








**LM386** 

JAJSB91D - MAY 2004 - REVISED AUGUST 2023

# LM386 低電圧オーディオ・パワー・アンプ

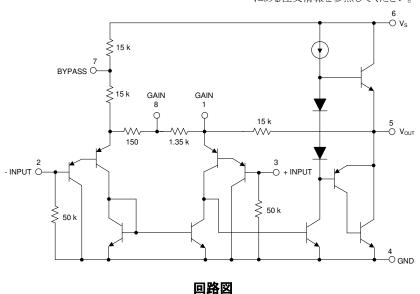
# 1 特長

- バッテリでの動作
- 必要な外付け部品が最小限
- 広い電源電圧範囲:4V~12V または 5V~18V
- 低い静止電流消費:4mA
- 20~200 の電圧ゲイン
- 入力はグランドが基準
- 出力静止電圧の自己センタリング
- 低歪:0.2% (A<sub>V</sub> = 20、V<sub>S</sub> = 6V、R<sub>I</sub> = 8Ω、P<sub>O</sub> = 125 mW, f = 1 kHz
- 8ピンの MSOP パッケージで供給

# 2 アプリケーション

- AM/FM ラジオのアンプ
- 携帯テープ・プレーヤのアンプ
- インターコム
- テレビ用サウンド・システム
- ライン・ドライバ
- 超音波ドライバ
- 小型サーボ・ドライバ
- パワー・コンバータ

# 3 概要


LM386M-1 および LM386MX-1 は、低電圧の消費者向 けアプリケーションで使用するよう設計されたパワー・アン プです。外付け部品数を減らすため、ゲインは内部的に 20 に設定されていますが、ピン 1 と 8 との間に外付け抵 抗とコンデンサを追加すると、20~200 の任意の値にゲイ ンを増大できます。

入力はグランドを基準とし、出力は自動的に電源電圧の 半分にバイアスされます。静止時の消費電力は 6V 電源 での動作時にわずか 24mW であるため、LM386M-1 お よび LM386MX-1 はバッテリでの動作に適しています。

#### 製品情報(1)

| 部品番号       | パッケージ     | 本体サイズ (公称)      |  |  |  |
|------------|-----------|-----------------|--|--|--|
| LM386N-1   | PDIP (8)  | 9.60mm × 6.35mm |  |  |  |
| LM386N-3   | PDIP (8)  | 9.60mm × 6.35mm |  |  |  |
| LM386N-4   | PDIP (8)  | 9.60mm × 6.35mm |  |  |  |
| LM386M-1   | SOIC (8)  | 4.90mm × 3.90mm |  |  |  |
| LM386MX-1  | SOIC (8)  | 4.90mm × 3.90mm |  |  |  |
| LM386MMX-1 | VSSOP (8) | 3.00mm × 3.00mm |  |  |  |

利用可能なすべてのパッケージについては、データシートの末尾 にある注文情報を参照してください。





| Table of                                    | Contents                |                               |
|---------------------------------------------|-------------------------|-------------------------------|
| 1 1 2 2 3 3 4 4 4 4 4 5 5 6 6 8 8 9 9 9 9 9 | 8.3 Feature Description |                               |
| vision D                                    | (August 2023)           | <b>Page</b><br>5              |
|                                             |                         | 1 8.4 Device Functional Modes |

| Changes from Revision B (March 2017) to Revision C (May 2017)                                     | Page            |
|---------------------------------------------------------------------------------------------------|-----------------|
| - データシートのタイトルでデバイス LM386M-1/LM386MX-1 を LM386 に変更                                                 | 1               |
| <ul><li>ドキュメント全体にわたって表、図、相互参照の採番方法を更新</li></ul>                                                   | 1               |
| • Changed From: LM386N-4 To: Speaker Impedance in the Recommended Operating Conditions table      | 4               |
| - Changed From: 5 $\Omega$ to 12 $\Omega$ To: 5 V to 12 V for Supply Voltage in ${2 \over 5}$ 9-1 | 10              |
| Changed kW To: kΩ in the Gain Control section                                                     | 10              |
| Changed kW To: kΩ in the <i>Input Biasing</i> section                                             | <mark>11</mark> |
| Changed    9-2                                                                                    | 11              |
| - Changed From: 5 $\Omega$ to 12 $\Omega$ To: 5 V to 12 V for Supply Voltage in $\frac{1}{2}$ 9-2 | 12              |
| Changed    9-4                                                                                    | 12              |
| • Changed From: 5 $\Omega$ to 12 $\Omega$ To: 5 V to 12 V for Supply Voltage in $\frac{1}{2}$ 9-3 | 13              |
| Changed      9-6                                                                                  | 13              |
| • Changed From: 5 $\Omega$ to 12 $\Omega$ To: 5 V to 12 V for Supply Voltage in $\frac{1}{2}$ 9-4 | 14              |
| Changed 図 9-8                                                                                     | 14              |

# Changes from Revision A (May 2004) to Revision B (March 2017)

「製品情報」、「アプリケーションと実装」、「電源に関する推奨事項」、「レイアウト」、「デバイスおよびドキュメントのサポ 

Product Folder Links: LM386

Inserted Functional Block Diagram......9



# **5 Pin Configuration and Functions**

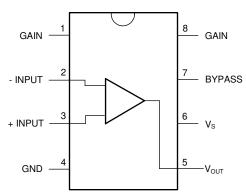



図 5-1. D Package 8-Pin MSOP Top View

表 5-1. Pin Functions

| PIN              |     | TYPE <sup>(1)</sup> | DESCRIPTION            |  |
|------------------|-----|---------------------|------------------------|--|
| NAME             | NO. | ITPE                | DESCRIPTION            |  |
| GAIN             | 1   | _                   | Gain setting pin       |  |
| -INPUT           | 2   | I                   | Inverting input        |  |
| +INPUT           | 3   | I                   | Noninverting input     |  |
| GND              | 4   | Р                   | Ground reference       |  |
| V <sub>OUT</sub> | 5   | 0                   | Output                 |  |
| Vs               | 6   | Р                   | Power supply voltage   |  |
| BYPASS           | 7   | 0                   | Bypass decoupling path |  |
| GAIN             | 8   | _                   | Gain setting pin       |  |

(1) I = Input, O = Output, P = Power



# **6 Specifications**

# **6.1 Absolute Maximum Ratings**

over operating free-air temperature range (unless otherwise noted)(1)

|                                       |                       | MIN  | MAX   | UNIT                                  |
|---------------------------------------|-----------------------|------|-------|---------------------------------------|
| Supply Voltage V                      | LM386N-1/-3, LM386M-1 |      | 15    | V                                     |
| Supply Voltage, V <sub>CC</sub>       | LM386N-4              |      | 22    | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
|                                       | LM386N                |      | 1.25  |                                       |
| Package Dissipation                   | LM386M                |      | 0.73  | W                                     |
|                                       | LM386MM-1             |      | 0.595 |                                       |
| Input Voltage, V <sub>I</sub>         |                       | -0.4 | 0.4   | V                                     |
| Storage temperature, T <sub>stg</sub> |                       | -65  | 150   | °C                                    |

<sup>(1)</sup> Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

## 6.2 ESD Ratings

|  |                    |                         |                                                                                | VALUE | UNIT |
|--|--------------------|-------------------------|--------------------------------------------------------------------------------|-------|------|
|  |                    |                         | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 <sup>(1)</sup>              | ±1000 |      |
|  | / <sub>(ESD)</sub> | Electrostatic discharge | Charged-device model (CDM), per JEDEC specification JESD22-C101 <sup>(2)</sup> | ±1000 | V    |

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

# **6.3 Recommended Operating Conditions**

over operating free-air temperature range (unless otherwise noted)

|                 |                                | MIN  | NOM | MAX | UNIT |
|-----------------|--------------------------------|------|-----|-----|------|
| V               | Supply Voltage                 | 4    |     | 12  | V    |
| V <sub>CC</sub> | LM386N-4                       | 5    |     | 18  | V    |
|                 | Speaker Impedance              | 4    |     |     | Ω    |
| VI              | Analog input voltage           | -0.4 |     | 0.4 | V    |
| TA              | Operating free-air temperature | 0    |     | 70  | °C   |

#### 6.4 Thermal Information

|                               |                                              | LM386    | LM386       | LM386    |      |
|-------------------------------|----------------------------------------------|----------|-------------|----------|------|
| THERMAL METRIC <sup>(1)</sup> |                                              | D (SOIC) | DGK (VSSOP) | P (PDIP) | UNIT |
|                               |                                              | 8        | 8           | 8        |      |
| R <sub>θJA</sub>              | Junction-to-ambient thermal resistance       | 115.7    | 169.3       | 53.4     | °C/W |
| R <sub>0JC(top)</sub>         | Junction-to-case (top) thermal resistance    | 59.7     | 73.1        | 42.1     | °C/W |
| R <sub>θJB</sub>              | Junction-to-board thermal resistance         | 56.2     | 100.2       | 30.6     | °C/W |
| $\Psi_{JT}$                   | Junction-to-top characterization parameter   | 12.4     | 9.2         | 19.0     | °C/W |
| ΨЈВ                           | Junction-to-board characterization parameter | 55.6     | 99.1        | 50.5     | °C/W |

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Product Folder Links: *LM386* 

Copyright © 2023 Texas Instruments Incorporated



# **6.5 Electrical Characteristics**

over operating free-air temperature range (unless otherwise noted)

|                   | PARAMETER                    | TEST CONDITIONS                                                                           | MIN | TYP  | MAX | UNIT |  |
|-------------------|------------------------------|-------------------------------------------------------------------------------------------|-----|------|-----|------|--|
| V                 | Operating Supply Voltage     | LM386N-1, -3, LM386M-1, LM386MM-1                                                         | 4   |      | 12  | V    |  |
| V <sub>S</sub>    | Operating Supply Voltage     | LM386N-4                                                                                  | 5   |      | 18  | V    |  |
| IQ                | Quiescent Current            | V <sub>S</sub> = 6 V, V <sub>IN</sub> = 0                                                 |     | 4    | 8   | mA   |  |
| P <sub>OUT</sub>  |                              | V <sub>S</sub> = 6 V, R <sub>L</sub> = 8 Ω, THD = 10%<br>(LM386N-1, LM386M-1, LM386MM-1)  | 250 | 325  |     |      |  |
|                   | Output Power                 | $V_S = 9 \text{ V}, R_L = 8 \Omega, \text{ THD} = 10\%$ (LM386N-3)                        | 500 | 700  |     | mW   |  |
|                   |                              | $V_S$ = 16 V, $R_L$ = 32 $\Omega$ , THD = 10% (LM386N-4)                                  | 700 | 1000 |     |      |  |
|                   | V.II. 0:                     | V <sub>S</sub> = 6 V, f = 1 kHz                                                           |     | 26   |     | ٩D   |  |
| A <sub>V</sub>    | Voltage Gain                 | 10 μF from Pin 1 to 8                                                                     |     | 46   |     | dB   |  |
| BW                | Bandwidth                    | V <sub>S</sub> = 6 V, Pins 1 and 8 Open                                                   |     | 300  |     | kHz  |  |
| THD               | Total Harmonic Distortion    | $V_S$ = 6 V, $R_L$ = 8 $\Omega$ , POUT = 125 mW f = 1 kHz, Pins 1 and 8 Open              |     | 0.2% |     |      |  |
| PSRR              | Power Supply Rejection Ratio | V <sub>S</sub> = 6 V, f = 1 kHz, CBYPASS = 10 μF<br>Pins 1 and 8 Open, Referred to Output |     | 50   |     | dB   |  |
| R <sub>IN</sub>   | Input Resistance             |                                                                                           |     | 50   |     | kΩ   |  |
| I <sub>BIAS</sub> | Input Bias Current           | V <sub>S</sub> = 6 V, Pins 2 and 3 Open                                                   |     | 250  |     | nA   |  |



# **6.6 Typical Characteristics**

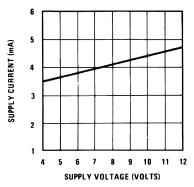



図 6-1. Supply Current vs Supply Voltage

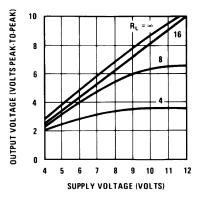



図 6-3. Output Voltage vs Supply Voltage

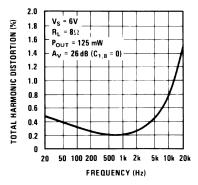
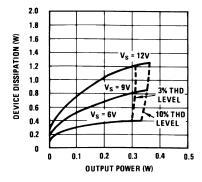




図 6-5. Total Harmonic Distortion vs Frequency



☑ 6-7. Device Dissipation vs Output Power

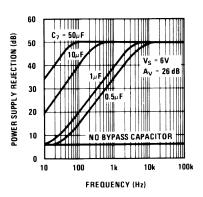



図 6-2. Power Supply Rejection vs Frequency

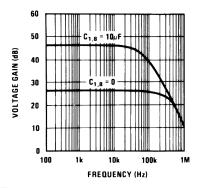



図 6-4. Voltage Gain vs Frequency

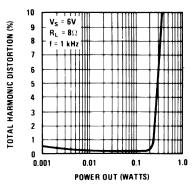



図 6-6. Total Harmonic Distortion vs Power Out



図 6-8. Device Dissipation vs Output Power

Copyright © 2023 Texas Instruments Incorporated

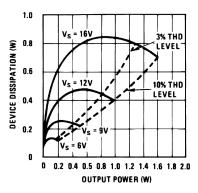


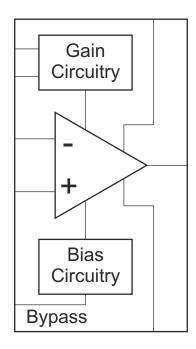

図 6-9. Device Dissipation vs Output Power



# **7 Parameter Measurement Information**

All parameters are measured according to the conditions described in the セクション 6 section.

English Data Sheet: SNAS545




# **8 Detailed Description**

#### 8.1 Overview

The LM386 is a mono low voltage amplifier that can be used in a variety of applications. It can drive loads from 4  $\Omega$  to 32  $\Omega$ . The gain is internally set to 20 but it can be modified from 20 to 200 by placing a resistor and capacitor between pins 1 and 8. This device comes in three different 8-pin packages as PDIP, SOIC and VSSOP to fit in different applications.

#### 8.2 Functional Block Diagram



#### 8.3 Feature Description

#### 8.4 Device Functional Modes

As this is an Op Amp it can be used in different configurations to fit in several applications. The internal gain setting resistor allows the LM386 to be used in a very low part count system. In addition a series resistor can be placed between pins 1 and 5 to modify the gain and frequency response for specific applications.

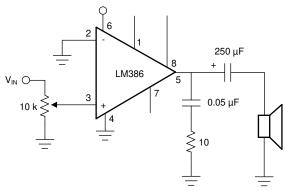
English Data Sheet: SNAS545



# 9 Application and Implementation

注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.


#### 9.1 Application Information

Below are shown different setups that show how the LM386 can be implemented in a variety of applications.

#### 9.2 Typical Application

#### 9.2.1 LM386 with Gain = 20

☑ 9-1 shows the minimum part count application that can be implemented using LM386. Its gain is internally set to 20.



Copyright © 2017, Texas Instruments Incorporated

図 9-1. LM386 with Gain = 20

#### 9.2.1.1 Design Requirements

表 9-1. Design Parameters

| DESIGN PARAMETER | EXAMPLE VALUE |
|------------------|---------------|
| Load Impedance   | 4 Ω to 32 Ω   |
| Supply Voltage   | 5 V to 12 V   |

#### 9.2.1.2 Detailed Design Procedure

#### 9.2.1.2.1 Gain Control

To make the LM386 a more versatile amplifier, two pins (1 and 8) are provided for gain control. With pins 1 and 8 open the 1.35-k $\Omega$  resistor sets the gain at 20 (26 dB). If a capacitor is put from pin 1 to 8, bypassing the 1.35-k $\Omega$  resistor, the gain will go up to 200 (46 dB). If a resistor is placed in series with the capacitor, the gain can be set to any value from 20 to 200. Gain control can also be done by capacitively coupling a resistor (or FET) from pin 1 to ground.

Additional external components can be placed in parallel with the internal feedback resistors to tailor the gain and frequency response for individual applications. For example, we can compensate poor speaker bass response by frequency shaping the feedback path. This is done with a series RC from pin 1 to 5 (paralleling the internal

15-k $\Omega$  resistor). For 6 dB effective bass boost: R ~= 15 k $\Omega$ , the lowest value for good stable operation is R = 10 k $\Omega$  if pin 8 is open. If pins 1 and 8 are bypassed then R as low as 2 k $\Omega$  can be used. This restriction is because the amplifier is only compensated for closed-loop gains greater than 9.

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

#### 9.2.1.2.2 Input Biasing

The schematic shows that both inputs are biased to ground with a 50 k $\Omega$  resistor. The base current of the input transistors is about 250 nA, so the inputs are at about 12.5 mV when left open. If the dc source resistance driving the LM386 is higher than 250 k $\Omega$  it will contribute very little additional offset (about 2.5 mV at the input, 50 mV at the output). If the dc source resistance is less than 10 k $\Omega$ , then shorting the unused input to ground will keep the offset low (about 2.5 mV at the input, 50 mV at the output). For dc source resistances between these values we can eliminate excess offset by putting a resistor from the unused input to ground, equal in value to the dc source resistance. Of course all offset problems are eliminated if the input is capacitively coupled.

When using the LM386 with higher gains (bypassing the 1.35 k $\Omega$  resistor between pins 1 and 8) it is necessary to bypass the unused input, preventing degradation of gain and possible instabilities. This is done with a 0.1  $\mu$ F capacitor or a short to ground depending on the dc source resistance on the driven input.

#### 9.2.1.3 Application Curve

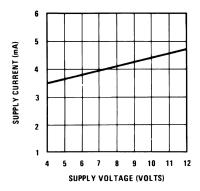
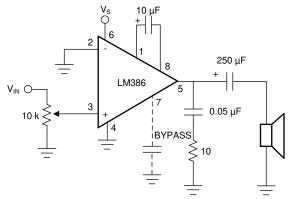




図 9-2. Supply Current vs Supply Voltage



#### 9.2.2 LM386 with Gain = 200



Copyright © 2017, Texas Instruments Incorporated

図 9-3. LM386 with Gain = 200

# 9.2.2.1 Design Requirements

表 9-2. Design Parameters

| DESIGN PARAMETER | EXAMPLE VALUE |
|------------------|---------------|
| Load Impedance   | 4 Ω to 32 Ω   |
| Supply Voltage   | 5 V to 12 V   |

## 9.2.2.2 Detailed Design Procedure

The Detailed Design Procedure can be found in the セクション 9.2.1.2 section.

# 9.2.2.3 Application Curve

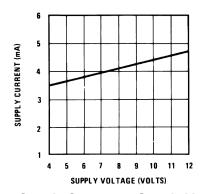
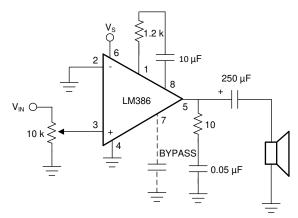




図 9-4. Supply Current vs Supply Voltage

English Data Sheet: SNAS545

#### 9.2.3 LM386 with Gain = 50



Copyright © 2017, Texas Instruments Incorporated

図 9-5. LM386 with Gain = 50

## 9.2.3.1 Design Requirements

表 9-3. Design Parameters

| DESIGN PARAMETER | EXAMPLE VALUE |
|------------------|---------------|
| Load Impedance   | 4 Ω to 32 Ω   |
| Supply Voltage   | 5 V to 12 V   |

# 9.2.3.2 Detailed Design Procedure

The Detailed Design Procedure can be found in the セクション 9.2.1.2 section.

## 9.2.3.3 Application Curve

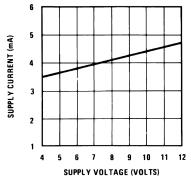
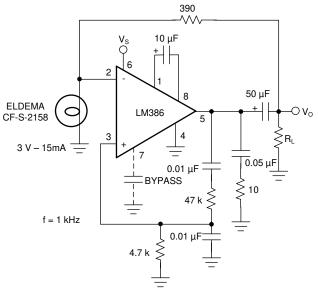




図 9-6. Supply Current vs Supply Voltage



## 9.2.4 Low Distortion Power Wienbridge Oscillator



Copyright © 2017, Texas Instruments Incorporated

図 9-7. Low Distortion Power Wienbridge Oscillator

## 9.2.4.1 Design Requirements

表 9-4. Design Parameters

| DESIGN PARAMETER | EXAMPLE VALUE |
|------------------|---------------|
| Load Impedance   | 4 Ω to 32 Ω   |
| Supply Voltage   | 5 V to 12 V   |

## 9.2.4.2 Detailed Design Procedure

The Detailed Design Procedure can be found in the セクション 9.2.1.2 section.

## 9.2.4.3 Application Curve

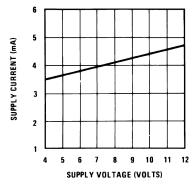
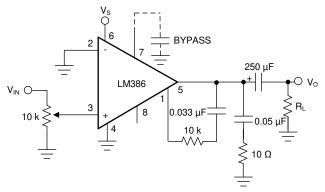



図 9-8. Supply Current vs Supply Voltage


Product Folder Links: LM386

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated



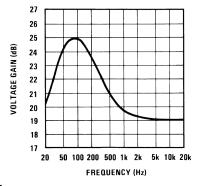
#### 9.2.5 LM386 with Bass Boost



Copyright © 2017, Texas Instruments Incorporated

図 9-9. LM386 with Bass Boost

#### 9.2.5.1 Design Requirements

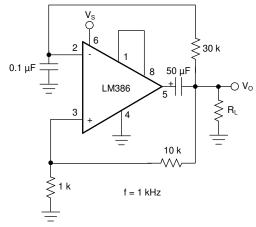

表 9-5. Design Parameters

| DESIGN PARAMETER | EXAMPLE VALUE |  |  |  |  |
|------------------|---------------|--|--|--|--|
| Load Impedance   | 4 Ω to 32 Ω   |  |  |  |  |
| Supply Voltage   | 5 V to 12 V   |  |  |  |  |

## 9.2.5.2 Detailed Design Procedure

The Detailed Design Procedure can be found in the セクション 9.2.1.2 section.

## 9.2.5.3 Application Curve




☑ 9-10. Voltage Gain vs Frequency

English Data Sheet: SNAS545



## 9.2.6 Square Wave Oscillator



Copyright © 2017, Texas Instruments Incorporated

図 9-11. Square Wave Oscillator

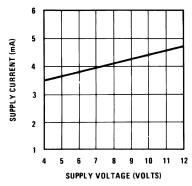
表 9-6. Design Parameters

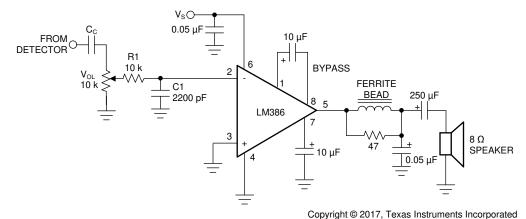
| DESIGN PARAMETER | EXAMPLE VALUE |  |  |  |  |
|------------------|---------------|--|--|--|--|
| Load Impedance   | 4 Ω to 32 Ω   |  |  |  |  |
| Supply Voltage   | 5 V to 12 V   |  |  |  |  |

# 9.2.6.1 Detailed Design Procedure

The Detailed Design Procedure can be found in the セクション 9.2.1.2 section.

# 9.2.6.2 Application Curve





図 9-12. Supply Current vs Supply Voltage

Product Folder Links: LM386

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated

#### 9.2.7 AM Radio Power Amplifier



------

図 9-13. AM Radio Power Amplifier

#### 9.2.7.1 Design Requirements

表 9-7. Design Parameters

| DESIGN PARAMETER | EXAMPLE VALUE |  |  |  |  |
|------------------|---------------|--|--|--|--|
| Load Impedance   | 4 Ω to 32 Ω   |  |  |  |  |
| Supply Voltage   | 5 V to 12 V   |  |  |  |  |

#### 9.2.7.2 Detailed Design Procedure

The Detailed Design Procedure can be found in the セクション 9.2.1.2 section.

#### 9.2.7.3 Application Curve

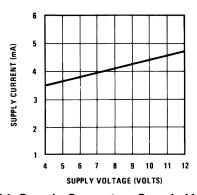
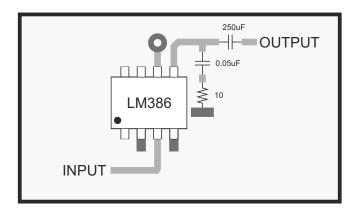



図 9-14. Supply Current vs Supply Voltage

# 10 Power Supply Recommendations

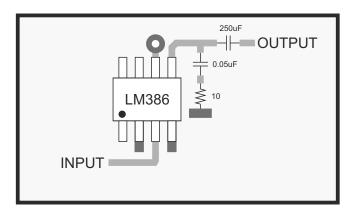
The LM386 is specified for operation up to 12 V or 18 V. The power supply should be well regulated and the voltage must be within the specified values. It is recommended to place a capacitor to GND close to the LM386 power supply pin.

English Data Sheet: SNAS545




# 11 Layout

# 11.1 Layout Guidelines


Place all required components as close as possible to the device. Use short traces for the output to the speaker connection. Route the analog traces far from the digital signal traces and avoid crossing them.

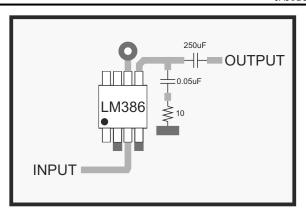
## 11.2 Layout Examples



- Connection to ground plane Connection to power 5V
- Top layer traces Top layer ground plane

図 11-1. Layout Example for Minimum Parts Gain = 20 dB on PDIP package




Connection to ground plane Connection to power 5V

Top layer traces Top layer ground plane

図 11-2. Layout Example for Minimum Parts Gain = 20 dB on SOIC package

English Data Sheet: SNAS545





Connection to ground plane Connection to power 5V

Top layer traces Top layer ground plane

☑ 11-3. Layout Example for Minimum Parts Gain = 20 dB on VSSOP package



# 12 Device and Documentation Support

- 12.1 Device Support
- 12.1.1 Development Support
- **12.2 Documentation Support**
- 12.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates — go to the product folder for your device on ti.com. In the upper right-hand corner, click the *Alert me* button to register and receive a weekly digest of product information that has changed (if any). For change details, check the revision history of any revised document.

Product Folder Links: LM386

#### 12.4 Community Resources

## 12.5 Trademarks

すべての商標は、それぞれの所有者に帰属します。

Submit Document Feedback

Copyright © 2023 Texas Instruments Incorporated



# Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com

9-Nov-2025

# **PACKAGING INFORMATION**

| Orderable part number | Status (1) | Material type | Package   Pins  | Package qty   Carrier | <b>RoHS</b> (3) | Lead finish/<br>Ball material | MSL rating/<br>Peak reflow | Op temp (°C) | Part marking (6) |
|-----------------------|------------|---------------|-----------------|-----------------------|-----------------|-------------------------------|----------------------------|--------------|------------------|
| LM386M-1/NOPB         | Active     | Production    | SOIC (D)   8    | 95   TUBE             | Yes             | SN                            | Level-1-260C-UNLIM         | 0 to 70      | LM386<br>M-1     |
| LM386M-1/NOPB.B       | Active     | Production    | SOIC (D)   8    | 95   TUBE             | Yes             | SN                            | Level-1-260C-UNLIM         | 0 to 70      | LM386<br>M-1     |
| LM386MMX-1/NOPB       | Active     | Production    | VSSOP (DGK)   8 | 3500   LARGE T&R      | Yes             | SN                            | Level-1-260C-UNLIM         | 0 to 70      | Z86              |
| LM386MMX-1/NOPB.B     | Active     | Production    | VSSOP (DGK)   8 | 3500   LARGE T&R      | Yes             | SN                            | Level-1-260C-UNLIM         | 0 to 70      | Z86              |
| LM386MX-1/NOPB        | Active     | Production    | SOIC (D)   8    | 2500   LARGE T&R      | Yes             | SN                            | Level-1-260C-UNLIM         | 0 to 70      | LM386<br>M-1     |
| LM386MX-1/NOPB.B      | Active     | Production    | SOIC (D)   8    | 2500   LARGE T&R      | Yes             | SN                            | Level-1-260C-UNLIM         | 0 to 70      | LM386<br>M-1     |
| LM386N-1/NOPB         | Active     | Production    | PDIP (P)   8    | 40   TUBE             | Yes             | NIPDAU                        | Level-1-NA-UNLIM           | 0 to 70      | LM<br>386N-1     |
| LM386N-1/NOPB.B       | Active     | Production    | PDIP (P)   8    | 40   TUBE             | Yes             | NIPDAU                        | Level-1-NA-UNLIM           | 0 to 70      | LM<br>386N-1     |
| LM386N-3/NOPB         | Active     | Production    | PDIP (P)   8    | 40   TUBE             | Yes             | NIPDAU                        | Level-1-NA-UNLIM           | 0 to 70      | LM<br>386N-3     |
| LM386N-3/NOPB.B       | Active     | Production    | PDIP (P)   8    | 40   TUBE             | Yes             | NIPDAU                        | Level-1-NA-UNLIM           | 0 to 70      | LM<br>386N-3     |
| LM386N-3/NOPBG4       | Active     | Production    | PDIP (P)   8    | 40   TUBE             | Yes             | NIPDAU                        | Level-1-NA-UNLIM           | 0 to 70      | LM<br>386N-3     |
| LM386N-3/NOPBG4.B     | Active     | Production    | PDIP (P)   8    | 40   TUBE             | Yes             | NIPDAU                        | Level-1-NA-UNLIM           | 0 to 70      | LM<br>386N-3     |
| LM386N-4/NOPB         | Active     | Production    | PDIP (P)   8    | 40   TUBE             | Yes             | NIPDAU                        | Level-1-NA-UNLIM           | 0 to 70      | LM<br>386N-4     |
| LM386N-4/NOPB.B       | Active     | Production    | PDIP (P)   8    | 40   TUBE             | Yes             | NIPDAU                        | Level-1-NA-UNLIM           | 0 to 70      | LM<br>386N-4     |
| LM386N-4/NOPBG4       | Active     | Production    | PDIP (P)   8    | 40   TUBE             | Yes             | NIPDAU                        | Level-1-NA-UNLIM           | 0 to 70      | LM<br>386N-4     |
| LM386N-4/NOPBG4.B     | Active     | Production    | PDIP (P)   8    | 40   TUBE             | Yes             | NIPDAU                        | Level-1-NA-UNLIM           | 0 to 70      | LM<br>386N-4     |

<sup>(1)</sup> Status: For more details on status, see our product life cycle.

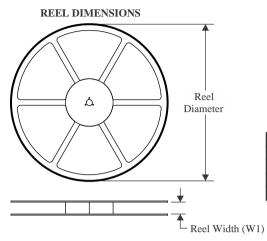


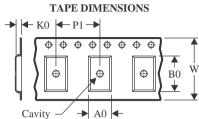
# **PACKAGE OPTION ADDENDUM**

www.ti.com 9-Nov-2025

- (2) Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.
- (3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.
- (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.
- (5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.
- (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

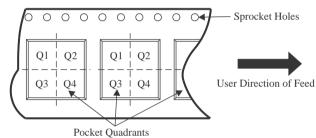
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

# **PACKAGE MATERIALS INFORMATION**

www.ti.com 15-Jul-2025

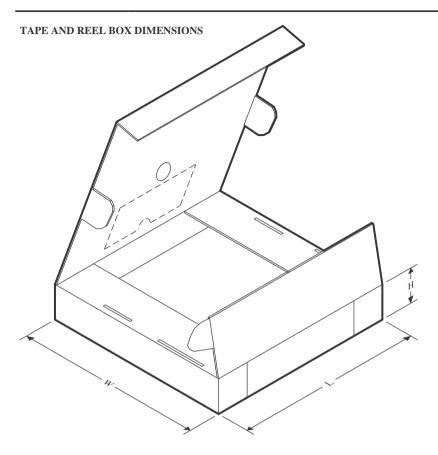

## TAPE AND REEL INFORMATION





|    | •                                                         |
|----|-----------------------------------------------------------|
| A0 | Dimension designed to accommodate the component width     |
| В0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

#### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



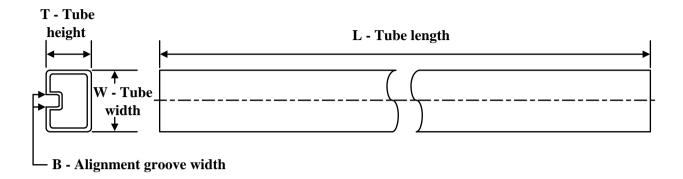

#### \*All dimensions are nominal

| Device          | Package<br>Type | Package<br>Drawing |   | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|-----------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| LM386MMX-1/NOPB | VSSOP           | DGK                | 8 | 3500 | 330.0                    | 12.4                     | 5.3        | 3.4        | 1.4        | 8.0        | 12.0      | Q1               |
| LM386MX-1/NOPB  | SOIC            | D                  | 8 | 2500 | 330.0                    | 12.4                     | 6.5        | 5.4        | 2.0        | 8.0        | 12.0      | Q1               |

**PACKAGE MATERIALS INFORMATION** 

www.ti.com 15-Jul-2025



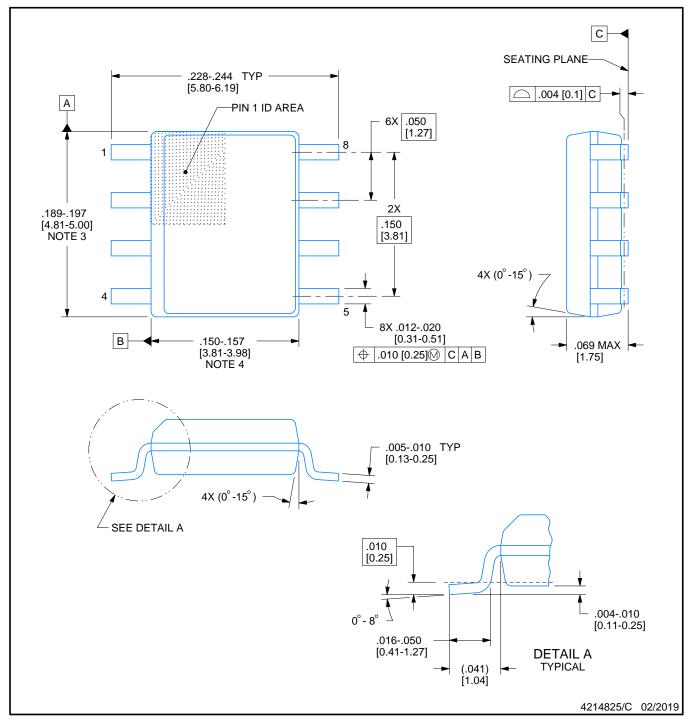

#### \*All dimensions are nominal

| Device          | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-----------------|--------------|-----------------|------|------|-------------|------------|-------------|
| LM386MMX-1/NOPB | VSSOP        | DGK             | 8    | 3500 | 367.0       | 367.0      | 35.0        |
| LM386MX-1/NOPB  | SOIC         | D               | 8    | 2500 | 367.0       | 367.0      | 35.0        |

# **PACKAGE MATERIALS INFORMATION**

www.ti.com 15-Jul-2025

## **TUBE**

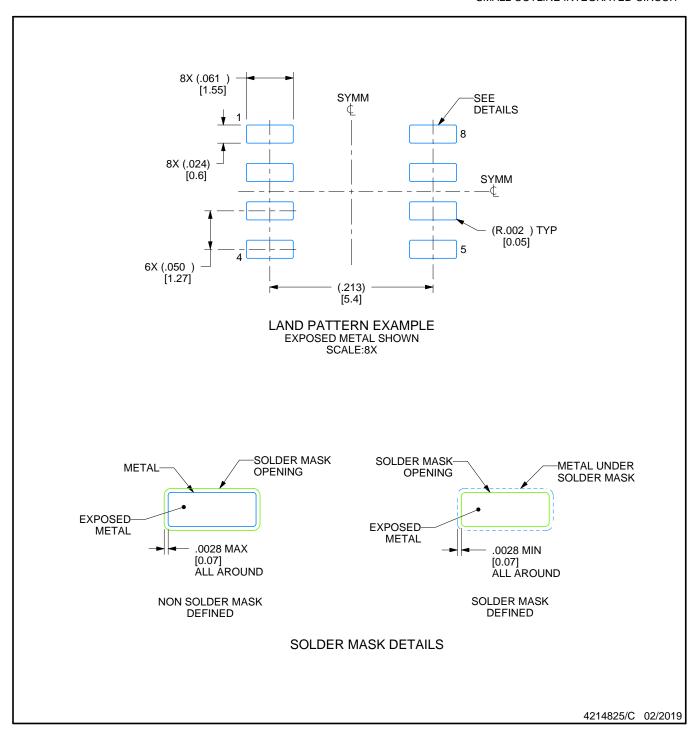



\*All dimensions are nominal

| Device            | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | T (µm) | B (mm) |
|-------------------|--------------|--------------|------|-----|--------|--------|--------|--------|
| LM386M-1/NOPB     | D            | SOIC         | 8    | 95  | 495    | 8      | 4064   | 3.05   |
| LM386M-1/NOPB.B   | D            | SOIC         | 8    | 95  | 495    | 8      | 4064   | 3.05   |
| LM386N-1/NOPB     | Р            | PDIP         | 8    | 40  | 502    | 14     | 11938  | 4.32   |
| LM386N-1/NOPB.B   | Р            | PDIP         | 8    | 40  | 502    | 14     | 11938  | 4.32   |
| LM386N-3/NOPB     | Р            | PDIP         | 8    | 40  | 502    | 14     | 11938  | 4.32   |
| LM386N-3/NOPB.B   | Р            | PDIP         | 8    | 40  | 502    | 14     | 11938  | 4.32   |
| LM386N-3/NOPBG4   | Р            | PDIP         | 8    | 40  | 502    | 14     | 11938  | 4.32   |
| LM386N-3/NOPBG4.B | Р            | PDIP         | 8    | 40  | 502    | 14     | 11938  | 4.32   |
| LM386N-4/NOPB     | Р            | PDIP         | 8    | 40  | 502    | 14     | 11938  | 4.32   |
| LM386N-4/NOPB.B   | Р            | PDIP         | 8    | 40  | 502    | 14     | 11938  | 4.32   |
| LM386N-4/NOPBG4   | Р            | PDIP         | 8    | 40  | 502    | 14     | 11938  | 4.32   |
| LM386N-4/NOPBG4.B | Р            | PDIP         | 8    | 40  | 502    | 14     | 11938  | 4.32   |



SMALL OUTLINE INTEGRATED CIRCUIT



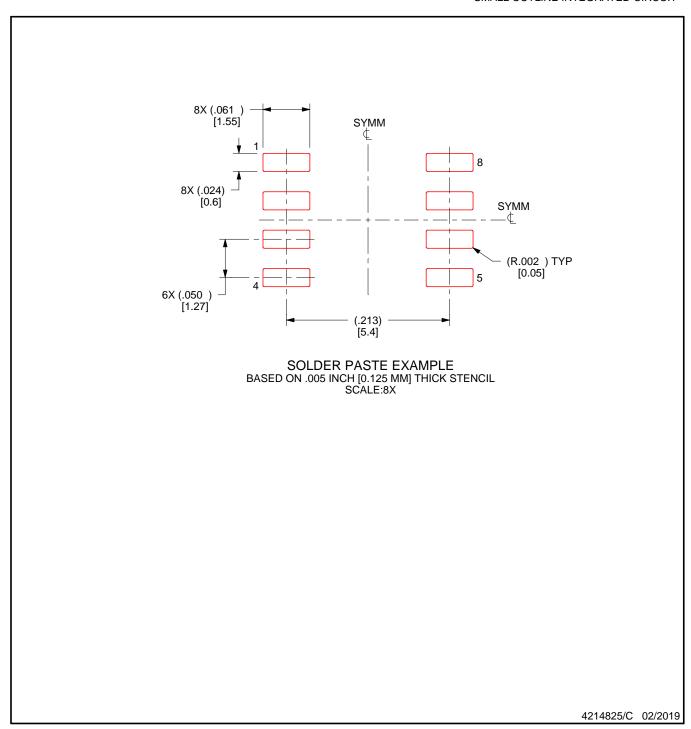

#### NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.



SMALL OUTLINE INTEGRATED CIRCUIT




NOTES: (continued)

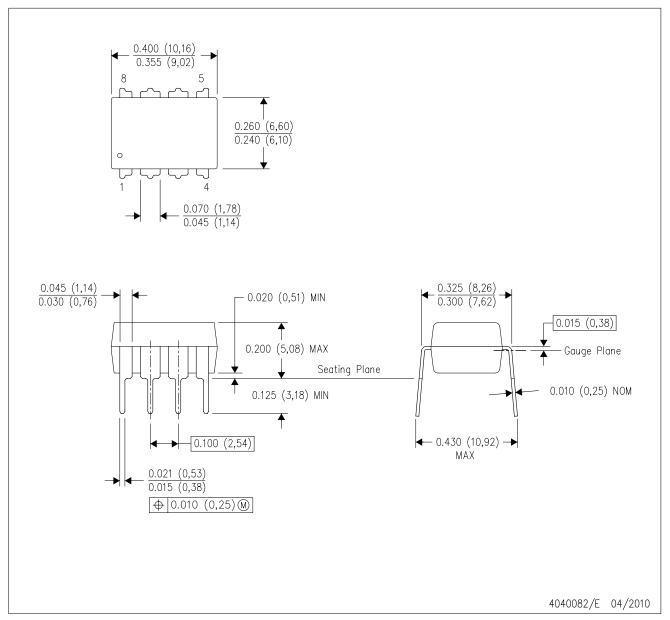
6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



SMALL OUTLINE INTEGRATED CIRCUIT




NOTES: (continued)

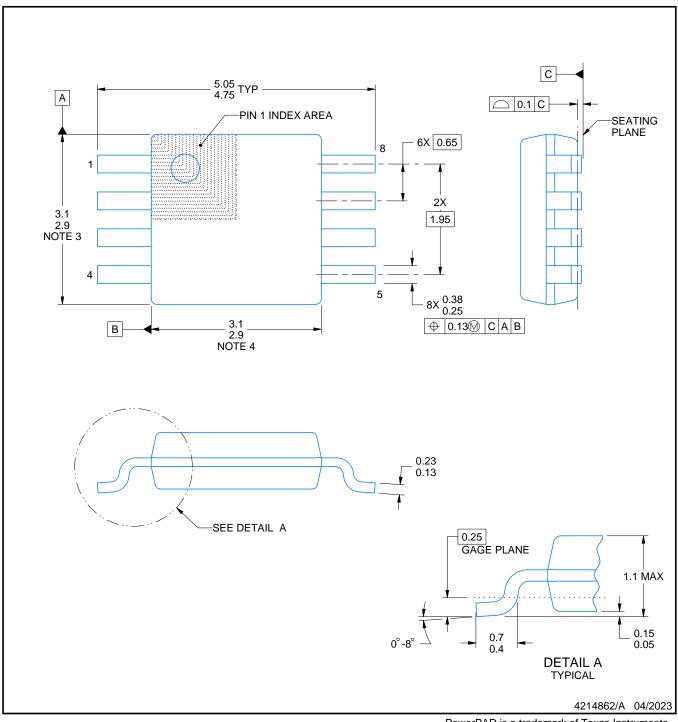
- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.



# P (R-PDIP-T8)

# PLASTIC DUAL-IN-LINE PACKAGE




NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.



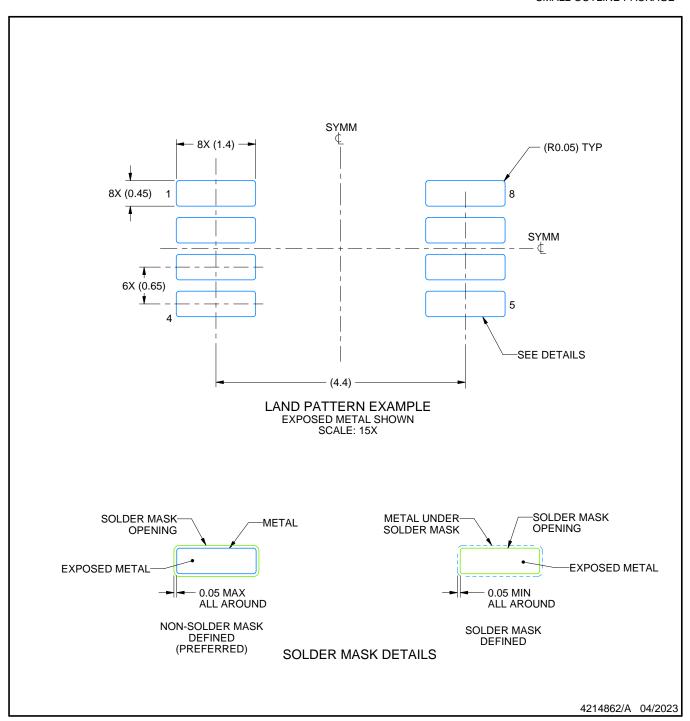


SMALL OUTLINE PACKAGE



#### NOTES:

PowerPAD is a trademark of Texas Instruments.

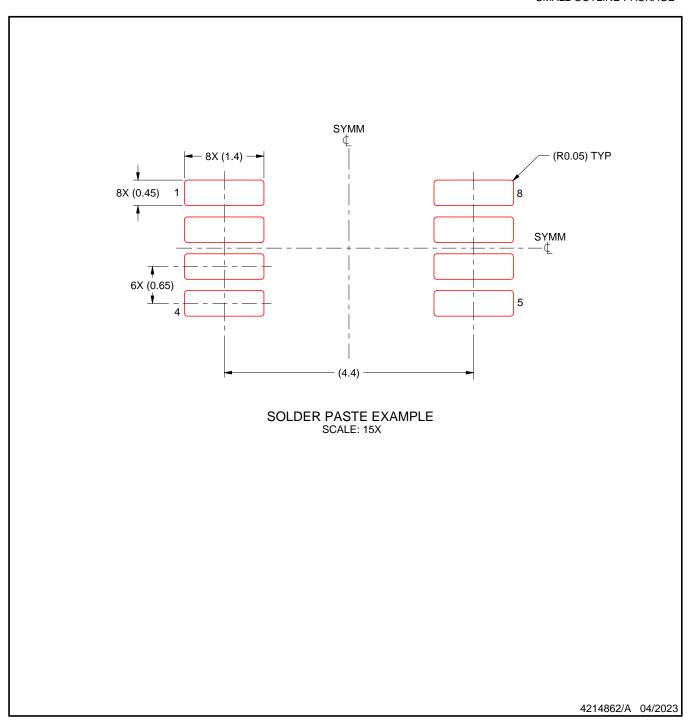

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

  2. This drawing is subject to change without notice.

  3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187.



SMALL OUTLINE PACKAGE




NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
- 9. Size of metal pad may vary due to creepage requirement.



SMALL OUTLINE PACKAGE



NOTES: (continued)

- 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 12. Board assembly site may have different recommendations for stencil design.



## 重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、TIの総合的な品質ガイドライン、 ti.com または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TIはそれらに異議を唱え、拒否します。

Copyright © 2025, Texas Instruments Incorporated

最終更新日: 2025 年 10 月