32-kbit/s ADPCM with the TMS32010

APPLICATION REPORT: SPRA131

Authors:

Jay Reimer Digital Signal Processing – Semiconductor Group

Mike McMahan Corporate Engineering Center

Masud Arjmand
Central Research Laboratories

Digital Signal Processing Solutions 1989

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE (281) 274-2320

US TMS320 FAX (281) 274-2324

US TMS320 BBS (281) 274-2323

US TMS320 email dsph@ti.com

32-kbit/s ADPCM with the TMS32010

Abstract

This report discusses 32-kbit/s Adaptive Differential Pulse Code Modulation (ADPCM) transcoders. A half-duplex ADPCM transcoder, which complies with the CCITT recommendation (G.721), can be achieved with a single TMS32010. If the transcoder is used only for private lines, a full duplex non-CCITT ADPCM transcoder is more cost-effective and can be designed with a single TMS32010 processor. Both the CCITT and non-CCITT algorithms and code implementations are covered in the report.

Product Support on the World Wide Web

Our World Wide Web site at www.ti.com contains the most up to date product information, revisions, and additions. Users registering with TI&ME can build custom information pages and receive new product updates automatically via email.

INTRODUCTION

Digital voice communication is typically transmitted in a 64-kbit/s PCM bit stream. Voice and data communications demand increasing capacities for signal transmission without significant degradation in the quality of the transmitted signal. One of the recommended solutions for accomplishing this task is that of Adaptative Differential Pulse Code Modulation (ADPCM). This solution has been reviewed by CCITT (International Telegraph and Telephone Consultative Committee), and a specific standard* has been recommended. Two solutions, a full-duplex solution and a half-duplex solution, are discussed in this application report. Both follow the model recommended by CCITT for 32-kbit/s ADPCM, although only the half-duplex solution provides a bit-for-bit compatible data stream as required by the recommendation. At 32 kbit/s, the ADPCM solution provides double the channel capacity of the current 64-kbit/s PCM technique. Each solution has been totally incorporated in the internal memory space of the Texas Instruments TMS32010 microprocessor.

This application report presents a brief review of the basic principles of PCM and ADPCM. Hardware requirements, software logic flow, and key features of the TMS32010 microprocessor for the implementation of ADPCM are also given. Source code is provided for the implementation and creation of an ADPCM transmission channel.

DIGITIZATION

Over the past 20 years, the telecommunications industry has changed from totally analog circuits to networks which integrate both analog and digital circuits. Digital signal encoding has the advantages of greater noise immunity, efficient regeneration, easy and effective encryption, and uniformity in transmitting voice and data signals. Increased bandwidth is required to transmit digital signals while maintaining a given analog signal quality at the receiver.

Voice store and forward systems have been changing from totally analog storage media, such as audio tape, to digitized storage which allows random access of stored data, but with the tradeoff of increased storage media requirements.

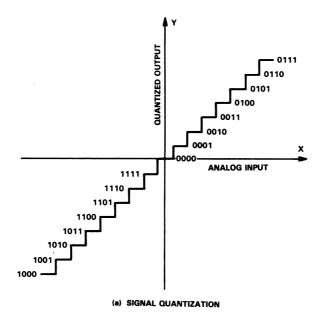
Signal quality begins with the digitization of the original analog signal. The process of digitization and coding introduces a distortion associated with the quantization of the digitized signal, as shown in Figure 1. This signal distortion or noise is different from the channel noise normally associated with a transmitted signal. After a signal

has been digitized, the signal is much less susceptible to channel noise since the signal can be regenerated as well as amplified along the way, thus reducing the possibility of being corrupted by the transmission system. The overall quality of digital transmission is then limited by the digitization process in an error-free transmission system.

Figures 2 and 3 show general representations of a digital communication channel. The actual transmission (and storage of a digital waveform) uses an analog channel. The outside points of the communications channel are the transmitter and receiver, as shown in Figure 2. These are commonly combined in a single device known as a combo-CODEC (CODing and DECoding device). The codec supplies, on the coding or transmitting side, the necessary filtering to bandlimit the analog signal and avoid signal alias and A/D conversion. On the decoding or receiving side, the codec performs a D/A conversion and then interpolates or smooths the resultant signal.

Figure 3 shows the digitized signal modulated for transmission in the network and then demodulated at the receiving end to retrieve the transmitted digital signal.

PCM


Digitization and coding of the analog signal at the transmitter can be performed in several ways. The complexity of the chosen method is related to availability of encoder memory and to the resultant delay in the encoding process.

When digital signal transmission is implemented, memory and the resultant delay dictate that a simple scheme, such as Pulse Code Modulation (PCM), be implemented. PCM codes each sampled analog value of the input waveform to a unique or discrete value. The digital quantization introduces distortion into the signal waveform, as shown in Figure 1.

A nonuniform quantization scheme may be used to COMPAND (COMpress and exPAND) the signal in the waveform coding and decoding blocks in the system, generating log-PCM. By using larger quantization steps for large amplitude signals and smaller steps for small amplitude signals, efficient use is made of the data bits for digital transmission while maintaining specific signal-to-quantization noise thresholds. With the two current methods of COMPANDING (A-law and μ -law), the signal quality of a 13-bit digitized signal is maintained while transmitting only 8 bits per sample.

While quantizers remove the irrelevancy in a signal, coders remove the redundancy. In PCM encoding, each sample of the input waveform is independent of all previous samples; no encoder memory is required.

^{*}Recommendation G.721, 32 kbits/s Adaptive Differential Pulse Code Modulation". CCITT, 1984.

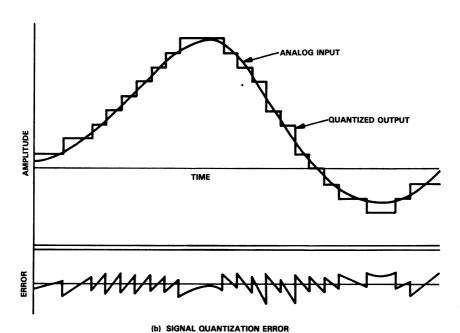


Figure 1. Quantization Errors in a Digitized Signal

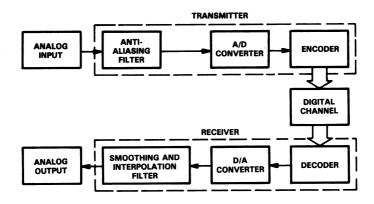


Figure 2. Digital Communication of Waveforms

Figure 3. Digital Channel

ADPCM

Analysis of speech waveforms shows a high sample-tosample correlation. By taking advantage of this property in speech signals, more efficient coding techniques have been designed to further reduce the transmission bit rate while preserving the overall signal quality.

APCM

Adaptive PCM (APCM) is a method that may be applied to both uniform and nonuniform quantizers. It adapts the stepsize of the coder as the signal changes. This accommodates amplitude variations in a speech signal between one speaker and the next, or even between voiced and unvoiced segments of a continuous signal. The adaptation

may be instantaneous, taking place every few samples. Alternatively, it may occur over a longer period of time, taking advantage of more slowly varying features. This is known as syllabic adaptation.

The basic concept for an adaptive feedback system, APCM, is shown in Figure 4. An input signal, s(k), in the transmitter is quantized and coded to an output, I(k). This output is also processed by stepsize adaptation logic to create a signal, q(k), that adapts the stepsize in the quantizer. Correspondingly, in the receiver, the received signal, I(k), is processed by an inverse quantizer (i.e., decoded), producing the reconstructed signal, $s_r(k)$. Like the transmitter, the quantized signal, I(k), is processed by adaptation logic to create a stepsize control signal, q(k), for the inverse quantizer.

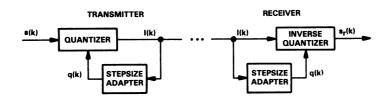


Figure 4. APCM Block Diagram

DPCM

The method of using the sample-to-sample redundancies in the signal is known as differential PCM (DPCM). The overall level of high correlation on a sample-by-sample basis indicates that the difference between adjacent samples produces a waveform with a much lower dynamic range. Correspondingly, an even lower variance can be expected between samples in the difference signal. A signal with a smaller dynamic range may be quantized to a specific signal-to-noise ratio with fewer bits.

A differential PCM system, DPCM, is shown in Figure 5. In Figure 5, the signal difference, d(k), is determined using a signal estimate, se(k), rather than the actual previous sample. By using a signal estimate, se(k), the transmitter uses the same information available to the receiver. Each successive coding actually compensates for the quantization error in the previous coding. In this way, the reconstructed signal, s_r(k), can be prevented from drifting from the input signal, s(k), as a result of an accumulation of quantization errors. The reconstructed signal, $s_r(k)$, is formed by adding the quantized difference signal, $d_{\mathbf{q}}(\mathbf{k})$, to the previous signal estimate, se(k). The sum is the input to predictor logic which determines the next signal estimate. A decoding process is used in both the transmitter and receiver to determine the quantized difference signal, d₀(k), from the transmitted signal, I(k).

ADPCM

ADPCM combines the features of both the APCM and DPCM systems. Figure 6 shows the basic blocks combining adaptation and differencing features in an ADPCM system.

Both quantizer adaptation and signal differencing require the storage (in memory) of one or more samples in both the transmitter and receiver. Furthermore, the transmitter must use some method to ensure that the receiver is operating synchronously. This is accomplished by using only the transmitted signal, I(k), to determine stepsize adaptation in the quantizer and inverse quantizer and to predict the next signal estimate. In this way, the blocks in the receiver can be identical to those in the transmitter. Additionally, the specific adaptation techniques are designed to be convergent and thereby help provide quick recovery following transmission errors.

The ADPCM system, as used in digital telephony, is not an original signal coding system, but is actually a transcoder, converting between log-PCM and ADPCM codes. Currently there are a large number of systems using log-PCM for transmission. The ADPCM system incorporates both an adaptive quantizer and an adaptive predictor. The adaptive quantizer contains speed-control and scale-factor adaptation. A measure of the rate-of-change of the difference signal provides a means of determining the speed control. The scale factor adjustments to the difference signal adapt the fit of the quantization levels to minimize the signal-tonoise ratio. With speed control, the system can take advantage of both the instantaneous and syllabic adaptation rates, thereby adapting better to both speech and data signals. In the adaptive predictor, the prediction filter coefficients are updated by a gradient algorithm. Predictor adaptation improves the performance of the predictor for nonstationary signals (e.g., speech).

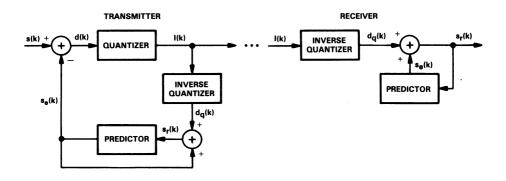


Figure 5. DPCM Block Diagram

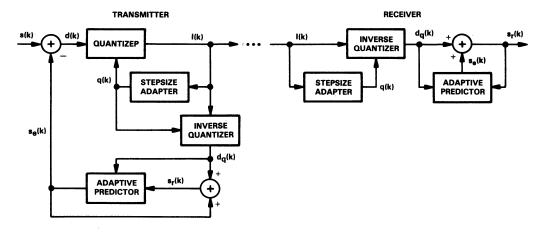


Figure 6. ADPCM Block Diagram

THE ADPCM ALGORITHM

The ADPCM algorithm has a receiver imbedded in the transmitter. This is important since, if the signal feedback used to determine the signal estimate, $s_e(k)$, and consequently the quantized difference signal, $d_q(k)$, is the same as in the decoder, then the compensation for quantization errors can be made with subsequent difference samples. Since the decoder is actually imbedded in the encoder, each of the common blocks for transmitting and receiving is discussed in the following paragraphs.

Figures 7 and 8 show block diagrams of an ADPCM transmitter and receiver as specified by CCITT.

Encoder

The function of the encoder or transmitter, shown in Figure 7, is to receive a 64-kbit/s log-PCM signal and transcode it to a 32-kbit/s ADPCM signal. This is accomplished by converting the log-PCM signal, s(k), to a linear signal, $s_1(k)$, from which an estimate, $s_e(k)$, of the signal is subtracted to obtain a difference signal, d(k). The next step is to adaptively quantize this difference signal, d(k), by first taking the log (base 2), then normalizing by the quantization scale factor, y(k), and finally coding the result, I(k). A more uniform signal-to-noise ratio can be achieved by coding the log of the signal rather than the linear representation. The normalization provides the adaptation to the quantization and is based on past coded samples. Adaptation is controlled bimodally, being comprised of a fast adaptation factor for signals with large amplitude fluctuations (i.e., speech) and a slow adaptation factor for signals which vary more slowly (i.e., data). A speed-control factor, a_l(k), weights the fast and the slow adaptation factors to form a single quantization scale factor, y(k).

The inverse adaptive quantizer uses the same signal, I(k), that has been transmitted to reconstruct a quantized version of the difference, $d_{\bf q}(k)$, and the same adaptive quantization characteristics as the adaptive quantizer section.

The quantized difference signal, $d_q(k)$, is input to an adaptive predictor which uses this input to compute a signal estimate, $s_e(k)$. The signal estimate, $s_e(k)$, is combined with the difference signal, $d_q(k)$, to determine a reconstructed signal, $s_r(k)$, which is the output in the decoder. This output is then subtracted from the next input sample to complete the feedback loop.

The adaptive predictor makes use of both an all-pole filter and an all-zero filter. The all-pole filter is a second-order filter with constrained adaptive coefficient values designed to match the slowly varying aspects of the speech signal. Since an all-pole predictor is particularly sensitive to errors, the predictor makes use of a sixth-order all-zero filter to offer signal stability even with transmission errors.

Decoder

The function of the decoder or receiver, shown in Figure 8, is to receive a 32-kbit/s ADPCM signal and transcode it to a 64-kbit/s log-PCM signal. To accomplish this, the decoder utilizes many of the elements used by the encoder. The received data, I(k), is processed by an inverse adaptive quantizer, identical to the one in the corresponding encoder, to determine a quantized difference signal, $d_q(k)$. By filtering the difference signal, $d_q(k)$, through the adaptive predictor together with the previously reconstructed signal, $s_{r}(k)$, a signal estimate, $s_{e}(k)$, is obtained. The signal estimate, $s_{e}(k)$, is added to the difference signal, $d_q(k)$, to compute the reconstructed signal, $s_{r}(k)$. The reconstructed signal, $s_{r}(k)$, is converted from a linear-PCM to a log-PCM signal, $s_{p}(k)$, which is then output following a synchronous

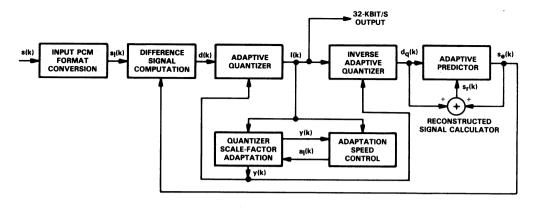


Figure 7. ADPCM Encoder Block Diagram (Diagram taken from CCITT Recommendation G.721)

coding adjustment. The coding adjustment limits the errors in tandem codings of a signal.

Note that the algorithm design achieves a convergence of the states of the encoder and decoder in spite of transmission errors. This convergence is a part of each of the adaptation computations and is demonstrated equationally in the following sections. The convergence is brought about by the inclusion of (1-2-N) terms which provide a finiteness to the memory of the adaptation parameters.

Adaptive Quantization

Adaptive quantization, a multistage process, is used to determine the quantization scale factor and the speed control that controls the rate at which the scale factor is adapted. Quantization is actually a four-bit quantization (a sign bit plus three-bit magnitude), since a four-bit signal is the transmitted output of the ADPCM transcoder. The adaptive quantizer block can be noted in Figure 7.

The difference signal, d(k), an input to the quantization process, is calculated by subtracting the signal estimate, $s_e(k)$, from the linear-PCM signal, $s_l(k)$.

$$\mathbf{d}(\mathbf{k}) = \mathbf{s}_{\mathbf{l}}(\mathbf{k}) - \mathbf{s}_{\mathbf{e}}(\mathbf{k}) \tag{1}$$

This difference signal is normalized by taking the log (base 2) and subtracting from it the quantizer scale factor, y(k).

$$|I(k)| \leftarrow \log_2 |d(k)| - y(k)$$
 (2)

Table 1 is used to provide the magnitude of the quantization result, |I(k)|, from this normalized input. The

sign bit of the ADPCM output value, I(k), is the sign of the difference signal, d(k).

The quantizer scale factor, y(k), is comprised of two parts, and therefore bimodal in nature. The two parts, $y_l(k)$ and $y_u(k)$, are weighted by the speed-control factor, $a_l(k)$. For speech signals, $a_l(k)$ will tend toward a value of one; for voiceband data, $a_l(k)$ will tend toward zero. Refer to both Figures 7 and 8 for the inclusion of the quantizer scale factor and speed-control factor adaptation blocks.

$$y(k) = a_1(k)y_1(k-1) + [1 - a_1(k)] y_1(k-1)$$
(3)

where $0 \le a_1(k) \le 1$

One of the factors, $y_u(k)$, is considered to be unlocked, since it can adapt quickly to rapidly changing signals (e.g., speech) and has a relatively short-term memory. This factor, $y_u(k)$, is recursively determined from the quantizer factor, y(k), and the discrete function, w(I).

$$y_u(k) = [1 - 2^{-5}] y(k) + 2^{-5}W[I(k)]$$
 (4)

where $1.06 \le y_u(k) \le 10.00$

The factor, W(I), found in Table 2, is a function of I which causes $y_u(k)$ to adapt by larger steps for larger values of I. This gives $y_u(k)$ the freedom to track a signal almost instantaneously. Since y(k) is in the logarithmic domain, W(I) is effectively a multiplier of the scale factor.

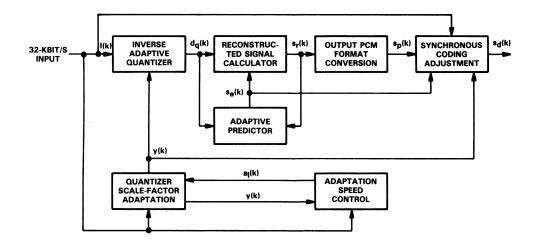


Figure 8. ADPCM Decoder Block Diagram (Diagram taken from CCITT Recommendation G.721)

Table 1. I/O Characteristics of the Normalized Quantizer

Normalized Quantizer Input Range Iog ₂ d(k) – y(k)	I(k)	Normalized Quantizer Output log ₂ d _q (k) – y(k)
[3.16, +∞)	7	3.34
[2.78, 3.16)	6	2.95
[2.42, 2.78)	5	2.59
[2.04, 2.42)	4	2.23
[1.58, 2.04)	3	1.81
[0.96, 1.58)	2	1.29
[-0.05, 0.96)	1	0.53
(−∞, −0.05)	0	-1.05

The other factor, $y_l(k)$, adapts more slowly and tracks signals which change slowly (e.g., voiceband data). This factor includes a lowpass filtering of the unlocked factor, $y_u(k)$. By including $y_u(k)$ in the manner shown, $y_l(k)$ is implicitly limited to the same range of values as the explicit limit placed on $y_u(k)$. Furthermore, the unity limit of $a_l(k)$ provides the same limit implicitly for $y_l(k)$ as for $y_l(k)$ and $y_u(k)$.

$$y_1(k) = [1 - 2^{-6}] y_1(k-1) + 2^{-6}y_1(k)$$
 (5)

A speed-control factor, $a_l(k)$, adjusts the relative weighting of these two scale factors by making use of the short- and long-term averages, $d_{ms}(k)$ and $d_{ml}(k)$, respectively, of the coded output to determine how rapidly the signal is changing. The combined scale factor, y(k), cannot be larger than either the unlocked, $y_u(k)$, or locked $y_l(k)$, terms. Therefore, $a_l(k)$ is limited to one even if the predicted speed control, $a_p(k)$, is larger than one.

$$a_{l}(k) = \begin{cases} 1 & \text{,if } a_{p}(k-1) > 1 \\ a_{p}(k-1) & \text{,if } a_{p}(k-1) \leq 1 \end{cases}$$
 (6)

Note that $a_p(k)$ is implicitly limited to a maximum value of 2, while the speed-control factor used to mix the two scale factors is capped at a value of 1. In determining $a_p(k)$, an additional term of 1/8 is added each time if the difference in the short- and long-term averages becomes too large (i.e., $|d_{ms}(k) - d_{ml}(k)| \ge 2^{-3}d_{ml}(k)$) or if there is an idle channel (i.e., y(k) < 3). Where neither of these conditions exist, a uniform, slowly varying signal can be assumed, such as occurs in data transmission.

[1]	7	6	5	4	3	2	1	0
W(I)	69.25	21.25	11.50	6.12	3.12	1.69	0.25	-0.75

$$a_p(k) = \begin{cases} [1 - 2^{-4}] \ a_p(k-1) + 2^{-3}, \ \text{if} \\ |d_{ms}(k) - d_{ml}(k)| \ge 2^{-3} d_{ml}(k) \\ [1 - 2^{-4}] \ a_p(k-1) + 2^{-3}, \ \text{if} \ y(k) < 3 \\ [1 - 2^{-4}] \ a_p(k-1), \ \text{otherwise} \end{cases}$$
 (7)

The short-, $d_{ms}(k)$, and long-term, $d_{ml}(k)$, averages of the transmitted ADPCM signal, I(k), are actually determined by averaging a weighted function, F(I), of the transmitted I, shown in Table 3.

$$d_{ms}(k) = [1 - 2^{-5}] d_{ms}(k-1) + 2^{-5}F [I(k)]$$
 (8)

$$d_{ml}(k) = [1 - 2^{-7}] d_{ml}(k-1) + 2^{-7}F [I(k)]$$
 (9)

The scale-factor and speed-control adaptations are a part of both the encoder and decoder logic. The adaptive quantization block has been specifically included in Figure 7, showing the encoder. For the decoder, the adaptive quantizer is included as part of the synchronization block to aid in the reduction of errors in tandem codings.

Table 3. Rate-of-Change Weighting Function

ı									
	[8]	7	6	5	4	3	2	1	0
	F(I)	7	3	1	1	1	0	0	0

Inverse Adaptive Quantization

Inverse adaptive quantization is a process in which the four-bit ADPCM signal, I(k), is used to determine the normalized log of the difference signal from Table 1. The result is actually a quantized version of the difference signal, $d_q(k)$, determined by adding the scale factor, y(k), to the value specified by Table 1 and calculating, the inverse log (base 2) of this sum.

$$d_{q}(k) = \log_{2} -1 \left[\left\{ \log_{2} |d_{q}(k)| - y(k) \right\} + y(k) \right]$$
 (10)

For both the encoder and decoder, this quantized difference signal is the input to the reconstruction signal calculator and the adaptive predictor, as shown in Figures 7 and 8.

Adaptive Prediction

The adaptive predictive filter is a two-pole, six-zero filter used to determine the signal estimate. The combination of both poles and zeroes allows the filter to model more effectively any general input signal. The sixth-order all-zero section helps to stabilize the filter and prevent it from drifting into oscillation. For both the poles and the zeroes, the coefficients, $a_i(\mathbf{k})$ and $b_i(\mathbf{k})$, respectively, are adapted. This adaptation is based upon a gradient algorithm to further adjust the filter model to the input signal. Figures 9 and 10 show the sixth-order and second-order filters, respectively.

The signal estimate, $s_e(k)$, represents the sum of the all-pole filter and the all-zero filter. Since the sum of the all-zero filter is used to aid the determination of the pole coefficients, it is also extracted as a separate sum, $s_{ez}(k)$. The reconstructed signal, the output in the receiver, is the sum determined by the quantized difference signal $d_q(k)$, and the signal estimate, $s_e(k)$.

$$s_{e}(k) = \sum_{i=1}^{2} a_{i}(k-1)s_{r}(k-i) + s_{ez}(k)$$
 (11)

$$s_{ez}(k) = \sum_{i=1}^{6} b_i(k-1)d_q(k-i)$$
 (12)

$$s_r(k-i) = s_e(k-i) + d_q(k-i)$$
 (13)

The adaptation of the pole coefficients, $a_i(k)$, is shown in the equations below. The gradient function is determined from a signal, p(k), that is equivalent to the reconstructed signal minus the contribution of the pole filter output. Stability of the filter is further provided by explicitly limiting the coefficients.

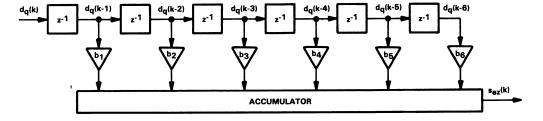


Figure 9. Sixth-Order All-Zero (FIR) Filter

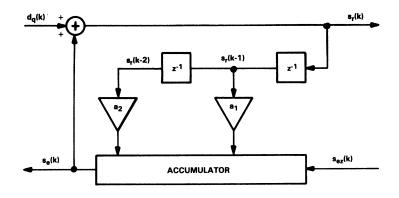


Figure 10. Second-Order IIR Filter

$$a_1(k) = [1 - 2^{-8}] a_1(k-1) + 3 \cdot 2^{-8} sgn [p(k)] sgn[p(k-1)]$$
 (14)

where $|a_1(k)| \le 1 - 2^{-4} - a_2(k)$

$$\begin{array}{ll} a_2(k) &= [1 - 2^{-7}] \ a_2(k-1) \\ &+ 2^{-7} [sgn \ [p(k)] \ sgn \ [p(k-2] \\ &- f[a_1(k-1)] \ sgn \ [p(k)] \ sgn \ [p(k-1]] \end{array} \tag{15} \end{array}$$

where $|a_2(k)| \le 0.75$

$$p(k) = d_{\mathbf{q}}(k) + s_{\mathbf{e}z}(k) \tag{16}$$

$$f(a_1) = \begin{cases} 4a_1, & \text{if } |a_1| \le 1/2 \\ 2\text{sgn}(a_1), & \text{if } |a_1| > 1/2 \end{cases}$$
 (17)

where sgn(0) = +1

For the coefficients, $b_i(k)$, of the sixth-order all-zero filter, the adaptation procedure is similar, but the limit is implicit in the equations to a maximum of ± 2 . The gradient function, in this case, is determined by the current difference signal, $d_q(k)$, and corresponding difference signal, $d_q(k-i)$, at the specific filter tap.

$$\begin{array}{l} b_i(k) \ = \ [1 \ -2^{-8}] \ b_i(k-1) \\ + \ 2^{-7} \text{sgn} \ [d_q(k)] \ \text{sgn} \ [d_q(k-i)] \end{array} \eqno(18)$$

where i = 1, 2, ... 6 and $-2 \le b_i(k) \le +2$

Signal Conversion

Signal conversion consists of the conversion from an 8-bit log-PCM representation of a signal to a 13-bit linear PCM representation (note Figure 7), or the reverse (note Figure 8). Signal conversions of this type are described in the application report on COMPANDING ROUTINES FOR THE TMS32010. In the encoder, the log-PCM signal, s(k), is expanded to create the linear-PCM value, $s_1(k)$. The decoder, on the other hand, compresses the reconstructed signal, $s_r(k)$, to create the log-PCM signal, $s_p(k)$.

Reconstructed Signal

Synchronization

To avoid a cumulative distortion in synchronous tandem codings, an adjustment to the reconstructed signal is specified. The adjustment block, shown in Figure 8, estimates the quantization of the encoder by determining a difference signal and executing the adaptive quantization logic. The quantization result is an estimate of the received value of I(k).

The difference signal, $d_X(k)$, is determined by subtracting the signal estimate, $s_e(k)$, from the linear-PCM signal, $s_{lX}(k)$, which is itself determined by expanding the log-PCM signal, $s_p(k)$.

$$d_{\mathbf{x}}(\mathbf{k}) = s_{\mathbf{l}\mathbf{x}}(\mathbf{k}) - s_{\mathbf{e}}(\mathbf{k}) \tag{19}$$

The adaptive quantization process produces the estimate of the ADPCM code value, $I_d(k)$. If the estimate implies a difference signal that is lower than the received interval boundary, the log-PCM code is changed to the next most positive value. An estimate implying a difference signal

larger than the received interval boundary requires the log-PCM code to be changed to the next most negative value; otherwise, the log-PCM value is left unchanged. The adjusted log-PCM value is denoted as $s_d(k)$ in the following equation to differentiate it from the input value, $s_p(k)$.

$$s_d(k) \,=\, \begin{cases} s_p^+(k), \ d_x(k) \,<\, \text{lower interval boundary} \\ s_p^-(k), \ d_x(k) \,\geq\, \text{upper interval boundary} \\ s_p(k), \ \text{otherwise} \end{cases} \tag{20}$$

where

 $s_d(k)$ = output PCM of the decoder

 $s_p^+(k) = \text{next more positive PCM level (if } s_p(k) \text{ is the most positive level, then } s_p^+(k) = s_p(k)$

 $s_{p}^{-}(k)$ = next more negative PCM level (if $s_{p}(k)$ is the most negative level, then $s_{p}^{-}(k) = s_{p}(k)$)

FULL-DUPLEX IMPLEMENTATION OF ADPCM ON A TMS32010

The specific implementation of ADPCM presented here involves the use of a single TMS320M10 to accomplish a

full-duplex transcoder. The TMS320M10 is a masked ROM, microcomputer version of the TMS32010, which requires no external program memories. A full-duplex transcoder provides transmission in both directions simultaneously. Such a transcoder is depicted in Figure 11. A complete system diagram of a full-duplex communications channel is shown in Figure 12. In comparison to current systems that modulate a 64-kbit/s A-law or μ -law PCM signal on a carrier for transmission, the described system transcodes the 64-kbit/s code to a 32-kbit/s code. This 32-kbit/s code, which requires correspondingly less bandwidth, is modulated on the carrier for transmission.

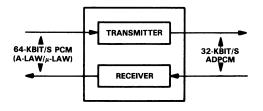


Figure 11. Full-Duplex ADPCM Transcoder

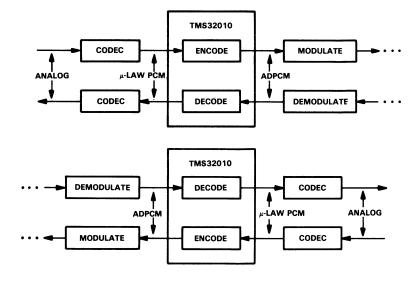


Figure 12. Full-Duplex Telecommunications Channel

Hardware Logic and I/O

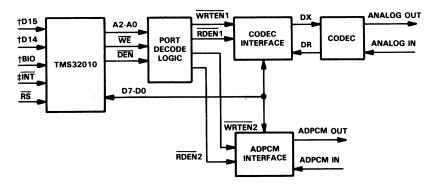

The hardware required to implement the ADPCM system consists of an addition to an existing circuit. As shown in Figure 13, the TMS32010 addresses the external I/O blocks through its port addressing structure. The lower three address lines, A2-A0, form a port address that can be decoded by port decode logic to provide specific enable lines (e.g., WRTEN1 and RDEN1) to the various peripheral blocks. The TMS32010 reads and writes the 64-kbit/s data through the codec interface eight bits at a time. The sampling frequency is 8 kHz. For this full-duplex implementation, one sample is written and one sample is read every 125 µs.

Figure 13 also shows the serial interface to the codec that provides the μ -law companded PCM data, although this is not part of the transcoding system itself. The log-PCM signal may already be available (e.g., in existing digital telecom networks) and, as such, may be interfaced to the TMS32010 either directly as parallel data or serially through conversion logic. Parallel codecs are also becoming available to reduce the hardware logic and interface required for those systems which do not already include a codec. The TMS32010 is available at crystal and clock input rates of 20.5 MHz which may be divided down to provide the codec timing and further reduce the logic requirement.

At the other end of the transcoder function, the TMS32010 reads and writes the 32-kbit/s ADPCM data through the ADPCM interface four bits at a time for each 125-µs period. This interface provides four-bit parallel data which may be serialized, if required, for transmission or storage.

Software Logic and Flow

Tables 4 and 5 list the various blocks in the algorithm, directly relating them to Figures 7 and 8 by the signal names given in the description and function. The blocks are listed in the order in which they are executed. Also listed is processor demand or loading which consists of the amount of program memory used to implement the given function and the number of instruction cycles executed in worst case. There are more blocks in the table than are shown in the figures (e.g., the algorithm uses the adaptive predictor at one point to produce the signal estimate, and later returns to update or adapt the predictor coefficients). Each block has been implemented using the equations given in previous sections concerning the ADPCM algorithm. For convenience, the equations implemented in each block are listed in the description section for the block. A more detailed description of the TMS32010 implementation is given in the next section.

[†] Half-duplex, CCITT bit-compatible, version only

Figure 13. System Interface of a TMS32010 ADPCM Transcoder

Full-duplex version only

Table 4. Full-Duplex Transmitter

Order	Function	Description	CPU Clocks	Program Memory (Words)
1.	INPUT PCM	Read an 8 bit μ -law PCM sample [s(k)] and linearize it to a 12-bit sample [s _I (k)].	7	0004
2.	COMPUTE SIGNAL ESTIMATE	Calculate the signal estimate $[s_{\mathbf{e}}(k)]$ from the previous data samples $[d_{\mathbf{q}}(k)]$ and reconstructed samples $[s_{\mathbf{r}}(k)]$ through the predictor filter. (12),(11)	30	001E
3.	COMPUTE ADAPTIVE QUANTIZER	Calculate speed control [a _I (k)] and quantizer scale factor [y(k)] from past quantizer output [I(k)]. (6),(3)	33	0021
⁷ 4.	COMPUTE DIFFERENCE SIGNAL	Calculate the difference signal $[d(k)]$ from the current sample $[s_i(k)]$ and signal estimate $[s_e(k)]$.	3	0003
5.	COMPUTE QUANTIZED OUTPUT	Calculate the log of the difference signal [d(k)] and adaptively quantize the result to yield the ADPCM output [I(K)]. (2)	46	00AD
6.	OUTPUT ADPCM	Write the ADPCM output [I(k)].	2	0001
7.	COMPUTE RECON- STRUCTED SIGNAL	Calculate the inverse of the adaptively quantized signal $[d_q(k)]$ and the reconstructed signal difference $[s_r(k)]$. (10),(13)	43	0027
8.	COMPUTE SCALE FACTOR	Calculate the updates for the scale-factor adaptation. (4),(5)	46	002F
9.	COMPUTE SPEED CONTROL	Calculate the update for the speed-control adaptation. (8),(9),(7)	30	001B
10.	COMPUTE PREDICTOR ADAPTATION	Calculate the updates for the adaptive predictor filter coefficients. (18),(16),(17),(14),(15)	102	006В

Table 5. Full-Duplex Receiver

Order	Function	Description	CPU Clocks	Program Memory (Words)
1.	INPUT ADPCM	Read the ADPCM input [I(k)].	2	0001
2.	COMPUTE SIGNAL ESTIMATE	Calculate the signal estimate $(s_e(k))$ from the previous data samples $(d_q(k))$ and reconstructed samples $(s_r(k))$ through the predictor filter. (12),(11)	30	· 001E
3.	COMPUTE ADAPTIVE QUANTIZER	Calculate speed control $[a_1(k)]$ and quantizer scale factor $[y(k)]$ from the past quantizer output $[l(k)]$. $(6),(3)$	33	0021
4.	COMPUTE QUANTIZED DIFFERENCE	Calculate the inverse of the adaptively quantized signal $[d_{\mathbf{q}}(k)]$. (10)	47	002F
5.	COMPUTE SCALE FACTOR	Calculate the updates for the scale-factor adaptation. (4),(5)	48	002F
6.	COMPUTE SPEED CONTROL	Calculate the update for the speed-control adaptation. (8),(9),(7)	29	001B
7.	COMPUTE RECON- STRUCTED SIGNAL	Calculate the reconstructed signal $[s_r(k)]$. (13)	3	0003
. 8.	COMPUTE PREDICTOR ADAPTATION	Calculate the updates for the adaptive predictor filter coefficients. (18),(16),(17),(14),(15)	90	006В
9.	COMPUTE LOG-PCM	Convert the reconstructed linear-PCM signal $[s_r(k)]$ to a μ -law PCM signal $[s_p(k)]$.	39	0074
10.	OUTPUT PCM	Write the μ-law output [s _p)k)].	2	0001
11.	WAIT	Spin until the next interrupt.	_	0006

Implementation and Advantages of TMS32010 Architecture

This implementation is only concerned with μ -law PCM, although A-law PCM may also be used. Additional information on log-PCM companding is found in an application report, COMPANDING ROUTINES FOR THE TMS32010. The implementation is simplified here so that the expansion is a simple table lookup which saves 21 instruction cycles over the algorithmic approach.

The processing of the signal through the predictor filter is similar to the processing discussed in the application report, IMPLEMENTATION OF FIR/IIR FILTERS WITH THE TMS32010. The filter used in this ADPCM algorithm is a combination of a second-order IIR filter and a sixth-order

all-zero or FIR filter. The filters are shown in Figures 9 and 10, respectively, with the system interaction shown in Figure 14.

Several manipulations of data format occur in adapting the predictor coefficients. In updating the coefficients of the all-zero filter (the Bi's), the coefficients that are normally Q14 numbers are loaded with a shift allowing the calculations to be done in a Q29 representation. This greatly simplifies the subtraction of the leakage term and the prediction gain. The leakage term, which occurs here in the predictor coefficient adaptation and also in the speed-control and scale-factor adaptation, controls the rate of change of the parameter away from zero and towards the absolute maximum limits of the particular parameter. The prediction gain also uses

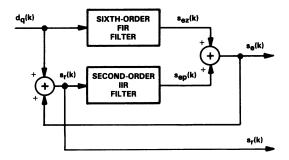


Figure 14. Predictor Filter

an approach whereby the signs are actually stored as a signed Q11 value. In this way, the product is a Q22 value of the correct sign and can be added to the B value, equivalent to a Q29 value times 2^{-7} . As with the filter process itself, the signs of the Dq values are propagated through each filter tap delay with the LTD instruction. An example for one of the B_i values is shown in Figure 15.

A similar process takes place in adapting the prediction coefficients (A_i) in the second-order filter, although the fixed-point representation of the coefficients is Q26. The remaining requirement is to limit-check the A_i values.

The adaptive quantization section requires that the log (base 2) of the difference signal be taken, the result normalized, and the normalized value quantized. Taking the log (base 2) of a number is accomplished by using the approximation

$$\log_2(1+x)=x\tag{21}$$

```
COMPUTE COEFFICIENTS OF THE 6TH-ORDER PREDICTOR
    Bi(k) = [1 - 2**-8] * Bi(k-1)
            + 2**-7 * SGN[DO(k)] * SGN[DO(k-i)]
          FOR
                 = 1 ... 6
          AND Bi IS IMPLICITLY LIMITED TO +/- 2
          NOTATION:
                            -- 16b TC (Q14)
                       Bn
                       SDQn -- +2048 IF DQn POSITIVE (Q11)
                               -2048 IF DOn NEGATIVE (Q11)
GETB6
       LT
            SD06
                          (Q11)
       LAC
            B6,15
                          (Q29)
       SUB
            B6.7
                        * B6 * 2**-8
                                       (Q29)
                        * SGN(SDQ)*SGN(SDQ6)*2**-7 (Q29)
       MPY
            SDO
                        * (Q11)
       LTD
            SDQ5
                        * (Q14)
       SACH B6,1
```

Figure 15. Predictor Coefficient Adaptation Code

The characteristic of the result is the bit position of the most significant one digit in the absolute value. The result can be represented as a Q7 value. Finding the most significant digit is most efficiently done by a binary search technique. This technique is discussed in the application report, FLOATING-POINT ARITHMETIC WITH THE TMS32010. Since the exponent is part of the number instead of being stored in a separate register, one of the auxiliary registers is loaded with the exponent value. The auxiliary register stores it in memory and adds it to the mantissa in the accumulator. A short example of this is shown in the excerpted code in Figure 16 where the signal has an assumed exponent value of 9.

Normalization of this log value is simply a subtraction of a scale factor which may be as large in fixed magnitude as the largest logarithmic value represented in Q7 notation. The result of the subtraction may be a negative value. Since the normalized result is to be quantized in a nonuniform manner and one of the quantization levels could contain both positive and negative values, the normalized result is scaled by adding a fixed value of 2048. Nonuniform quantization can be performed by a binary-type search technique. The normalization and quantization are included in the program shown in Figure 16.

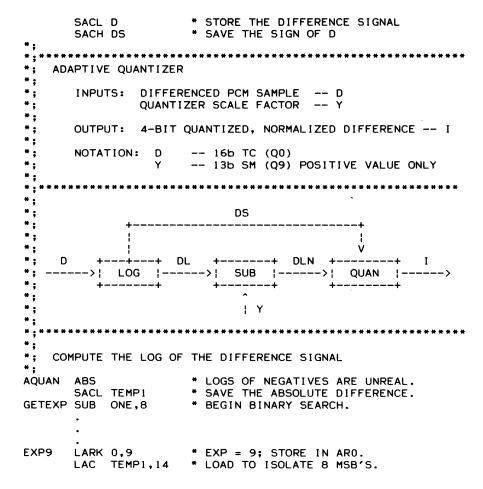


Figure 16. Adaptive Quantization Code

```
* SAVE MANTISSA.
       SACH TEMP1
       LAC
             TEMP1
                        * RELOAD FOR MANTISSA RECOMBINATION.
       В
             GETMAN
                        * MASK TO RETAIN ONLY SEVEN BITS.
GETMAN AND
            M127
            0,TEMP1 * MOVE EXPONENT TO MEMORY FROM ARO.
TEMP1,7 * ADD EXPONENT TO MANTISSA FOR LOG
       SAR
                        * ADD EXPONENT TO MANTISSA FOR LOG VALUE.
       ADD
*;
   SCALE BY SUBTRACTION
*:
                       * ADD AN OFFSET OF 2048.
SUBTB
       ADD
            ONE, 11
       SUB
            TEMP3
                        * TEMP3 = Y(K) \gg 2
*;
*;
    4-BIT QUANTIZER
*: QUANTIZATION TABLE FOR 32KB OUTPUT (OFFSET: 2048)
*;
ITAB1
       EQU
            2041
            2171
ITAB2
       EQU
       EQU
            2250
ITAB3
            2309
ITAB4
      EQU
ITAB5 EQU 2358
ITAB6 EQU
            2404
I TAB7
       EQU
            2453
*;
       SUB K2309
                        * ITAB4
QUAN
       BGEZ CI4TO7
CIOTO3 ADD K138
                        * ITAB2
                                       I = 0-3
       BGEZ CI2TO3
                        * ITAB1
                                       I = 0-1
CIOTO1 ADD
            K130
       BGEZ IEQ1
       LACK 0
I EQ0
       В
            GETIM
       LACK 1
IEQ1
            GETIM
CI2TO3 SUB
            K79
                        * ITAB3
                                       I = 2-3
       BGEZ IEQ3
IEQ2
       LACK 2
       В
            GETIM
IEQ3
       LACK 3
       В
            GETIM
CI4TO7 SUB
            K95
                        * ITAB6
                                      I = 4-7
       BGEZ CI6TO7
                        * ITAB5
                                         I = 5-6
CI5TO6 ADD
            K46
       BGEZ IEQ5
IEQ4
       LACK 4
            GETIM
       LACK 5
IEQ5
       В
            GETIM
                                      I = 6-7
CI6TO7 SUB
            K49
                        * ITAB6
       BGEZ IEQ7
```

Figure 16. Adaptive Quantization Code (Continued)

```
IEQ6 LACK 6
B GETIM

IEQ7 LACK 7
GETIM SACL IM * ACCUM = !I!
XOR DS * ADD SIGN BIT AND FLIP IF NECESSARY.
AND M15 * MASK FINAL FOUR-BIT VALUE.
SACL I * SAVE ADPCM OUTPUT VALUE.
```

Figure 16. Adaptive Quantization Code (Concluded)

Determining the inverse of the 4-bit quantized ADPCM value involves another technique. The code to complete this task is much shorter in program memory requirement and somewhat faster in execution time. The same type of approximation is involved in determining the antilog as used in taking the log,

$$\log_2^{-1}(x) = 1 + x \tag{22}$$

After separating the exponent from the mantissa in the log representation, the quantized difference signal may be recovered by using the exponent to select a scaling factor. The scaling factor or multiplier is used to shift the mantissa to the proper representation, either right or left. Some of the multipliers may be stored as negative values rather than positive values, using the sign of the result to determine whether the answer is obtained from the high half of the accumulator (effectively a right shift) or from the low half of the accumulator (a left shift). The program for this process is shown in Figure 17.

```
INVERSE ADAPTIVE QUANTIZER
               4-BIT QUANTIZED SAMPLES -- IM
      INPUTS:
               QUANTIZER SCALE FACTOR -- Y
      OUTPUT:
               RECONSTRUCTED DIFFERENCE SIGNAL
                 Υ
                      -- 13b SM (Q9) POSITIVE VALUE ONLY
      NOTATION:
                 DO
                      -- 16b TC (Q0)
                      -- +2048 IF DQ POSITIVE (Q11)
                 SDQ
                         -2048 IF DO NEGATIVE (Q11)
                            DQS
        +---+ DOLN +----+ DOL
       ->!RECONST!---->! ADD !---->!ANTILOG !---->
                             ! Y
   CONVERT QUANTIZED DIFFERENCE BACK TO LOG DOMAIN
*;
```

Figure 17. Inverse Adaptive Quantization Code

```
IAQUAN LAC
            ΙM
            INQTAB
                       * RECONSTRUCTION TABLE
       ADD
                       * READ NORMALIZED VALUE.
       TBLR TEMP1
   ADD NORMALIZING SCALE FACTOR BACK IN
*:
ADDA
       LAC
            TEMP1
                        * Y >> 2
       ADD
            TEMP3
       AND
            M2047
       SACL TEMP2
*;
    CONVERT THE LOG VALUE TO THE LINEAR DOMAIN
*:
*;
*;
ALOG
       LAC
            TEMP2.9
                        * EXTRACT EXPONENT.
                        * SAVE EXPONENT VALUE.
       SACH TEMP1
       LACK 127
                        * MASK FOR LOG MANTISSA ONLY.
       AND
            TEMP2
                        * 1+x
       ADD
            ONE,7
       SACL TEMP2
                        * EXTRACT MANTISSA.
                       * PREPARE TO SHIFT.
       LT
            TEMP2
       LAC
            TEMP1
                        * LOOK UP MULTIPLIER.
       ADD
            SHIFT
       TBLR TEMP3
       MPY
            TEMP3
                        * MULTIPLY MANTISSA BY SHIFT FACTOR.
       PAC
       BLZ
                        * NEGATIVE VALUES CORRESPOND TO LEFT SHIFT.
            LEFTSF
       SACH DQ,1
                        * RIGHT SHIFT: SAVE MAGNITUDE OF DQ.
       В
            ADDSGN
LEFTSF ABS
                        * LEFT SHIFT; RESTORE MAGNITUDE.
                        * SAVE MAGNITUDE OF DQ.
       SACL DQ
                        * ASSUME POSITIVE AND SAVE THE SIGN.
ADDSGN LAC
            ONE,11
       SACL SDQ
                            (SIGN IS Q11; REMEMBER FILTER.)
       LAC
                        * CHECK SIGN OF SAMPLE.
            I
       SUB
            ONE.3
                        * FINISHED FOR POSITIVE VALUES (I<8).
       BLZ
            QSFA
       ZAC
                       * COMPUTE TWO'S COMPLEMENT OF THE MAGNITUDE.
       SUB
            DO
                       * SAVE NEGATIVE DQ VALUE.
       SACL DO
            MINUS,11 * SIGN IS Q11; REMEMBER FILTER.
SDQ * SAVE SIGN.
       LAC
       SACL SDQ
*; INVERSE QUANTIZING TABLE
IOTAB
       BSS 0
       DATA 65401
       DATA 68
       DATA 165
       DATA 232
       DATA 285
       DATA 332
       DATA 377
```

Figure 17. Inverse Adaptive Quantization Code (Continued)

DATA 428

```
*; SHIFT MULTIPLIER TABLE
SHFT
       BSS
            0
       DATA 256
       DATA 512
       DATA 1024
       DATA 2048
       DATA 4096
       DATA 8192
       DATA 16384
       DATA -1
       DATA -2
       DATA -4
       DATA -8
       DATA -16
       DATA -32
       DATA -64
       DATA -128
```

Figure 17. Inverse Adaptive Quantization Code (Concluded)

The adaptation of the speed-control and the scale-factor parameters, used to adapt the stepsize in the adaptive quantizer and inverse adaptive quantizer, requires multiple uses of the technique of adjusting the fixed-point representation. The Q point is adjusted for convenience of the table constants which are part of the adaptation process and for saving the output value from the accumulator. Some limit-checking must also take place in calculating the unlocked-scale factor and the speed-control parameter.

In the calculation of the locked-scale factor and its inclusion in the mixing process for determining the overall scale factor used for stepsize quantization, the parameter is maintained with a greater resolution (19 bits of value plus its sign) than can be stored in a single memory. Calculations involving this parameter must then become two stage, both in terms of accumulations and in determining products. The code involving this parameter is listed in Figures 18 and 19.

```
*;
*;
    QUANTIZER SCALE FACTOR ADAPTATION
*;
*;
       INPUT: I : 32KB CODED SAMPLES
*;
*;
      OUTPUT: YU.YL : NEXT SAMPLE SCALE FACTOR
*;
*;
       NOTATION:
                 Y -- 13b SM (Q9) POSITIVE VALUE ONLY
* ;
                 YU -- 13b SM (09) POSITIVE VALUE ONLY
*:
                  YL
                      -- 19b SM (Q15) POSITIVE VALUE ONLY
*:
*;
*;
   UPDATE SLOW ADAPTATION SCALE FACTOR -- CONSTANT = 1/64
*:
*:
   YL(k) = (1-2**-6)*YL(k-1) + 2**-6 * YU(k)
*:
FILTE LAC YLH,6
                      * SHIFT YL LEFT BY 6.
       SACL TEMP1
                       * TEMP1 = YLH * 2**6
       LAC YLL.6
       SACL TEMP2
       SACH TEMP3
                      * TEMP3 ! TEMP2 = YLL * 2**6
      LAC TEMP3
                      * SUPPRESS SIGN EXTENSION.
       AND M63
       SACL TEMP3
       ZALH TEMP1
       ADDH TEMP3
       ADDS TEMP2
                       * ACCUM = YL * 2**6
       SUBH YLH
       SUBS YLL
                       * ACCUM = YL * 2**6 - YL
       ADD YU,6
                       * ACCUM = YL * 2**6 - YL + YU
       SACL TEMP1
       SACH TEMP2
                       * RESULT = YL (SHIFTED LEFT BY 6)
      LAC TEMP1.10
                       * SHIFT RESULT RIGHT 6 --> a15
       SACH TEMP1
       LAC TEMP1
       AND M1023
                       * MASK SIGN EXTENSION.
       ADD TEMP2,10
       SACL YLL
                       * SAVE YLL.
       SACH YLH
       LACK 7
                       * MASK UPPER 13 BITS.
       AND YLH
       SACL YLH
                      * SAVE YLH.
```

Figure 18. Quantizer Scale-Factor Adaptation: Locked-Factor Calculation

```
FORM LINEAR COMBINATION OF FAST AND SLOW SCALE FACTORS
*;
    Y(k) = (1-AL(k))*YL(k-1) + AL(k)*YU(k-1)
*:
       LAC
                           SHIFT YL RIGHT BY 6.
MIX
             YLL, 10
       SACH TEMP3
                           (IE SCALE YL TO MATCH YU SINCE YL
                            CONTAINS 6 MORE LSB'S)
       LAC
             TEMP3
       AND
             M1023
       ADD
             YLH, 10
       SACL TEMP3
                         * LOW HALF
       LAC
             YU
       SUB
             TEMP3
                           YU-(YLL>>6)
       SACL TEMP3
       ZALH YLH
       ADDS YLL
       LT
             AL
                           AL IS IN 1.Q6
       MPY
             TEMP3
       APAC
                           YL + AL*(YU-(YLL>>6))
       SACL TEMP3
       SACH TEMP2
                           TEMP2 \; | \; TEMP3 = Y * 2**6
       LAC
             TEMP3,10
                           SHIFT RIGHT BY 6.
       SACH TEMP3
       LAC
             TEMP3
                           MASK SIGN EXTENSION.
       AND
             M1023
       ADD
             TEMP2,10
       AND
             M8191
       SACL Y
                          SAVE Y.
             Y.14
       LAC
       SACH TEMP3
                           SAVE Y >> 2 .
```

Figure 19. Quantizer Scale-Factor Adaptation: Mixing

CCITT IMPLEMENTATION OF ADPCM ON A TMS32010

The implementation of ADPCM that produces a bitfor-bit compatible solution with the CCITT test vectors uses a single TMS320M10 to accomplish a half-duplex transcoder. This solution can provide capability as either a transmitter or a receiver using either A-law or μ -law companding.

Hardware Logic and I/O

The hardware system for this transcoder implementation differs from Figure 13 in that data pins D15 and D14 are used to determine the mode of operation. Table 6 shows the operating mode for the various combined states of the data pin inputs.

Additionally, as has been noted in Figure 13, the interrupt or sample timing is an input to the INT pin in

Table 6. Operating Mode Selection

D15*	D14*	Operating Mode
, L	L	μ-law transmitter
L	н	μ -law receiver
н	L	A-law transmitter
н	н	A-law receiver

^{*}H = High logic level

the full-duplex implementation; here it is an input to the \overline{BIO} pin. Each 125- μ s period, the TMS32010 reads a 64-kbit/s sample from the codec and writes a 32-kbit/s sample to the ADPCM interface, or it reads the 4-bit ADPCM sample and writes an 8-bit PCM sample to the codec.

For real-time execution, the TMS32010 requires the use of a 25-MHz clock input.

L = Low logic level

Software Logic and Flow

Tables 7 and 8 list the various blocks in the algorithm, directly relating them to Figures 7 and 8 by the signal names given in the description and function. No differentiation is made between the transmitter or receiver using A-law or μ -law. The blocks are listed in the order in which they are executed. Also listed is processor demand or loading which consists of the amount of program memory used to implement the given function and the number of instruction cycles executed in worst case. There are more blocks in the tables than are shown in the figures (e.g., the algorithm uses the

adaptive predictor at one point to produce the signal estimate, and later returns to update or adapt the predictor coefficients). Each block has been implemented using the equations given in previous sections concerning the ADPCM algorithm. For convenience, the equations implemented in each block are listed in the description section for the block. Additional details of the TMS32010 implementation are given in the next section, especially as they differ from the full-duplex implementation. The appendix contains a complete listing of the code.

Table 7. CCITT Transmitter

Order	Function	Description	CPU Clocks	Program Memory (Words)
1.	INPUT PCM	Read an 8 bit log-PCM sample [s(k)] and linearize it to a 12-bit sample [s _i (k)].	25 μ-law 24 A-law	0024 μ-law 0031 Α-law
2.	COMPUTE SIGNAL ESTIMATE	Calculate the signal estimate $(s_g(k))$ from the previous data samples $(s_g(k))$ and reconstructed samples $(s_g(k))$ through the predictor filter. (12), (11)	396	0167
3.	COMPUTE ADAPTIVE QUANTIZER	Calculate speed control [a _i (k)] and quantizer scale factor [y(k)] from past quantizer output [l(k)]. (6), (3)	. 30	001E
4.	COMPUTE DIFFERENCE SIGNAL	Calculate the difference signal $[d(k)]$ from the current sample $[s_i(k)]$ and signal estimate $[s_e(k)]$.	3	0003
5.	COMPUTE QUANTIZED OUTPUT	Calculate the log of the difference signal [d(k)] and adaptively quantize the result to yield the ADPCM output [l(k)]. (2)	42	00AD
6.	OUTPUT ADPCM	Write the ADPCM output [I(k)].	6	0005
7.	COMPUTE RECON- STRUCTED SIGNAL	Calculate the inverse of the adaptively quantized signal $[d_q(k)]$ and the reconstructed signal difference $\{s_r(k)\}$. (10), (13)	66	ООВО
8.	COMPUTE SCALE FACTOR	Calculate the updates for the scale-factor adaptation. (4), (5)	33	0022
9.	COMPUTE SPEED CONTROL	Calculate the update for the speed-control adaptation. (8), (9), (7)	30	001C
10.	COMPUTE PREDICTOR ADAPTATION	Calculate the updates for the adaptive predictor filter coefficients. (18), (16), (17), (14), (15)	_1111	0074
11.	WAIT	Spin until the next sample is available.	2+	0004

Table 8. CCITT Receiver

Order	Function	Description	CPU Clocks	Program Memory (Words)
1.	INPUT ADPCM	Read the ADPCM input [I(k)].	10	0009
2.	COMPUTE SIGNAL ESTIMATE	Calculate the signal estimate $[s_{\theta}(k)]$ from the previous data samples $[d_{q}(k)]$ and reconstructed samples $[s_{r}(k)]$ through the predictor filter. (12), (11)	396	0167
3.	COMPUTE ADAPTIVE QUANTIZER	Calculate speed control [a _I (k)] and quantizer scale factor [y(k)] from past quantizer output [I(k)]. (6), (3)	30	001E
4.	COMPUTE QUANTIZED DIFFERENCE AND RECON- STRUCTED SIGNAL	Calculate the inverse of the adaptively quantized signal $[d_q(k)]$ and the reconstructed signal $\{s_r(k)\}$. (10), (13)	66	оово
5.	COMPUTE SCALE FACTOR	Calculate the updates for the scale-factor adaptation. (4), (5)	33	0022
6.	COMPUTE SPEED CONTROL	Calculate the update for the speed-control adaptation. (8), (9), (7)	30	001C
7.	COMPUTE PREDICTOR ADAPTATION	Calculate the updates for the adaptive predictor filter coefficients. (18), (16), (17), (14), (15)	111	
8.	COMPUTE LOG-PCM	Convert the reconstructed linear-PCM signal $\{s_r(k)\}$ to a log-PCM signal $\{s_p(k)\}$.	35 μ-law 33 A-law	0074 μ-law 0072 A-law
9.	SYNCHRON- OUS CODING ADJUSTMENT	Calculate an ADPCM signal from the output $[s_p(k)]$ and adjust to create $[s_d(k)]$ if it differs from $[I(k)]$.	63	OODA
10.	OUTPUT PCM	Write the log-PCM output [s _d (k)].	4	0003
11.	WAIT	Spin until the next interrupt.	2+	0004

Implementation and Advantages of TMS32010 Architecture

Many of the same features are used in the bit-compatible implementation as were discussed in the full-duplex implementation. Some changes are imperative, since performance to the recommended specification requires executing certain calculations in a floating-point representation. These changes or additions require further modifications in order to limit the required amount of program memory to the internal memory space of the TMS32010.

One of the first observed requirements is that the processor must be capable of doing either A-law or μ -law companding and function as either a transmitter or a receiver.

The burden of determining the mode of operation is simplified by selecting one of the four modes from information available at the time of reset, and then executing from one of the four control loops until the next reset. Each loop, therefore, tests the \overline{BIO} pin to determine when the next input sample is ready, rather than depending on the hardware interrupt.

The requirement of selecting either A-law of μ -law companding also means that a table lookup approach is beyond the program memory capacity. The conversion must be done algorithmically to reduce the amount of memory. Figures 20 and 21 illustrate μ -law companding as it is implemented in this algorithm.

XMTMU EXPNDU	IN LAC XOR SACL ANDCH ANDCH ANDCH ANDCH ANCH ANCH ANCH ANCH ANCH ANCH ANCH AN	SCRACH, ADC SCRACH, 8 KFF00 TEMP1 M32767 TEMP2, 4 M4095 BIAS, 7 SCRACH TEMP1 TEMP1 SBASE TEMP2, 1 BIAS, 12 SAMPLE, 4 SAMPLE TEMP1 TEMP1 TEMP1 SAMPLE	; SEEE MMMM 0000 0000 ; INVERT FROM TRANSMISSION FORMAT ; SAVE VALUE FOR PCM SIGN ; 0EEE MMMM 0000 0000 ; SAVE EXPONENT VALUE ; 0000 MMMM 0000 0000 ; 0001 MMMM 1000 0000 ; SIGN = FFFF OR 0000 ; CALCULATE PCM SHIFT ADDRESS ; 0000000X XXXXXXXXX XXXX0000 000000 ; 000XXXXX XXXXXXXX ; POS - DO NOTHING : NEG - 1's COMP ; POS - DO NOTHING : NEG - 2's COMP	,
*; SBASE	LAC RET	SCRACH,5	; 00000000 0000001M MMM10000 000000	00
	LAC RET	SCRACH,6	; 00000000 000001MM MM100000 000000	00
	LAC RET	SCRACH,7	; 00000000 00001MMM M1000000 000000	00
	LAC RET	SCRACH,8	; 00000000 0001MMMM 10000000 000000	00
	LAC RET	SCRACH,9	; 00000000 001MMMM1 00000000 000000	00
	LAC RET	SCRACH,10	; 00000000 01MMMM10 00000000 000000	00
	LAC RET	SCRACH,11	; 00000000 1MMMM100 00000000 000000	00
	LAC RET	SCRACH,12	; 00000001 MMMM1000 0000000 000000	00

Figure 20. µ-Law Expansion Code

```
LAC
                 SR
                               ; GET RECONSTRUCTED SIGNAL
*;
*; COMPRESS--CONVERT TO PCM
*;
CMPRSU
         SACH
                 TEMP4
                               : SAVE SIGN OF SR
         ABS
         ADD
                 BIAS
                               ; ADD BIAS
         SACL
                 SCRACH
                               ; SAVE BIASED PCM VALUE
         SUB
                 ONE,9
                               ; EXP = 7 - 4 OR 3 - 0
         BGEZ
                 SCL 427
SCL 023
         ADD
                 THREE,7
                               : EXP = 3 - 2 OR 1 - 0
         BGEZ
                 SCL223
SCL 021
         ADD
                 ONE,6
                               ; EXP = 1 OR 0
         BGEZ
                 SCALE 1
SCALE 0
        LAC
                 M15,1
                               EXP = 0
         AND
                 SCRACH
                               ; MASK FOR MANTISSA
         SACL
                 SCRACH
         ADD
                 BIAS
         SACL
                 SAMPLE
                               ; BIASED QUANTIZED VALUE
        LAC
                 SCRACH, 15
         LARK
                 0,0
                 FINI
        В
SCALE 1
        LAC
                 M15.2
                               ; EXP = 1
        AND
                 SCRACH
                              ; MASK FOR MANTISSA
         SACL
                 SCRACH
        ADD
                 BIAS, 1
        SACL
                 SAMPLE
                              ; BIASED QUANTIZED VALUE
        LAC
                 SCRACH, 14
        LARK
                 0.1
                 FINI
        В
FINI
        SACH
                 SCRACH
                              ; SAVE NORMALIZED MANTISSA
        LAC
                 SCRACH
        SAR
                 0,TEMP1
        ADD
                 TEMP1.4
                              ; ADD EXPONENT
CLNUP
        ADD
                 TEMP4.7
        AND
                 M255
        SACL
                 SCRACH
                              ; 2's COMPLEMENT OF MULAW-PCM
        LAC
                 SAMPLE
                              ; REMOVE BIAS FROM QUANTIZED VALUE
        SUB
                 BIAS
        XOR
                 TEMP4
        SUB
                 TEMP4
        SACL
                 SAMPLE
                              ; 2's COMPLEMENT OF QUANTIZED SAMPLE
*;
        CALL
                 AQUAN
*;
        CALL
                 SYNC
*;
        XOR
                 M255
                              ; FLIP BITS FOR TRANSMISSION
        SACL
                 SCRACH
        OUT
                 SCRACH, DAC
```

Figure 21. μ-Law Compression Code

The predictor filter implementation is also modified from what has been previously presented. In the CCITT recommendation, the processing of the signal through the predictor filter is performed in a floating-point format. This requirement leads to several modifications. First, all input signals to the filter, $d_q(k)$ and $s_r(k)$, must be converted to a floating-point notation. The conversion to this notation is accomplished by a binary search of the original fixed-point word. As previously mentioned, this technique is explained in some detail in the application report, FLOATING-POINT ARITHMETIC WITH THE TMS32010. Second, the filter coefficients, $a_i(k)$ and $b_i(k)$, must also be floated for each sample so that a floating-point multiply can be executed for each filter tap.

Accumulation of the filter taps is carried out in fixedpoint notation. Fixing a floating-point number is equivalent
to the scaling presented for taking the anti-log of a number.
Some of the floating-point results must be left-shifted, while
others need to be right-shifted. The shift is accomplished by
use of a scaling factor or multiplier, selected by the exponent
sum of the floating-point multiply. Positive multipliers are
used to indicate what is effectively a right shift with the result
being stored from the high half of the accumulator. Negative
multipliers indicate that the result is in the low half of the
accumulator and is used for values which have been left
shifted.

The process of a single filter tap, not including the code to float the signal and the coefficient, is shown in Figure 22.

```
COMPUTE SEZ -- PARTIAL SIGNAL ESTIMATE
*;
*;
    SEZ(k) = B1(k-1)*DQ(k-1) + ... + B6(k-1)*DQ(k-6)
*;
*;
        MULTIPLIES ARE DONE IN FLOATING POINT
*;
          DQ's ARE STORED IN FLOATING-POINT NOTATION
          B's ARE FLOATED EACH PASS
*;
*;
*;
        NOTATION: DONEXP
                             -- 4 bits + OFFSET
*;
                   DQnMAN*8 -- 9 bits
*;
                             -- 16 b TC; q14
                   Bn
                             -- 16 b TC ; q0
                   SEZ
*:
                 B6,14
SIGDIF
                          ; COMPUTE B6*DQ5.
        LAC
        CALL
                 FLOAT
                          ; RET/W MANTISSA IN TEMP1; EXP IN ACC.
        ADD
                 DO5EXP
        SACL
                 SUM1
        LAR
                 0,SUM1
                          : EXP OF PRODUCT.
        LT
                 DO5MAN
                          ; DOnMAN SCALED BY 2**3.
                 THREE,7: PRODUCT FUDGE FACTOR (48*8).
        LAC
        MPY
                 TEMP1
        LTA
                          : B6MAN*(DQ5MAN*8)+(48*8)
                 *.0
                          : SAVE ONLY 8 MSB'S.
        AND
                 KFF80
        SACL
                 TEMP1
        MPY
                 TEMP1
                          : APPLY SHIFT FACTOR.
        PAC
        BLZ
                 RS1
                          ; EXP >= 26
        SACH
                          : EXP <
                                    26
                 SUM1,1
        ZALS
                          : CHECK SIGN OF PRODUCT.
CHK 1
                 В6
        XOR
                 SDQ6
        AND
                 K32768
        ΒZ
                 POS<sub>1</sub>
NEG1
        ZAC
                          ; NEGATE IF NECESSARY.
        SUB
                 SUM1
```

Figure 22. Predictor Filter Execution

POS 1	SACL LAC	SUM1 B5.14	•	COMPUTE B5*DO4.
		00,14	,	2011 212 23 244.
	•			
	•			•
RS1	ABS		;	MAKE POSITIVE BEFORE MASK.
	AND	M32767	;	KEEP LOWER 15 BITS.
	SACL	SUM1	;	SAVE RESULT.
	В	CHK1		

Figure 22. Predictor Filter Execution (Concluded)

SUMMARY

The TMS32010 provides an efficient solution to transcoding a 64-kbit/s PCM signal to a 32-kbit/s bit stream. Transcoding, as described in this application report, is an effective way to maintain the signal quality provided by 7-bit PCM while reducing the data rate.

The basic ADPCM algorithm has been implemented in two slightly different ways. One solution provides CCITT bit-for-bit compatibility. Using this algorithm, a half-duplex transcoder is created that can transcode either A-law or μ -law signals as either a transmitter or a receiver. No external program memory is required for this implementation, although it does require the use of a 25-MHz TMS32010 microprocessor. The second described solution is particularly attractive since it uses a single, 20.5-MHz TMS32010 microprocessor that requires no external program memory to perform a real-time full-duplex (non-CCITT) channel transcoding.

In selecting one of these two solutions, the primary consideration is the network interfacing requirement. For systems that only have analog interfaces to other parts of the network, the full-duplex solution will provide the best choice. On the other hand, a network that may include a digital interface to other ADPCM transcoders will probably require the CCITT bit-compatible solution. Both solutions provide high-quality signal transcoding.

A complete assembled code listing is provided in the appendix of this report and is also available in 1600-BPI

VAX/VMS tape format. The software may be purchased by ordering the TMS32010 Software Exchange Library, TMDC3240212-18, from Texas Instruments. For further information, please contact your nearest TI sales representative.

REFERENCES

"Recommendation G.721, 32 kbit/s Adaptive Differential Pulse Code Modulation," CCITT (1984).

N.S. Jayant (ed.), Waveform Quantization and Coding, IEEE Press (1976).

N.S. Jayant and Peter Noll, Digital Coding of Waveforms, Prentice-Hall (1984).

L.R. Rabiner and R.W. Schafer, Digital Processing of Speech Signals, Prentice-Hall (1978).

J.C. Bellamy, Digital Telephony, John Wiley & Sons (1982).

Bernhard E. Keiser, Digital Telephony: Speech Digitization, George Washington University (1981).

Companding Routines for the TMS32010, Texas Instruments Incorporated (1984).

Floating-Point Arithmetic with the TMS32010, Texas Instruments Incorporated (1984).

Implementation of FIR/IIR Filters with the TMS32010, Texas Instruments Incorporated (1984).

TMS32010 User's Guide, Texas Instruments Incorporated (1983).

Appendix ADPCM Assembly Language Programs

The control of cont	PAGE 0002	SCRACH,ADC ; input mu-law PCM	. extense exte	CM SAMPLE S (SCRACH)	ū	IN SAMPLE SL (SAMPLE)	8b SM (Q4)	140 (40)	· 医亚胺基苯酚苯酚苯酚苯酚苯酚 医克格特氏 医克格特氏 医克格特氏 医克格特氏 医克格特氏 医克格特氏 医克格特氏 医克格特氏 医克格特氏征 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性 医多种性	TS ++	1	+			; SEEE	Save	: save exponent value		; 0001 MMMM 1000 0000		; sign = FFFF or 0000	: calculate PCM shift address		00000000 00000000000000000000000000000	XXXX XXXX XXXX XUUU :	; pos - no change : neg - 1's compl	; pos - no change : neg - 2's compl		PCM value in SAMPLE to ADPCM value in 1				: output ADPCM		; wait for next sample	
The control of cont	RANSMITTER	SCRACH, AD	LINEAR PCM	. MU-LAW PCM SAMPLE	O OVER O	I LINEAR PU	ທີ		******		î	+	******	a HOVOUS	KFF00	TEMPI	M32/6/ TEMP2 4	M4095	BIAS, 7	TEMP1	TEMP1	TEMP2.1		BIAS, 12;	SAMPLE, 4	TEMP1	TEMP1	SAMPLE		SIGDIF	AQUAN		1,00111	PRDICT	XMTMU	MULAWX
COPY INPUT.ASH A0053	*; ** MU-LAW T	NI UMTMU IN	F; MU-LAW TO	INPUT	1 1		. NOTAT					-:		OV I IONOXU	XOR	SACL	AND	AND	ADD	LAC	SACH	ADD	CALA	SUB	DAC.	XOX	SUB	SACL			CALL	Č	OUT	CALL	MULAWX BIOZ	œ
COPY INPUT.ASH IDT 'CCITY OPTION XREF This is the source module for a half-dualex CCITT comparable 12-bbs ADPCH data will be available at each interrupt (every 125 microsecons) in the lower 8 bits of the bus via property and 10 ppc H data will be available at each the lover 4 bits of the bus via pole in the lower 8 bits of the bus via pole in the lower 8 bits of the bus via pole in the lover 8 bits of the bus via pole in the lower 10 ppc H data sample in the lower 10 ppc H data sample in the sample in the sample in the sample in the presence of a new data sample of the data bus in the bit condition is read from port 0 so as not to disrupt any pending data sample on either of the other two ports. Since it is anticipated that the mode pins will be bit condition is read from port 0 so as not to disrupt any selected and maintained in a manner similar to a hardwire selection, the actual port from which the mode is read is arbitrary. System I/O channel assignments CEQU I codec input ADRG 0 B RESET : power-up reset NIMERRUPT HANDLING ROUTINE SYSTEM HANDLES CODEC SAMPLES ON A SAMPLE BASIS: HANDLES CODEC		0004 4118	A0058 A0059	A0060 A0061	A0062	A0064	A0065	A0067	A0068	A0070	A0071	A0072	A0074	3000	9000	2000	8000	000A	0000	0000	000E	0000	0011	0012	0013	0015	9100	0017	A0096	00 18	0017 0018	001B	00100	00 IE	0020	0022
******	INPUT.ASM 'CCITT' XREF	* *		"; compatible 32-Kbps AUPCM speech system. The transmitter *; assumes that log-PCM data will be available at each	*; interrupt (every 125 microseconds) in the lower 8 bits of *: the data his via 1/0 port 1 and it simplies Appeal data or	*; the lower 4 bits of the bus via port 2. The receiver does			*; *: The 'R' reset function in the CCITT spec is implemented	*; with a hardware reset. At the time of reset, it is	*; assumed that the operating mode has been established and	"; input via the upper two bits of the data bus. The bit *: condition is read from port 0 so as not to distinct and	*; pending data sample on either of the other two ports.	"; Since it is anticipated that the mode pins will be *: selected and maintained in a manner similar to a hondwing	*; selection, the actual port from which the mode is read	*; is arbitrary.		•	*; System I/O channel assignments *;	EQU 1	EQU 1	EQU 0	••	*; ; 4000 mulaw receiver	* COOO = alaw transmitter		· · · · · · · · · · · · · · · · · · ·		RESET	\$	*; INTERRUPT HANDLING ROUTINE SYSTEM HANDLES CODEC	*; SAMPLES ON A SAMPLE BY SAMPLE BASIS.	*			

PC2.1 84.107 16:36:03 03-20-85 PAGE 0004		C ; input A-law PCM	· · · · · · · · · · · · · · · · · · ·	XPANSION	SAMPLE S (SCRACH)	M SAMPLE SL (SAMPLE)	;	85 SM (Q4) 145 TC (Q0)		***************************************	+ SL	->; EXPAND ;>	+++++	本本家有不存在不存在的有效,我们也有有有的,我们的一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	; SEEE MMMM 0000 0000		: DEEE MMMM 0000 0000	; save exponent value			; sign = FFFF or 0000	OCTOBER OF STATES	calculate row sillic addiess		* XXXX XXXX XXXX X000 *	: pos - no change : neg - 1 s compl		*: Now convert DCM value to SAMPIF to ADPCM value in 1					; output AUPCM		; wait for next sample		
ASSEMBLER	NSMITTER	SCRACH, ADC	· · · · · · · · · · · · · · · · · · ·	A-LAW TO LINEAR PCM EXPANSION	INPUT: A-LAW PCM SAMPLE	OUTPUT: LINEAR PCM SAMPLE		งร		* * * * * * * * * * * * * * * * * * * *	s +	·	+	* * * * * * * * * * * * * * * * * * * *	SCRACH,8	TEMPI	M32767	TEMP2,4	M4095	TEMP1	TEMP1	SBASEA	I EMP2,2	SAMPLE, 4	SAMPLE TIND:	1087	SAMPLE	ot DCM value	SIGDIF	ACION		-	PROICT		Ψ. EX	ALAWX	
32010 FAMILY MACRO ASSEMBLER	; A-LAW TRANSMITTER	XMTA IN	****	; A-LAW TO L	: INPUT:	: OUTPUT		; NOTALION:		* * * * * * * * * * * * * * * * * * * *			•••		EXPNDA LAC	SACL	AND	SACH	AND	LAC	SACH	LACK	CALA	SACH	LAC	S S	SACL	NOW CO	CALL	140	1	SACL	CALL		ALAWX BIOZ	60	
CC1TT 32010	A0123 A0124	0034 4118	A0128	A0129	A0131	A0132	A0134	A0135 A0136		A0138	A0140	A0141	A0142		0035 2818	0037	0038		A0151 003A 7972	0030	0030		A0156 003F 0222 A0157 0040 7F8C	0041	0042	A0160 0043 /821	0045	A0164	0046 F800	0047 01B3	0049	004A	A0170 0048 4A01	004D 0355	A0172 004E F600		0051 004E A0174
PC2.1 84.107 16:36:03 03-20-85 PAGE 0003	00000000 00001WWW M1000000 000000000 :	: 00000000 000001WH WHI00000 00000000	: 00000000 000000000 MWM M1000000 000000000		10000000 00000000 HUMBI 1000 0000000 +	: 00000000 00000000 00000000 00000000	; 00000000 01MMMH10 00000000 t	: 00000000 00000000 001HHHHI 00000000		SCRACH.12 ; 00000001 MMMM1000 00000000 00000000																											
MACRO ASSEMBLER	SCRACH, 5	SCRACH, 6	SCRACH, 7	0		SCRACH, 9	SCRACH, 10	SCRACH, 11		SCRACH, 12									ý														,				
CCITT 32010 FAMILY MACRO /		0025 7F8D 0026 261B	0027	0029 7F80	002B 7F80	002C 291B	002E 2AIB	002F 7F8D 0030 2818	0031 7FBD	0032 2C1B	0033 /100																										

16:36:03 03-20-85 PAGE 0006			; determine magnitude of ADPCM											LINEAR TO U-LAW PCM COMPRESSION/U-LAW TO LINEAR EXPANSION			SP (SCRACH)	(2011)					++ SLX	>! EXPAND !>	as as	\			get reconstructed signal			S.S.		PCM value	or 3 - 0		- 2 or 1 - 0
PC2.1 84.107		; input ADPCM	; determine mag										3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	OMPRESSION/U-LAW	1	INPUL: LINEAR POM SAMPLE SK		יי טעווגרר	NOTATION: SR 16b TC (Q0)	14b TC (Q0)			SP	*		+	********		; get reconstr	850		; save sign of		; add blas	= 7 - 4 or 3 - 0		3 - 2 = 3 - 2
ASSEMBLER	CEIVER	1,00111	<u>.</u>	ONE,3	D032KU	Σ	Σ <u>Σ</u> Ξ		n output	SIGDIF		PRDICT	1	U-LAW PCM C	0	LINEAR PC	OUTPUT: A-LAW PCM SAMPLE	C INC.	ON: SR :	SLX	1		+	>; COMPRESS	+		****		SR	Convert to		TEMP4		SCOACH	ONE.9	SCL 427	THREE,7
32010 FAMILY MACRO ASSEMBLER	*; *; MU-LAW RECEIVER *;	RCVMU IN	LAC	SUB	BLZ	LAC	XOR	**	*; compute pcm output *:	DO32KU CALL	;	CALL		*; LINEAR TO		: Odv	•; OUTPUT		*; NOTATI	• :-			*; SR +	^	+	•	***		LAC	*; ** COMPTERS = 100000000000000000000000000000000000	- central disco	CMPRSU SACH	ABS	ADD	SUB	BGEZ	SCL023 ADD
		0071 4201	12 0072 2001	14 0074 134C	15 0075 FA00	16 0077 2002	17 0078 7860	7000		22 007A F800	007B 01B3	23 007C F800 007D 0355	24	25 26	27	88	30	32	33	35	36	37	36	40	14	43	44	45	A0247 007E 2013	48	0.50	40251 007F 5824	0800	A0253 0081 004D	0083	40256 0084 FD00	57 0086 0770
CCITT		A0210					A0217		A0220			A0223		30 A0225 A0226		00 A0228			30 A0233	A0235	A0236	A0237	A0239	A0240	A0241	A0243	A0244	A0245	A02	A0248	A0250	A02	A0252	A02	A02	A 02	A0257
03 03-20-85 PAGE 0005	0 0000000	00000000 0	000000000 0		0000000		,000000	0000000		0 000000	0 000000		0 000000	0 000000	00000	0000000000		0 000000	0 000000																		
16:36:03 03-20-85 PAGE 0005	00000000 000000MM MM1000000 00000000 00000000	MM10000	00000000 000001MM MM100000		M M0000000		000000	1000000		00000000 00000000 00000000 00000000	1 0000000		0000000 0	0000000 0		00000000 00MMM000 000000000		0000000 0	0000000 0																		
	M000000	H100000	00000		MM 10000		X X X X X X X X X X X X X X X X X X X	000 I MMM		000	00 I MMMM		000	E E E		OUMMMO		MMMMOOO	MMMM100																		
PC2.1 84.107	00000000	00000000	00000000		: 00000000 0000000 MMMH000000 00000000 :		000000	* 0000000 0000000 HWWW 10000000 00000000 *		00000000	00000000		00000000	00000000		00000000		00000000	: 00000001 MMMM1000 00000000 000000000																		
32010 FAMILY MACRO ASSEMBLER	SCRACH,6;	SCRACH.6			SCRACH,7 ;		0 30			_	BIASA,9		SCRACH,10 ; 00000000 00MMMM00 00000000 00000000	BIASA,10		SCRACH, 11 ;		SCRACH.12:	BIASA,12 ;		•	<u>i</u> l															
MACRO	LAC ADD RET	NOP LAC	ADD	NOP	LAC	RET	0 S	ADD	RET	LAC	ADD	NOP T	LAC	ADD RET	dON	LAC ADD	RET	LAC P	ADD	۲ ا																	
D FAMILY	SBASEA LAC ADD RET																																				
010	261B 004C 7F80	178 0055 7F80 179 0056 2618	0671 7F80	0059 7F80	271B	7F8D	7F80	0871				0064 7F8D 0065 7F80		0067 0A71 0068 7F8D		006A 2B1B	006C 7F8D		006F 0C71																		
32	0052 0053 0054	9 2	~ c	0 0	005A		0050	005F	0000	0062	6900																										

SEMBLER PC2.1 84.107 16:36:03 03-20-85 PAGE 0008	M15,6 ; exp = 5 SCRACH ; mask for mantissa SCRACH	BIAS,5 SAPPLE ; biased quantized value	0.0 FINI	ONE.11 : exp = 7 or 6 SCALE7	M15,7 ; exp = 6 CCRACH ; mask for mantissa	SAMPLE ; biased quantized value	SCRACH, 9 FINI	ONE,12 : $\exp = 7$ NORMAL : $mag > 8191$?		SAMPLE ; save max blased quantized value 127 ; set maximum mulaw magnitude CLNUP		SCCACH ; mask for mancissa SCRACH ; mask for mancissa BIAS, 7	SAMPLE ; biased quantized value SCRACH,8	U., / SCRACH ; save normalized mantissa SCRACH		SCRACH ; signed magnitude of mulaw-PCM SAMPLE ; remove bias from quantized value ABAS served	IERFA SAMPLE ; 2's complement of quantized sample	AQUAN SYNC	M255 ; filp bits for transmission SCRACH
32010 FAMILY MACKO ASSEMBLEK	SCALES LAC AND SACL		B L ARK	SCL627 SUB BGEZ			LAC LARK B	SCALE7 SUB BLZ	SATCH LAC		NORMAL LAC	AND SACL ADD	SACL	FINI SACH	SAR ADD CLNUP ADD	SACL	SUB SACL	CALL CALL	*; xor SACL
	A0307 00C2 266D A0308 00C3 7918 A0309 00C4 5018	A0310 00C5 054D A0311 00C6 5026	6000 0000 0000	00CA 00E6 A0315 00CB 1B4C A0316 00CC F000	900CE			0006 00E6 A0325 00D7 1C4C A0326 00D8 FA00	0009 00DA	A0328 00DB 5026 A0329 00DC 7E7F A0330 00DD F900	000E 000F	A0332 00E0 791B A0333 00E1 501B A0334 00E2 074D	00E3	A0337 00E5 7007 A0338 00E6 581B A0339 00E7 201B	00E8 00E9 00EA	00EC 00ED 00EE	A0347 00EF 7824 A0348 00F0 1024 A0349 00F1 5026	00F2 00F3 00F4	00F5 0188 A0354 A0355 00F6 7847 A0356 00F7 501B
PCZ.1 84.107 16:36:03 03-20-85 PAGE 0007	; exp = 1 or 0	; exp = 0 ; mask for mantissa	; biased quantized value		; exp = 1 ; mask for mantissa	; biased quantized value		; exp = 3 or 2	. exp = 2	; mask for mantissa	; biased quantized value		; exp = 3 ; mask for mantissa	e hisest transfer .		3 + 4 = 7 = 6 or 5 = 4	exp = 5 or 4	; exp = 4 ; mask for mantissa ; biased quantized value	
	ONE +6 SCALE 1	M15,1 SCRACH	SCRACH BIAS SAMPLE	SCRACH, 15 0,0 FINI	M15.2 SCRACH	SCRACH BIAS, 1 SAMPLE	SCRACH, 14 0, 1 FINI	ONE,7 SCALE3	M15,3	SCRACH	SAMPLE SCRACH, 13	0,2 FINI	M15,4 SCRACH	SCRACH BIAS,3	SCRACH, 12 0,3 FINI	THREE,9 SCL627	ONE, 10 SCALES	MIS.5 SCRACH SCRACH BIAS.4 SAMPLE	SCRACH, 11 0,4 FINI
	SCL021 ADD BGEZ	SCALEO LAC AND	SACL SACL	. LAR B	SCALE 1 LAC AND	SACL ADD SACL	LAC LARK B	SCL223 SUB BGEZ	SCALE2 LAC	SACL	SACL	LARK B	SCALE3 LAC	SACL	LAC LAC B	SCL427 SUB BGEZ		SCALE4 LAC AND SACL ADD SACL SACL	LAC LARK B
	0089 064C 008A FD00 008B 0095				0094 0095 0096	A0271 0097 5018 A0272 0098 014D A0273 0099 5026	009A 009B 009C	009D 009E	00A0		00A5	00A7 00A8	00AA 00AB	00AC 00AD	A0292 00AF 2C1B A0293 00B0 7003 A0294 00B1 F900	0082 00E6 A0295 00B3 1970 A0296 00B4 FD00 00B5 00CB	0086 0087 0088	A0299 0089 2560 A0300 008A 7918 A0301 008B 501B A0302 008C 044D A0303 008D 5026	00BE 00BF 00C0 00C1

SCRACH, DAC RCVMU

OUT B10Z æ MULAWR

00F8 491B 00F9 F600 00FA 0071 00FB F900 00FC 00F9

40358 A0359 A0357

MULAWR

32010 FAMILY MACRO ASSEMBLER

CCITT

A0412

CCITT	
03-20-85	
16:36:03	
PC2.1 84.107	
ASSEMBLER P	
32010 FAMILY MACRO A	
32	

PC2.1 84.107 16:36:03 03-20-85 PAGE 0012	; exp = 5 ; mask for mantissa	; quantized value	; exp = 7 or 6			; mag > 8191 ? ; mag > 8191 ? ; save maximum quantized value ; save maximum alaw magnitude	; mask for mantissa ; quanitzed value	; save normalized mantissa ; add exponent	; signed magnitude of alaw-PCM ; 2's complement of quantized sample	; flip bits for transmission DAC ; output A-law PCM
ASSEMBLER	M15,6 SCRACH SCRACH	BIAS,5 SAMPLE SCRACH,10 0,5	FINISH ONE, 11 SCAL 7A	M15,7 SCRACH SCRACH BIAS,6	SAMPLE SCRACH, 9 0,6 FINISH	NORMLA NORMLA K63.7 SAMPLE 127	MIS,8 SCRACH SCRACH BIAS,7 SAMPLE	SCRACH,8 0.7 SCRACH SCRACH 0.TEMP1 TEMP1,4 TEMP4,7	SCRACH SAMPLE TEMP4 TEMP4 SAMPLE	SYNC SYNC HOBBO SCRACH SCRACH, DAC
32010 FAMILY MACRO ASSEMBLER	SCALSA LAC AND SACL	ADD SACL LAC	B SCL6T7 SUB BGEZ	SCAL6A LAC AND SACL ADD	SACL LAC LARK B B	SATCHA LAC SATCHA LAC LACK LACK	NORMLA LAC AND SACL ADD SACL SACL	FINISH SACH SACH SAR SAR SAR SAR SAR SAR SAR SAR SAR SAR	SACL SACL SOR SUB SACL	CALL CALL SACL OUT
32010	014E 266D 014F 791B 0150 501B	0151 0152 0153 0154	0155 0156 0157 0158	0159 0158 0156 0150	015E 5026 015F 291B 0160 7006 0161 F900	0164 0165 0167 0168	0168 0168 0160 0166	0170 0171 0172 0174 0175	017/ 794/ 0178 5018 0179 2026 017A 7824 017B 1024 017C 5026	017D F800 017E 02AA 017F F800 0180 0188 0181 787F 0182 5018
CC1177	A0461 A0462 A0463	A0464 A0465 A0466 A0466	A0468 A0470		A0475 A0476 A0477 A0478	A04/9 A0480 A0481 A0483 A0483	A0485 A0486 A0487 A0488 A0488	A0490 A0491 A0492 A0494 A0494 A0495	A0497 A0499 A0500 A0501 A0501 A0502 A0502	A0504 A0505 A0506 A0509 A0509 A0509
PC2.1 84.107 16:36:03 03-20-85 PAGE 0011	: exp = 1 or 0	; exp = 0 ; mask for mantissa	; quantized value	; exp = 1 ; mask for mentissa	tized v	: exp = 3 or 2 ; exp = 2 ; mask for mantissa	; quantized value ; exp = 3	; mask for mantissa ; quantized value	: exp = 7 - 6 or 5 - 4 : exp = 5 or 4	; exp = 4 ; mask for mantissa ; quantized value
MACRO ASSEMBLER	ONE . 6 SCAL 1A	M15,2 SCRACH SCRACH ONE.1	SAMPLE SCRACH, 14 0,0	M15,2 SCRACH SCRACH BIAS,1	SAMPLE SCRACH, 14 0,1 FINISH	ONE, 7 SCAL3A M15,3 SCRACH SCRACH	SAMPLE SCRACH,13 0,2 FINISH	SCRACH SCRACH BIAS,3 SAMPLE SCRACH,12 0,3	THREE, 9 SCL6T7 ONE, 10 SCALSA	M15,5 SCRACH SCRACH BIAS,4 SAMPL SCRACH,11 0,4
32010 FAMILY MACRO	SCLOT1 ADD BGEZ	SCALOA LAC AND SACL ADD	SACL LAC LARK B	SCAL 1A LAC SAND SACL SACL		SCL2T3 SUB BGEZ SCAL2A LAC AND SACL	SACL LARC LARC LARK B B SCAL3A LAC	AND SACL SACL LARC LARK B	SCL4T7 SUB BGEZ SCL4T5 ADD	SCAL 4A LAC AND AND SACL ADD SACL LAC LAC LAC B
CC1TT 320 iC			011C	0120 0121 0122 0123 0124	0125 0126 0127 0128 0129	A0431 012A 174C A0432 012B FD00 012C 0136 A0433 012D 236D A0434 012E 791B	0130 0132 0133 0134 0135	0137 0138 0138 0138 0138 0130	013E 013F 0140 0141 0142 0143	A0453 0145 256D A0455 0146 791B A0455 0147 501B A0456 0148 044D A0457 0149 5026 A0459 0148 7004 A0469 0146 7004 A0460 0146 7004

32010 FAMILY MACRO ASSEMBLER

CCITT

ALAWR BIOZ B

F600 00FD F900 0184

A0511 0184 F 0185 C A0512 0186 F 0187 C

RCVA ALAWR

01A6 01AF A0565 01A7 7FBD A0566 01A8 106F ADDONE A0567 01A9 FD00 01AA 01AD A0568 01AB 084C	RET SUB BGEZ ADD	M127 MAXNEG ONE,8	; SD = SP - 1 : 255 > SP >= 128	0002 COPY 80001 : : : : : : : : : : : : : : : : : :	COPY SIGDIF ASH SIGDIF Implements the following modules (per CCITT spec):
A0569 01AC 7F8D A0570 01AD 7EFF MAXNEG A0571 01AE 7F8D A0572 01AF 7E80 ANOMLY		255	; SD = 255 : SP = 255 ; SD = 128 : SP = 0	*; DELAY D *; FMULT *; DELAY A	delay of DQ and SR derivatives Bn * DQn, An * SRn (implicit in use of last frames
0180 7F80 0181 2018 0182 7F80	RET 4 LAC RET	SCRACH	: SD = SP	ACCUM HIX HIX	Accumulate partial products for SE2, SE compute AL(k) compute Y(k)
				****	community CC7.
					SEZ(k) = B1(k-1)*DQ(k-1) + + B6(k-1)*DQ(k-6)
					Multiplies are done in floating pt DQ's are stored in f.p. notation B's are floated each pass
				B0024 *; B0025 *; FLOATING POIN	FLOATING POINT MULTIPLY (FMULT)
				. TUPUT:	QUANTIZED DIFFERENCE DON (DQNEXP/DQNMAN) PREDICTOR COEFFICIENTS BN
					OUTPUT: FILTER TAP OUTPUTS WBn (SUMn)
				B0034 *; NOTATION: DQNEXP B0034 *; DQNHAN*	ø
				•••	Bn 16b TC (Q14) SUMn 16b TC (Q1)
				• • •	-1 -1 -1 -1 -1 -1
				z bd :*	z z
				B0044 *; CB1(K)) vB2(k) vB3(k) vB4(k) vB5(k) vB6(k)
				****	>>>>>>>>>
				80051 80052 80053 0183 2E0F 51G01F LAC 80054 0184 F800 CALL F 0185 040E CALL F	(GDIF LAC B6,14 ; compute B6*DQ5 CALL FLOAT ; ret/w mantissa in TEMP1; exp in ac

16:36:03 03-20-85 PAGE 0016

32010 FAMILY MACRO ASSEMBLER PC2.1 84.107

CCITT

16:36:03 03-20-85 PAGE 0015

PC2.1 84.107

32010 FAMILY MACRO ASSEMBLER

CC117

PC2.1 84.107 16:36:03 03-20-85	; mult mant, add 48, fetch shift fac		<pre>apply shift factor = f(exp)</pre>			; exp < 26	; check sign of product				; negate if necessary		; compute B3*DQ2	; ret/w mantissa in TEMPI; exp in ac				exp of product offset by table add	scaled up by 2**3		; mult mant, add 48, fetch shift fac		Complete Contract Contract		: exp >= 26		,	check sign of product				negate if necessary		compute B2*DQ1	ret/w mantissa in TEMPI; exp in ac			ave of product offerst by table	scaled up by 2**3	multiply fudge factor	mult mant, and 48, fatch chift for		the state of the s	apply sille factor = r(exp)
32010 FAMILY MACRO ASSEMBLER	* 0 KFF80	TEMP1	TEMP1	RS3		13,1	84 800 800	K32768	POS3		1	SUMS			DOZEXP	DQZEXP	SUM4	0,5UM4	THREE	TEMP1	•	KFF80	1011		RS4		SUM4.1	. SD03	K32768	P0S4		- WIIV	SUM4	B2,14	FLOAT	DQ1EXP	DQIEXP	SUM5	DOIMAN	THREE, 7		KFF80	TEMPI	
ILY MACRO	L TA	SACL	μÞ	BLZ		SACH	XOP X	AND	82		ZAC	SACI	LAC	CALL	ADD	DMO	SACL	LAR.	- L	Ψ	LTA	ON C	NO N	- A	BLZ		SACH	XOR X	AND	8Z	,	7 K	SACL	LAC	CALL	ADD	DHOV	SACL	£	LAC	¥	AND	SACL	PAC
10 FAM						0	E¥2				NEG3		P053														3	£			,	400		P054										
320	6C80		6D21		04C0	5925	7858	7948	3 FF00		7689	5025		F800	0017	6917	501E	381E	2770	6021		796E	5021	7F8E	FA00	04C5	591E		7948	FF00	UZIA		501E	2E0B	04DE			381F		277D				7F8E
F	17 01F0	9 01F2	0 0153	2 01F	0116	3 01F	5 015	B0116 01FA 7	7 01FE	OIFC	8 01FD	0 01FF	1 0200	2 0201	3 0203	4 0204	5 0205	4 UZUE	8 0208	9 0209	0 020	1 0208	3000	4 020E	5 020F	0210	7 0212	8 0213	9 0214	0 0215	0216		3 0219	4 021A	021C	6 021D	7 021E	8 021F	0 0221	1 0222	3 0224	4 0225		7 0228
CC111	80108	8010	8011	808		80	8011	8011	8011		8011	8012	B0121	8012	8012	8012	8012	2109	8012	B012	8013	80131	2 6	8013	B013		5108	80138	B013	B0 14	,,,,	8014	B014	B0144	00	B0146	8014	B0148	80150	80151	8015	80154	80155	80157
R PC2.1 84.107 16:36:03 03-20-85 PAGE 0017	: exp of product offset by table add	scaled up by 2**3	; multiply fudge factor	; mult mant, add 48, fetch shift fac		the state of the s	dpply smirt ractor = r(exp)	; exp >= 26		: exp < 26	; check sign of product				+ negate it netessary		; compute B5*DQ4	; ret/w mantissa in itmli; exp in ac				; exp of product offset by table add			; mult mant, add 48, fetch shift fac		() - totos + 6 to 1 to 1		; exp >= 26		4	; check sign or product			; negate if necessary		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	; compute 84*DQ3 : ret/w mantiesa in TFMP1; exp in ec				t exp of	: scaled up by 2**3 : multiply fudge factor	
41LY MACRO ASSEMBLER	SUM1 0,SUM1	DQSMAN	THREE.7	0.	KFF80	TEMP		RS1		SUM1,1	2005	K32768	POSI		SUMI	SUMI	B5,14	407	DQ4EXP	DQ4EXP	SUMZ	DOAMAN	THREE . 7	TEMP1	٠.	KFF80	TEMP		RS2		30MZ, 1	5005	K32768	P052		SUM2	SUM2	64,14 FLOAT		DQ3EXP	SUM3	0,5UM3	THREE 7	TEMP1
LY MACR	SACL	5	F P	LT.	AND	SACL	- DAC	BLZ		SACH	X OF X	AND A	82	747	SUB	SACL	۲ کا د کا	ב ר	ADD	DMO	SACL.	¥ -	V	Ā	LTA	Q G	SACL MDV	PAC	BLZ	į	2 4 6	XOX	AND	BZ	ZAC	SUB	SACL	Z Z	1	ADD.	SACL	LAR	Y - 1	ğ
ξ										3	Ę			NEG			ŝ														247	3			NEG2		9	7504						
32010	5022 3822	6A60	6D21	6080	796E	5021	7FBE	FA00	04B6	5922	785A	7948	FF00	75.00	1022	5022	FBOR	0405	6100	6169	5023	3523 685F	277D	6021	909	796E	5021	7F8E	FA00	0488	5260	7859	7948	FF00	7F89	1023	5023	7E UU F800	04DE	0018	5025	3825	277D	6021
_	5 01B7 7 01B8	9 0189	0188	0180	0180	2 C BE	010	01C1	0102	0103	200	010	0107	8 2	01CA	0108		3 2	OICE	0100	010	2010	0104	0105	010	0107	80.0	01DA	0108	010	200	010	01E0	01E1										
CC111	B0056 B0057	8005	8006	9008	8006	8006	9006	B006		9009	B006	80070	B007	27008	80073	80074	3,000	2000	60077	B0078	80075	8008	80082	B0083	B008	8008	B0087	8008	8008	0000	1000	B0092	80093	B0094	80095	96008	6009	8008		80100	80102	80103	80108	80106

_	CHK5	BLZ SACH ZALS XOR AND	RS5 SUM5,1 B2 SDQ2 K32768	: exp)= 26 ; exp < 26 ; check sign of product	B0210 ; NOTATION: SRAEXP B0211 ; SAPHAN B0212 ; SUMA+6 B0213 ; SUMA+6 B0214 ;	*****	NOTATION: SRN SRN An SUM	SREXP 4b + offset SRMAN*8 9b magnitude An 16b TC (Q1) SUMn+6 16b TC (Q1)	PAGE 0020
7,746 0234 7789 1017 5017 5017 6915 6915 5020	POSS 22 E		SUMS SUMS SUMS SUMS SUMS BI, 14 FLOAT POEXP DOEXP SUM6	TEMP1; exp in accum	B0215 B0217 B0219 B0219 B0220 B0221 B0222 B0223 B0223 B0223 B0223		2 285 2 2 2 3	-1	
		LTD HPY LTA LTA SAND SACL PAC	DOMAN THREE,7 : TEMP1 : TEMP1 : TEMP1 : RS6 :	<pre>: scaled up by 2**3 : multiply fudge factor : mult mant, add 48, fetch shift factor : apply shift factor = f(exp) : exp >= 26</pre>	B0228 B0229 B0230 024E 2E12 B0231 024F F800 0250 040E B0232 0251 001D B0233 0252 5027 B0234 0253 3827 B0234 0254 6453	* * * * * * * * * * * * * * * * * * *	LAC A2,14 CALL FLOAT ADD SRIEXP SACL SUM7 LCT SRIMAN	: compute A2-SRI : ret/w mantissa in TEMPI; exp in accum p 7 : exp of product offset by table addr 7 : scaled up by 2-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8-8	in accum
5920 660A 7855 7948 FF00 024E 1020 5020	CHK6 22 POS6 E	SACH ZALS XOR : AND : BZ ZAC ZAC SUB SACL	SUM6,1 ; SDQ1 K32768 POS6 SUM6 SUM6 \$SUM6	; exp < 26 ; check sign of product ; negate if necessary	0256 0258 0258 0258 0258 0258 0258 0250 0250	123 4 00 2 12 13 13 13 13 13 13 13 13 13 13 13 13 13			: factor
		compute SE - SE = A1(k-1 Multipli	signal estimate signal estimate -1)*SR(k-1) + A2(k- les are dONE in Flance stored in F.p.	-SR(k-1) + SEZ(k) ting pt station	0260 0261 0262 0263 0264 0265 0266		XOR SR1 AND K32768 BZ POS11 ZAC SUB SUM7 SACL SUM7 CALL A1,14 CALL FLOAT		u Document L
• • • • • • • • • •	######################################	A's ar	re floated ************************************	A's are floated each pass FLOATING POINT MULTIPLY (FMULT) INPUT: RECONSTRUCTED SIGNAL SRN (SRNEXP/SRNHAN) PREDICTOR COEFICIENTS An OUTPUT: FILTER TAP OUTPUTS WAN (SUMN+6)	80254 0269 040E 80255 0268 691C 80256 026C 5028 80257 026C 3828 80258 026C 582 80259 026C 277 80261 0271 6080 80261 0271 796C		ADD SREXP DHOV SREXP SACL SUMB LLA 0.5UMB LLA SRMAN LAC THREE,7 MTY TEMP1 LTA *.0	8 ; exp of product offset by table addr ; scaled up by 2**3 ,7 ; multiply fudge factor ; mult mant, add 48, fetch shift factor	addr: : factor

30271

0003 C0001 CCITT

:0042

7 16:36:03 03-20-85 PAGE 0026					4e7m (sign=SGN(D))	is in YOVER4)	1 1 1 1 1 1 1 1 1 1 1 1	p67	e 1	0 1 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	. 0 - 3	I = 0-1	1 = 2-3
PC2.1 84.107		е с С С С	. exp = 14		; DL 4e7m (scale LOG D by subtraction (Y>>2 is	; offset by 2K	i6 LEVEL quantizer Table values defined in CCITT spec p67 Implemented table is offset by 2048	; bottom of level	bottom of level; bottom of level; bottom of level; bottom of level;	; TEMP2-2309 ; TEMP2-2171	; TEMP2-2041	; TEMP2-2250
) ASSEMBLER	GETMAN	0.13 TEMP1.10 TEMP1 TEMP1	0,14 TEMP1,9	TEMPI M127		D by subtr	ONE, 11	quantizer les defined ed table is		2309 2358 2404 2453	K2309 C14TO7 K138 C12TO3	K130 1EQ1 0	GETIM 1 GETIM K79 1EQ3
32010 FAMILY MACRO ASSEMBLER		EXP13 LARK LAC SACH LAC	EXP14 LARK	SACH LAC GETMAN AND	ADD	scale LOG	SUBTB ADD SUB	i 6 LEVEL quantizer Table values defir Implemented table	17AB1 EQU		QUAN SUB BGEZ CIOTO3 ADD BGEZ	CIOTOI ADD BGEZ IEQO LACK	33
CCITT 32010	0315 F900 0316 0321	C0146 0317 700D E C0147 0318 2A21 C0148 0319 5821 C0150 0318 F900	031C 0321 031D 700E 031E 2921	031F 5821 0320 2021 0321 796F	C0150 0323 0721 C0157 0323 0721	C0160 C0161 C0161	C0163 C0164 C0165 0324 084C 9 C0166 0325 1029 C0167		07F9 087B	0905 0936 0964 0995	0326 107C 0327 FD00 0328 033E 0329 007B 032A FD00	032C 007A 032D FD00 032E 0332 032F 7E00	F900 0351 7E01 F900 0351 1078 FD00
16:36:03 03-20-85 PAGE 0025	exp = 6-7			exp = 8-14	exp = 8-11	exp = 8-9			exp = 10-11			exp = 12-14	exp = 13-14
PC2.1 84.107	TEMP1-128	exp = 6	exp = 7	; TEMP1-4096	THREE,10 ;TEMP1-1024 CATOB	-	e a x	QX = 0	; TEMP1-2048	exp = 10	exp = 1.	THREE, 12 ; TEMP1-16384 EXP14	; TEMP1-8192 ; exp = 12
MACRO ASSEMBLER	ONE,6 ; EXP7	0.6 ; TEMP1.1 GETMAN	0.7 ; TEMP1 GETMAN	M15,8 ; CCTOE	THREE,10 ; CATOB	ONE, 9 ;	U.8 ; TEMP1,15 TEMP1 GETMAN	0,9 TEMP1,14 TEMP1 TEMP1 GETMAN		0,10; TEMP1,13 TEMP1 TEMP1 GETMAN	. ~	THREE, 12 ; EXP14	ONE, 13 ; EXP13 ; 0, 12 ; TEMP1, 11 TEMP1
	SUB BGEZ	LARK LAC B	LARK LAC B		ADD BGEZ	ADD BGEZ	LAC SACH B	NACH NACH NACH NACH	SUB BGEZ	LARK LAC SACH LAC B	LARK LAC SACH B	SUB	ADD BGEZ LARK LAC SACH LAC
32010 FAMILY	C6T07	EXP6	EXP7	C8T014	C8T011		X Y Y	EXP9	CATOB	EXP10	EXP11		CCTOD EXP12
CC1TT 320	C0101 02DC 164C C0102 02DD FD00	020F 020F 02E0 02E1	C0106 02E3 7007 C0107 02E4 2021 C0108 02E5 F900	C0109 02E7 186D C0110 02E8 FD00 02E9 030B	C0111 02EA 0A7D C0112 02EB FD00	02ED 02EE 02EF	C0115 02FU /UUB C0116 02F1 2F21 C0117 02F2 5821 C0118 02F3 2021 C0119 02F4 6900	CO120 02F6 7009 CO121 02F7 2E21 CO122 02F8 5821 CO123 02F9 2021 CO124 02FA F900	02FB 02FC 02FD	CO127 OZFF 700A CO128 0300 2D21 CO129 0301 5821 CO130 0302 2021 CO131 0303 F900	0304 0321 C0132 0305 7008 C0133 0306 2C21 C0134 0307 5821 C0135 0309 F900	030A 030B 030C 030C	C0139 030E 004C C0140 031F F000 0310 0317 C0141 0311 700C C0142 0312 2821 C0143 0313 5821 C0144 0314 2021

1079

033E 033F 0341 1342

20199

0351

0330 0340

C0197 86100 00200 C0202 C0204 C0206 C0208

FD00

0351

13AF 0352

0351 0353

C0211

C0213 C0215

034D 0350

0351 0351

> 0347 034A

0343 0344 0346 949 034B 034C 034E

1020

20203 20205 20207 90200 C0210 C0212

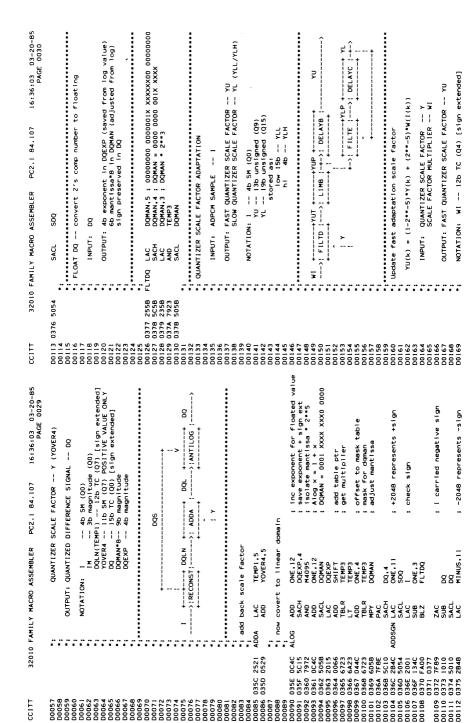
7E02 033B 7E03 F900 FD00 034A 0064 FD00 0347 7E04 0345 F900 7E05 0348 F900 1065 0350 **7E06** F900 7E07 5002

0338 0339 0330

20195 20196

PAGE 0027

-- 1 (1M->TEMP1)


INPUT: ADPCM INPUT SAMPLE

D0055 D0056

00053 **D0054**

00052

*; INVERSE ADAPTIVE QUANTIZER

32010 FAMILY MACRO ASSEMBLER PC2.1 84.107 16:36:03 03-20-85	AND M32767 SACL YLL	; ADAPTATION SPEED CONTROL	*; INPUT: ADPCM SAMPLE 1	OUTPUT: UNLIMITED SPEED CONTROL AP (APP)	*; NOTATION: 1 4b SM (Q0) *; APP 10b unsigned (Q8)		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	SUBTC > FILTC > DELAY	DMS: +-: DELAYA :	0MLP	· · · · · · · · · · · · · · · · · · ·	DML; +	电电子电话 医电影	*; update short term average of Fl	$^{*}_{*}$ DMS(k) = (1-2**-5)*DMS(k-1) + 2**-5 * FI(k)	INPUT: SHORT TERM AVERAGE DMS RATE-OF-CHANGE FUNCTION FI	*; *; OUTPUT: SHORT TERM AVERAGE DMS	NOTATION: DMS 12b unsigned (Q9)	FILTA LAC F1,15 ; F1/32 (Q24) FILTA DAD DMS,15 ; DMS (Q24) CSUR DMS,10 ; DMS (Q24)	SACH DMS,1	: update long term average of F1 : $ DML(k) = (1-2^{**}-7)^*DML(k-1) + 2^{**}-7 \cdot F1(k) $
CC1TT 3201	00224 039A 7974 00225 039B 504A 00226	D0227 D0228	D0229 D0230	D0231 D0232	00234 00234 00235	D0236 D0237 D0238	D0239 D0240	D0242 D0243	D0245 D0246 D0247	00248 00249 00250	D0251	00253 00254 00255	D0256	00258	D0260	00262 00263 00263	D0264 D0265	00266 00268 00269	00270 00271 00272 039C 2F68 00273 039D 0F07	00275 039F 5907 00276	D0277 D0278 D0279 D0280
32010 FAMILY MACRO ASSEMBLER PC2.1 84.107 16:36:03 03-20-85 PAGE 0031	*; Y 13b unsigned (99) *; YU 13b unsigned (99)	· · · · · · · · · · · · · · · · · · ·	2C09 FILTD LAC Y,12 ; 1709 SUB Y,7 ;	0C69 ADD W1,12 ; W1/32 5C4E SACH YU,4 ; YU	*; *; limit quant scale factor 1.06 <= YU <= 10.0		2 0386 LAC K544 13 2066 LAC K544 17 900 B STRLIM ; go store limited value			; Update slow adaptation scale factor	*; YL(k) = (1-2**-6)*YL(k-1) + 2**-6 * YU(k)	: INPUT: SLOW QUANTIZER SCALE FACTOR YL (YLL/YLH) : FAST QUANTIZER SCALE FACTOR YU	*; OUTPUT: SLOW QUANTIZER SCALE FACTOR YL (YLL/YLH)	*; NOTATION: YU 13b unsigned (Q9)	*; YL 19b unsigned (Q15) *; stored as:	10 ISD YLL 1 I I AD YLH 1 I AD YLH	· · · · · · · · · · · · · · · · · · ·	2649 FILTE LAC YLH,6 ; shift yl 5021 SACL TEMP1 2F21 LAC TEMP1,15 ; YL 0664A ADD YLL,6	1F49 SUB 104A SUB 064E ADD 5921 SACH	7974 AND 5022 SACL 2422 IAC	5822 SACH TEMP1.9 ; 2921 LAC TEMP1.9 ; 0022 ADD TEMP2 5949 SACH YLH.1
CCITT	D0170 D0171			D0177 037E D0178 037F	D0179 D0180		0382 00184 0383 00185 0384	0386 00186 0386 00187 0387	038 00188 038 00189 038/	D0191 D0192	D0193	D0195 D0196 D0197	00198 00199	D0200 D0201	D0202 D0203	D0204 D0205 D0206	D0207	00209 00209 00210 00211 00212 0038	D0213 038F D0214 0390 D0215 0391 D0216 0392	D0217 039 D0218 039	00220 0395 00220 0395 00221 0397 00222 0398

7 16:36:03 03-20-85 PAGE 0034	(86)	ADAPTIVE PREDICTOR	Compute coeff of 6th order predictor BI(K) = (1-2**-6)*BI(K-1) + 2**-7*SGN[DQ(K)]*SGN[DQ(K-1)] FOR I = 1 And I is inclinated to 42 and it is inclinated to 42	i6b TC (Qi4) +2048 if sign positive -2048 if sign negative	ETB6 LT 5006		; SGN(SDQ)*SGN(SDQ6) * 2**-7 (Q29)	2**-8 TRUNCATED			2**-8 TRUNCATED			Z**-8 IRUNCALED		2**-8 TRUNCATED	
PC2.1 84.107	; APP ; + 1/8		predict + 2**-7*	- 16b TC - +2048 -2048	q		SDQ) * SGN	2**-8 1					1			2 **-8	1
			order (k-1)	Bu SDQn	ď		SGN.	; Q14 ; B5 *	; Q29	10	. 014 . 84	; 929		. 630		; Q14	
32010 FAMILY MACRO ASSEMBLER	APP ONE,5 APP	ADAPTIVE PREDICTOR	# # # # # # # # # # # # # # # # # # #		900S	TEMP1	TEMP1, 15	B6.1	TEMP1 B5,15	TEMP1, 13 SDQ SDQ4	85,1 84,8	84,15 ; TEMP1,15	8003 84.1	83,8 TEMP1 83,15	TEMP1,11	SDQ2 B3,1	TEMP1 82,15 TEMP1,15
Y MACRO	LAC ADD SACL	PTIVE	EQU pute co for for for for for for for for for for	NOTATION	7	SACH	Seg £	SACH	SACH	SUB LTD	L ACH	SUB	SACH	SACH	SUB HPY	SACH	SACH
FAMIL	ADD18	ADA :	APRED *; com *; Bi (· <i></i>	GETB6			GETBS			GETB4			GE 183		GF TB2	<u> </u>
32010	2005 054C 5005		0386		6A5A		1F21 6054		5821 2F0E		590E 280D					6856 590C	5821 2F0B 1F21
⊢	6 0383 7 0384 8 0385 9	0-264		1 W 4 TV 10 L	8 9 0 0386						5 03C5			3 03CD		17 0301 18 0302	
CCITT	D0336 D0337 D0338	00340 00341 00342 00343 00344	00345 00346 00347 00348 00348 00350	00353 00354 00355 00355 00356	D0358	00362	D0364	00367 00368	D0369 D0370	D0371 D0372 D0373	00374 00375	D0378 D0378	00380	00382	00386	00387	D0390 D0391 D0392
EMBLER PC2.1 84.107 16:36:03 03-20-85 PAGE 0033		OUTPUT: LONG TERH AVERAGE DML NOTATION: DML 14b unsigned (Q11) F1 7b unsigned (Q4)	FILTB LAC F1.15 ; F1/12B (Q26) ADD DML.15 ; F1/12B (Q26) SUB DML.8 ; DML/12B (Q26) SACH DML.1	Compute mag of diff of short and long term functions of quantizer output sequence and perform threshold compute speed control parameter—low-pass result.	APP(k) = (1-2**-4)*APP(k-1) + 2**-3 , if Y < 3 or if ;OMS-DML; > 2**-3 * DML else	APP(K) = (1-2**-4)*APP(K-1)	SHORT TERM AVERAGE DMS LONG TERM AVERAGE DML	1-1	OUTPUT: UNLIMITED SPEED CONTROL APP	APP 10b unsigned (Q8) Y 13b unsigned (Q9) DMS 12b unsigned (Q9)	14b unsigned	p APP (Q24)	; APP/16 ; (1-2**-4)*APP	THREE,9 ; 3 (Q9) ADD18	DML,13 ; DML/8 (Q27) TEMP3 ; DML/8 (Q11)	; DMS-DML	TEMP3 : ¡DMS-DML!-DML/8 APRED
ACRO AS	NPUT: L	OUTPUT: L	* LOOD	mag or zer out	: :	- 0	INPUT: S	⊃	TPUT: U	NOTATION:	1	¥ ·					, -
32010 FAMILY MACRO ASSEMBLER	 R	LO Z	FILTB LAC SUB SACH SACH	Compute ; compari ; compari ; result.	*; APP()	APP()	<u>z</u>			Š.		FILTC ZAL	SACH LAC	SU.	L A	SUB	BL:
32010			03A0 2F68 03A1 0F08 03A2 1808 03A3 5908									03A4 6505	03A5 1CU5 03A6 5805 03A7 2009	03A8 1970 03A9 FA00	03AB 2D08	03AD 2207 03AE 1008	0380 1023 0381 FA00 0381 FA00

000284 V 000

CCITT

A1(K) = (1-2**-8)*A1(K-1) + (3*2**-8)*SGN[p(K)]*SGN[p(K-1)]	NOTATION: A1 16b TC (Q14) PKn +512 if SON[p(k)] = 1	1-= [(X)dN[b(X)]		1EMP2 A1,12 TEMP2,12		APAC ; +3*SGN[p(k-1)*SGN[p(k)] SACH A1,4 ; store as Q14	PAC ; save sign	**************************************	A2(k) = (1-2**-7)*A2(k-1) + (2**-7)*(5GN(p(k))*SGN[(p(k-2)] - f(A1(k-1))*SGN[p(k)]*SGN[p(k-1)]}	NOTATION: A2 16b TC (Q14) F(),TEMP3 16b TC (Q14)	PKn +512 if SGN[p(k)] = -512 if SGN[p(k)] =	GETAZ BGEZ SUBF : if sign +> subtract F	ZAC ; else negate F and subtract SUB TEMP3 SACL TEMP3		SACH SUM4 MPY PK2 ; SGN[p(k-2)]*SGN[p(k)] PAC PAC		,4 ; Q14 ; leak factor	TEMP3	!
•••	* * * *		2811	FC 2C11 FD 1C22	03FE 6D50 03FF 7F8F	0400 7F8F 0401 7F8F 0402 5C11	0403 7FBE	• •		•••	•••	0404 FD00	0405 0406 0407 0408	0409 2912	040B	040D 040E	040F 5C23 0410 2012 0411 101E	0412	41.5
D0446 D0447 D0448	D0449 D0450 D0451	00452 00453 00454		D0457 03 D0458 03 D0459 03	D0460 0 D0461 0	D0462 (D0463 (D0464 (00465 00466	D0467 D0468	00469 00470 00471 00472	00473 00474 00475	00476	00479 00480 00481	D0482 D0483 D0484	D0485 D0486	00488	D0490		D0495	
SDQ SDQ1 : Q14	SACH TEMPI = 81 • 2 • • -8 TRUNCATED D0449 SACH TEMPI = 00450 D0450 EAC B1,15 : 929	S 500	Bi,i ; Qi4 00455 00455 00455 00456	coefficients of 2nd order predictor, 00459 sign of sum of SEZ and DO 00459	K0 = 512 00461	= -512 D0462 00463 ************************************	D0465 PK1 ; PK1==>PK2 D0466	PK0 ; PK0==>PK1 SE2	ADD 00,1 SACH TEMPI ; FFFF or 0000 LAC TEMPI,10 ; FC00 or 0000 ADO 0NE,9 ; FE00 or 0200 ; -512 or +512 00472			= 2*Ai (f Ai; <= 1/2 00479 = SGN(Ai) (f Ai; > 1/2 00481 00481	D0482 LAC A1,1 ; 2*A1 D0483 SACL TEMP3 : 00484	GETF2 D0485	UNE,14 ; 15 AI; < 1/2 U0487 GETAI ; 15 AI; < 1/2 U0488 GETAI D0488	K16382 ; approx 1 00490 DONEF ; DO491	00492 00493 1 15 A < 1/2 00493	GETA1 00495	LAC M16382 ; approx -1 D0497

D00393 D00394 D00395 D00396 D00400 D0040 D00400 D0040 D00400 D004

D0434 D0435

D0436 D0437 D0438 D0439 D0440

D0441 D0442 D0443 D0444 D0445

20-85 38																																					
16:36:03 03-20-85 PAGE 0038	= 0-3				= 2-3									p = 4-7		p = 4-5									7-9 = 0											exp = 8-15	
PC2.1 84.107	04T07 THREE,1; TEMP1-2 exp = 0-3 0703	. exp = 0-1			: TEMP1-4 exp = 2-3		exp=2			•	exp=3			THREE,3; TEMP1-32 exp = 4-7		; TEMP1-16 exp		exp=4				c=dxa			. TEMP1-64 AXD = 6-7		!	exb=p								K960,1 ; TEMP1-2048 exp = 8-15	
32010 FAMILY MACRO ASSEMBLER	D4TO7 THREE,1 ;	NAMAN.		ONE 9		EXX3	SRMAN,7 ; exp=2	SRMAN	SRFXP		SRMAN, 6 ; exp=3	3	SKEXP	THREE,3;		ONE,4	EVY	SRMAN,5 ; exp=4	SKMAN	SREXP		SRMAN, 4 : exp=5	2	SREXP		Exx7		COMAN : exped	9	SREXP	NAMOR	SRMAN	SRMAN, 3	JKMAN 7	SREXP	K960,1	DCTOF
Y MACRO	BGEZ ADD AGE7	1 V 1	SACL	SACL	RET	BGEZ	LAC	SACL	SACK SACK	RET	SACL	Y C	SAC PFT	SUB BCE 7		ADD PCF 7	7200	LAC	SACL	SACL	RET	S C	LACK	SACL		BGEZ		ייש	Y X	SACL	RET	SACH	C V	LACK LACK	SACL	SUB	
D FAMIL	D0T03	DOTO	EXX01		D2T03		EXX2				EXX3			D4T07		D4T05		EXX4				EXXS			TOT 30			EXXP			7	, ,				DBTOF	
3201	0433 FD00 0434 044A 0435 017D			043A 284C 043B 5052			0440 2752		0442 7E02	0444 7F8D	0445 2652 0446 5052		0448 501C	044A 137D	044C 045A	044D 044C		0450 2552	0451 5052	1453 501C	0454 7F8D	0455 2452	0457 7E05	0458 501C	0459 7F8D	045B FD00	045C :0462	0450 2352	045F 7E06	0460 501C	0461 7F8D	0463 5852	0464 2352	0465 5052 0466 7E07	3467 501C	0468 7F8D 0469 1177	046A FD00
CC111	00556 0 0 00557 0	0 94400	00260	00561	00563	00565	0 99500	00567	00568	00220	D0571 C		00574	00576	1,500	00578	6/500	00580	00581	00583	D0584	00585	00587	00588	00589	00591		00592	00593	00595	00596		66500	D0600 D0601	D0602	D0603 D0604	00605
16:36:03 03-20-85 PAGE 0037	; ivalue; must be < .75	; .75 (Q14)	mplement if negative			4 (Q14)	1-2**-4-A2P (Q14)		; save sign to make +/- LIMIT		LIMIT	ABS value of LIMIT	mplement if negative	; Q14	在在中央市场的中央市场的中央市场的中央市场的中央市场的的时间,并且是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个		- {	SE	;	SR	gn extended]	SE 15b TC (Q0) [sign extended]		中部的现在分词 医克拉特氏 计记录记录器 计记录器 计记录器 计记录器 计记录器 计记录器 计记录器 计记	to floating			EXP	OKHAN		本。 ************************************	: compute reconstructed signal		convert to floating point notation		; binary search to get exponent	
PC2.1 84.107	t 'value	, 775	; 2's co	: 014	*-4 - A2(K)]	; 1-2**-4	: 1-2**-		; save ;		; A1 <= LIMIT	; ABS va	; 1's co	1 914	******	GNAL	FFFRENCE STO	ATE		D SIGNAL SR	TC (Q0) [sf	TC (Q0) [si	10 (40)	********	comp number			4b exponent left in SREXP	ars left in rved in SP		*********	moute recons		nvert to flo		nary search	
32010 FAMILY MACRO ASSEMBLER P	THREE,12 LIMD	THREE, 12	TEMP1	A 2	*; limit Al(k) to +/- [1-2**-4 - A2(k)]	M15,10	A2 TEMP1	A1	TEMP4	TEMP1	FLTSR	TEMP 1	TEMP4	A1	*********	COMPUTE RECONSTRUCTED SIGNAL	OHANTIZED DI	SIGNAL ESTIMATE		OUTPUT: RECONSTRUCTED SIGNAL		SE 15b	3K == 16L	**********	; FLOAT SR convert 2's comp number to floating	accumulator		OUTPUT:4b exponent left in SREXP	ob mantissa*8 left in) i	**********			SR :	•	ONE,7 ; bi	
MACRO	ABS SUB BLEZ	LAC	SUB	SACL	t A1(k)	LAC	SACL	LAC	SACH	SUB	BLEZ	LAC	XOR BIR	SACL	****	UTE REC	TUQN!			OUTPUT:	NOTATION:			* * * * * * *	T SR	INPUT:		OUTPUT:			* * * * * * *	LAC	ADD	SACL	SACL	SUB BGEZ	
D FAMILY	L I #C			DONEC.	ie i	LIMO						AILIM			:	COMP	: · :		•	<u>.</u> .				*****	FLOA	•			· •		****	FLTSR					
32010	7F88 1C7D FB00	2C7D	1021	5012		2A6D	5021	2011	5824	1021	FB00	2021	7824	5011																		2010	0003	5013 7F88	5052	174C FD00	0469

00502 0415 1778 00502 0416 1770 00504 0416 1770 00505 0410 2770 00505 0410 2770 00505 0410 2770 00505 0410 2770 00501 0416 1021 00511 0416 1021 00512 0410 2460 00513 0416 1021 00513 0416 1021 00514 0416 5021 00515 0424 600 00515 0424 600 00524 0424 600 00524 0424 600 00524 0424 600 00525 0424 0024 00526 0424 00527 0424 00528 0003 00538 0003 00539 0003 00530 00030 00540 0424 0003 00540 0424 0003 00550 0424 0428 0003 00540 0424 0428 0003 00550 0424 0428 0003 00550 0424 0428 0003 00550 0424 0428 0003 00550 0424 0428 0003 00550 0424 0428 0003 00550 0424 0428 0003 00550 0426 0428 0003 00550 0426 0428 0003 00550 0426 0428 0003

CCITT

046B 0491

; TEMP1-8 -- exp = 0-7

M15,3

ADD

D0T07

16:36:03 03-20-85 PAGE 0040	xp=14-15																																			
PC2.1 84.107	; TEMP1-16384 exp=14-15	; exp=14			: exp=15																															
32010 FAMILY MACRO ASSEMBLER	ONE , 13 EXX 15	SRMAN,8 SRMAN SRMAN,3	SRMAN 14	SREXP	SRMAN. 7	SRMAN	SRMAN	15	SKEAF																											
r MACRO	SUB	SACH	SACL	SACL	RE T LAC	SACH	SACL	LACK	RET																											
) FAMIL	DETOF	EXX14			EXX 15																															
32010		2852 5852 2352																																		
E	58 04A5 59 04A6		53 04AB				04B1		73 04B5																											
CC111	D0658 D0659	D0660 D0661 D0662	00663	00665	00666	00068	00670	00671	00673																											
PC2.1 84.107 16:36:03 03-20-85 PAGE 0039	THREE,9 ; TEMP1-512 exp = 8-11 DATOB	; TEMP1-256 exp = 8-9	; exp=8				* exp=9					; TEMP1-1024 exp=10-11		SRMAN, 12; exp=10					SRMAN, 11 ; exp=11					THREE,11 ; TEMP1-8192 exp=12-15 DETOF	. TEMP1-4096 600-13		: exp=12					: exp=13				
MBLER	6. 9 ; OB		4	SRMAN, 3	Z	σ×	SRMAN, 13 ;	Z :	SKMAN.3		σ		=	AN, 12 ;	AN.a	SRMAN	0	Ļ	AN	SRMAN	N	9		EE,11; OF		EXX13	_		SRMAN, 3	z	œ.	σ	SRMAN	Z	0	L K
MACRO ASSEMBLER	THRE	ONE,8 EXX9	SRIK	SRMAN,	S C	SREXP	SRM	SRMAN	SRMAN,	6	SREXP	ONE,9	X	SRM	S S	SRM	10 SDF VD	JAC J	SRA	SRMAN	SRMAN	11) Y	DET	, and	EX	SRM	SRM	S. C.	. S. C.	SREXP	SRM	SEMAN	SRI	13	5
>	ADD BGEZ	ADD BGEZ	LAC	LAC	SACL	SACL	L KE	SACH	SACL	LACK	SACL	SUB	2300	LAC	LAC	SACL	LACK CACK	RET	LAC	SACH	SACL	LACK CACK	RET	SUB		BGEZ	LAC	SACH	LAC	A C L	SACL	LAC	SACH	SACL	LACK	RET
32010 FAMIL	рвтов	08109	EXX8				EXX9					DATOB		EXX10					EXX11					DCTOF	OCTO	3	EXX12					EXX13				
3201	. 097D FD00	084C 084C FD00	2652	2352	5052	501C	2052	5852	5052	7E09	501C	194C	0484	2022	2352	5052	7E0A	7F80	2B52	2352	5052	7608	7F80	187D FD00	04A5	FD00	2A52	5852	2352	2505 7F0C	501C	2952	5852	5052	7600	
		046F																																		04A4
CCITT	D0606 D0607	00608 00609	00610	00612	00613	00615	00616	00618	D0619	00621	00622	D0624	57900	00626	00628	00629	00630	00632	00633	D0634	96900	00637	00639	D0640 D0641	00642	00643	D0644	00645	00646	00647	00649	00651	00652	00654	00655	00657

E0039 E0039 E0039 E0030 E0030 E0031 E0032 E0033 E0033 E0033 E0034 E0034 E0034 E0034 E0035 E0034 E0035 E0034 E0035 E0035 E0036 E0036 E0039 E0		to floating		TEMPI	iginal number		tipliers				+ CANOCON	exporter c																			9			Q
E0033 E0039 E0040 E0041 E0042 E0042 E0043 E0044 E0045		t 2's comp number t		exponent left in a mantissa left in	gn preserved in or		dress of shift muli				400000	nary search to get	1 X		e cox	÷ i	И		0=d			D=1		MPI-4 exp = 2-3		p=2		p=3					į	MP1-32 exp = 5-
E0037 E0038 E0039 E0040 E0041 E0042 E0042 E0044 E0044 E0045 E0046 E0046 E0046 E0046 E0047 E0047 E0047 E0047 E0047 E0048 E0048 E0048 E0049 E0044 E0049	1	onver and	} ::	4p	18		e :				1	ō 	4		μ.		ě		ě	0		ě.	_	# #		ŵ	2	ê	m					, "
E0037 E0038 E0039 E0040 E0041 E0042 E0042 E0044 E0044 E0045 E0046 E0046 E0046 E0046 E0047 E0047 E0047 E0047 E0047 E0048 E0048 E0048 E0049 E0044 E0049		SOUTINE CO	OUTPU				42		TEMP1		TEMPI	E7T00	y Y	E4T06	THRFF. 1	E2T03	TEMP1	EI	ONE , 5	FLTSFT+		TEMP1,5	FLTSFT+	ONE, 1	E	TEMP1,4	FLTSFT+	TEMP1,3	TEMP! FLTSFT+		ONE,3 E5T06	TEMBIO	TEMP1	ONE 4
E0037 E0038 E0039 E0040 E0041 E0042 E0042 E0044 E0044 E0045 E0046 E0046 E0046 E0046 E0047 E0047 E0047 E0047 E0047 E0048 E0048 E0048 E0049 E0044 E0049		T SUB					EQU		SACH	ABS	SACL	BGEZ	9	BGEZ	ADD.	BGEZ	LAC	BNZ	LAC	SACL	RET	LAC SACL	LACK	SUB	BGEZ	LAC	LACK ACK	LAC -	SACL LACK	RET	SUB BGEZ	4	SACL	SET SE
E0033 E0034 E0040		FLOA					TSFT										101		_					T03		•		_			1T06			3.TO6
	•		•		•					- œ	(۰ ۵		∢			00 (0.5		- O		- 0			œ :	<u>.</u>	יים ב
							005			7 202 0 7F8	1 502		4 051	6 FD0	7 050	9 500	B 202	O FEO	E 254	F 502	1 7FB	.2 252 .3 502	4 7E2	6 11 4	7 FD0	9 242	B 7E2	C 7F8	E 502	00 7FB	11 134 12 FD0	33 050	5 502	75 7FE
	0	മെട	o –	2 6	41	n 9	۲,	n o	0 040	1 04U 2 04E	3 04E	4 04E 5 04E	04E	7 04E			0 04E	- 04E			5 04F	6 04F	8 045	0.04	1 046	2 04F	4 04	5 04F	7 04F	9 050	050 01	050	33 050	20 20 20 20 20 20 20 20 20 20 20 20 20 2
to do left shifts for SEZ/SE celculations Mazoral make positive before mask		E003	E004	004	4.	4 4	4,				ഥ	വവ	u	വം		חור		vo .		φυ	· w	99	9	2 5		5	2 2		-	_	w w			
U mze mze mze mze mze mze mze				ыü	Ü	EGG	E00	E00.	E00	EOO	EOO	E00		E00	100	EOO	E000	E00	E00	E00	EOO	EOC	9	EOC	E00	EOG		EOC	E00	EOG	E00		EOO	E 0 0 0
		code to do left shifts for SEZ/SE calculations	; make positive before mask	M32767 ; keep lower 15 bits SUM1 : save result	CHK1 ; return	ABS	AND M32767	SURC		ABS M32767	SURS	CHK3	- V-CCC 2	732 /6/ SUM4	C美4		732767 SUMS	CHK5	ABS	#32767	CIFC	ABS	AND M32767	SUM/	U Q q	AND M32767	SUNS CHK21	E00	E003	EOO	E00			0003
17 F 8 8 1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		; *; code to do left shifts for SEZ/SE calculations *:	RSI ABS ; make positive before mask	AND M32767 ; keep lower 15 bits SACL SUM! : save result	B CHKI ; return	RS2 ABS	AND M32767	SACL SUM2 B CHK2		RS3 ABS M32767	SACL SUM3	B CHK3	RS4 ABS	SACL SUM4	B CHK4	RSS ABS	ANU FIZZ'6/ SACL SUMS	B CHKS	RS6 ABS	AND M32767 SACI SIME	B CHK6	RS11 ABS	AND M32767	SACL SUM/ B CHK11	DC21 ABC	AND M32767	SACL SUMB B CHK21		E00	E 00	003			C0003

	32010 FAMIL	>	MACRO_ASSEMBLER	PC2.1 84.107 16:36:03 03-20-85 PAGE 0043	CC1TT 3201	32010 FAMILY MACRO ASSEMBLER	ASSEMBLER PC2.1 84.107	07 16:36:03 03-20-85 PAGE 0044
0508 0508	ES	LAC	TEMP1,1 ; exp=5	exp=5	0006 F0001	**************************************	INII.ASM ************************************	COFT INTIACES SYSTEM INTIALIZATION
0200		LACK	FLTSFT+5		F0003	***************************************		, 化二十二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二
050F	E6	- X	FLTSFT+6	; exp=6		PTCONS EQU	54	
E0095 0511 1077 E0095 0512 FD00	E7T0D	SUB BGEZ	K960 ; EBTOD	; TEMPI-1024 exp = 7-13	F0007 0542 7F81 F0008 0543 6E00	RESET DINT) Disc	; Disable interrupts ; Initialize data page
E0096 0514 0870 E0097 0515 F000	E7TOA	ADD BGEZ	THREE,8 ; TEMP1-256 E9TOA	TEMPI-256 exp = 7-10	0544	SETPAC LARK LARP ZAC	0,53	7 200
E0098 0517 074C E0099 0518 FD00	£7T08	ADD BGEZ	ONE,7 ;	; TEMPi-128 exp = 7-8	F0013 0547 5080 F0014 0548 F400 0549 0547	ZRAMA	",0,0 ZRAMA	
051A	E7	LAC	TEMP1,15 ; exp=7	exp=7	F0015	:	-	
E0102 0516 5821 E0102 051C 7E31 E0103 0510 7E80		LACK PF1	FLTSFT+7		F0017 0548 /E01 F0017 0548 504C	SACL	ONE	
051E	E8	¥	TEMP1,14 ; exp=8	exp=8	F0019 054D 859B			
0520		LACK	FLTSFT+8		F0021 054F 7136	LARK	1,PTCONS : RAM ADDR	ADDR
0521 0522	E9TOA	RET SUB	00	; TEMP1-512 exp = 9-10	F0022 0550 7049 F0023 0551 6881	NXCONS	0,NOCONS-1	
0523		BGEZ	E10		F0024 0552 67A0 F0025 0553 004C	TBLR ADD	*+.0	
E0110 0525 2021	E3	SACH	TEMP1,13 ; exp=9	e=d×a	F0026 0554 F400 0555 0551	BANZ	NXCONS	
0527		¥ č	FLTSFT+9		F0027	<u>.</u>	TO I DE	
0529	E10	LAC	TEMP1,12; exp=10	exp=10	0557	L'AC	TEMP1	
052A 052B		LACK LACK	FLTSFT+10		0559		ALAW	
052C	COTAR	7.ET	THEFF	. TEMP1-4096 600-11-13	F0031 055A FF00	MULAW BZ	MULAWX	
052E 052F	3	BGEZ	EDTOE		055C 055D	60	MULAWR	
E0120 0530 084C E0121 0531 FD00	EBTOC	ADD BGEZ	ONE, 11 ;	ONE,11 ; TEMP1-2048 exp=11-12 E12	F0033 055E 7974 F0034 055F FF00 0560 004E	ALAW AND BZ	M32767 ALAWX	
0533	E11	CAC CAC	TEMP1,11 ; exp=11	exp=11		60	ALAWR	
0535		LACK I	FLTSFT+11					
0537	E12	LAC LAC	TEMP1,10 ; exp=12	exp=12				
E0127 0538 5821 E0128 0539 7E36		L ACH	TEMP1 FLTSFT+12					
0538 053C	EDTOE	SUB BGEZ	ONE, 12 ; '	; TEMPi-8192 exp=0				
E0132 053E 2921 E0133 053F 5821	E13	SACH	TEMP1,9 ; TEMP1	: exp=13				
0540			FLTSFT+13					

COPY

ROMLOC BSS

00007 60001 600003 600003 600004 60000 600

DATA

DATA

00000 00001 00002 00008 00010 0002 00080 00080 00080 00080 00080 00080 00080 00080 00080 00000 00000 00000 00000

60007 655 60008 0553 60009 0554 60010 0556 60010 0556 60011 0556 60012 0556 60012 0556 60013 0556 60013 0556 60013 0556 60013 0556 60013 0556 60013 0556 60013 0556 60013 0556

BIAS YU PKO PKO PKO PKO PKO PKO SRIMAN SSRIMAN SSRQ1 SSRQ3 SSRQ3 SSRQ3 SSRQ3 SSRQ3 SSRQ3 SSRQ3 SSRQ4 SSRQ3 SSRQ4 SSRQ3 SSRQ4 S K32768 7.1 255 32768 128 256 512 1024 2048 4096 8192 16384 048 8855 00474 05A7 05A8 05A9 05AB 05AP 05AF 05BA 05B1 05B2 05B3 05B4 05B8 05B8 05B8 05B8 05B8 05B8 60077 0598 (60077 0598 (60077 0598 (60077 0598 (60078 0598 0598 (60078 0598 0598 (60078 0598 0598 (60078 0598 0598 0598 0598 (60078 0598 0598 0598 059 05A5 05A6 30110

TIZING TABLE

65401

*; INVERSE QUANT IQTAB BSS O DATA E DATA E DATA I

FF79

G0040 G0041 G0042 G0043

0044 000A5 00E8 011D 014C 0179

G0044 (G0045 (G0047 (G0047 (G0047 (G0047 (G0047 (G0047 (G0057 (G0

0583 F 0584 (0585 (0586 (0587 (0589 (0589 (

DATA DATA DATA TABLE BSS DATA DATA

MTABLE 3

> 0004 001B 0032 FFF4

> > G0055 G0056

0588 0588 0580 0580

65528 65528 65528 65528 65528 65528 65528

DATA DATA DATA DATA DATA DATA DATA

057E FFF8 057F FFF8 0580 FFF8 0581 FFF8 0582 FFF8

G0036 057E F G0037 057F F G0038 0580 F G0039 0581 F

65528

DATA

0573 FE00 0574 FF00 0575 FF00 0576 FFC0 0577 FFE0 0578 FFF8 0576 FFF8 0577 FFF8

G0021 G0022 G0023 G0025 G0026 G0027 G0029 G0031 G0031 G0033 G0033

DATA DATA DATA

DATA DATA

DATA

G0111 G0112 G0113

PC2.1 84.107 16:36:03 03-20-85 PAGE 0048	**********************************	医多种性 医医性性 医医性性 医乳蛋白 医医皮肤 医医皮肤 医多种 医多种 医多种 医多种				; spare		; 32Kb output		: 8-level version of 1			; signal estimate		; partial signal estimate			; unlimited speed control parm		. limited speed control parm			short term average of F		: long term average of F			; quantizer scale factor		; 6th order predictor coefficient		; 6th order predictor coefficient		; 6th order predictor coefficient		; 6th order predictor coefficient		; 6th order predictor coefficient		; 6th order predictor coefficient	; quantized diff signal	
32010 FAMILY MACRO ASSEMBLER	**************************************	********	0 0	•	100 # 000	-	:fon # 001	0	* *************************************	300 # UOI.	,	RAM Location # 003	0	******	ŧ		10n # 005	0		900 # UO1	•	RAM Location # 007	0	800 * 001	DATA 0		100 # 000	0	ion # 010	. 0	:1on # 011	0	ton # 012		RAM Location # 013		ton # 014	0	tion # 015	0	tion # 016 0	
AMILY MACRO	RAM	***************	RAMLOC BSS	200	RAM Location #	DATA	RAM Location #	DATA		NAM LOCAL		RAM Locat	DATA	TOO THEOD			8 A	P DATA	2	NATA LOCATION #				PAM L			RAM Location	DATA	RAM Location	DATA	RAM Location	DATA	RAM Location	DATA	RAM Locat		RAM Location	DATA	RA	DATA	RAM Location DATA 0	
010 F/	::	•	Š	•	•	•	•						0 SE	::	O SEZ			0 APP		; ;			0 DMS	::	. <u>.</u>		* ;	≻ ; ∘	•	. 8	: :	0 B2	::	0 83	: :	10 B4		0 B5		98 . •		•
32			ın s	2	;	0000 0000		1 0000		0000			3 0000		0004 0000			0000 5000		0000 5000			0000 4		0000			0000 60		0000 V		0000 B000		0000 00		0000 0000)E 0000)F 0000	0010 0000	
E	12.23	33	54 05E5	99	75	000 89		1 0001	25	54 0002	55	9	57 0003	20 0	70 000	=	12	73 000	4 :	26	8 2	. 8	79 0007	9.5	22 0008	8	34	35 0009	37	38 000A	£ 0	91 000	3 2	94 000C	£ %	000 76	8 6 8 8	30 000E		03 000F	00 00 00 1	5
CC11T	G0151 G0152	601	200	9 9	G0157	00 00	88	G0161	80	3 6	8 9 9	601	00	9 8	9 6	.105	G0172	00	69	3 6	9 6	G0178	00	00180		G0183	G0184	8 8	G0187	05	G0189 G0190	8	G0192 G0193	G0194	38	G0197	G0198 G0199	60200	G0202	G0203	G0205 G0206 G0206	3
16:36:03 03-20-85 PAGE 0047																																										
4.107																	7																									
PC2.1 84.107	; DQ1MAN ; DQ2MAN	: DQ3MAN	DO4MAN	:K4576	;K16382	:M16382	.K49	SHIFT	;K63		INOTAB	;K544	;K5120	;H15	:K127	# MFFC0	; BIAS*2**	;M4095	spare	182/6/ 185500	.K56	\$K960	;K79	#X95	0.1.X.	1K2309	THREE	spare	00000													
ACRO ASSEMBLER	256 256	556	256			-16382	49	SHFT	63	- -	IOTAB	544	5120	15	127	-64	4224	4095	0	32/6/	26.56	096	79	95	000	2309	æ	0	971													
ì	DATA DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA ATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	DATA	ATAC	DATA	DATA	DATA	DATA	4	DATA	DATA	DATA	¥ .													
CCITT 32010 FAMILY	G0114 05C1 0100 G0115 05C2 0100	0503	0504	0506	0507	9259	05CA	05CB	0500	USC DSCF	05CF	0200	0501	0502	0503	0505	9050	0507	0508	0509	0508	0500	0500	050E	0.50	05E1	05E2	05E3	4360													

107 16:36:03 03-20-85 PAGE 0050				ole.	; temp storage of SRI*Al tap	; temp storage of SR2*A2 tap		; first location of shift table											
PC2.1 84.107	Q.	temp	temp	; Linear sample	emp storaç	emp storae	Y>>2	rst local											
32010 FAMILY MACRO ASSEMBLER F	TEMP3 DATA 0 ; temp	*; RAM Location # 036 TEMP4 DATA 0 ; te	*; RAM Location # 037 SUM3 DATA 0 ; te	; RAM Location # 038 SAMPLE DATA 0 ; Li	039	040	••	# 042	*	<pre>"; RAM Location # 044 "; DATA 0 ";</pre>	*	*; RAM Location # 046 *; DATA 0 *;	"; KAM LOCATION # U4/ DATA 0 *;	*	*		*; RAM Location # 051 DATA 0	pAM Location # 052 #; RAM Location # 053	*; * RAM Location # 054
	G0265 0023 0000 G0266	G0267 G0268 0024 0000	G0270 G0271 0025 0000	G0273 G0274 0026 0000 G0275	76 77 0027 0000 8	G0279 G0280 0028 0000 G0281	32 · 33 0029 0000 34	G0285 G0286 002A 0000 G0287	G0288 G0289 002B 0000 G0290	12 002C 0000	15 002D 0000	7 8 002E 0000	1 002F 0000	G0303 G0304 0030 0000 G0305	6 7 0031 0000 8	G0309 G0310 0032 0000 G0311	2 3 0033 0000 4	G0316 0034 0000 G0317 G0318 0035 0000	0
PC2.1 84.107 16:36:03 03-20-85 CCITT PAGE 0049	G0265 ; coefficients of 2nd order predictor G0266	G0267 G0268 G0268 G0268		; reconstructed signal frame k G0273 G0274 : reconstructed signal frame k G0774 G0774		GG279 GG280 exponent of DQI ·	pd5	003	G0288 G0289 of DQ4 G0290	G0291 G0292 G0293 of DQ5 G0293	G0294 G0295 scrach variable G0296	of SR	SRI				G0312 G0313 G0313 G0314		
32010 FAMILY MACRO ASSEMBLER PC2	*; RAM Location # 017 Al DATA 0 ; coef	*; RAM Location # 018 A2 DATA 0 : coef	RAM Location # 019	RAM Location # 020	RAM Location # 021 XP_DATA 0	;; RAM Location # 022 DQ1EXP DATA 0 ; expo	*; *; RAM Location # 023 DQ2EXP DATA 0 ; exp of	*; *; RAM Location # 024 DQ3EXP DATA 0 ; exp of	*; *; RAM Location # 025 DQ4EXP DATA 0 ; exp	26 1 exp	*; *; RAM Location # 027 SCRACH DATA 0 ; scra	28 : exp	; *; RAM Location # 029 SRIEXP DATA 0 ; exp of	*; *; RAM Location # 030 SUM4 DATA 0 ; temp	"; "; RAM Location # 031 SUM5 DATA 0 ; temp	*; *; RAM Location # 032 SUM6 DATA 0 ; temp	; *; RAM Location # 033 TEMP! DATA 0 ; temp	*; RAM Location # 034 SUM! BSS 0 ; temp TEMP2 DATA 0 ; temp	*; RAM Location # 035 SUM2 BSS 0 ; temp
CC1TT 3201	G0208 G0209 0011 0000	G0210 G0211 G0212 0012 0000		00 4100	0015	G0223 G0224 G0224 0016 0000	G0225 G0226 G0227 0017 0000	G0228 G0229 G0230 0018 0000	G0233 G0233 G0233 0019 0000	001A 0000	0018 0000	001C 0000	G0244 G0245 001D 0000	G0246 G0247 G0248 001E 0000	G0249 G0250 G0251 001F 0000	G0252 G0253 G0254 0020 0000	G0255 G0256 G0257 0021 0000	G0259 G0260 0022 G0261 0022 0000 G0262	G0263 G0264 0023

32010 FAMILY MACRO ASSEMBLER PC2.1 84.107 16:36:03 03-20-85 PAGE 0052	DATA 0 ; fast quant scale factor (hi word)	RAM Location # 074 DATA 0 : slow quant scale factor (lo word)	*; RAM Location # 075 MINUS DATA 0 ; -1	RAM Location # 076 DATA 0 : 1	RAM Location # 077 S DATA 0 : constant for mulaw conversions	RAM Location # 078 DATA 0 : fast quant scale factor	RAM Location # 079 : sign of p(k)	RAM Location # 080 DATA 0 ; sign of p(k-1)	RAM Location # 081 DATA 0 : sign of p(k-2)	*; RAM Location # 082 SRMAN DATA 0 ; mantissa of SR	:: RAM Location # 083 SRIMAN DATA 0 ; mantissa of SRI	RAM Location # 084 } DATA 0 ; sign DQ(k)	Ram Location # 085 } DATA 0 ; sign DQ(K-1)	RAM Location # 086 12 DATA 0 ; sign DQ(K-2)	*; RAM Location # 087 Spq3 DATA 0 ; sign DQ(K-3)	RAM Location # 088 34 DATA 0 ; sign DQ(K-4)	*: RAM Location # 089 \$2005 DATA 0 ; sign DQ(k-5)	*; RAM Location # 090 Spq6 DATA 0 ; sign DQ(k-6)	•: RAM Location # 091 •: Mantissa of DQ •: Mantissa of DQ	RAM Location # 092
2010 FA)0 YLH	 			*; *; R 00 BIAS	 			00 PK2			SDG .	00 SDQ1	00 SDQ2		00 SDQ4		S 0000		
32	0000 6700	004A 0000	004B 0000	004C 0000	004D 0000	004E 0000	004F 0000	0020 0000	0001 0000	0052 0000	0002 0000	0054 0000	0002 0000	G0415 G0417 G0418 0056 0000	0002 0000	00028 0000	0000 6500	005A 00	G0432 G0432 G0433 005B 0000 G0434	
CC1TT			G0383 G0384 G0385				G0395 G0396 G0397	G0399 G0400 0050	G0403 G0403 G0403 G0403	G0404 G0405 G0406 0052		G0410 G0411 G0412 0054	G0415 G0415 G0415 G0415	G0418 G0418		G0423 G0424 G0424			G0432 G0432 G0433	G0435
PC2.1 84.107 16:36:03 03-20-85																	; last loc of table (42-70)		; sign bit	
MACRO ASSEMBLER	0	n # 055 0	n # 056	n # 057 0	n # 058 0	4 059 0 # 0	n # 060 0	n # 061 0	n # 062 0	n # 063	n # 064	o # 065	990 # 00	0 # 067	m 068	690 # 00	070 # nc	nc # 071	o # 072	on # 073
32010 FAMILY MACRO AS	DATA	*; *; RAM Location DATA 0	*; *; RAM Location EIGHT DATA 0	¥	*; RAM Location DATA 0	*; RAM Location DATA 0	*; RAM Location DATA 0	*; *; RAM Location DATA 0	*; *; RAM Location DATA 0	*; *; RAM Location DATA 0	*; RAM Location DATA 0	*; RAM Location DATA 0	*; *; RAM Location DATA 0	*; *; RAM Location DATA 0	*; *; RAM Location DATA 0	*; *; RAM Location DATA 0	*; *; RAM Location DATA 0	*; *; RAM Location M255 DATA 0	*; *; RAM Location # K32768 DATA 0	"; RAM Location
32010	0000 9600	0037 0000	0000 8500		003A 0000	0008 0000	003C 0000	0000 0800	003E 0000	0000		0041 0000	0042 0000	0043 0000	0044 0000	0045 0000	0046 0000	0047 0000	0048 0000	
CC177	60322 00	G0323 G0324 G0325 00	G0326 G0327 G0328 OC	G0329 G0330 G0331	G0332 G0333 G0334 O0	G0335 G0336 G0337 O0	G0338 G0339 G0340 00	G0341 G0342 G0343 00	G0344 G0345 G0346 00	G0347 G0348	G0350 G0351 G0352 00	G0353 G0354 G0355 0t	G0356 G0357 G0358 00	G0359 · G0360 G0361 0	G0362 G0363 G0364 0	G0365 G0366 G0367 0	G0368 G0369 G0370 0	G0371 G0372 G0373 0	G0374 G0375 G0376	G0377 G0378

PC2.1 84.107 16:36:03 03-20-85 PAGE 0054	; 127	-64	; 33*128	; 4095	spare	; 32767	; >FF00	95 :	996 :	; constants used for quantizing table	. 3	; spare	; alaw mask							
MBLER		112	13	<u>-</u> -	115	911	117	8	611	120	121	122	123	124	125	126	127			
ASSEI	0	# 0	# 0 0	# 0 0	# uoi:	# 0 0		# 0 0	# 0 0	tion #	tion #	tion #	tion #							
MACRO	DATA	RAM Location :0 DATA 0	RAM Location SA DATA 0	Locat	RAM Location DATA 0	Locat	RAM Location 10 DATA 0	RAM Location DATA 0	RAM Location DATA 0	RAM Location DATA 0	RAM Location DATA 0	RAM Location DATA 0	RAM Location B DATA 0	RAM Location 19 DATA 0	RAM Location E DATA 0	RAM Location DATA 0	RAM Location 0 DATA 0			
AHILY	M127	FFCO DATA	RAM BIASA	*; RAM Location M4095 DATA 0	RA.	*; RAM Location M32767 DATA 0	*; RAM LOC KFF00 DATA	*; RAM K56	K960	*: RAH K79	.; RAP K95	*; K130	K138	*: RAI K2309	THREE		*; RAM LOCA MOOBO DATA	INGS		
32010 FAHILY MACRO ASSEMBLER	0000	0000	0000	0000	0000	* 0000	• X •	* X *	0000		0000 K	0000 X • • •	0000 * * *	* X *		0000	0000	NO WARNINGS		
e.	006F 00	00 00 00	00 1 1 00	0072 00	00 6700	0074 00	0075 00	00 92 00	00 77 00	0008 0000	0079 00	007A 00	0078 00	007C 00	0000 GT00	007E 0				
CCITT	G0493 0			G0500 G0501 G0502 0				G0513 G0514 0	G0516 G0516 G0517 0				G0528 G0528 G0529 G		G0534 G0535 G0535	G0537 G0538 G0538	G0540 G0541 G0542	NO ERRORS,		
R PC2.1 84.107 16:36:03 03-20-85 PAGE 0053	; mantissa of DQ1	; mantissa of DQ2	; mantissa of DQ3	; mentisse of DQ4	; mantissa of DQ5	; 4576	: +16382	; -16382	; 46	. 49	; SHIFT table address	t 63	; FI value	; WI value	; inverse quan table address	; 544	; 5120	1.15	; >FF80	
EMBLEI		# 093	# 094	\$60 #	960 #	4 097	860 #	660 #	# 100	# 101	# 102	# 103	# 104	# 105	# 106	# 107	# 108	# 109	# 110	*
MACRO ASSEMBLER	0	ation 0	ation 0	t íon	ation 0	t ion	at ion	ation 0	tion 0	t ion	t ion	at ion	Location # DATA 0	at ion	at fon	Location ATA 0	Location ATA 0	t ion	ation 0	Location # 111
	DATA	"; *; RAM LOC: DQ2MAN DATA	*; *; RAM LOC? DQ3MAN DATA	*; *; RAM LOCE DQ4MAN DATA	*; *; RAM LOCA DQSMAN DATA	₹"	AM LOCE	AM LOCE	RAM LOCE DATA	RAM LOCE DATA	RAM LOCE	RAM LOC	RAM LOCE DATA	RAM LOCE DATA	"; "; RAM LOCA INQTAB DATA	RAM LOCE		RAM LOCE DATA	ξ.	RAM Loc
32010 FAMILY	DQ 1 MAN	*; R/ DQ2MAN	*; R/ DQ3MAN	*; R/ DQ4MAN	*; *; R/ DQ5MAN	*; K4576	*; RAM K16382 D	"; "; RAM M16382 D	X 4 7.	* * X * * * 4 • 5 • 5	*; *; R/ SHIFT	 K63 R	è	è ::::::::::::::::::::::::::::::::::::	 INQTAE	*: *: K544	*; *; RAM K5120 C	E	KF 80.	œ.
32010	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	
	005C 0000	0050	005E	005F	0000 0900	0061	0062	6900	0064	0002 0000	0000 9900	0067	8900	6900	006A 0000	. 00eB	00ec	0900	006E	
CC111	0436	0439 0439 0439	0440	30443 30444 30445	30446 30447 30448	30449 30450 30451	G0452 G0453 G0454	30455 30456 30457	G0458 G0459 G0460	G0461 G0462 G0463	G0464 G0465 G0466	G0467 G0468 G0469	G0470 G0471 G0472	G0473 G0474 G0475	G0476 G0477 G0478	G0479 G0480 G0481	G0482 G0483 G0484	G0485 G0486 G0487	G0488 G0489 G0490	G0491 G0492

16:36:03 03-20-85 PAGE 0056																							B D0130								
PC2.1 84.107													5 00329 00332	10331		D0110 00111 D0416 D0548							D0095 D0126 D0127 D0128 D0130								
32010 FAMILY MACRO ASSEMBLER .UE DEFN REFERENCES	C0200	A0484	F0019	F0028		00558	D0556	71500	2 3 3 0 0	A0357 A0510	00607	D0605	D0293 D0294 D0295	A0369	90437				B0100 B0101	B0077 B0078	B0081 B0055		B0169 B0170 D0091 B0173 D0094 D0101	E0131		E0061	E0109	E0121		E0059	E0057 E0081
010 FAMIL DEFN	C0207	A0496 A0405	A0251 G0075	A0034 D0559	D0557	00564	00576	D0590	90900	A0032	D0624 D0642	00640	60182	A0376	00508	G0206	G0436	G022/ G0439	60230	G0233	G0445 G0236	G0448	G0221 G0433	E0062	E0058	E0066	E0114	E0126	E0072	E0076	E0080 E0088 E0088
321 VALUE	034A	0176 010B	007F 059B	0000	0435	0430	044D	045A 046F	046C	0000	0480	0491	0000	0106	0410	0000	0050	0020	0018	0019	005F	0900	0015 005B	04EE	0468	04F2	0529	0537	04F9	04FD	0501 0508 0508
CC1TT LABEL	C16T07	CLNUPA	CONS	CTL D0T01	D0T03 D0T07	02703	D4T07	D6T07 D8T09	DBTOB	DAC	DATOB DCTOD	DCTOF	DMC DMC	DO32KA	DONEC	200	DOIMAN	DOZMAN	DOSEXP	DQ4EXP	DQ4MAN DO5EXP	DOSMAN	DQEXP	E0 F0T01	E0103	E 1 0	E10	E12 F13	E2	E2 23	E4T06 E5 E5T06
Y MACRO ASSEMBLER PC2.1 84.107 16:36:03 03-20-85 REFERENCES	80252 B0270 D0431 D0456 D0458 D0464 D0515 D0523	80230 80245 D0486 D0493 D0496 D0508 D0513 A0056 A0126	02500	A0562	B0321 B0327 B0361	F0030 A0512 F0035	A0173 F0034	A0557	B03	0335	0099 AUI 0167 B01	0144 B01 0121 B01	0098 B01	80068 D0361 D0363 D0367 80068 D0361 D0363 D0367 80089 A0253 A0264 A0272 A0282 A0290 A0302 A0310	0320 A0334	0180 A01		C0074	20072	C0092	C0070		C0112 A0101 A0170 A0210 A0364		E0007	E0031	0035 0015	E0019	E0027	20103	C0186
MACRO ASSEMBLER PC2.1 84.107 REFERENCES		G0212 80230 80245 D0486 D0493 D0496 D0508 D0513 A0031 A0056 A0126		•	B0321	L 4	. ∢	∢	A0564 B0322 B0325 D0323	00335	A0099 A01 B0167 B01	B0144 B01 B0121 B01	B0098 B01	80053 80068 00361 00363 80367 40082 40089 40253 40264 40772 40282 40290 40302 40310	A0320 A0334	A0180	C0073	O		0	O	•	υ ∢	C	ш	ш	E0035 E0015	шш	ıwc	2	C0193 C0184 C0201
EMBLER PC2.1 84.107	G0209 D0520	80230 A0056	00085	A0566 A	00104 G0176 B0321	F0033 F	A0172 A	D0090 A0559 A	A0572 A0564 G0173 B0322 B0325 D0323	D0345 D0335	G0188 B0167 B01	G0191 B0144 B01 G0194 B0121 B01	G0197 B0098 B01	G0203 80053 80068 D0361 D0363 D0367 G0391 A0082 A0089 A0253 A0264 A0272 A0282 A0290 A0310	A0320 A0334 A0488	G0499 A0180		C0093	C0003	C0101	C0111 C0109	C0113	C0125 C	C0139 C0137	B0068 E	B0091 E	80268 E0035 80114 E0015	80137 E	B0183 E	C0187	00

32010 FAMILY MACRO ASSEMBLER PC2.1 84.107 16:36:03 03-20-85 VALUE DEFN REFERENCES	00548 00519 00456 00435 00440 00381	00389 00382 00375	00368 00360	C0069 D0431	D0434 D0438 D0433	26100 06100	C0155 C0079 C0082 C0087 C0090 C0097 C0100 C0105 C0108 C0119	10101	00106	A0560 A0546	A0548	C0191 C0188	C0197 C0194	C0203 C0202			G0478 D0046 A0050 A0050		C0175	C0177	C0178 C0179	C0180			C0183			G0484 D0188 G0481 D0182 D0184		G0520 C0193 G0523 C0199	G0517 D0604 E0094
3201 /ALUE	042A 03FA 0404 03DA							024E																						0078 0079	
CCITT LABEL	FLTSR GETA1 GETA2 GETB1							GETSE					603								ITAB4					m		K5120 (K960
16:36:03 03-20-85 PAGE 0057																												4 A0324 8 A0478	8 B0231 B0253		
PC2.1 84.107																												A0276 A0286 A0294 A0306 A0314 A0324 A0430 A0440 A0448 A0460 A0468 A0478	B0122 B0145 B0168	E0078	50128
32010 FAMILY MACRO ASSEMBLER VALUE DEFN REFERENCES	E0087	E0055	E0097	E0095 E0119	A0541	C0076	C0126	C0140	00100		C0094	C0102	C0114			D0625	00643		D0659	D0565	90579	19500		D0051 D0272 D0292			D0187	A0268 A0276 A0286 A0422 A0430 A0440		D0108 E0064 E0068 E0074	E0116 E0124
O FAMIL DEFN	E0092 E0100 E0098 E0096	E0104 E0104	E0108 E0120	E0118 E0130	G0328 20077	20127	C0132	00146	20085	20095	20103	20106	20120	10076	09500	0633	00644 00651	09900	00667	00571	0580 0585	00592	00610	0472	0272	03292 0323	0209	0492	0050	0047	
3201) /ALUE	050F 051A 0517 0514																														
CC1TT LABEL	E6 E7 E7T08 E7T0A																														

16:36:03 03-20-85 PAGE 0060						162 A0265 A0273 A0283	A0335 A0345 A0349 A0419 A0475 A0482 A0489 A0499																								
PC2.1 84.107						0158 A0159	0321 A0328																								
EMBLER						1 A0094	A0303 A0311 A A0437 A0445 A	•																							
32010 FAMILY MACRO ASSEMBLER VALUE DEFN REFERENCES	021	A0511 A0358 A0043	B0066 B0243 B0089	266	135 158	B0181 A0090 A0091	A0291 A030 A0427 A043	307 706	A0086	155	A0414	A0432	A0452	,	A0470	A0260	A0278	9000	26.3	A0316			A0258	1412	A0256		A0410	1450			
AILY REF	_						Q Q													-		ω.									
010 FAI	F0005 C0215 C0183 G0154	A036 A021 F000	E000	E003	E001	E002 G027				A0175 A0415					A0479 A0261			A0299				A0413			A0295		A0449				
32 VALUE	0036 0354 0326 05E5	0071 0071 0542	0486 0404 0404	0400	04C5 04CA	04CF 0026		000A	0024	0052	0121	0120	0145 014E	015A	0163 008C	0095	000	6800	00CE	0007	9800	0115	009E	012A	0083	0142	013F	0157			
CC1TT LABEL	PTCONS QDONE QUAN RAMLOC	RCVMU RESET	RS1 RS11	R521 R53	RS4 RS5	RS6 SAMPLE		SATCH	SBASE	SBASEA SCAL 0A	SCAL 1A	SCAL 2A SCAL 3A	SCAL 4A SCAL 5A	SCAL 6A	SCAL 7A	SCALE	SCALE3	SCALE 4	SCALE6	SCALE7	SCL023	SCLOTI	SCL 223	SCL2T3	SCL 425	SCL 4T5	SCL4T7	SCL617			
LY MACRO ASSEMBLER PC2.1 84.107 16:36:03 03-20-85 REFERENCES	A0077 B0062 B0085 B0108 B0131 B0154 B0177 B0239 B0262		40549 40558 40565 40566 4056 4059 40590 40307 40317 40331 A0269 40269 40279 40287 40299 40307 40415 40485 40371 40415 40425 4043 4045 4045 40471 40485	A0355	A0079 A0149 D0217 D0224 E0005 E0009 E0013 E0017 E0021 E0025 E0029 E0033 F0033.	A0151 B0365	A0551 B0326	D0112 B0324	A0359 F0032	A0104 F0031					50000	B0364	A0326		A0214	A0561 A0568 B0320 B0323 C0069 C0075	CO113 CO125 CO139 CO165 DO048 DO050 DO104 DO107 DO337 DO419 D0434 D0439	D0578 D0590 D0608 D0624 D0642 D0658	E0080 E0086 E0098 E0108 E0120 E0130	D0414 D0420 D0421	D0413 D0460 D0488	B0071	80248	B0094 B0272	B0117 B0140	B0163 B0186	A0102 A0171 A0223 A0377
32010 FAMIL VALUE DEFN	G0511 G0490 B0320 D0182	502	487	G0457	208	502	A0554 G0496	0353	0031	10103	30249	30095	30118	30164	80187	9960	0331	.0023	60388					10397	50400	0075	30252	00098	0121	B0167 B0190	00045
0	5555	888	3 8	999	8	9 8	ĕΰ	6 00 1	_ ~	٠.				ш			٩ <		-					Ü		, au			മെ		
32 VALUE	0075 G 006E G 028E B 0380 D			0063 G0			0199 AC																						0200 B 021A B		

32010 FAMILY MACRO ASSEMBLER PC2.1 84.107 16:36:03 03-20-85 LE DEFN REFERENCES	A0093 A0148 A0153 A0154 A0160 A0161 A0340 A0341 A0494 A0495 A0495 A0145 A0155 A0154 A0160 A0161 A0340 A0341 A0494 A0495 A0454 A0455 B0060 B0065 B0064 B0063 B0066 B0087 B0086 B0087 B0180 B0179 B0179 B0137 B0132 B0152 B0155 B0156 B0178 B0179 B0179 B0137 B0131 B0125 B0155 B0156 B0175 B0179 B0179 B0137 B0134 B0152 B0156 B0156 B0178 B0179 C0104 C0107 C0107 C0107 C0108 C0107 C0108 C0107	A0080 A0087 A0150 A0156 D0218 D0219 D0220 D0222 D0457 D0459 B00354 B00356 B0035 B00359 B00380 D0030 D00320	C006 C023 00516 0052 10522 80257 A0295 A0411 A0449 B0059 B0008 B0176 B0128 80174 B025 0057 0057 0060 D0640 E0058 E0096 E0118 80185 B0177 D0176 D060 D0640 E0058 E0096 E0118 80185 B0177 D0176 D0176 D0326 80185 B0178 D0178 D0178 D0178 D0188 80185 D0178 D0199 D0215 F0014 D0189 D0215
10 FAMI DEFN	G0257	G0261 G0265 G0268	G0535 G00475 G0065 A0126 A0166 G0379 G0383 G0394 F0013
320 VALUE	0021	0022 0023 0024	00 00 00 00 00 00 00 00 00 00 00 00 00
CCITT	TEMPI	TEMP2 TEMP3 TEMP4	THREE WITABLE XMTAU Y Y YN HU Y YN Y YN Y YN Y YN Y YN Y Y
ILY MACRO ASSEMBLER PC2.1 84.107 16:36:03 03-20-85 REFERENCES PAGE 0061	A0056 A0076 A0076 A0166 A0108 A0110 A01116 A0116 A0117 A0117 A0117 A0118 A0118 A0118 A0116 A0116 A0116 A0116 A0117 A0117 A0117 A0117 A0117 A0117 A0117 A0116 A0116 A0116 A0116 A0117 A0116	B0069 B0069 B0301 B0298	000964 A0098 A0167 A0222 A0376 A0098 A0167 A0222 A0376 B0244 B0246 B0232 B0233 B0233 B0233 B0234 B0233 B0234 B0233 B0234 B0235 B0234 B0235 B0276 B0277 B0277
32010 FAMILY UE DEFN F	G0239 G0412 G0415 G0418 G0421 G0421	G0427 G0430 G0167 F0010 G0170	60007 600163 60218 60218 60218 60245 60245 60246 60246 60266 60254 60254 60254 60254 60254 60254 60254 60254 60254 60254 60254
320 VALUE	001B 0054 0055 0056 0056	0059 0058 0003 0544 0004	0066 0183 00013 00013 00015 0005 00052 00023 00028 00028 00028
CC1TT LABEL	SCRACH SDQ SDQ2 SDQ2 SDQ4 SDQ4	SDQ5 SDQ6 SE SETPAC SEZ	STRIFT SIGDIF SIG