | 86 | 147.7 | 88.3 | °C/W | For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application report. #### 5.5 Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) | PARAMETER | TEST CONDITIONS | V | T | = 25°C | | MIN MAX | | UNIT | |-----------------|---|-----------------|------|--------|-------|---------|-------|------| | PARAMETER | TEST CONDITIONS | V _{CC} | MIN | TYP | MAX | IVIIIN | IVIAA | UNII | | | | 2 V | 1.9 | 2 | | 1.9 | | | | | $I_{OH} = -50\mu A$ | 3 V | 2.9 | 3 | | 2.9 | | | | V _{OH} | | 4.5 V | 4.4 | 4.5 | | 4.4 | | V | | | I _{OH} = -4mA | 3 V | 2.58 | | | 2.48 | | | | | I _{OH} = -8mA | 4.5 V | 3.94 | | | 3.8 | | | | | | 2 V | | | 0.1 | | 0.1 | | | | I _{OL} = 50μA | 3 V | | | 0.1 | , | 0.1 | | | V _{OL} | | 4.5 V | | | 0.1 | | 0.1 | V | | | I _{OL} = 4mA | 3 V | | | 0.36 | | 0.5 | | | | I _{OL} = 8mA | 4.5 V | | | 0.36 | | 0.5 | | | I _I | V _I = 5.5 V or GND | 0 V to 5.5 V | | | ±0.1 | | ±1 | μA | | l _{OZ} | V _O = V _{CC} or GND | 5.5 V | | | ±0.25 | , | ±2.5 | μA | | Icc | $V_I = V_{CC}$ or GND, $I_O = 0$ | 5.5 V | | | 4 | , | 40 | μA | | C _i | V _I = V _{CC} or GND | 5 V | | 4 | 10 | | | pF | ### 5.6 Switching Characteristics, V_{CC} = 3.3 V ± 0.3 V over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Load Circuit and Voltage Waveforms) | PARAMETER | FROM (INPUT) | TO (OUTPUT) | LOAD | T _A : | = 25°C | | MIN | MAX | UNIT | |------------------|--------------|-------------|-----------------------|------------------|--------|------|--------|-------|------| | PARAMETER | PROW (INPOT) | 10 (001701) | CAPACITANCE | MIN | TYP | MAX | IVIIIN | IVIAA | UNIT | | t _{PLH} | Α | Y | C = 15pE | | 5.6 | 8 | 1 | 9.5 | no | | t _{PHL} | A | 1 | C _L = 15pF | CL = 13pr | 5.6 | 8 | 1 | 9.5 | ns | | t _{PZH} | ŌĒ | Υ | C ₁ = 15pF | | 5.4 | 8 | 1 | 9.5 | no | | t _{PZL} | OE | 1 | CL = 15pr | | 5.4 | 8 | 1 | 9.5 | ns | | t _{PHZ} | ŌĒ | Υ | C = 15pF | | 7 | 9.7 | 1 | 11.5 | | | t _{PLZ} | OE . | Ť | $C_L = 15pF$ | | 7 | 9.7 | 1 | 11.5 | ns | | t _{PLH} | A | Υ | C = 50°F | | 8.1 | 11.5 | 1 | 13 | | | t _{PHL} | A | Ť | $C_L = 50pF$ | | 8.1 | 11.5 | 1 | 13 | ns | | t _{PZH} | ŌĒ | Υ | C = 50pE | | 7.9 | 11.5 | 1 | 13 | no | | t _{PZL} | OE | f | $C_L = 50pF$ | | 7.9 | 11.5 | 1 | 13 | ns | over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Load Circuit and Voltage Waveforms) | PARAMETER | FROM (INPUT) | TO (OUTPUT) | LOAD | | = 25°C | | MIN | MAX | UNIT | |------------------|--------------|-------------|-----------------------|-----|--------|------|--------|-------|------| | PARAMETER | PROW (NAPOT) | 10 (001701) | CAPACITANCE | MIN | TYP | MAX | IVIIIV | IVIAA | ONII | | t _{PHZ} | ŌĒ | V | C ₁ = 50pF | | 9.5 | 13.2 | 1 | 15 | ne | | t_{PLZ} | OE . | 1 | CL = 50PF | | 9.5 | 13.2 | 1 | 15 | ns | ### 5.7 Switching Characteristics, V_{CC} = 5 V ± 0.5 V over recommended operating free-air temperature range, V_{CC} = 5 V ± 0.5 V (unless otherwise noted) (see Load Circuit and Voltage Waveforms) | PARAMETER | FROM (INPUT) | TO (OUTPUT) | LOAD | TA | = 25°C | | MIN | MAX | UNIT | |------------------|--------------|-------------|-----------------------|-----|--------|-----|--------|-----|------| | PARAMETER | PROW (INPUT) | 10 (001P01) | CAPACITANCE | MIN | TYP | MAX | IVIIIV | WAX | UNII | | t _{PLH} | A | Υ | C _L = 15pF | - | 3.8 | 5.5 | 1 | 6.5 | no | | t _{PHL} | A | T | CL = 15pr | | 3.8 | 5.5 | 1 | 6.5 | ns | | t _{PZH} | ŌĒ | Y | C _L = 15pF | | 3.6 | 5.1 | 1 | 6 | ns | | t _{PZL} | OL . | I | Ο _L = 13pr | | 3.6 | 5.1 | 1 | 6 | 115 | | t _{PHZ} | ŌĒ | Υ | C _L = 15pF | | 4.6 | 6.8 | 1 | 8 | ns | | t _{PLZ} | OE | T | CL = 15pr | | 4.6 | 6.8 | 1 | 8 | 115 | | t _{PLH} | A | Υ | C _L = 50pF | | 5.3 | 7.5 | 1 | 8.5 | ne | | t _{PHL} | ^ | ı | C _L = 50pF | | 5.3 | 7.5 | 1 | 8.5 | ns | | t _{PZH} | ŌĒ | Υ | C. = 50pF | | 5.1 | 7.1 | 1 | 8 | ns | | t _{PZL} | OE . | T | $C_L = 50pF$ | | 5.1 | 7.1 | 1 | 8 | 115 | | t _{PHZ} | ŌĒ | Υ | C = 50pE | | 6.1 | 8.8 | 1 | 10 | no | | t _{PLZ} | OE . | Ť | $C_L = 50pF$ | | 6.1 | 8.8 | 1 | 10 | ns | #### **5.8 Noise Characteristics** $V_{CC} = 5 \text{ V}, C_L = 50 \text{pF}, T_A = 25 ^{\circ}\text{C}$ (1) | | PARAMETER | MIN | MAX | UNIT | |--------------------|---|-----|------|------| | V _{OL(P)} | Quiet output, maximum dynamic V _{OL} | | 0.8 | V | | V _{OL(V)} | Quiet output, minimum dynamic V _{OL} | | -0.8 | V | | V _{OH(V)} | Quiet output, minimum dynamic V _{OH} | 4.4 | | V | | V _{IH(D)} | High-level dynamic input voltage | 3.5 | | V | | $V_{IL(D)}$ | Low-level dynamic input voltage | | 1.5 | V | (1) Characteristics are for surface-mount packages only. ### **5.9 Operating Characteristics** $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$ | | PARAMETER | | TEST CONDITIONS | TYP | UNIT | |-----------------|-------------------------------|----------|-----------------|-----|------| | C _{pd} | Power dissipation capacitance | No load, | f = 1MHz | 14 | pF | Submit Document Feedback Copyright © 2024 Texas Instruments Incorporated #### **6 Parameter Measurement Information** - A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1MHz, $Z_{\Omega} = 50 \Omega$, $t_r \leq 3$ ns, $t_r \leq 3$ ns. - D. The outputs are measured one at a time with one input transition per measurement. Figure 6-1. Load Circuit and Voltage Waveforms | TEST | S1 | |------------------------------------|-----------------| | t _{PLH} /t _{PHL} | Open | | t _{PLZ} /t _{PZL} | V _{CC} | | t _{PHZ} /t _{PZH} | GND | | Open Drain | V _{CC} | ### 7 Detailed Description ### 7.1 Functional Block Diagram Figure 7-1. Logic Diagram (Positive Logic) Figure 7-2. Logic Symbol[†] #### 7.2 Device Functional Modes **Table 7-1. Function Table (Each Buffer)** | I | NPUTS | OUTPUT Y | |----|-------|----------| | OE | Α | 0017011 | | L | Н | Н | | L | L | L | | Н | Х | Z | Submit Document Feedback Copyright © 2024 Texas Instruments Incorporated [†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. #### 8 Device and Documentation Support TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below. #### 8.1 Documentation Support #### 8.2 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. #### 8.3 Support Resources TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. #### 8.4 Trademarks TI E2E™ is a trademark of Texas Instruments. Ethernet® is a registered trademark of Xerox Corporation. All trademarks are the property of their respective owners. #### 8.5 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. #### 8.6 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. #### 9 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. #### 10 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. | Chang | ges from Revision B (June 2023) to Revision C (April 2024) | Page | |-------------------------|--|-----------------------| | • Ad | ded the BQA package to the data sheet | 1 | | Chang | ges from Revision A (April 2008) to Revision B (June 2023) | Page | | • Ad | ded Package Information table, Pin Functions table, ESD Ratings table, Thermal Infor | rmation table, Device | | Fui | nctional Modes, Device and Documentation Support section, and Mechanical, Packag | ging, and Orderable | | Info | ormation section | 1 | | Add | ded BQA package to Package Information table | 1 | | • Up | dated thermal values for PW package from RθJA = 113 to 147.7, all values in °C/W | 5 | | Add | ded thermal value for BQA package: RθJA = 88.3, all values in °C/W | 5 | www.ti.com 27-Aug-2023 #### PACKAGING INFORMATION | Orderable Device | Status (1) | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |--------------------|------------|--------------|--------------------|------|----------------|--------------|-------------------------------|---------------------|--------------|-------------------------|---------| | SN74AHC125QDRG4Q1 | ACTIVE | SOIC | D | 14 | 2500 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | AHC125Q | Samples | | SN74AHC125QPWRG4Q1 | ACTIVE | TSSOP | PW | 14 | 2000 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | AHC125Q | Samples | | SN74AHC125QPWRQ1 | ACTIVE | TSSOP | PW | 14 | 2000 | RoHS & Green | NIPDAU | Level-3-260C-168 HR | -40 to 125 | AHC125Q | Samples | | SN74AHC125QWBQARQ1 | ACTIVE | WQFN | BQA | 14 | 3000 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | AC125Q | Samples | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. **Green:** TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and ### **PACKAGE OPTION ADDENDUM** www.ti.com 27-Aug-2023 continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF SN74AHC125-Q1: Catalog : SN74AHC125 ● Enhanced Product: SN74AHC125-EP • Military : SN54AHC125 NOTE: Qualified Version Definitions: • Catalog - TI's standard catalog product • Enhanced Product - Supports Defense, Aerospace and Medical Applications • Military - QML certified for Military and Defense Applications ### **PACKAGE MATERIALS INFORMATION** www.ti.com 28-Aug-2023 #### TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |--------------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | SN74AHC125QPWRG4Q1 | TSSOP | PW | 14 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | | SN74AHC125QPWRQ1 | TSSOP | PW | 14 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | | SN74AHC125QWBQARQ1 | WQFN | BQA | 14 | 3000 | 180.0 | 12.4 | 2.8 | 3.3 | 1.1 | 4.0 | 12.0 | Q1 | www.ti.com 28-Aug-2023 #### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |--------------------|--------------|-----------------|------|------|-------------|------------|-------------| | SN74AHC125QPWRG4Q1 | TSSOP | PW | 14 | 2000 | 367.0 | 367.0 | 35.0 | | SN74AHC125QPWRQ1 | TSSOP | PW | 14 | 2000 | 356.0 | 356.0 | 35.0 | | SN74AHC125QWBQARQ1 | WQFN | BQA | 14 | 3000 | 210.0 | 185.0 | 35.0 | 2.5 x 3, 0.5 mm pitch PLASTIC QUAD FLATPACK - NO LEAD This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details. www.ti.com PLASTIC QUAD FLATPACK - NO LEAD - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. - 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) ^{6.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. ## D (R-PDSO-G14) ### PLASTIC SMALL OUTLINE - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AB. PW (R-PDSO-G14) ### PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side. - E. Falls within JEDEC MO-153 # PW (R-PDSO-G14) ## PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. #### IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated