

参考資料

DCR021205, DCR022405

JAJSMN8D - DECEMBER 2000 - REVISED AUGUST 2021

DCR02 シリーズ、2W、1000V_{RMS} 絶縁型、安定化 DC/DC コンバータ・モジュ ール

1 特長

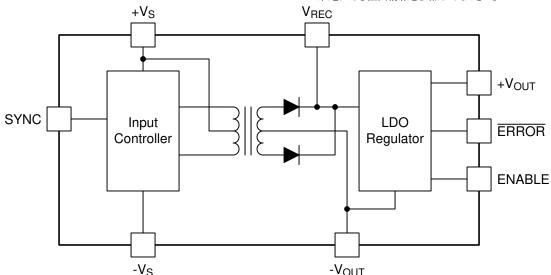
- 1kV 絶縁 (動作上):1 秒間テスト
- 絶縁バリアの両側に連続的な電圧を印加:60VDC/ 42.5VAC
- UL1950 認定部品
- 10 ピン PDIP および SOP パッケージ
- 入力電圧:12V または 24V
- 5V の出力電圧
- デバイス間の同期
- 400kHz のスイッチング周波数
- 短絡保護
- 過熱保護機能
- 高効率
- 55℃で 125FIT

2 アプリケーション

- ポイント・オブ・ユース電力変換
- デジタル・インターフェイスの電源
- グランド・ループの除去
- 電源ノイズの低減

3 概要

DCR02 ファミリは、高効率の入力絶縁型出力安定化 DC/DC コンバータのシリーズです。このコンバータ・ファミ リは、直流的に絶縁された 2W (公称値) の出力電力能力 に加えて、非常に小さい出力ノイズと高い精度を達成して います。


DCR02 ファミリは標準モールド・デバイス・パッケージに実 装されており、量産アセンブリに適した標準 JEDEC 外形 を採用しています。これらの製品は、標準デバイス・パッケ ージと同じ技術を使用して製造されているため、非常に高 い信頼性を備えています。

警告:この製品の動作絶縁は、信号の絶縁のみを意図したものです。 強化絶縁を必要とする安全用の絶縁回路の一部として使用してはいけ ません。 セクション 7.3 の定義を参照してください。

製品情報

ĺ	部品番号	パッケージ ⁽¹⁾	本体サイズ (公称)
	DCR02xxxx	PDIP (10)	22.86mm × 6.61mm
		SOP (10)	22.86mm × 6.61mm

利用可能なすべてのパッケージについては、このデータシートの 末尾にある注文情報を参照してください。

DCR02 のブロック図

Table of Contents

ļ	lable of	Contents	
1 特長	1	8 Application and Implementation	11
2 アプリケーション		8.1 Application Information	<mark>11</mark>
- , , , , , , , , , , , , , , , , , , ,		8.2 Typical Application	
4 Revision History		9 Power Supply Recommendations	
5 Pin Configuration and Functions		10 Layout	
6 Specifications		10.1 Layout Guidelines	16
6.1 Absolute Maximum Ratings		10.2 Layout Examples	16
6.2 ESD Ratings		10.3 Thermal Consideration	17
6.3 Recommended Operating Conditions		11 Device and Documentation Support	18
6.4 Thermal Information		11.1 Documentation Support	
6.5 Electrical Characteristics		11.2 Receiving Notification of Documentation U	
6.6 Typical Characteristics		11.3 サポート・リソース	
7 Detailed Description		11.4 Trademarks	
7.1 Overview		11.5 Electrostatic Discharge Caution	
7.2 Functional Block Diagram		11.6 Glossary	
7.3 Feature Description		12 Mechanical, Packaging, and Orderable	
7.4 Device Functional Modes		Information	18
	方法を更新	on D (August 2021)	
• セクンヨン 🗸 ヘのリンクを追加			1

Changes from Revision B (December 2007) to Revision C (November 2016)

Page

「ESD 定格」表、「機能説明」セクション、「デバイスの機能モード」セクション、「アプリケーションと実装」セクション、「電源に関する推奨事項」セクション、「レイアウト」セクション、「デバイスおよびドキュメントのサポート」セクション、「メカニカル、パッケージ、および注文情報」セクションを追加。
 「注文情報」表、「注文情報」の追加画像を削除 (データシートの末尾にあるパッケージ・オプションについての付録を参照)
 Changed DCR02 PinOut image in Pin Configuration and Functions

5 Pin Configuration and Functions

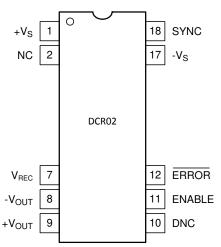


図 5-1. NVE or DVS Package 10-Pin PDIP or SOP Top View

表 5-1. Pin Functions

	PIN	I/O ⁽¹⁾	DESCRIPTION
NO.	NAME	1/0(*)	DESCRIPTION
1	+V _S	I	Voltage input
2	NC	_	No connection
7	V _{REC}	0	Rectified output
8	-V _{OUT}	0	Output ground
9	+V _{OUT}	0	Voltage output
10	DNC	_	Do not connect
11	ENABLE	I	Output voltage enable
12	ERROR	0	Error flag active low
17	-Vs	I	Input ground
18	SYNC	I	Synchronization input

(1) I = input and O = output

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
Input voltage	DCR021205		15	\/
Input voltage	DCR022405		29	\ \ \
Reflow solder temperature	SOP package (surface temperature of device body or pins)		260	°C
Storage temperature, T _{stg}		-60	125	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±1000	\/
V _(ESD)	discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±250	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
Input voltage	DCR021205	10.8	12	13.2	V
Input voltage	DCR022405	21.6	24	26.4	V
Operating temperature		-40		70	°C

6.4 Thermal Information

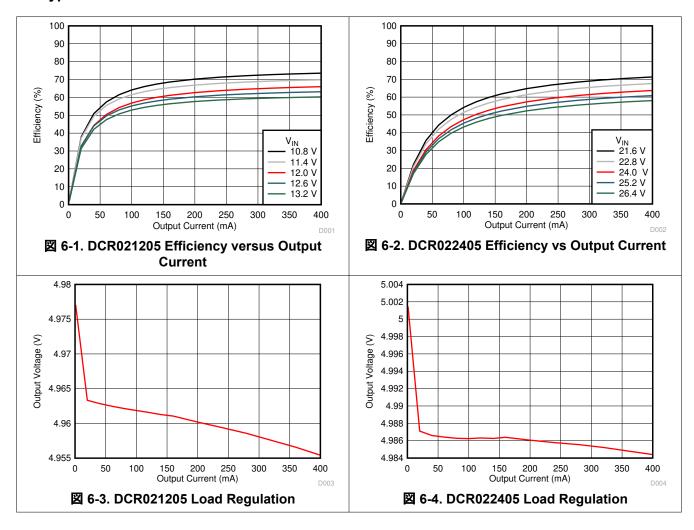
		DC		
	THERMAL METRIC ⁽¹⁾	NVE (PDIP)	DVS (SOP)	UNIT
		10 PINS	10 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	60	60	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	26	26	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	24	24	°C/W
ΨЈТ	Junction-to-top characterization parameter	7	7	°C/W
ΨЈВ	Junction-to-board characterization parameter	24	24	°C/W

 For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

At T_A = +25°C, V_S = nominal, I_{OUT} = 10 mA, C_{OUT} = 0.1- μ F ceramic, and C_{IN} = 2.2- μ F ceramic, unless otherwise noted. (1)

PARAMETER	TEST COND	ITIONS	MIN	TYP	MAX	UNIT
OUTPUT						
Nominal output voltage (+V _{OUT})				5		V
Setpoint accuracy				0.5%	2%	
Maximum output current					400	mA
Output short-circuit protected	Duration			Infinite		
Line regulation				1		mV/V
Over line and load	10-mA to 400-mA load, over +V	10-mA to 400-mA load, over +V _S range				
Temperature variation	–40°C to 70°C	-40°C to 70°C				
	DCR0212 ripple, 20-MHz band	lwidth, 50% load ⁽¹⁾		18		
Dinnle and naise	DCR0212 noise, 100-MHz ban	dwidth, 50% load ⁽¹⁾		20		m) /
Ripple and noise	DCR0224 ripple, 20-MHz band	lwidth, 50% load ⁽¹⁾		18		mV_PP
	DCR0224 noise, 100-MHz ban	dwidth, 50% load ⁽¹⁾		25		
INPUT					'	
Naminal valters (1)/	DCR022405			12		V
Nominal voltage (+V _S)	DCR021205					
Voltage range			-10%		10%	
		I _O = 0 mA		15		
	DCR021205	I _O = 10 mA		23		
		I _O = 400 mA		250		
Supply current		I _O = 0 mA		15		mA
	DCR022405	I _O = 10 mA		17		
		I _O = 400 mA		129		
Reflected ripple current	20-MHz bandwidth, 100% load	(1)		8		mA _{PP}
ISOLATION						
		Voltage	1			kVrms
	1-s flash test	dV/dt		,	500	V/s
Voltage		Leakage current			30	nA
	Continuous working voltage	DC			60	VDC
	across isolation barrier	AC			42.5	VAC
Barrier capacitance		l .		25		pF
OUTPUT ENABLE CONTROL						
Logic high input voltage			2		V _{REC}	V
Logic high input current	2 < V _{ENABLE} < V _{REG}			100		nA
Logic low input voltage			-0.2		0.5	V
Logic low input current	0 < V _{ENABLE} < 0.5			100		nA
ERROR FLAG			1			
Logic high open collector leakage	V _{ERROR} = 5 V				10	μΑ
Logic low output voltage	Sinking 2 mA				0.4	V
THERMAL SHUTDOWN						
	Temp activated	Temp activated				°C
Junction temperature	Temp deactivated					
SYNCHRONIZATION PIN	I					
Internal oscillator frequency			720	800	880	kHz
External synchronization frequency	+		720		880	kHz

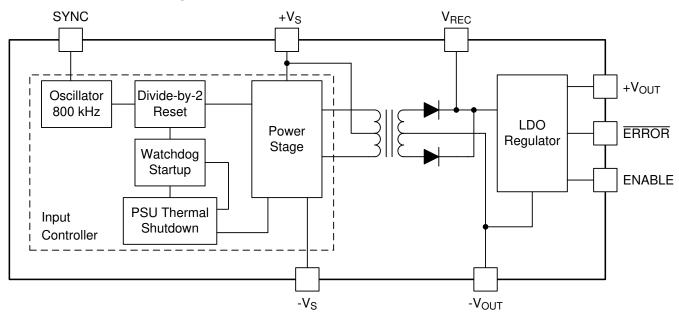


At T_A = +25°C, V_S = nominal, I_{OUT} = 10 mA, C_{OUT} = 0.1- μ F ceramic, and C_{IN} = 2.2- μ F ceramic, unless otherwise noted. (1)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
External synchronization signal high		2.5		3	V
External synchronization signal low		0		0.4	V
External capacitance on SYNC pin				3	pF

(1) Ceramic capacitors, C_{IN} = 2.2 μ F, C_{FILTER} = 1 μ F, and C_{OUT} = 0.1 μ F.

6.6 Typical Characteristics



7 Detailed Description

7.1 Overview

The DCR02 series of power modules offer isolation from a regulated power supply operating from 12-V or 24-V inputs. The DCR02s provide a regulated 5-V output voltage at a nominal output power of 2 W. The DCR02 devices include a low dropout linear regulator internal to the device to achieve a well-regulated output voltage. The DCR02 devices are specified for operational isolation only. The circuit design uses an advanced BiCMOS and DMOS process.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Isolation

Underwriters Laboratories (UL)[™] defines several classes of isolation that are used in modern power supplies.

Safety extra low voltage (SELV) is defined by UL (UL1950 E199929) as a secondary circuit which is so designated and protected that under normal and single fault conditions the voltage between any two accessible parts, or between an accessible part and the equipment earthing terminal for operational isolation does not exceed steady state $42.5 \, V_{RMS}$ or $60 \, V_{DC}$ peak.

7.3.1.1 Operation or Functional Isolation

The type of isolation used in the DCR02 products is referred to as operational or functional isolation. Insulated wire used in the construction of the transformer acts as the primary isolation barrier. A high-potential (hipot), one-second duration test (dielectric voltage, withstand test) is a production test used to verify that the isolation barrier is functioning. Products with operational isolation must never be used as an element in a safety-isolation system.

7.3.1.2 Basic or Enhanced Isolation

Basic or enhanced isolation is defined by specified creepage and clearance limits between the primary and secondary circuits of the power supply. Basic isolation is the use of an isolation barrier in addition to the insulated wire in the construction of the transformer. Input and output circuits must also be physically separated by specified distances.

Note

The DCR02 products do not provide basic or enhanced isolation.

7.3.1.3 Working Voltage

For a device with operational isolation, the continuous working voltage that can be applied across the device in normal operation must be less than 42.5 V_{RMS} or 60 V_{DC} . Ensure that both input and output voltages maintain normal SELV limits.

WARNING

Do not use the device as an element of a safety isolation system that exceeds the SELV limit.

If the device is expected to function correctly with more than 42.5 V_{RMS} or 60 V_{DC} applied continuously across the isolation barrier, then the circuitry on both sides of the barrier must be regarded as operating at an unsafe voltage, and further isolation or insulation systems must form a barrier between these circuits and any user-accessible circuitry according to safety standard requirements.

7.3.1.4 Isolation Voltage Rating

The terms *Hipot test*, *flash-tested*, *withstand voltage*, *proof voltage*, *dielectric withstand voltage*, and *isolation test voltage* all relate to the same thing; a test voltage applied for a specified time across a component designed to provide electrical isolation to verify the integrity of that isolation. TI's DCR02 series of DC/DC converters are all 100% production tested at 1.0 kV_{AC} for one second.

7.3.1.5 Repeated High-Voltage Isolation Testing

Repeated high-voltage isolation testing of a barrier component can degrade the isolation capability, depending on materials, construction, and environment. The DCR02 series of DC/DC converters have toroidal, enameled, wire isolation transformers with no additional insulation between the primary and secondary windings. While a device can be expected to withstand several times the stated test voltage, the isolation capability depends on the wire insulation. Any material, including this enamel (typically polyurethane), is susceptible to eventual chemical degradation when subject to very-high applied voltages. Therefore, strictly limit the number of high-voltage tests and repeated high-voltage isolation testing. However, if it is absolutely required, reduce the voltage by 20% from specified test voltage with a duration limit of one second per test.

7.3.2 Power Stage

The DCR02 series of devices use a push-pull, center-tapped topology. The DCR02 devices switch at 400 kHz (divide-by-2 from an 800-kHz oscillator). The internal transformer's output is full wave rectified and filtered by the external $1-\mu F$ ceramic capacitor connected to the V_{REC} pin. An internal low-dropout regulator provides a well-regulated output voltage over the operating range of the device.

7.3.3 Oscillator and Watchdog

The onboard, 800-kHz oscillator generates the switching frequency through a divide-by-2 circuit. The oscillator can be synchronized to other DCR02 device circuits or an external source, and is used to minimize system noise.

A watchdog circuit monitors the operation of the oscillator circuit. The oscillator can be disabled by pulling the SYNC pin low. When the SYNC pin goes low, the output pins transition into tri-state mode, which occurs within $2 \mu s$.

7.3.4 ERROR Flag

The DCR02 has an $\overline{\text{ERROR}}$ pin which provides a *power good* flag, as long as the internal regulator is in regulation. If the $\overline{\text{ERROR}}$ output is required, place a 10-k Ω resistor between the $\overline{\text{ERROR}}$ pin and the output voltage.

7.3.5 Synchronization

When more than one DC/DC converter is switching in an application, beat frequencies and other electrical interference can be generated. This interference occurs because of the small variations in switching frequencies between the DC/DC converters.

The DCR02 series of devices overcome this interference by allowing devices to be synchronized to one another. Synchronize up to eight devices by connecting the SYNC pins of each device, taking care to minimize the capacitance of tracking. Stray capacitance (greater than 3 pF) reduces the switching frequency, or can sometimes stop the oscillator circuit. The maximum recommended voltage applied to the SYNC pin is 3 V.

For an application that uses more than eight synchronized devices use an external device to drive the SYNC pins. The *External Synchronization of the DCP01/02 Series of DC/DC Converters Application Report* (SBAA035) describes this configuration.

Note

During the start-up period, all synchronized devices draw maximum current from the input simultaneously. A ceramic capacitor must be connected close to each device's input pin. A $2.2-\mu F$ ceramic capacitor is required.

7.3.6 Construction

The basic construction of the DCR02 series of devices is the same as standard integrated circuits. The molded package contains no substrate. The DCR02 series of devices are constructed using an IC, low dropout linear regulator, rectifier diodes, and a wound magnetic toroid on a leadframe. Because the package contains no solder, the devices do not require any special printed-circuit board (PCB) assembly processing. This architecture results in an isolated DC/DC converter with inherently high reliability.

7.3.7 Decoupling – Ripple Reduction

Due to the very low forward resistance of the DMOS switching transistors, high current demands are placed upon the input supply for a short time. By using a high-quality, low Equivalent Series Resistance (ESR) ceramic input capacitor of 2.2- μ F, placed close to the IC supply input pins, the effects on the power supply can be minimized.

The high switching frequency of 400 kHz allows relatively small values of capacitors to be used for filtering the rectified output voltage. A good-quality, low-ESR, 1- μ F ceramic capacitor placed close to the V_{REC} pin and output ground is required and reduces the ripple. The output at V_{REC} is full wave rectified and produces a ripple of 800 kHz.

TI recommends that a $0.1-\mu F$, low-ESR ceramic capacitor is connected close to the output pin and ground to reduce noise on the output. The capacitor values listed are minimum values. If lower ripple is required, the filter capacitor must be increased in value to $2.2~\mu F$.

As with all switching power supplies, the best performance is obtained with low ESR ceramic capacitors connected close to the device pins. If low-ESR ceramic capacitors are not used, the ESR generates a voltage drop when the capacitor is supplying the load power. Often a larger capacitor is chosen for this purpose, when a low ESR, smaller capacitor would perform as well.

Note

TI does not recommend that the DCR02 be fitted using an IC socket, as this degrades performance.

7.4 Device Functional Modes

7.4.1 Device Disable and Enable

Each of the DCR02 series devices can be disabled or enabled by driving the SYNC pin using an open-drain CMOS gate. If the SYNC pin is pulled low, the DCR02 becomes disabled. The disable time depends upon the external loading. The internal disable function is implemented in 2 μ s. Removal of the pulldown causes the DCR02 to be enabled.

Capacitive loading on the SYNC pin must be minimized (≤ 3 pF) to prevent a reduction in the oscillator frequency. The *External Synchronization of the DCP01/02 Series of DC/DC Converters Application Report* (SBAA035) describes disable and enable control circuitry. This document contains information on how to null the

effects of additional capacitance on the SYNC pin. The oscillator's frequency can be measured at V_{REC} , as this is the fundamental frequency of the ripple component.

7.4.2 Regulated Output Disable and Enable

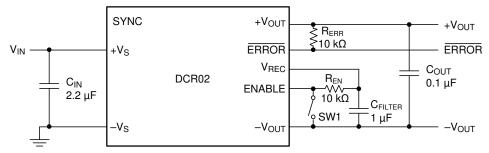
The regulated output of the DCR02 can be disabled by pulling the ENABLE pin LOW. Disabling the output voltage this way still produces a voltage on the V_{REC} pin. When using the ENABLE control, TI recommends placing a 10-k Ω resistor between the V_{REC} and ENABLE pins. The ENABLE pin only controls the internal linear regulator.

If disabling the regulated output is not required, pull the ENABLE pin HIGH by shorting it directly to the V_{REC} pin. This enables the regulated output voltage, thus allowing the output to be controlled from the isolated side.

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.


8.1 Application Information

The DCR02 devices offer up to 2 W of isolated, 5-V regulated output power from a 12-V or 24-V input supply. Applications requiring up to 1-kVrms of operational isolation benefits from the small size and ease-of-use of the DCR02 family of devices.

8.1.1 DCR02 Single Voltage Output

The DCR02 can be used to provide a single voltage output by connecting the circuit as shown in \boxtimes 8-1. The ERROR output signal is pulled up to the value of V_{OUT} for the particular DCR02 being used. The value of R_{ERR} depends on the loading on the ERROR line; however, the total load on the ERROR line must not exceed the value given in the 2000×10^{-2} 6.5.

The output can be permanently enabled by connecting the ENABLE pin to the V_{REC} pin. The DCR02 can be enabled remotely by connecting the ENABLE pin to V_{REC} through a pull-up resistor (R_{EN}); the value of this resistor is not critical for the DCR02, because only a small current flows. Switch SW1 can be used to pull the ENABLE pin low, thus disabling the output. The switching devices can be a bipolar transistor, FET, or a mechanical device; the main load that it senses is R_{EN} .

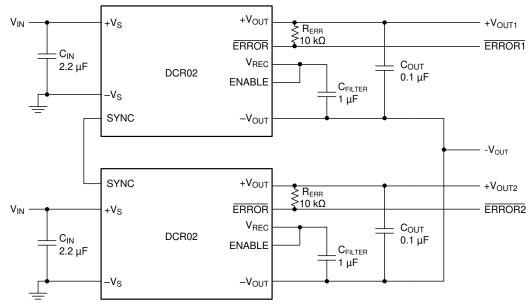
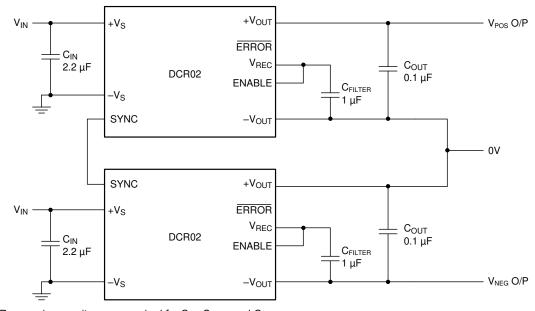

Low-ESR, ceramic capacitors are required for CIN, COUT, and CFILTER.

図 8-1. DCR02 Single Output Voltage

8.1.2 Generating Two Positive Output Voltages

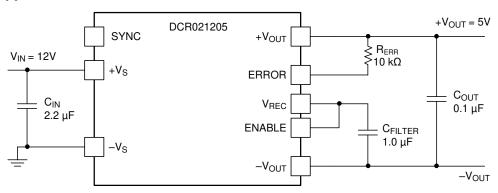
Two DCR02s can be used to create two +5-V output voltages, as shown in \boxtimes 8-2. The two DCR02s are connected in self-synchronization, thus locking the oscillators of both devices to a single frequency. The $\overline{\text{ERROR}}$ and ENABLE facilities can be used in a similar configuration for a single DCR02. The filter capacitors connected to the V_{REC} pins (C_{FILTER}) must be kept separate from each other and connected in close proximity to the respective DCR02. If similar output voltages are being used, TI does not recommend that a single filter capacitor (with an increased capacitance) be used with both V_{REC} pins connected together, because this could result in the overloading of one of the devices.


Low-ESR, ceramic capacitors are required for CIN, COUT, and CFILTER.

☑ 8-2. Generating Two Positive Voltages from Self-Synchronized DCR02s

8.1.3 Generation of Dual Polarity Voltages from Two Self-Synchronized DCR02s

Two DCR02s can be configured to produce a dual polarity supply (that is, ± 5 V); the circuit must be connected as shown in \boxtimes 8-3.


It must be observed that both DCR02s are positive voltage regulators; therefore the $\overline{\text{ERROR}}$, ENABLE, and V_{REC} pins are relative to their respective devices, 0 V, and must not be connected together.

Low-ESR, ceramic capacitors are required for $C_{\text{IN}},\,C_{\text{OUT}},$ and $C_{\text{FILTER}}.$

図 8-3. Dual Polarity Voltage Generation from Two Self-Synchronized DCR02s

8.2 Typical Application

Low-ESR, ceramic capacitors are required for C_{IN} , C_{OUT} , and C_{FILTER} .

図 8-4. DCR02 Typical Schematic

8.2.1 Design Requirements

For this design example, use the parameters listed in 表 8-1 and follow the design procedure.

DESIGN PARAMETER

Input voltage, V_{IN}

Output voltage, V_{OUT}

Output current rating

Isolation

VALUE

12 V typical

5 V regulated

400 mA

表 8-1. Design Example Parameters

8.2.2 Detailed Design Procedure

8.2.2.1 Input Capacitor

For this design, a 2.2-µF, ceramic capacitor is required for the input decoupling capacitor.

8.2.2.2 Output Capacitor

For this design, a 0.1-µF, ceramic capacitor is required for between +V_{OUT} and -V_{OUT}.

8.2.2.3 Filter Capacitor

A high-quality, low-ESR, 1- μ F, ceramic capacitor placed close to the V_{REC} pin and output ground is required to reduce output voltage ripple.

8.2.2.4 ERROR Flag

Place a 10-k Ω resistor between the ERROR pin and the output voltage to provide a *power good* signal when the internal regulator is in regulation.

8.2.3 Application Curves

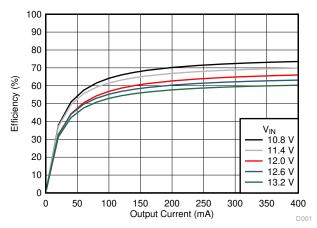


図 8-5. DCR021205 Efficiency versus Output Current

9 Power Supply Recommendations

The DCR02 is a switching power supply, and as such can place high peak current demands on the input supply. To avoid the supply falling momentarily during the fast switching pulses, ground and power planes must be used to connect the power to the input of DCR02. If this connection is not possible, then the supplies must be connected in a star formation with the traces made as wide as possible.

10 Layout

10.1 Layout Guidelines

Carefully consider the layout of the PCB in order for the best results to be obtained.

Input and output power and ground planes provide a low-impedance path for the input and output power. For the output, the positive and negative voltage outputs conduct through wide traces to minimize losses.

A good-quality, low-ESR, ceramic capacitor placed as close as practical across the input reduces reflected ripple and ensure a smooth start-up.

A good-quality, low-ESR, ceramic capacitor placed as close as practical across the rectifier output terminal and output ground gives the best ripple and noise performance.

The location of the decoupling capacitors in close proximity to their respective pins ensures low losses due to the effects of stray inductance, thus improving the ripple performance. This location is of particular importance to the input decoupling capacitor, because this capacitor supplies the transient current associated with the fast switching waveforms of the power drive circuits.

If the SYNC pin is being used, the tracking between device SYNC pins must be short to avoid stray capacitance. Never connect a capacitor to the SYNC pin. If the SYNC pin is not being used it is advisable to place a guard ring (connected to input ground) around this pin to avoid any noise pickup. Ensure that no other trace is in close proximity to this trace SYNC trace to decrease the stray capacitance on this pin. The stray capacitance affects the performance of the oscillator.

☑ 10-1 and ☑ 10-2 show a typical layout for the SOP package DCR02 device. The layout shows proper placement of capacitors and power planes. ☑ 10-3 shows a schematic for a single DCR02, SOP package device.

10.2 Layout Examples

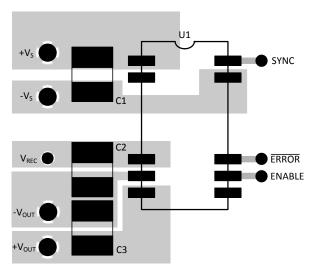


図 10-1. PCB Layout Example, Component-Side View

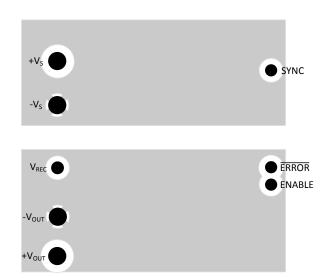


図 10-2. PCB Layout Example, Non-Component-Side View

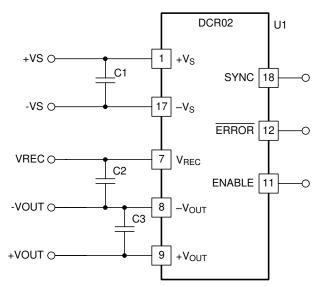


図 10-3. DCR02 PCB Schematic, U Package

10.3 Thermal Consideration

Due to the high power density of this device, it is advisable to provide a ground plane on the output. The output regulator is mounted on a copper leadframe, and a ground plane serves as an efficient heatsink.

11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

For related documentation see the following:

Texas Instruments, External Synchronization of the DCP01/02 Series of DC/DC Converters (SBAA035)

11.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.3 サポート・リソース

TI E2E[™] サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するものではなく、必ずしも TI の見解を反映したものではありません。 TI の使用条件を参照してください。

11.4 Trademarks

Underwriters Laboratories (UL)™ is a trademark of UL LLC.

TI E2E[™] is a trademark of Texas Instruments.

すべての商標は、それぞれの所有者に帰属します。

11.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.6 Glossary

TI Glossary This glossary lists and

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 9-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking
	(1)	(2)			(3)	(4)	(5)		(6)
DCR021205P	Active	Production	PDIP (NVE) 10	20 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 70	DCR021205P
DCR021205P-U	Active	Production	SOP (DVS) 10	20 TUBE	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 70	DCR021205P-U
DCR021205P-U.B	Active	Production	SOP (DVS) 10	20 TUBE	-	Call TI	Call TI	-40 to 70	
DCR021205P.B	Active	Production	PDIP (NVE) 10	20 TUBE	-	Call TI	Call TI	-40 to 70	
DCR022405P	Active	Production	PDIP (NVE) 10	20 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 70	DCR022405P
DCR022405P-U	Active	Production	SOP (DVS) 10	20 TUBE	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 70	DCR022405P-U
DCR022405P-U.B	Active	Production	SOP (DVS) 10	20 TUBE	-	Call TI	Call TI	-40 to 70	
DCR022405P-U/700	Active	Production	SOP (DVS) 10	700 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	0 to 0	DCR022405P-U
DCR022405P-U/700.B	Active	Production	SOP (DVS) 10	700 LARGE T&R	-	Call TI	Call TI	0 to 0	
DCR022405P.B	Active	Production	PDIP (NVE) 10	20 TUBE	-	Call TI	Call TI	-40 to 70	

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

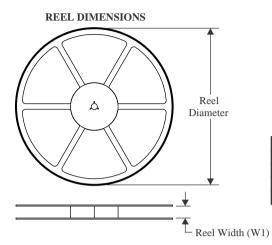
⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

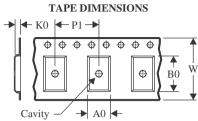
⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

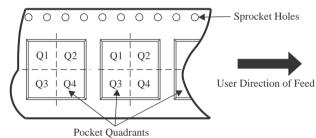
www.ti.com 9-Nov-2025


and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

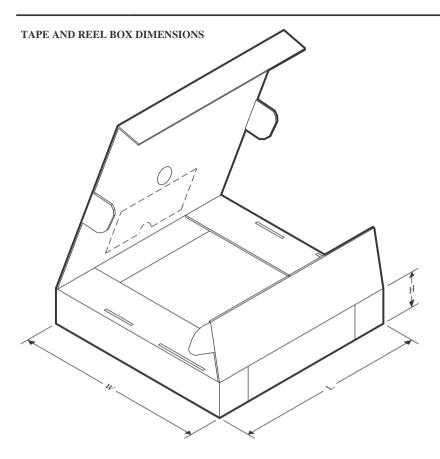

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 18-Jul-2025


TAPE AND REEL INFORMATION

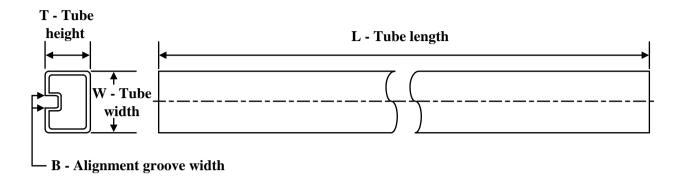
	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
DCR022405P-U/700	SOP	DVS	10	700	330.0	44.4	10.85	23.5	5.25	16.0	44.0	Q1

www.ti.com 18-Jul-2025

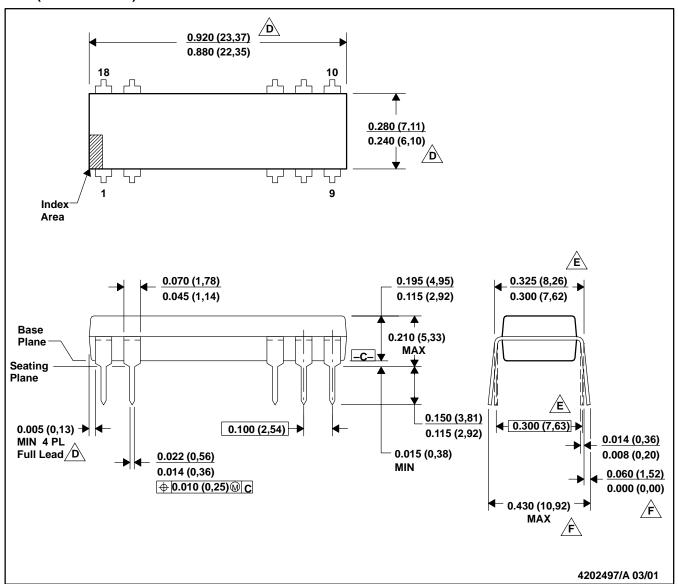

*All dimensions are nominal

Γ	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
Г	DCR022405P-U/700	SOP	DVS	10	700	346.0	346.0	61.0

PACKAGE MATERIALS INFORMATION

www.ti.com 18-Jul-2025

TUBE


*All dimensions are nominal

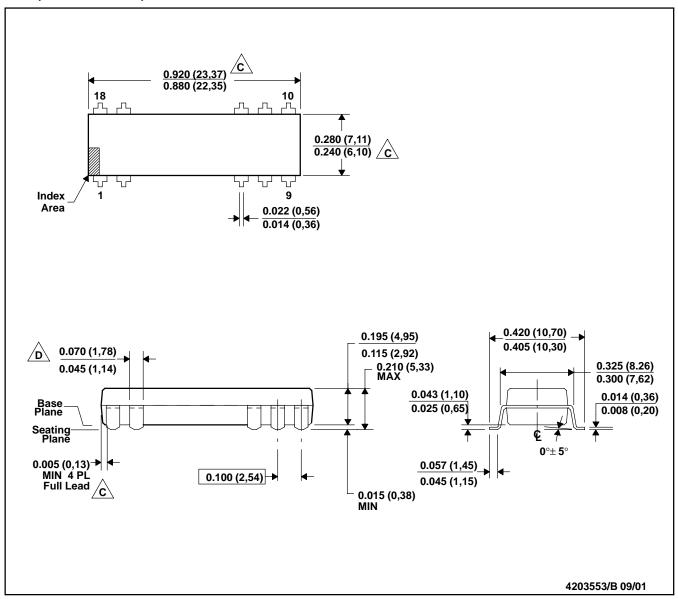
Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
DCR021205P	NVE	PDIP	10	20	533.4	14.33	13.03	8.07
DCR021205P-U	DVS	SOP	10	20	532.13	13.51	7.36	6.91
DCR022405P	NVE	PDIP	10	20	533.4	14.33	13.03	8.07
DCR022405P-U	DVS	SOP	10	20	532.13	13.51	7.36	6.91

1

NVE (R-PDIP-T10/18)

PLASTIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001-AC with the exception of lead count.
- Dimensions do not include mold flash or protrusions.

 Mold flash or protrusions shall not exceed 0.010 (0,25).
- Mold flash or protrusions shall not exceed 0.010 (0,25). Dimensions measured with the leads constrained to be perpendicular to Datum C.
- Dimensions are measured at the lead tips with the leads unconstrained.
- G. A visual index feature must be located within the cross-hatched area.

DVS (R-PDSO-G10/18)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

Dimensions do not include mold flash or protrusions.

Mold flash or protrusions shall not exceed 0.010 (0,25).

Maximum dimension does not include dambar protrusions. Dambar protrusions shall not exceed 0.010 (0,25)

- E. Distance between leads including dambar protrusions to be 0.005 (0,13) minimum.
- F. A visual index feature must be located within the cross–hatched area.
- G. For automatic insertion, any raised irregularity on the top surface (step, mesa, etc.) shall be symmetrical about the lateral and longitudinal package centerlines.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、TIの総合的な品質ガイドライン、 ti.com または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TIはそれらに異議を唱え、拒否します。

Copyright © 2025, Texas Instruments Incorporated

最終更新日: 2025 年 10 月