

I P5868

JAJSM77 - DECEMBER 2021

LP5868 8 × 18 LED マトリックス・ドライバ、8 ビット・アナログおよび 8/16 ビット PWM 調光付き

1 特長

- LED マトリクスのトポロジ:
 - 144 の LED ドットのための 8 のスキャン・スイッチ を備えた 18 の定電流シンク
 - 1~8 に構成できるスキャン・スイッチ
- 動作電圧範囲
 - V_{CC}/V_{LED} 範囲:2.7V~5.5V
 - 1.8V、3.3V、5V 互換のロジック・ピン
- 18 の高精度定電流シンク
 - 電流シンクあたり 0.1mA~50mA (V_{CC} ≥ 3.3V)
 - デバイス間誤差:±3% (チャネル電流 = 50mA)
 - チャネル間誤差:±3% (チャネル電流 = 50mA)
 - 位相シフトによる過渡電力の平衡化
- 超低消費電力:
 - シャットダウン・モード: I_{CC} ≤ 1µA (EN = LOW)
 - スタンバイ・モード: I_{CC} ≤ 10μA (EN = HIGH およ び CHIP EN = 0 (データ保持))
 - アクティブ・モード: I_{CC} = 4.3mA (標準値、チャネル 電流 = 5mA)
- フレキシブルな調光オプション:
 - 各 LED ドットを個別にオン / オフ制御
 - アナログ調光 (電流ゲイン制御)
 - すべての LED ドットに対するグローバル 3 ビッ 卜最大電流 (MC) 設定
 - 3 グループの 7 ビット・カラー電流 (CC) 設定 (赤、緑、青)
 - 各 LED ドットに対する個別の 8 ビット・ドット電 流 (DC) 設定
 - 可聴ノイズが発生しない周波数を使った PWM 調
 - すべての LED ドットに対するグローバル 8 ビッ トPWM 調光
 - LED ドットを任意に割り当てるための3つのプ ログラマブルな 8 ビット PWM 調光グループ
 - 各 LED ドットに対する個別の 8 ビットまたは 16 ビット PWM 調光
- データ通信量を最小限に抑えるための完全にアドレス 指定可能な SRAM
- 個別の LED ドット開放 / 短絡検出
- ゴースト除去および低輝度補償機能
- インターフェイス・オプション:
 - 1MHz (最大値) の I²C インターフェイス (IFS = LOW)
 - 12MHz (最大値) の SPI インターフェイス (IFS = HIGH)

2 アプリケーション

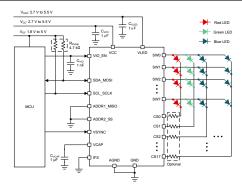
- LED アニメーションおよび表示:
 - キーボード、マウス、ゲーム用アクセサリ
 - 大型およびスマート家電
 - スマート・スピーカ、有線 / 無線スピーカ
 - オーディオ・ミキサ、DJ 機器、放送
 - アクセス機器、スイッチ、サーバー
- 光学モジュールの定電流シンク

3 概要

電子デバイスはますます高性能になり、アニメーションや 表示のために大量の LED を使用する必要があります。小 型ソリューション・サイズでユーザー体験を改善するには、 高性能 LED マトリクス・ドライバが必要です。

LP586x デバイスは高性能 LED マトリクス・ドライバのファ ミリです。本デバイスは $N \times 18$ の LED ドットまたは $N \times 6$ の RGB LED をサポートするための N 個 (N = 1/2/4/6/8/11) のスイッチング MOSFET を備えた 18 の定 電流シンクを内蔵しています。LP5868 は、最大 144 の LED ドットまたは 48 の RGB LED のための 8 個の MOSFET を内蔵しています。

LP5868 はアナログ調光法と PWM 調光法の両方をサポ ートしています。アナログ調光の場合、各 LED ドットを 256 ステップで調整できます。 PWM 調光の場合、内蔵の 8 ビットまたは 16 ビット構成可能 PWM ジェネレータが滑 らかで可聴ノイズが発生しない調光制御を実現します。各 LED ドットを 8 ビット・グループ PWM に任意に割り当てる ことで、調光制御を同時に実現することもできます。


LP5868 デバイスは、データ通信量を最小限に抑えるた めに、完全にアドレス指定可能な SRAM を実装していま す。上側と下側のゴーストを除去するため、ゴースト・キャ ンセル回路を内蔵しています。LP5868 は LED 開放 / 短 絡検出機能もサポートしています。LP5868 では、1MHz (最大値) の I^2C と 12MHz (最大値) の SPI が使用できま

製品情報

	Appropriate 11 to 1 to 4	
部品番号	パッケージ ⁽¹⁾	本体サイズ (公称)
LP5868	VQFN (40)	5mm × 5mm

利用可能なすべてのパッケージについては、このデータシートの 末尾にある注文情報を参照してください。

概略回路図

Table of Contents

1 特長	1	8.4 Device Functional Modes	23
2 アプリケーション		8.5 Programming	24
3 概要		8.6 Register Maps	27
4 Revision History		9 Application and Implementation	42
5 Device Comparison		9.1 Application Information	42
6 Pin Configuration and Functions		9.2 Typical Application	42
7 Specifications		10 Power Supply Recommendations	47
7.1 Absolute Maximum Ratings		11 Layout	48
7.2 ESD Ratings		11.1 Layout Guidelines	48
7.3 Recommended Operating Conditions		11.2 Layout Example	
7.4 Thermal Information		12 Device and Documentation Support	49
7.5 Electrical Characteristics	8	12.1 Receiving Notification of Documentation Update	es49
7.6 Timing Requirements	9	12.2 サポート・リソース	49
7.7 Typical Characteristics		12.3 Trademarks	49
8 Detailed Description		12.4 Electrostatic Discharge Caution	49
8.1 Overview		12.5 Glossary	49
8.2 Functional Block Diagram	13	13 Mechanical, Packaging, and Orderable	
8.3 Feature Description	14	Information	50

4 Revision History

DATE	REVISION	NOTES
December 2021	*	Initial Release

5 Device Comparison

PART NUMBER	MATERIAL	LED DOT NUMBER	PACKAGE ⁽²⁾	SOFTWARE COMPATIBLE
LP5861	LP5861RSMR	18 × 1 = 18	VQFN-32	
LP5862 LP5864	LP5862RSMR	- 18 × 2 = 36	VQFN-32	
	LP5862DBTR	10 ^ 2 - 30	TSSOP-38	
	LP5864RSMR	18 × 4 = 72 VQFN-	VQFN-32	
	LP5864MRSMR ⁽¹⁾	10 ^ 4 - 72	VQFN-32	
	LP5866RKPR		VQFN-40	Yes
LP5866	LP5866DBTR	18 × 6 = 108	TSSOP-38	
	LP5866MDBTR ⁽¹⁾		1330F-30	
LP5868	LP5868RKPR	18 × 8 = 144	VQFN-40	
LP5868	LP5868RKPR	- 18 × 11 = 198	VQFN-40	
LF 3000	LP5868MRKPR ⁽¹⁾	10 ^ 11 - 190	VQI 1N-40	

⁽¹⁾ Extended temperature devices, supporting –55°C to approximately 125°C operating ambient temperature.

⁽²⁾ The same packages are hardware compatible.

6 Pin Configuration and Functions

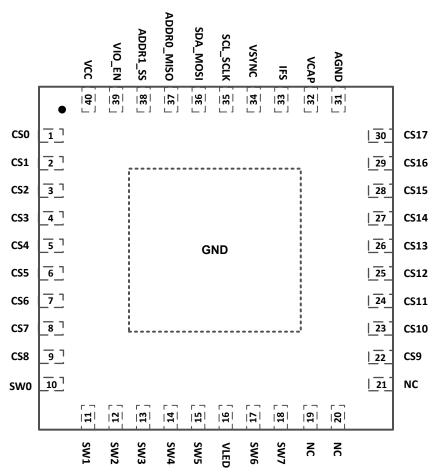


図 6-1. LP5868 RKP Package 40-Pin VQFN With Exposed Thermal Pad Top View

表 6-1. Pin Functions

F	PIN	1/0	DESCRIPTION	
NO.	NAME	I/O	DESCRIPTION	
1	CS0	0	Current sink 0. If not used, this pin must be left floating.	
2	CS1	0	Current sink 1. If not used, this pin must be left floating.	
3	CS2	0	Current sink 2. If not used, this pin must be left floating.	
4	CS3	0	Current sink 3. If not used, this pin must be left floating.	
5	CS4	0	Current sink 4. If not used, this pin must be left floating.	
6	CS5	0	Current sink 5. If not used, this pin must be left floating.	
7	CS6	0	Current sink 6. If not used, this pin must be left floating.	
8	CS7	0	Current sink 7. If not used, this pin must be left floating.	
9	CS8	0	Current sink 8. If not used, this pin must be left floating.	
10	SW0	0	High-side PMOS switch output for scan line 0. If not used, this pin must be left floating.	
11	SW1	0	High-side PMOS switch output for scan line 1. If not used, this pin must be left floating.	
12	SW2	0	High-side PMOS switch output for scan line 2. If not used, this pin must be left floating.	
13	SW3	0	High-side PMOS switch output for scan line 3. If not used, this pin must be left floating.	
14	SW4	0	High-side PMOS switch output for scan line 4. If not used, this pin must be left floating.	
15	SW5	0	High-side PMOS switch output for scan line 5. If not used, this pin must be left floating.	
16	VLED	Power	Power input for high-side switches	

表 6-1. Pin Functions (continued)

PIN		1/0	DECORPORA
NO.	NAME	I/O	DESCRIPTION
17	SW6	0	High-side PMOS switch output for scan line 6. If not used, this pin must be left floating.
18	SW7	0	High-side PMOS switch output for scan line 7. If not used, this pin must be left floating.
19	NC	-	No internal connection
20	NC	-	No internal connection
21	NC	-	No internal connection
22	CS9	0	Current sink 9. If not used, this pin must be left floating.
23	CS10	0	Current sink 10. If not used, this pin must be left floating.
24	CS11	0	Current sink 11. If not used, this pin must be left floating.
25	CS12	0	Current sink 12. If not used, this pin must be left floating.
26	CS13	0	Current sink 13. If not used, this pin must be left floating.
27	CS14	0	Current sink 14. If not used, this pin must be left floating.
28	CS15	0	Current sink 15. If not used, this pin must be left floating.
29	CS16	0	Current sink 16. If not used, this pin must be left floating.
30	CS17	0	Current sink 17. If not used, this pin must be left floating.
31	AGND	Ground	Analog ground. Must be connected to exposed thermal pad and common ground plane.
32	VCAP	0	Internal LDO output. A 1-µF capacitor must be connected between this pin with GND. Place the capacitor as close to the device as possible.
33	IFS	1	Interface type select. I ² C is selected when IFS is low. SPI is selected when IFS is high. A resistor must be connected between VIO and this pin.
34	VSYNC	1	External synchronize signal for display mode 2 and mode 3
35	SCL_SCLK	I	I ² C clock input or SPI clock input. Pull up to VIO when configured as I ² C.
36	SDA_MOSI	I/O	I ² C data input or SPI leader output follower input. Pull up to VIO when configured as I ² C.
37	ADDR0_MISO	I/O	I ² C address select 0 or SPI leader input follower output.
38	ADDR1_SS	I	I ² C address select 1 or SPI follower select.
39	VIO_EN	Power,I	Power supply for digital circuits and chip enable. A 1-nF capacitor must be connected between this pin with GND and be placed as close to the device as possible.
40	VCC	Power	Power supply for device. A 1-µF capacitor must be connected between this pin with GND and be placed as close to the device as possible.
Exposed Thermal Pad	GND	Ground	Must be connected to AGND and common ground plane.

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
Voltage on V _{CC} / V _{LED} / VIO / EN / CS / SW / SDA / SCL / SCLK / MOSI / MISO / SS / ADDR0 / ADDR1 / VSYNC / IFS		-0.3	6	V
Voltage on VCAP		-0.3	2	V
TJ	Junction temperature	– 55	150	°C
T _{stg}	Storage temperature	-65	150	°C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

7.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001, all pins ⁽¹⁾	±3000	V
V _(ESD)	Liectiostatic discharge	Charged device model (CDM), per ANSI/ESDA/ JEDEC JS-002, all pins ⁽²⁾	±1000	V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM MAX	UNIT
Input voltage on V _{CC}	Supply voltage	2.7	5.5	V
Input voltage on V _{LED}	LED supply voltage	2.7	5.5	V
Input voltage on VIO_EN		1.65	5.5	V
Voltage on SDA / SCL / SCLK / MOSI / MISO / SS / ADDRx / VSYNC / IFS			VIO	V
T _A	Operating ambient temperature	-40	85	°C
T _A	Operating ambient temperature - LP5860MRKPR, LP5864MRSMR, and LP5866MDBTR only	-55	125	°C

7.4 Thermal Information

		LP5860, LP5868, LP5866	
	THERMAL METRIC	RKP (VQFN)	UNIT
		40 PINS	
R _{0JA}	Junction-to-ambient thermal resistance	31.4	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	22.9	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	12.0	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	0.3	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	12.0	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	3.5	°C/W

7.5 Electrical Characteristics

 V_{CC} = 3.3V, V_{LED} = 3.8V, VIO = 1.8V and T_A = -40°C to +85°C (T_A = -55°C to +125°C for LP5860MRKPR, LP5864MRKPR, and LP5866MDBTR); Typical values are at T_A = 25°C (unless otherwise specified)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Power su	upplies					
V _{CC}	Device supply voltage		2.7		5.5	V
V _{UVR}	Undervoltage restart	V _{CC} rising, Test mode			2.5	V
V _{UVF}	Undervoltage shutdown	V _{CC} falling, Test mode	1.9			V
V _{UV_HYS}	Undervoltage shutdown hysteresis			0.3		V
V _{CAP}	Internal LDO output	V _{CC} = 2.7V to 5.5V		1.78		V
	Shutdown supply current I _{SHUTDOWN}	V _{EN} = 0V, CHIP_EN = 0 (bit), measure the total current from V _{CC} and V _{LED}		0.1	1	μΑ
I _{CC}	Standby supply current I _{STANDBY}	V_{EN} = 3.3V, CHIP_EN = 0 (bit), measure the total current from V_{CC} and V_{LED}		5.5	10	μΑ
	Active mode supply current I _{NORMAL}	V_{EN} = 3.3V, CHIP_EN = 1 (bit), all channels I _{OUT} = 5 mA (MC = 1, CC = 127, DC = 256), measure the current from V _{CC}		4.3	6	mA
V _{LED}	LED supply voltage		2.7		5.5	V
V _{VIO}	VIO supply voltage		1.65		5.5	V
I _{VIO}	VIO supply current	Interface idle			5	μΑ
Output S	tages	1				
	Constant current sink output range (CS0	2.7 <= V _{CC} < 3.3V, PWM = 100%	0.1		40	mA
I _{CS}	- CS17)	V _{CC} >= 3.3V PWM = 100%	0.1		50	mA
I _{LKG}	Leakage current (CS0 - CS17)	channels off, up_deghost = 0, V _{CS} =5V		0.1	1	μA
	Device to device current error, I _{ERR_DD} = (I _{AVE} -I _{SET})/I _{SET} ×100%	All channels ON. Current set to 0.1 mA. MC = 0 CC = 42 DC = 25 PWM = 100%	-7		7	%
		All channels ON. Current set to 1 mA. MC = 2 CC = 127 DC = 25 PWM = 100%	-5		5	%
I _{ERR_DD}		All channels ON. Current set to 10 mA. MC = 2 CC = 127 DC = 255 PWM = 100%	-3.5		3.5	%
		All channels ON. Current set to 25 mA. MC=7 CC=64 DC=255 PWM=100%	-3.5		3.5	%
		All channels ON. Current set to 50 mA. MC = 7 CC = 127 DC = 255 PWM = 100%	-3		3	%
		All channels ON. Current set to 0.1 mA. MC = 0 CC = 42 DC = 25 PWM = 100%	-5.5		5.5	%
		All channels ON. Current set to 1 mA. MC = 2 CC = 127 DC = 25 PWM = 100%	-5		5	%
I _{ERR_CC}	Channel to channel current error, I _{ERR_CC} = (I _{OUTX} -I _{AVE})/I _{AVE} ×100%	All channels ON. Current set to 10 mA. MC = 2 CC = 127 DC = 255 PWM = 100%	-4		4	%
		All channels ON. Current set to 25 mA. MC = 7 CC = 64 DC = 255 PWM = 100%	-3.5		3.5	%
		All channels ON. Current set to 50 mA. MC = 7 CC = 127 DC = 255 PWM = 100%	-3		3	%
£	LED DIAM fraguence	PWM_Fre = 1, PWM = 100%		62.5		KHz
f _{PWM}	LED PWM frequency	PWM_Fre = 0, PWM = 100%		125		KHz

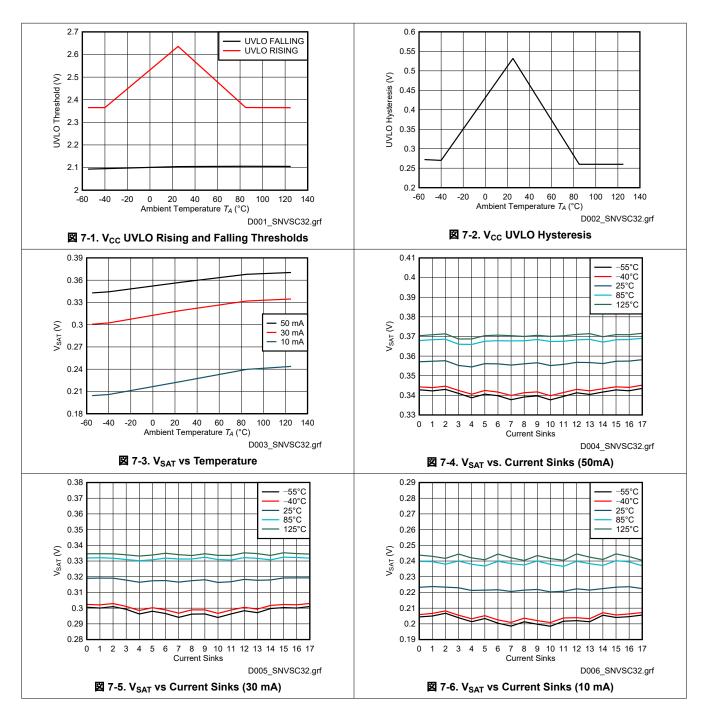
7.5 Electrical Characteristics (continued)

 V_{CC} = 3.3V, V_{LED} = 3.8V, VIO = 1.8V and T_A = -40°C to +85°C (T_A = -55°C to +125°C for LP5860MRKPR, LP5864MRKPR, and LP5866MDBTR); Typical values are at T_A = 25°C (unless otherwise specified)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		I _{OUT} = 50mA, decreasing output voltage, when the LED current has dropped 5%			0.45	V
V_{SAT}	Output saturation voltage	I _{OUT} = 30mA, decreasing output voltage, when the LED current has dropped 5%			0.4	V
		I _{OUT} = 10mA, decreasing output voltage, when the LED current has dropped 5%			0.35	V
		V _{LED} = 2.7 V, I _{SW} = 200 mA		450	550	mΩ
		V _{LED} = 2.7 V, I _{SW} = 200 mA, LP5860MRKPR and LP5864MRSMR		450	570	mΩ
		V _{LED} = 3.8 V, I _{SW} = 200mA		380	500	mΩ
R_{SW}	High-side PMOS ON resistance	V _{LED} = 3.8 V, I _{SW} = 200 mA, LP5860MRKPR and LP5864MRSMR		380	520	mΩ
		V _{LED} = 5 V, I _{SW} = 200 mA		310	450	mΩ
		V _{LED} = 5V, I _{SW} = 200 mA, LP5860MRKPR and LP5864MRSMR		310	490	mΩ
Logic Int	erfaces					
V _{LOGIC_IL}	Low-level input voltage, SDA, SCL, SCLK, MOSI, SS, ADDRx, VSYNC, IFS			0	.3 x VIO	V
V _{LOGIC_IH}	High-level input voltage, SDA, SCL, SCLK, MOSI, SS, ADDRx, VSYNC, IFS		0.7 x VIO			V
V _{EN_IL}	Low-level input voltage of EN				0.4	V
V _{EN_IH}	High-level input voltage of EN	When V _{CAP} powered up	1.4			V
I _{LOGIC_I}	Input current, SDA, SCL, SCLK, MOSI, SS, ADDRx		-1		1	μΑ
V _{LOGIC_O}	Low-level output voltage, SDA, MISO	I _{PULLUP} = 3 mA			0.4	V
V _{LOGIC_O} H	High-level output voltage, MISO	I _{PULLUP} = –3 mA	0.7 x VIO			V
Protectio	n Circuits					
V _{LOD_TH}	Thershold for channel open detection			0.25		V
V _{LSD_TH}	Thershold for channel short detection			V _{LED} – 1		V
T _{TSD}	Thermal-shutdown junction temperature			150		°C
T _{HYS}	Thermal shutdown temperature hysteresis			15		°C

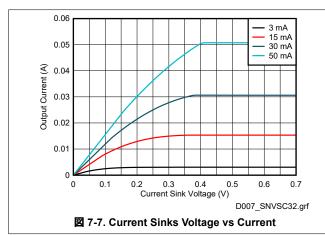
7.6 Timing Requirements

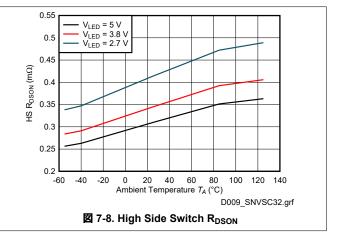
		MIN	NOM	MAX	UNIT
MISC. Tim	ming Requirements	'			
f _{OSC}	Internal oscillator frequency		31.2		MHz
f _{OSC_ERR}	Device to device oscillator frequency error	-3%		3%	
t _{POR_H}	Wait time from UVLO disactive to device NORMAL			500	μs
t _{CHIP_EN}	Wait time from setting Chip_EN (Register) =1 to device NORMAL			100	μs
t _{RISE}	LED output rise time		10		ns
t _{FALL}	LED output fall time		15		ns
t _{VSYNC_H}	The minimum high-level pulse width of VSYNC	200			μs
SPI timing	requirements				
f _{SCLK}	SPI Clock frequency			12	MHz


7.6 Timing Requirements (continued)

		MIN	NOM MAX	UNIT
1	Cycle time	83.3		ns
2	SS active lead-time	50		ns
3	SS active leg time	50		ns
4	SS inactive time	50		ns
5	SCLK low time	36		ns
6	SCLK high time	36		ns
7	MOSI set-up time	20		ns
8	MOSI hold time	20		ns
9	MISO disable time		30	ns
10	MISO data valid time		35	ns
C _b	Bus capacitance	5	40	pF
I ² C fast	mode timing requirements	<u>'</u>	'	
f _{SCL}	I ² C clock frequency	0	400	KHz
1	Hold time (repeated) START condition	600		ns
2	Clock low time	1300		ns
3	Clock high time	600		ns
4	Setup time for a repeated START condition	600		ns
5	Data hold time	0		ns
6	Data setup time	100		ns
7	Rise time of SDA and SCL		300	ns
8	Fall time of SDA and SCL		300	ns
9	Setup time for STOP condition	600		ns
10	Bus free time between a STOP and a START condition	1.3		μs
I ² C fast	mode plus timing requirements	1	'	
f _{SCL}	I ² C clock frequency	0	400	KHz
1	Hold time (repeated) START condition	600		ns
2	Clock low time	1300		ns
3	Clock high time	600		ns
4	Setup time for a repeated START condition	600		ns
5	Data hold time	0		ns
6	Data setup time	100		ns
7	Rise time of SDA and SCL		300	ns
8	Fall time of SDA and SCL		300	ns
9	Setup time for STOP condition	600		ns
10	Bus free time between a STOP and a START condition	1.3		μs

7.7 Typical Characteristics

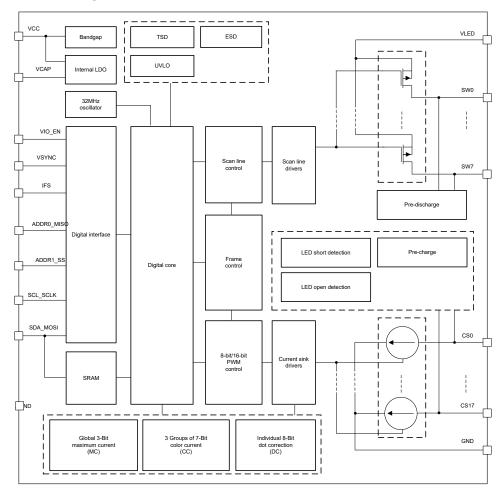

Unless specified otherwise, typical characteristics apply over the full ambient temperature range ($-55^{\circ}C < T_A < +125^{\circ}C$ for LP5866MDBTR while $-40^{\circ}C < T_A < +85^{\circ}C$ for the other devices), $V_{CC} = 3.3$ V, $V_{IO} = 3.3$ V, $V_{LED} = 5$ V, $I_{LED_Peak} = 50$ mA, $C_{VLED} = 1$ μ F, $C_{VCC} = 1$ μ F.



7.7 Typical Characteristics (continued)

Unless specified otherwise, typical characteristics apply over the full ambient temperature range ($-55^{\circ}C < T_A < +125^{\circ}C$ for LP5866MDBTR while $-40^{\circ}C < T_A < +85^{\circ}C$ for the other devices), V_{CC} = 3.3 V, V_{IO} = 3.3 V, V_{LED} = 5 V, I_{LED_Peak} = 50 mA, C_{VLED} = 1 μ F, C_{VCC} = 1 μ F.

8 Detailed Description


8.1 Overview

The LP5868 is an 8 × 18 LED matrix driver. The device integrates 8 switching FETs with 18 constant current sinks. One LP5868 device can drive up to 144 LED dots or 48 RGB pixels by using time-multiplexing matrix scheme.

The LP5868 supports both analog dimming and PWM dimming methods. For analog dimming, the current gain of each individual LED dot can be adjusted with 256 steps through 8-bits dot correction. For PWM dimming, the integrated 8-bits or 16-bits configurable, > 20-KHz PWM generators for each LED dot enable smooth, vivid animation effects without audible noise. Each LED can also be mapped into a 8-bits group PWM to achieve the group control with minimum data traffic.

The LP5868 device implements full addressable SRAM. The device supports entire SRAM data refresh and partial SRAM data update on demand to minimize the data traffic. The LP5868 implements the ghost cancellation circuit to eliminate both upside and downside ghosting. The LP5868 also uses low brightness compensation technology to support high density LED pixels. Both 1-MHz (maximum) I²C and 12-MHz (max.) SPI interfaces are available in the LP5868.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Time-Multiplexing Matrix

The LP5868 device uses time-multiplexing matrix scheme to support up to 144 LED dots with a single chip. The device integrates 18 current sinks with 8 scan lines to drive $18 \times 8 = 144$ LED dots or $6 \times 8 = 48$ RGB pixels. In matrix control scheme, the device scans from Line 0 to Line 7 sequentially as shown in \boxtimes 8-1. Current gain and PWM duty registers are programmable for each LED dot to support individual analog and PWM dimming.

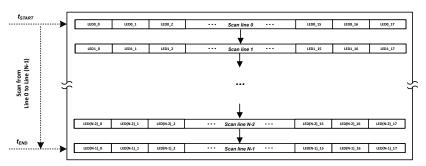
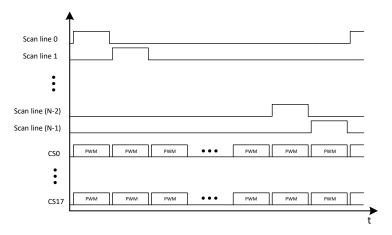



図 8-1. Scan Line Control Scheme

There are 8 high-side p-channel MOSFETs (PMOS) integrated in LP5868 device. Users can flexibly set the active scan numbers from 1 to 8 by configuring the 'Max_Line_Num' in Dev_initial register. The time-multiplexing matrix timing sequence follows the \boxtimes 8-2.

図 8-2. Time-Multiplexing Matrix Timing Sequence

One cycle time of the line switching can be calculated as below:

$$t_{line_switch} = t_{PWM} + t_{SW_BLK} + 2 \times t_{phase_shift}$$
 (1)

- t_{PWM} is the current sink active time, which equals to 8 us (PWM frequency set at 125 kHz) or 16 us (PWM frequency set at 62.5 kHz) by configuring 'PWM_Fre' in Dev_initial register.
- t_{SW_BLK} is the switch blank time, which equals to 1 us or 0.5 us by configuring 'SW_BLK' in Dev_config1 register.
- t_{phase_shift} is the PWM phase shift time, which equal to 0 or 125 ns by configuring 'PWM_Phase_Shift' in Dev_config1 register.

Total display time for one complete sub-period is t_{sub_period} and it can be calculated by the following equation:

$$t_{\text{sub_period}} = t_{\text{line_switch}} \times \text{Scan_line\#}$$
 (2)

Scan line# is the scan line number determined by 'Max Line Num' in Dev initial register.

The time-multiplexing matrix scheme time diagram is shown in 🗵 8-3. The t_{CS_ON_Shift} is the current sink turning on shift by configuring 'CS_ON_Shift' bit in Dev_config1 register.

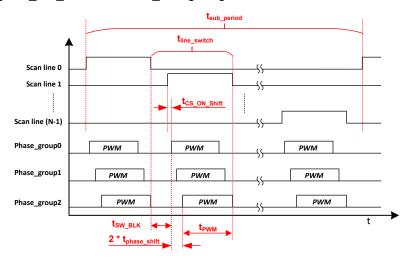


図 8-3. Time-Multiplexing Matrix Timing Diagram

The LP5868 device implements deghosting and low brightness compensation to remove the side effects of matrix topology:

- **Deghosting**: Both upside deghosting and downside deghosting are implemented to eliminate the LED's unexpected weak turn-on.
 - Upside_deghosting: discharge each scan line during its off state. By configuring the 'Up_Deghost' in
 Dev config3 register, the LP5868 discharges and clamp the scan line switch to a certain voltage.
 - Downside_deghosting: pre-charge each current sink voltage during its OFF state. The deghosting capability can be adjusted through the 'Down_Deghost' in Dev_config3 register.
- Low Brightness Compensation: 3 groups compensation are implemented to overcome the color-shift and non-uniformity in low brightness conditions. The compensation capability can be through 'Comp_Group1', 'Comp Group2', and 'Comp Group3' in Dev config2 register.
 - Compensation group 1: CS0, CS3, CS6, CS9, CS12, CS15.
 - Compensation_group 2: CS1, CS4, CS7, CS10, CS13, CS16.
 - Compensation_group 3: CS2, CS5, CS8, CS11, CS14, CS17.

8.3.2 Analog Dimming (Current Gain Control)

Analog dimming of LP5868 is achieved by configuring the current gain control. There are several methods to control the current gain of each LED.

- Global 3-bits Maximum Current (MC) setting without external resistor
- 3 groups of 7-bits Color Current (CC) setting
- Individual 8-bit Dot Current (DC) setting

Global 3-Bits Maximum Current (MC) Setting

The MC is used to set the maximum current I_{OUT_MAX} for each current sink and this current is the maximum peak current for each LED dot. The MC can be set with 3 bits (8 steps) from 3 mA to 50 mA. When the device is powered on, the MC data is set to default value, which is 15 mA.

For data refresh Mode 1, MC data is effective immediately after new data is updated. For Mode 2 and Mode 3, to avoid unexpected MC data change during high speed data refreshing, MC data must be changed when all channels are off and new MC data is only be updated when the 'Chip_EN' bit in Chip_en register is set to 0, and after the 'Chip_EN' returns to 1, the new MC data is effective. 'Down_Deghost' and 'Up_Deghost' in Dev_config3 work in the similar way with MC.

表 8-1. Maximum Current (MC) Register Setting

3-BITS MAXIMUM_C	URRENT REGISTER	I _{OUT_MAX}			
Binary	Decimal	mA			
000	0	3			
001	1	5			
010	2	10			
011 (Default)	3 (Default)	15 (Default)			
100	4	20			
101	5	30			
110	6	40			
111	7	50			

3 Groups of 7-Bits Color Current (CC) Setting

The LP5868 device is able to adjust the output current of three color groups separately. For each color, the device has 7-bits data in 'CC_Group1', 'CC_Group2', and 'CC_Group3'. Thus, all color group currents can be adjusted in 128 steps from 0% to 100% of the maximum output current, I_{OUT_MAX}.

The 18 current sinks have fixed mapping to the three color groups:

- CC-Group 1: CS0, CS3, CS6, CS9, CS12, CS15.
- CC-Group 2: CS1, CS4, CS7, CS10, CS13, CS16.
- CC-Group 3: CS2, CS5, CS8, CS11, CS14, CS17.

表 8-2. 3 Groups of 7-bits Color Current (CC) Setting

22 of the control of								
7-BITS CC_GROUP1/CC_GRO	DUP2/CC_GROUP3 REGISTER	RATIO OF OUTPUT CURRENT TO I _{OUT_MAX}						
Binary	Decimal	%						
000 0000	0	0						
000 0001	1	0.79						
000 0010	2	1.57						
100 0000 (default)	64 (default)	50.4 (default)						
111 1101	125	98.4						
111 1110	126	99.2						
111 1111	127	100						

Individual 8-bit Dot Current (DC) Setting

The LP5868 can individually adjust the output current of each LED by using dot current function through DC setting. The device allows the brightness deviations of the LEDs to adjusted be individually. Each output DC is programmed with an 8-bit depth, so the value can be adjusted with 256 steps within the range from 0% to 100% of ($I_{OUT\ MAX} \times CC/127$).

表 8-3. Individual 8-bit Dot Current (DC) Setting

8-BIT DC I	REGISTER	RATIO OF OUTPUT CURRENT TO I _{OUT_MAX} × CC/127				
Binary	Decimal	%				
0000 0000	0	0				
0000 0001	1	0.39				
0000 0010	2	0.78				
1000 0000 (Default)	128 (Default)	50.2 (Default)				

表 8-3. Individual 8-bit Dot Current (DC) Setting (continued)

8-BIT DC I	REGISTER	RATIO OF OUTPUT CURRENT TO I _{OUT_MAX} × CC/127
Binary	Decimal	%
1111 1101	253	99.2
1111 1110	254	99.6
1111 1111	255	100

In summary, the current gain of each current sink can be calculated as below:

$$I_{OUT}$$
 (mA) = $I_{OUT MAX} \times (CC/127) \times (DC/255)$ (3)

For time-multiplexing scan scheme, if the scan number is N, each LED dot's average current I_{AVG} is shown as below:

$$I_{AVG}$$
 (mA) = $I_{OUT}/N = I_{OUT} MAX \times (CC/127) \times (DC/255)/N$ (4)

8.3.3 PWM Dimming

There are several methods to control the PWM duty cycle of each LED dot.

Individual 8-bit / 16-bit PWM for Each LED Dot

Every LED has an individual 8-bit or 16-bit PWM register that is used to change the LED brightness by PWM duty. The LP5868 uses an enhanced spectrum PWM (ES-PWM) algorithm to achieve 16-bit depth with high refresh rate and this can avoid flicker under high speed camera. Comparing with conventional 8-bit PWM, 16-bit PWM can help to achieve ultimate high dimming resolution in LED animation applications.

3 Programmable Groups of 8-bit PWM Dimming

The group PWM Control is used to select LEDs into 1 to 3 groups where each group has a separate register for duty cycle control. Every LED has 2-bit selection in LED_DOT_GROUP Registers (x = 0, 1, ..., 54.) to select whether it belongs to one of the three groups or not:

- 00: not a member of any group
- 01: member of group 1
- 10: member of group 2
- 11: member of group 3

8-bit PWM for Global Dimming

The Global PWM Control function affects all LEDs simultaneously.

The final PWM duty cycle can be calculated as below:

$$PWM_{\text{Final}(8-\text{bit})} = PWM_{\text{Individual}(8-\text{bit})} \times PWM_{\text{Group}(8-\text{bit})} \times PWM_{\text{Global}(8-\text{bit})}$$
(5)

The LP5868 supports 125-kHz or 62.5-kHz PWM output frequency. The PWM frequency is selected by configuring the 'PWM_Fre' in Dev_initial register. An internal 31.2-MHz oscillator is used for generating PWM outputs. The oscillator's high accuracy design ($f_{OSC_ERR} \le \pm 2\%$) enables a better synchronization if multiple LP5868 devices are connected together.

A PWM phase-shifting scheme is implemented in each current sink to avoid the current overshot when turning on simultaneously. As the LED drivers are not activated simultaneously, the peak load current from the pre-stage power supply is significantly decreased. This scheme also reduces input-current ripple and ceramic-capacitor audible ringing. LED drivers are grouped into three different phases. By configuring the 'PWM_Phase_Shift' in Dev_config1 register, which is default off, the LP5868 supports t_{phase_shift} = 125-ns shifting time shown in \boxtimes 8-4.

Phase 1: CS0, CS3, CS6, CS9, CS12, CS15.

- Phase 2: CS1, CS4, CS7, CS10, CS13, CS16.
- Phase 3: CS2, CS5, CS8, CS11, CS14, CS17.

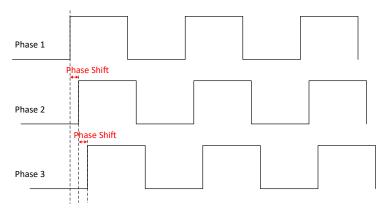


図 8-4. Phase Shift

To avoid high current sinks output ripple during line switching, current sinks can be configured to turn on with 1 clock delay (62.5 ns or 31.25 ns according to the PWM frequency) after lines turn on, as shown in ⊠ 8-3. This function can be configured by 'CS ON Shift' in Dev config1 register.

The LP5868 allows users to configure the dimming scale either exponentially (Gamma Correction) or linearly through the 'PWM_Scale_Mode' in Dev_config1 register. If a human-eye-friendly dimming curve is desired, using the internal fixed exponential scale is an easy approach. If a special dimming curve is desired, TI recommends using the linear scale with software correction. The LP5868 supports both linear and exponential dimming curves under 8-bit and 16-bit PWM depth. \boxtimes 8-5 is an example of 8-bit PWM depth.

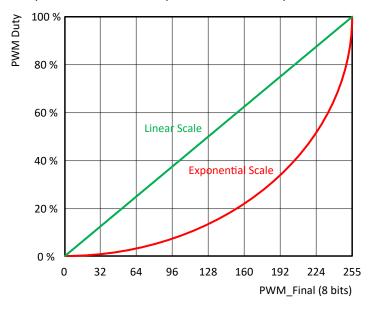


図 8-5. Linear and Exponential Dimming Curves

In summary, the PWM control method is illustrated as **8-6**:

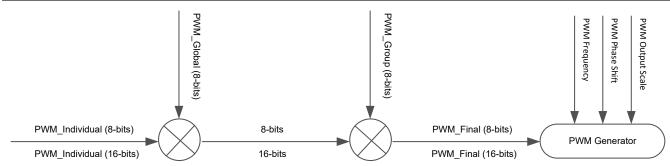


図 8-6. PWM Control Scheme

8.3.4 ON and OFF Control

The LP5868 device supports the individual ON and OFF control of each LED. For indication purpose, users can turn on and off the LED directly by writing 1-bit ON and OFF data to the corresponding Dot_onoffx (x = 0, 1, ..., 32) register.

8.3.5 Data Refresh Mode

The LP5868 supports three data refresh modes: Mode 1, Mode 2, and Mode 3, by configuring 'Data_Ref_Mode' in Dev_initial register.

Mode 1: 8-bit PWM data without VSYNC command. Data is sent out for display instantly after received. With Mode 1, users can refresh the corresponding dots' data only instead of updating the whole SRAM. It is called 'on demand data refresh', which can save the total data volume effectively. As shown in ☑ 8-7, the red LED dots can be refreshed after sending the corresponding data while the others kept the same with last frame.

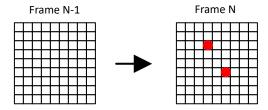


図 8-7. On Demand Data Refresh - Mode 1

Mode 2: 8-bit PWM data with VSYNC command. Data is held and sent out simultaneously by frame after receiving the VSYNC command.

Mode 3: 16-bit PWM data with VSYNC command. Data is held and sent out simultaneously by frame after receiving the VSYNC command.

Frame control is implemented in Mode 2 and Mode 3. Instead of refreshing the output instantly after data is received (Mode 1), the device holds the data and refreshes the whole frame data by a fixed frame rate, f_{VSYNC}. Usually, 24 Hz, 50 Hz, 60 Hz, 120Hz or even higher frame rate is selected to achieve vivid animation effects. Whole SRAM Data Refresh is shown in \boxtimes 8-8, a new frame is updated after receiving the VSYNC command.

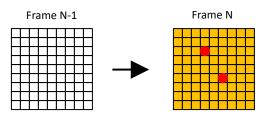


図 8-8. Whole SRAM Data Refresh

Comparing with Mode 1, Mode 2 and Mode 3 provide a better synchronization when multiple LP5868 devices used together. A high-level pulse width longer than t_{SYNC_H} is required at the beginning of each VSYNC frame. \boxtimes 8-9 shows the VSYNC connections and \boxtimes 8-10 shows the timing requirements.

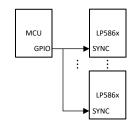


図 8-9. Multiple Devices Sync



図 8-10. VSYNC Timing

Table 8-4 is the summary of the three data refresh modes.

表 8-4. Data Refresh Mode

MODE TYPE	PWM RESOLUTION	PWM OUTPUT	EXTERNAL VSYNC
Mode 1	8 Bits	Data update instantly	No
Mode 2	8 Bits	Data update by frame	Yes
Mode 3	16 Bits	Data update by frame	165

8.3.6 Full Addressable SRAM

SRAM is implemented inside the LP5868 device to support data writing and reading at the same time.

Although data refresh mechanisms are not the same for Mode 1 and Mode 2, and Mode 3, the data writing and reading follow the same method. Uses can update partial of the SRAM data only or the whole SRAM page simultaneously. The LP5868 supports auto-increment function to minimize data traffic and increase data transfer efficiency.

Please note that 16-bit PWM (Mode 3) and 8-bit PWM (Mode 1 and Mode 2) are assigned with different SRAM addresses.

8.3.7 Protections and Diagnostics

LED Open Detection

The LP5868 includes LED open detection (LOD) for the fault caused by any opened LED dot. The threshold for LED open is 0.25-V typical. LED open detection is only performed when PWM \geq 25 (Mode 1 and Mode 2) or PWM \geq 6400 (Mode 3) and voltage on CSn is detected lower than open threshold for continuously 4 subperiods.

☑ 8-11 shows the detection circuit of LOD function. When open fault is detected, 'Global_LOD' bit in Fault_state register is set to 1 and detailed fault state for each LED is also be monitored in register Dot_lodx (x = 0, 1, ..., 32). All open fault indicator bits can be cleared by setting LOD_clear = 0Fh after the open condition is removed.

LOD removal function can be enabled by setting 'LOD_removal' bit in Dev_config2 register to 1. This function turns off the current sink of the open channel when scanning to the line where the opened LED is included.

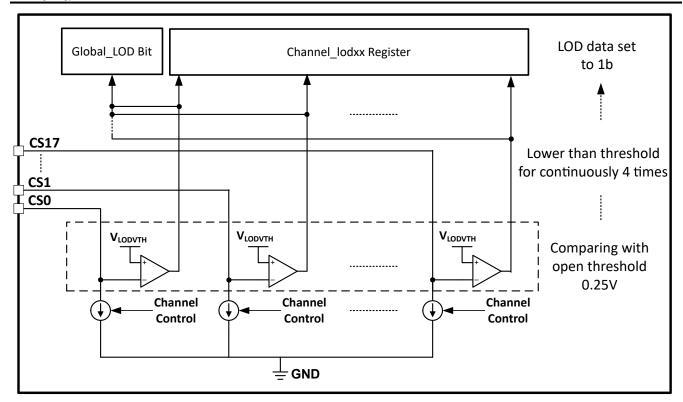


図 8-11. LOD Circuits

LED Short Detection

The LP5868 includes LED short detection (LSD) for the fault caused by any shorted LED. Threshold for channel short is (VLED - 1) V typical. LED short detection only performed when PWM \geq 25 (Mode 1 and Mode 2) or PWM \geq 6400 (Mode 3) and voltage on CSn is detected higher than short threshold for continuously 4 subperiods. As there is parasitic capacitance for the current sink, to make sure the LSD result is correct, TI recommends to set the LED current higher than 0.5 mA.

図 8-12 shows the detection circuit of LSD function. When short fault is detected, 'Global_LSD bit' in Fault_state register is set to 1 and detailed fault state for every channel is also monitored in register Dot_lsdx (x = 0, 1, ..., 32). All short fault indicator bits can be cleared by setting LSD clear = 0Fh after the short condition is removed.

LSD removal function can be enabled by setting 'LSD_removal' bit in Dev_config2 register to 1. This function turns off the upside deghosting function of the scan line where short LED is included.

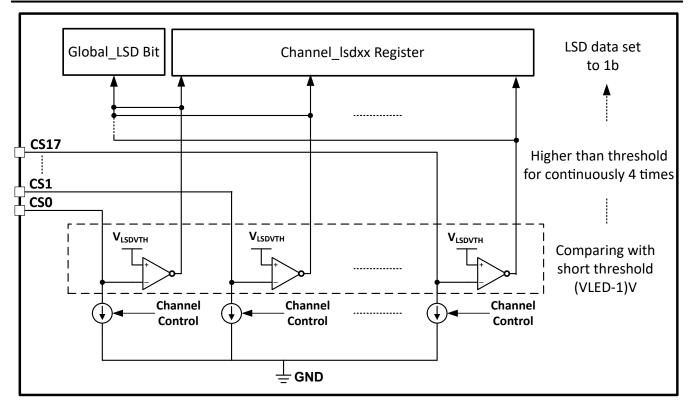


図 8-12. LSD Circuit

Thermal Shutdown

The LP5868 device implements thermal shutdown mechanism to protect the device from damage due to overheating. When the junction temperature rises to 160°C (typical) and above, the device switches into shutdown mode. The LP5868 exits thermal shutdown when the junction temperature of the device drops to 145°C (typical) and below.

UVLO (Undervoltage Lockout)

The LP5868 has an internal comparator that monitors the voltage at VCC. When VCC is below V_{UVF} , reset is active and the LP5868 enters INITIALIZATION state.

8.4 Device Functional Modes

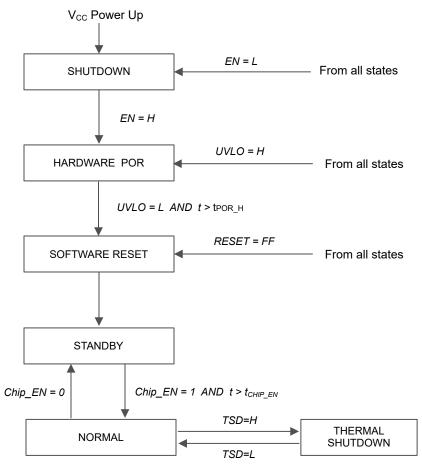


図 8-13. Device Functional Modes

- Shutdown: The device enters into shutdown mode from all states on VCC power up or EN pin is low.
- Hardware POR: The device enters into hardware POR when Enable pin is high or VCC fall under V_{UVF} causing UVLO = H from all states.
- Software reset: The device enters into software reset mode when VCC rise higher than V_{UVR} with the time t > t_{POR_H}. In this mode, all the registers are reset. Entry can also be from any state when the RESET (register) = FFh or UVLO is low.
- Standby: The device enters the standby mode when Chip_EN (register) = 0. In this mode, the device enters into low power mode, but the I²C/SPI are still available for Chip_EN only and the registers' data are retained.
- Normal: The device enters the normal mode when 'Chip_EN' = 1 with the time t > t_{CHIP_EN}.
- Thermal shutdown: The device automatically enters the thermal shutdown mode when the junction temperature exceeds 160°C (typical). If the junction temperature decreases below 145°C (typical), the device returns to the normal mode.

8.5 Programming

Interface Selection

The LP5868 supports two communication interfaces: I²C and SPI. If IFS is high, it enters into SPI mode. If IFS is low, it enters into I²C mode.

表 8-5. Interface Selection

INTERFACE TYPE	ENTRY CONDITION
I ² C	IFS = Low
SPI	IFS = High

I²C Interface

The LP5868 is compatible with I²C standard specification. The device supports both fast mode (400-KHz maximum) and fast plus mode (1-MHz maximum).

I²C Data Transactions

The data on SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, state of the data line can only be changed when clock signal is LOW. START and STOP conditions classify the beginning and the end of the data transfer session. A START condition is defined as the SDA signal transitioning from HIGH to LOW while SCL line is HIGH. A STOP condition is defined as the SDA transitioning from LOW to HIGH while SCL is HIGH. The bus leader always generates START and STOP conditions. The bus is considered to be busy after a START condition and free after a STOP condition. During data transmission, the bus leader can generate repeated START conditions. First START and repeated START conditions are functionally equivalent.

Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated by the leader. The leader releases the SDA line (HIGH) during the acknowledge clock pulse. The device pulls down the SDA line during the 9th clock pulse, signifying an acknowledge. The device generates an acknowledge after each byte has been received.

There is one exception to the acknowledge after every byte rule. When the leader is the receiver, it must indicate to the transmitter an end of data by not acknowledging (negative acknowledge) the last byte clocked out of the follower. This negative acknowledge still includes the acknowledge clock pulse (generated by the leader), but the SDA line is not pulled down.

I²C Data Format

The address and data bits are transmitted MSB first with 8-bits length format in each cycle. Each transmission is started with Address Byte 1, which are divided into 5-bits of the chip address, 2 higher bits of the register address, and 1 read and write bit. The other 8 lower bits of register address are put in Address Byte 2. The device supports both independent mode and broadcast mode. The auto-increment feature allows writing and reading several consecutive registers within one transmission. If not consecutive, a new transmission must be started.

表 8-6. I²C Data Format

Address Byte 1			Chip Address	Register	R/W				
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Independent	1	0	0	ADDR1	ADDR0	9 th bit	8 th bit	R: 1 W: 0	
Broadcast	1	0	1	0	1	9 011		IX. 1 VV. U	
	Register Address								
Address Byte 2	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
	7 th bit	6 th bit	5 th bit	4 th bit	3 th bit	2 th bit	1 th bit	0 th bit	

Product Folder Links: LP5868

図 8-14. I²C Write Timming

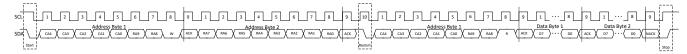


図 8-15. I²C Read Timing

Multiple Devices Connection

The LP5868 enters into I 2 C mode if IFS is connected to GND. The ADDR0/1 pin is used to select the unique I 2 C follower address for each device. The SCL and SDA lines must each have a pullup resistor (4.7 K Ω for 400 KHz, 2 K Ω for 1 MHz) placed somewhere on the line and remain HIGH even when the bus is idle. VIO_EN can either be connected with VIO power supply or GPIO. TI suggests to put one 1-nF cap as close to VIO_EN pin as possible. Up to four LP5868 follower devices can share the same I 2 C bus by the different ADDR configurations.

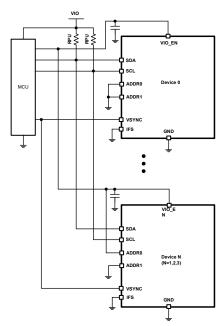


図 8-16. I²C Multiple Devices Connection

SPI Interface

The LP5868 is compatible with SPI serial-bus specification, and it operates as a follower. The maximum frequency supported by LP5868 is 12 MHz.

SPI Data Transactions

MISO output is normally in a high impedance state. When the follower-select pin SS for the device is active (low) the MISO output is pulled low for read only. During write cycle MISO stays in high-impedance state. The follower-select signal SS must be low during the cycle transmission. SS resets the interface when high. Data is clocked in on the rising edge of the SCLK clock signal, while data is clocked out on the falling edge of SCLK.

SPI Data Format

The address and data bits are transmitted MSB first with 8-bits length format in each cycle. Each transmission is started with Address Byte 1, which contains 8 higher bits of the register address. The Address Byte 2 is started with 2 lower bits of the register address and 1 read and write bit. The auto-increment feature allows writing and reading several consecutive registers within one transmission. If not consecutive, a new transmission must be started.

表 8-7. SPI Data Format

Address Byte 1	Register Address									
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	9 th bit	8 th bit	7 th bit	6 th bit	5 th bit	4 th bit	3 th bit	2 th bit		
Address Byte 2	Register	Register Address								
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	1 th bit	0 th bit	R: 0 W: 1	Do not Care						

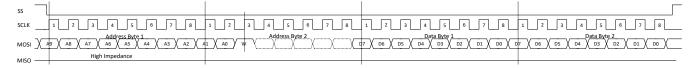


図 8-17. SPI Write Timing

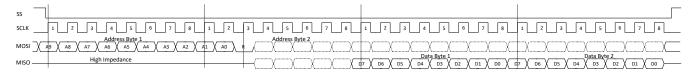


図 8-18. SPI Read Timing

Multiple Devices Connection

The device enters into SPI mode if IFS is pulled high to VIO through a pullup resistor ($4.7K\Omega$ recommended). VIO_EN can either be connected with VIO power supply or GPIO. TI suggests to put one 1-nF cap as closer to VIO_EN pin as possible. In SPI mode host can address as many devices as there are follower select pins on host.

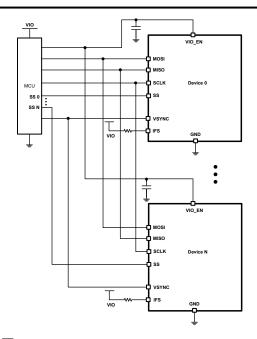


図 8-19. SPI Multiple Devices Connection

8.6 Register Maps

This section provides a summary of the register maps. For detailed register functions and descriptions, please refer to *LP5868 11x18 LED Matrix Driver Register Maps*.

表 8-8. Register Section/Block Access Type Codes

2 0 0. Register Occitorin Diook Access Type Occis						
Access Type	Code	Description				
Read Type	1					
R	R	Read				
RC	R	Read				
	С	to Clear				
R-0	R	Read				
	-0	Returns 0s				
Write Type		·				
W	W	Write				
W0CP	W	W				
	0C	0 to clear				
	Р	Requires privileged access				
Reset or Default Value						
-n		Value after reset or the default value				

Register Acronym	Address	Type	D7	D6	D5	D4	D3	D2	D1	D0	Default
Chip_en	000h	R/W	Reserved			1			•	Chip_EN	00h
Dev_initial	001h	R/W	Reserved	ved Max_Line_Num Data_Ref_Mode					PWM_Fre	5Eh	
Dev_config1	002h	R/W	Reserved	Reserved	Reserved	Reserved	SW_BLK	PWM_Sc ale_Mode	PWM_Ph ase_Shift	CS_ON_ Shift	00h
Dev_config2	003h	R/W	Comp_Gro	pup3 Comp_		Comp_Group2 Comp_		Comp_Group1 LOD_rem oval		LSD_rem oval	00h
Dev_config3	004h	R/W	Down_Deg	phost	Up_Degho	st	Maximum_	Current		Up_Degh ost_enabl e	47h

Global_bri	005h	R/W	PWM Glob	oal				FFh		
Group0_bri	006h	R/W	PWM_Gro	PWM_Group1						
Group1_bri	007h	R/W	PWM_Gro	PWM_Group2						
Group2_bri	008h	R/W	PWM_Gro	PWM_Group3						
R_current_set	009h	R/W	Reserved	Reserved CC_Group1						
G_current_set	00Ah	R/W	Reserved							
B_current_set	00Bh	R/W	Reserved	Reserved CC_Group3						
Dot_grp_sel0	00Ch	R/W	Dot L0-CS	Oot L0-CS3 group Dot L0-CS2 group Dot L0-CS1 group Dot L0-CS0 group						
Dot_grp_sel1	00Dh	R/W	Dot L0-CS	7 group	Dot L0-CS6 group	Dot L0-CS5 group	Dot L0-CS4 group	00h		
Dot_grp_sel2	00Eh	R/W	Dot L0-CS	11 group	Dot L0-CS10 group	Dot L0-CS9 group	Dot L0-CS8 group	00h		
Dot_grp_sel3	00Fh	R/W	Dot L0-CS	15 group	Dot L0-CS14 group	Dot L0-CS13 group	Dot L0-CS12 group	00h		
Dot_grp_sel4	010h	R/W	Reserved			Dot L0-CS17 group	Dot L0-CS16 group	00h		
Dot_grp_sel5	011h	R/W	Dot L1-CS	3 group	Dot L1-CS2 group	Dot L1-CS1 group	Dot L1-CS0 group	00h		
Dot_grp_sel6	012h	R/W	Dot L1-CS	7 group	Dot L1-CS6 group	Dot L1-CS5 group	Dot L1-CS4 group	00h		
Dot_grp_sel7	013h	R/W	Dot L1-CS		Dot L1-CS10 group	Dot L1-CS9 group	Dot L1-CS8 group	00h		
Dot_grp_sel8	014h	R/W	Dot L1-CS	15 group	Dot L1-CS14 group	Dot L1-CS13 group	Dot L1-CS12 group	00h		
Dot_grp_sel9	015h	R/W	Reserved			Dot L1-CS17 group	Dot L1-CS16 group	00h		
Dot_grp_sel10	016h	R/W	Dot L2-CS		Dot L2-CS2 group	Dot L2-CS1 group	Dot L2-CS0 group	00h		
Dot_grp_sel11	017h	R/W	Dot L2-CS	<u> </u>	Dot L2-CS6 group	Dot L2-CS5 group	Dot L2-CS4 group	00h		
Dot_grp_sel12	018h	R/W	Dot L2-CS	- '	Dot L2-CS10 group	Dot L2-CS9 group	Dot L2-CS8 group	00h		
Dot_grp_sel13	019h	R/W	Dot L2-CS	15 group	Dot L2-CS14 group	Dot L2-CS13 group	Dot L2-CS12 group	00h		
Dot_grp_sel14	01Ah	R/W	Reserved		T	Dot L2-CS17 group	Dot L2-CS16 group	00h		
Dot_grp_sel15	01Bh	R/W	Dot L3-CS		Dot L3-CS2 group	Dot L3-CS1 group	Dot L3-CS0 group	00h		
Dot_grp_sel16	01Ch	R/W	Dot L3-CS		Dot L3-CS6 group	Dot L3-CS5 group	Dot L3-CS4 group	00h		
Dot_grp_sel17	01Dh	R/W	Dot L3-CS	- '	Dot L3-CS10 group	Dot L3-CS9 group	Dot L3-CS8 group	00h		
Dot_grp_sel18	01Eh	R/W	Dot L3-CS15 group		Dot L3-CS14 group	Dot L3-CS13 group	Dot L3-CS12 group	00h		
Dot_grp_sel19	01Fh	R/W		Reserved		Dot L3-CS17 group	Dot L3-CS16 group	00h		
Dot_grp_sel20	020h	R/W	Dot L4-CS		Dot L4-CS2 group	Dot L4-CS1 group	Dot L4-CS0 group	00h		
Dot_grp_sel21	021h	R/W	Dot L4-CS		Dot L4-CS6 group	Dot L4-CS5 group	Dot L4-CS4 group	00h		
Dot_grp_sel22	022h	R/W	Dot L4-CS		Dot L4-CS10 group	Dot L4-CS9 group	Dot L4-CS8 group	00h		
Dot_grp_sel23	023h	R/W	Dot L4-CS Reserved	15 group	Dot L4-CS14 group	Dot L4-CS13 group	Dot L4-CS12 group	00h		
Dot_grp_sel24	024h	R/W	Dot L5-CS	2 group	Dot L5-CS2 group	Dot L4-CS17 group Dot L5-CS1 group	Dot L4-CS16 group Dot L5-CS0 group	00h		
Dot_grp_sel25 Dot_grp_sel26	025h 026h	R/W R/W	Dot L5-CS	· ·	Dot L5-CS2 group	Dot L5-CS1 group	Dot L5-CS4 group	00h 00h		
Dot_grp_sel27	027h	R/W	Dot L5-CS		Dot L5-CS10 group	Dot L5-CS9 group	Dot L5-CS8 group	00h		
Dot_grp_sel28	02711 028h	R/W	Dot L5-CS	• •	Dot L5-CS14 group	Dot L5-CS13 group	Dot L5-CS12 group	00h		
Dot_grp_sel29	029h	R/W	Reserved	10 group	Bot 25-0014 group	Dot L5-CS17 group	Dot L5-CS16 group	00h		
Dot_grp_sel30	02Ah	R/W	Dot L6-CS	3 aroun	Dot L6-CS2 group	Dot L6-CS1 group	Dot L6-CS0 group	00h		
Dot_grp_sel31	02Bh	R/W	Dot L6-CS		Dot L6-CS6 group	Dot L6-CS5 group	Dot L6-CS4 group	00h		
Dot_grp_sel32	02Ch	R/W	Dot L6-CS		Dot L6-CS10 group	Dot L6-CS9 group	Dot L6-CS8 group	00h		
Dot_grp_sel33	02Dh	R/W	Dot L6-CS		Dot L6-CS14 group	Dot L6-CS13 group	Dot L6-CS12 group	00h		
Dot_grp_sel34	02Eh	R/W	Reserved	- 3-2-4		Dot L6-CS17 group	Dot L6-CS16 group	00h		
Dot_grp_sel35	02Fh	R/W	Dot L7-CS	3 group	Dot L7-CS2 group	Dot L7-CS1 group	Dot L7-CS0 group	00h		
Dot_grp_sel36	030h	R/W	Dot L7-CS		Dot L7-CS6 group	Dot L7-CS5 group	Dot L7-CS4 group	00h		
Dot_grp_sel37	031h	R/W	Dot L7-CS		Dot L7-CS10 group	Dot L7-CS9 group	Dot L7-CS8 group	00h		
Dot_grp_sel38	032h	R/W	Dot L7-CS		Dot L7-CS14 group	Dot L7-CS13 group	Dot L7-CS12 group	00h		
Dot_grp_sel39	033h	R/W	Reserved	<u> </u>	J 7	Dot L7-CS17 group	Dot L7-CS16 group	00h		
<u>-</u> 3. P_30.00		1	1.1.23.734					1 · ·		

043h R/W Dot L0-Dot L0-Dot L0-Dot L0-Dot L0-Dot L0-Dot L0-Dot L0-FFh Dot_onoff0 CS7 onoff CS6 onoff CS5 onoff CS4 onoff CS3 onoff CS2 onoff CS1 onoff CS0 onoff 044h R/W Dot L0-Dot L0-Dot L0-Dot L0-Dot L0-Dot L0-Dot L0-Dot L0-FFh Dot_onoff1 CS15 CS10 CS9 onoff CS8 onoff **CS14** CS13 CS12 CS11 onoff onoff onoff onoff onoff onoff 045h R/W 03h Dot_onoff2 Reserved Dot L0-Dot L0-CS17 CS16 onoff onoff Dot_onoff3 046h R/W Dot L1-Dot L1-Dot L1-Dot L1-Dot L1-Dot L1-Dot L1-Dot L1-FFh CS7 onoff CS6 onoff CS5 onoff CS4 onoff CS3 onoff CS2 onoff CS1 onoff CS0 onoff 047h R/W Dot I 1-FFh Dot_onoff4 Dot I 1-Dot I 1-Dot I 1-Dot I 1-Dot I 1-Dot I 1-Dot I 1-**CS15 CS14** CS13 CS12 CS11 CS10 CS9 onoff CS8 onoff onoff onoff onoff onoff onoff onoff Dot onoff5 048h R/W Reserved Dot L1-Dot L1-03h CS17 CS16 onoff onoff Dot L2-Dot L2-Dot L2-FFh Dot_onoff6 049h R/W Dot L2-Dot L2-Dot L2-Dot L2-Dot L2-CS7 onoff CS6 onoff CS5 onoff CS4 onoff CS3 onoff CS2 onoff CS1 onoff CS0 onoff Dot L2-Dot L2-Dot L2-Dot L2-Dot L2-Dot L2-Dot L2-Dot L2-FFh 04Ah R/W Dot_onoff7 CS15 CS14 CS13 CS12 CS11 CS10 CS9 onoff CS8 onoff onoff onoff onoff onoff onoff onoff Dot_onoff8 04Bh R/W Reserved Dot L2-Dot L2-03h CS17 CS16 onoff onoff 04Ch R/W Dot L3-Dot L3-Dot L3-Dot L3-Dot L3-Dot L3-Dot L3-FFh Dot_onoff9 Dot L3-CS7 onoff CS6 onoff CS5 onoff CS4 onoff CS3 onoff CS2 onoff CS1 onoff CS0 onoff R/W Dot L3-Dot L3-FFh Dot_onoff10 04Dh Dot L3-Dot L3-Dot L3-Dot L3-Dot L3-Dot L3-CS15 CS14 CS13 CS12 CS11 CS10 CS9 onoff CS8 onoff onoff onoff onoff onoff onoff onoff Dot onoff11 04Eh R/W Reserved Dot L3-Dot L3-03h CS17 CS16 onoff onoff Dot onoff12 04Fh R/W Dot L4-Dot L4-Dot L4-Dot L4-Dot L4-Dot L4-Dot L4-Dot L4-FFh CS7 onoff CS5 onoff CS4 onoff CS3 onoff CS2 onoff CS6 onoff CS1 onoff CS0 onoff 050h R/W Dot L4-Dot L4-Dot L4-Dot L4-Dot L4-Dot L4-Dot L4-Dot L4-FFh Dot_onoff13 CS15 CS14 CS13 CS12 CS11 CS10 CS9 onoff CS8 onoff onoff onoff onoff onoff onoff onoff Dot_onoff14 051h R/W Reserved Dot L4-Dot L4-03h CS17 CS16 onoff onoff 052h R/W Dot L5-Dot L5-Dot L5-Dot L5-Dot L5-Dot L5-Dot L5-FFh Dot_onoff15 Dot L5-CS7 onoff CS6 onoff CS5 onoff CS4 onoff CS3 onoff CS2 onoff CS0 onoff CS1 onoff Dot_onoff16 053h R/W Dot I 5-Dot L5-Dot I 5-Dot I 5-Dot L5-Dot I.5-Dot L5-Dot L5-FFh CS15 CS14 CS13 CS12 CS11 CS10 CS9 onoff CS8 onoff onoff onoff onoff onoff onoff onoff Dot_onoff17 054h R/W Reserved Dot L5-Dot L5-03h CS17 CS16 onoff onoff R/W Dot L6-Dot_onoff18 055h Dot L6-Dot L6-Dot L6-Dot L6-Dot L6-Dot L6-Dot L6-FFh CS7 onoff CS6 onoff CS5 onoff CS4 onoff CS3 onoff CS2 onoff CS1 onoff CS0 onoff 056h R/W Dot L6-Dot L6-Dot L6-Dot L6-Dot L6-Dot L6-Dot L6-Dot L6-FFh Dot_onoff19 CS8 onoff CS15 **CS14** CS13 CS12 CS11 CS10 CS9 onoff onoff onoff onoff onoff onoff onoff Dot onoff20 057h R/W Reserved Dot L6-Dot L6-03h CS17 CS16 onoff onoff Dot_onoff21 058h R/W Dot L7-Dot L7-Dot L7-Dot L7-Dot L7-Dot L7-Dot L7-Dot L7-FFh CS6 onoff CS5 onoff CS4 onoff CS3 onoff CS7 onoff CS2 onoff CS1 onoff CS0 onoff

Dot_onoff22	059h	R/W	Dot L7- CS15 onoff	Dot L7- CS14 onoff	Dot L7- CS13 onoff	Dot L7- CS12 onoff	Dot L7- CS11 onoff	Dot L7- CS10 onoff	Dot L7- CS9 onoff	Dot L7- CS8 onoff	FFh
Dot_onoff23	05Ah	R/W	Reserved						Dot L7- CS17 onoff	Dot L7- CS16 onoff	03h
Fault_state	064h	R	Reserved						Global_L OD	Global_L SD	00h
Dot_lod0	065h	R	Dot L0- CS7 LOD	Dot L0- CS6 LOD	Dot L0- CS5 LOD	Dot L0- CS4 LOD	Dot L0- CS3 LOD	Dot L0- CS2 LOD	Dot L0- CS1 LOD	Dot L0- CS0 LOD	00h
Dot_lod1	066h	R	Dot L0- CS15 LOD	Dot L0- CS14 LOD	Dot L0- CS13 LOD	Dot L0- CS12 LOD	Dot L0- CS11 LOD	Dot L0- CS10 LOD	Dot L0- CS9 LOD	Dot L0- CS8 LOD	00h
Dot_lod2	067h	R	Reserved						Dot L0- CS17 LOD	Dot L0- CS16 LOD	00h
Dot_lod3	068h	R	Dot L1- CS7 LOD	Dot L1- CS6 LOD	Dot L1- CS5 LOD	Dot L1- CS4 LOD	Dot L1- CS3 LOD	Dot L1- CS2 LOD	Dot L1- CS1 LOD	Dot L1- CS0 LOD	00h
Dot_lod4	069h	R	Dot L1- CS15 LOD	Dot L1- CS14 LOD	Dot L1- CS13 LOD	Dot L1- CS12 LOD	Dot L1- CS11 LOD	Dot L1- CS10 LOD	Dot L1- CS9 LOD	Dot L1- CS8 LOD	00h
Dot_lod5	06Ah	R	Reserved						Dot L1- CS17 LOD	Dot L1- CS16 LOD	00h
Dot_lod6	06Bh	R	Dot L2- CS7 LOD	Dot L2- CS6 LOD	Dot L2- CS5 LOD	Dot L2- CS4 LOD	Dot L2- CS3 LOD	Dot L2- CS2 LOD	Dot L2- CS1 LOD	Dot L2- CS0 LOD	00h
Dot_lod7	06Ch	R	Dot L2- CS15 LOD	Dot L2- CS14 LOD	Dot L2- CS13 LOD	Dot L2- CS12 LOD	Dot L2- CS11 LOD	Dot L2- CS10 LOD	Dot L2- CS9 LOD	Dot L2- CS8 LOD	00h
Dot_lod8	06Dh	R	Reserved				1	1	Dot L2- CS17 LOD	Dot L2- CS16 LOD	00h
Dot_lod9	06Eh	R	Dot L3- CS7 LOD	Dot L3- CS6 LOD	Dot L3- CS5 LOD	Dot L3- CS4 LOD	Dot L3- CS3 LOD	Dot L3- CS2 LOD	Dot L3- CS1 LOD	Dot L3- CS0 LOD	00h
Dot_lod10	06Fh	R	Dot L3- CS15 LOD	Dot L3- CS14 LOD	Dot L3- CS13 LOD	Dot L3- CS12 LOD	Dot L3- CS11 LOD	Dot L3- CS10 LOD	Dot L3- CS9 LOD	Dot L3- CS8 LOD	00h
Dot_lod11	070h	R	Reserved						Dot L3- CS17 LOD	Dot L3- CS16 LOD	00h
Dot_lod12	071h	R	Dot L4- CS7 LOD	Dot L4- CS6 LOD	Dot L4- CS5 LOD	Dot L4- CS4 LOD	Dot L4- CS3 LOD	Dot L4- CS2 LOD	Dot L4- CS1 LOD	Dot L4- CS0 LOD	00h
Dot_lod13	072h	R	Dot L4- CS15 LOD	Dot L4- CS14 LOD	Dot L4- CS13 LOD	Dot L4- CS12 LOD	Dot L4- CS11 LOD	Dot L4- CS10 LOD	Dot L4- CS9 LOD	Dot L4- CS8 LOD	00h
Dot_lod14	073h	R	Reserved				1		Dot L4- CS17 LOD	Dot L4- CS16 LOD	00h
Dot_lod15	074h	R	Dot L5- CS7 LOD	Dot L5- CS6 LOD	Dot L5- CS5 LOD	Dot L5- CS4 LOD	Dot L5- CS3 LOD	Dot L5- CS2 LOD	Dot L5- CS1 LOD	Dot L5- CS0 LOD	00h
Dot_lod16	075h	R	Dot L5- CS15 LOD	Dot L5- CS14 LOD	Dot L5- CS13 LOD	Dot L5- CS12 LOD	Dot L5- CS11 LOD	Dot L5- CS10 LOD	Dot L5- CS9 LOD	Dot L5- CS8 LOD	00h
Dot_lod17	076h	R	Reserved						Dot L5- CS17 LOD	Dot L5- CS16 LOD	00h
Dot_lod18	077h	R	Dot L6- CS7 LOD	Dot L6- CS6 LOD	Dot L6- CS5 LOD	Dot L6- CS4 LOD	Dot L6- CS3 LOD	Dot L6- CS2 LOD	Dot L6- CS1 LOD	Dot L6- CS0 LOD	00h

078h R Dot L6-Dot L6-Dot L6-Dot L6-Dot L6-Dot L6-Dot L6-Dot L6-00h Dot_lod19 CS15 CS14 CS10 CS13 CS12 CS11 CS9 LOD CS8 LOD LOD LOD LOD LOD LOD LOD 079h Dot L6-00h Dot_lod20 R Reserved Dot L6-CS17 CS16 LOD LOD Dot L7-Dot L7-Dot L7-Dot L7-Dot L7-00h 07Ah R Dot L7-Dot I 7-Dot L7-Dot_lod21 CS7 LOD CS6 LOD CS5 LOD CS4 LOD CS3 LOD CS2 LOD CS1 LOD CS0 LOD Dot_lod22 07Bh R Dot L7-Dot L7-Dot L7-Dot L7-Dot L7-Dot L7-Dot L7-Dot L7-00h CS15 CS14 CS13 CS12 CS11 CS10 CS9 LOD CS8 LOD LOD LOD LOD LOD LOD LOD Dot lod23 07Ch R Reserved Dot L7-Dot L7-00h CS17 CS16 I OD LOD Dot L0-R Dot L0-Dot L0-Dot L0-Dot L0-Dot L0-Dot L0-Dot L0-Dot Isd0 086h 00hCS7 LSD CS6 LSD CS5 LSD CS4 LSD CS3 LSD CS2 LSD CS1 LSD CS0 LSD Dot L0-Dot L0-Dot L0-Dot L0-Dot_lsd1 087h R Dot L0-Dot L0-Dot L0-Dot L0-00h CS15 **CS14** CS13 CS12 **CS11** CS10 CS9 LSD CS8 LSD LSD LSD LSD LSD LSD LSD Dot L0-Dot_lsd2 088h R Reserved Dot L0-00h CS17 CS16 LSD LSD Dot_lsd3 089h R Dot L1-Dot L1-Dot L1-Dot L1-Dot L1-Dot L1-Dot L1-Dot L1-00h CS6 LSD CS5 LSD CS4 LSD CS3 LSD CS2 LSD CS1 LSD CS0 LSD CS7 LSD 00h Dot_lsd4 08Ah R Dot L1-Dot L1-Dot L1-Dot L1-Dot L1-Dot L1-Dot L1-Dot L1-CS15 CS14 CS13 CS12 CS11 CS10 CS9 LSD CS8 LSD LSD LSD LSD LSD LSD LSD Dot_lsd5 08Bh R Dot L1-Dot L1-00h Reserved CS17 CS16 LSD LSD Dot_lsd6 08Ch R Dot L2-Dot L2-Dot L2-Dot L2-Dot L2-Dot L2-Dot L2-Dot L2-00h CS7 LSD CS6 LSD CS5 LSD CS4 LSD CS3 LSD CS2 LSD CS1 LSD CS0 LSD Dot L2-Dot L2-Dot L2-Dot L2-Dot Isd7 08Dh R Dot L2-Dot L2-Dot L2-Dot L2-00h CS15 CS14 CS12 CS10 CS8 LSD CS13 CS11 CS9 LSD LSD LSD LSD LSD LSD LSD Dot L2-Dot Isd8 08Eh R Reserved Dot L2-00h CS17 CS16 LSD LSD Dot_lsd9 08Fh R Dot L3-Dot L3-Dot L3-Dot L3-Dot L3-Dot L3-Dot L3-Dot L3-00h CS7 LSD CS6 LSD CS5 LSD CS4 LSD CS3 LSD CS2 LSD CS1 LSD CS0 LSD Dot L3-00h Dot_lsd10 090h R Dot L3-Dot L3-Dot L3-Dot L3-Dot L3-Dot L3-Dot L3-CS15 CS14 CS9 LSD CS8 LSD CS13 CS12 CS11 CS10 LSD LSD LSD LSD LSD LSD Dot_lsd11 091h R Dot L3-Dot L3-00h Reserved CS17 CS16 LSD LSD R Dot_lsd12 092h Dot I 4-Dot L4-Dot L4-Dot L4-Dot L4-Dot I 4-Dot L4-Dot I 4-00h CS7 LSD CS6 LSD CS5 LSD CS4 LSD CS3 LSD CS2 LSD CS1 LSD CS0 LSD Dot L4-Dot L4-Dot L4-Dot L4-Dot L4-Dot L4-Dot L4-00h Dot_lsd13 093h R Dot L4-CS15 CS14 CS10 CS8 LSD CS13 CS12 CS11 CS9 LSD LSD LSD LSD LSD LSD LSD 094h R Dot L4-00h Dot Isd14 Reserved Dot L4-CS17 CS16 LSD LSD Dot Isd15 095h R Dot L5-Dot L5-Dot L5-Dot L5-Dot L5-Dot L5-Dot L5-Dot L5-00h CS7 LSD CS6 LSD CS5 LSD CS4 LSD CS3 LSD CS2 LSD CS1 LSD CS0 LSD Dot_lsd16 096h R Dot L5-Dot L5-Dot L5-Dot L5-Dot L5-Dot L5-Dot L5-Dot L5-00h CS15 CS14 CS13 CS12 CS11 CS10 CS9 LSD CS8 LSD LSD LSD LSD LSD LSD LSD

Dot_lsd17	097h	R	Reserved	Dot L5-							00h
Dot_lsd18	098h	R	Dot L6- CS7 LSD	Dot L6- CS6 LSD	Dot L6- CS5 LSD	Dot L6- CS4 LSD	Dot L6- CS3 LSD	Dot L6- CS2 LSD	Dot L6- CS1 LSD	Dot L6- CS0 LSD	00h
Dot_lsd19	099h	R	Dot L6- CS15 LSD	Dot L6- CS14 LSD	Dot L6- CS13 LSD	Dot L6- CS12 LSD	Dot L6- CS11 LSD	Dot L6- CS10 LSD	Dot L6- CS9 LSD	Dot L6- CS8 LSD	00h
Dot_lsd20	09Ah	R	Reserved	Reserved Dot L6- CS17 CS16 LSD LSD						00h	
Dot_lsd21	09Bh	R	Dot L7- CS7 LSD	Dot L7- CS6 LSD	Dot L7- CS5 LSD	Dot L7- CS4 LSD	Dot L7- CS3 LSD	Dot L7- CS2 LSD	Dot L7- CS1 LSD	Dot L7- CS0 LSD	00h
Dot_lsd22	09Ch	R	Dot L7- CS15 LSD	Dot L7- CS14 LSD	Dot L7- CS13 LSD	Dot L7- CS12 LSD	Dot L7- CS11 LSD	Dot L7- CS10 LSD	Dot L7- CS9 LSD	Dot L7- CS8 LSD	00h
Dot_lsd23	09Dh	R	Reserved						Dot L7- CS17 LSD	Dot L7- CS16 LSD	00h
LOD_clear	0A7h	W	Reserved				LOD_Clea	r			00h
LSD_clear	0A8h	W	Reserved				LSD_Clea	r			00h
Reset	0A9h	W	Reset								00h
DC0	100h	R/W	LED dot cu	ırrent settin	g for Dot L0	-CS0					80h
DC1	101h	R/W	LED dot cu	ırrent settin	g for Dot L0	-CS1					80h
DC2	102h	R/W	LED dot cu	ırrent settin	g for Dot L0	-CS2					80h
DC3	103h	R/W	LED dot cu	ırrent settin	g for Dot L0	-CS3					80h
DC4	104h	R/W	LED dot cu	LED dot current setting for Dot L0-CS4							80h
DC5	105h	R/W	LED dot cu	LED dot current setting for Dot L0-CS5							80h
DC6	106h	R/W		LED dot current setting for Dot L0-CS6							80h
DC7	107h	R/W		LED dot current setting for Dot L0-CS7							80h
DC8	108h	R/W	LED dot cu	ırrent settin	g for Dot L0	-CS8					80h
DC9	109h	R/W	LED dot cu	ırrent settin	g for Dot L0	-CS9					80h
DC10	10Ah	R/W			g for Dot L0						80h
DC11	10Bh	R/W			g for Dot L0						80h
DC12	10Ch	R/W			g for Dot L0						80h
DC13	10Dh	R/W			g for Dot L0						80h
DC14	10Eh	R/W		· · · · · · · · · · · · · · · · · · ·	g for Dot L0						80h
DC15	10Fh	R/W			g for Dot L0						80h
DC16	110h	R/W			g for Dot L0						80h
DC17	111h	R/W			g for Dot L0						80h
DC18	112h	R/W			g for Dot L1						80h
DC19	113h	R/W			g for Dot L1						80h
DC20	114h	R/W			g for Dot L1						80h
DC21 DC22	115h	R/W R/W			g for Dot L1						80h
DC22 DC23	116h 117h	R/W			g for Dot L1						80h 80h
		R/W			g for Dot L1						80h
DC24 DC25	118h 119h	R/W			g for Dot L1						80h
DC25 DC26	119h	R/W			g for Dot L1						80h
	11Bh	R/W			g for Dot L1						80h
DC27					g for Dot L1						
DC28	11Ch	R/W	LED dot cr	LED dot current setting for Dot L1-CS10							80h

тити.пј.оо.јр			0,000,00	DECEMBER 202
DC29	11Dh	R/W	LED dot current setting for Dot L1-CS11	80h
DC30	11Eh	R/W	LED dot current setting for Dot L1-CS12	80h
DC31	11Fh	R/W	LED dot current setting for Dot L1-CS13	80h
DC32	120h	R/W	LED dot current setting for Dot L1-CS14	80h
DC33	121h	R/W	LED dot current setting for Dot L1-CS15	80h
DC34	122h	R/W	LED dot current setting for Dot L1-CS16	80h
DC35	123h	R/W	LED dot current setting for Dot L1-CS17	80h
DC36	124h	R/W	LED dot current setting for Dot L2-CS0	80h
DC37	125h	R/W	LED dot current setting for Dot L2-CS1	80h
DC38	126h	R/W	LED dot current setting for Dot L2-CS2	80h
DC39	127h	R/W	LED dot current setting for Dot L2-CS3	80h
DC40	128h	R/W	LED dot current setting for Dot L2-CS4	80h
DC41	129h	R/W	LED dot current setting for Dot L2-CS5	80h
DC42	12Ah	R/W	LED dot current setting for Dot L2-CS6	80h
DC43	12Bh	R/W	LED dot current setting for Dot L2-CS7	80h
DC44	12Ch	R/W	LED dot current setting for Dot L2-CS8	80h
DC45	12Dh	R/W	LED dot current setting for Dot L2-CS9	80h
DC46	12Eh	R/W	LED dot current setting for Dot L2-CS10	80h
DC47	12Fh	R/W	LED dot current setting for Dot L2-CS11	80h
DC48	130h	R/W	LED dot current setting for Dot L2-CS12	80h
DC49	131h	R/W	LED dot current setting for Dot L2-CS13	80h
DC50	132h	R/W	LED dot current setting for Dot L2-CS14	80h
DC51	133h	R/W	LED dot current setting for Dot L2-CS15	80h
DC52	134h	R/W	LED dot current setting for Dot L2-CS16	80h
DC53	135h	R/W	LED dot current setting for Dot L2-CS17	80h
DC54	136h	R/W	LED dot current setting for Dot L3-CS0	80h
DC55	137h	R/W	LED dot current setting for Dot L3-CS1	80h
DC56	138h	R/W	LED dot current setting for Dot L3-CS2	80h
DC57	139h	R/W	LED dot current setting for Dot L3-CS3	80h
DC58	13Ah	R/W	LED dot current setting for Dot L3-CS4	80h
DC59	13Bh	R/W	LED dot current setting for Dot L3-CS5	80h
DC60	13Ch	R/W	LED dot current setting for Dot L3-CS6	80h
DC61	13Dh	R/W	LED dot current setting for Dot L3-CS7	80h
DC62	13Eh	R/W	LED dot current setting for Dot L3-CS8	80h
DC63	13Fh	R/W	LED dot current setting for Dot L3-CS9	80h
DC64	140h	R/W	LED dot current setting for Dot L3-CS10	80h
DC65	141h	R/W	LED dot current setting for Dot L3-CS11	80h
DC66	142h	R/W	LED dot current setting for Dot L3-CS12	80h
DC67	143h	R/W	LED dot current setting for Dot L3-CS13	80h
DC68	144h	R/W	LED dot current setting for Dot L3-CS14	80h
DC69	145h	R/W	LED dot current setting for Dot L3-CS15	80h
DC70	146h	R/W	LED dot current setting for Dot L3-CS16	80h
DC71	147h	R/W	LED dot current setting for Dot L3-CS17	80h
DC72	148h	R/W	LED dot current setting for Dot L4-CS0	80h
DC73	149h	R/W	LED dot current setting for Dot L4-CS1	80h
DC74	14Ah	R/W	LED dot current setting for Dot L4-CS2	80h
DC75	14Bh	R/W	LED dot current setting for Dot L4-CS3	80h
	-			

DC76	14Ch	R/W	LED dot current setting for Dot L4-CS4	80h
DC77	14Dh	R/W	LED dot current setting for Dot L4-CS5	80h
DC78	14Eh	R/W	LED dot current setting for Dot L4-CS6	80h
DC79	14Fh	R/W	LED dot current setting for Dot L4-CS7	80h
DC80	150h	R/W	LED dot current setting for Dot L4-CS8	80h
DC81	151h	R/W	LED dot current setting for Dot L4-CS9	80h
DC82	152h	R/W	LED dot current setting for Dot L4-CS10	80h
DC83	153h	R/W	LED dot current setting for Dot L4-CS11	80h
DC84	154h	R/W	LED dot current setting for Dot L4-CS12	80h
DC85	155h	R/W	LED dot current setting for Dot L4-CS13	80h
DC86	156h	R/W	LED dot current setting for Dot L4-CS14	80h
DC87	157h	R/W	LED dot current setting for Dot L4-CS15	80h
DC88	158h	R/W	LED dot current setting for Dot L4-CS16	80h
DC89	159h	R/W	LED dot current setting for Dot L4-CS17	80h
DC90	15Ah	R/W	LED dot current setting for Dot L5-CS0	80h
DC91	15Bh	R/W	LED dot current setting for Dot L5-CS1	80h
DC92	15Ch	R/W	LED dot current setting for Dot L5-CS2	80h
DC93	15Dh	R/W	LED dot current setting for Dot L5-CS3	80h
DC94	15Eh	R/W	LED dot current setting for Dot L5-CS4	80h
DC95	15Fh	R/W	LED dot current setting for Dot L5-CS5	80h
DC96	160h	R/W	LED dot current setting for Dot L5-CS6	80h
DC97	161h	R/W	LED dot current setting for Dot L5-CS7	80h
DC98	162h	R/W	LED dot current setting for Dot L5-CS8	80h
DC99	163h	R/W	LED dot current setting for Dot L5-CS9	80h
DC100	164h	R/W	LED dot current setting for Dot L5-CS10	80h
DC101	165h	R/W	LED dot current setting for Dot L5-CS11	80h
DC102	166h	R/W	LED dot current setting for Dot L5-CS12	80h
DC103	167h	R/W	LED dot current setting for Dot L5-CS13	80h
DC104	168h	R/W	LED dot current setting for Dot L5-CS14	80h
DC105	169h	R/W	LED dot current setting for Dot L5-CS15	80h
DC106	16Ah	R/W	LED dot current setting for Dot L5-CS16	80h
DC107	16Bh 16Ch	R/W R/W	LED dot current setting for Dot L5-CS17	80h 80h
DC108 DC109	16Dh	R/W	LED dot current setting for Dot L6-CS0 LED dot current setting for Dot L6-CS1	80h
DC109 DC110	16Eh	R/W	LED dot current setting for Dot L6-CS2	80h
DC111	16Fh	R/W	LED dot current setting for Dot L6-CS3	80h
DC112	170h	R/W	LED dot current setting for Dot L6-CS4	80h
DC112 DC113	170h	R/W	LED dot current setting for Dot L6-CS5	80h
DC113	17111 172h	R/W	LED dot current setting for Dot L6-CS6	80h
DC115	17211 173h	R/W	LED dot current setting for Dot L6-CS7	80h
DC116	173h	R/W	LED dot current setting for Dot L6-CS8	80h
DC117	175h	R/W	LED dot current setting for Dot L6-CS9	80h
DC118	176h	R/W	LED dot current setting for Dot L6-CS10	80h
DC119	177h	R/W	LED dot current setting for Dot L6-CS11	80h
DC120	178h	R/W	LED dot current setting for Dot L6-CS12	80h
DC121	179h	R/W	LED dot current setting for Dot L6-CS13	80h
DC122	17Ah	R/W	LED dot current setting for Dot L6-CS14	80h

DC123 17Bh R/W LED dot current setting for Dot L6-CS15 80h DC124 17Ch R/W LED dot current setting for Dot L6-CS16 80h DC125 17Dh R/W LED dot current setting for Dot L6-CS17 80h DC126 17Eh R/W LED dot current setting for Dot L7-CS0 80h DC127 17Fh R/W LED dot current setting for Dot L7-CS1 80h **DC128** 180h R/W LED dot current setting for Dot L7-CS2 80h DC129 181h R/W LED dot current setting for Dot L7-CS3 80h DC130 R/W 182h LED dot current setting for Dot L7-CS4 80h DC131 R/W 183h LED dot current setting for Dot L7-CS5 80h DC132 184h R/W 80h LED dot current setting for Dot L7-CS6 DC133 185h R/W LED dot current setting for Dot L7-CS7 80h DC134 186h R/W LED dot current setting for Dot L7-CS8 80h DC135 187h R/W LED dot current setting for Dot L7-CS9 80h DC136 188h R/W LED dot current setting for Dot L7-CS10 80h DC137 189h R/W LED dot current setting for Dot L7-CS11 80h **DC138** R/W 18Ah LED dot current setting for Dot L7-CS12 80h DC139 18Bh R/W LED dot current setting for Dot L7-CS13 80h DC140 18Ch R/W 80h LED dot current setting for Dot L7-CS14 DC141 18Dh R/W LED dot current setting for Dot L7-CS15 80h DC142 18Eh R/W LED dot current setting for Dot L7-CS16 80h DC143 18Fh R/W 80h LED dot current setting for Dot L7-CS17 200h R/W 00h pwm_bri0 8-bits PWM for Dot L0-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS0 201h R/W 00h pwm bri1 8-bits PWM for Dot L0-CS1 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS0 202h R/W 8-bits PWM for Dot L0-CS2 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS1 pwm bri2 00h pwm_bri3 203h R/W 8-bits PWM for Dot L0-CS3 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS1 00h pwm bri4 204h R/W 8-bits PWM for Dot L0-CS4 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS2 00h pwm_bri5 205h R/W 8-bits PWM for Dot L0-CS5 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS2 00h pwm bri6 206h R/W 8-bits PWM for Dot L0-CS6 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS3 00h 207h R/W 8-bits PWM for Dot L0-CS7 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS3 00h pwm_bri7 pwm_bri8 208h R/W 8-bits PWM for Dot L0-CS8 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS4 00h209h R/W 8-bits PWM for Dot L0-CS9 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS4 pwm bri9 00h R/W 20Ah 8-bits PWM for Dot L0-CS10 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS5 00h pwm_bri10 20Bh R/W 8-bits PWM for Dot L0-CS11 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS5 00h pwm bri11 pwm_bri12 20Ch R/W 8-bits PWM for Dot L0-CS12 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS6 00h 20Dh R/W pwm bri13 8-bits PWM for Dot L0-CS13 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS6 00h 20Eh R/W 8-bits PWM for Dot L0-CS14 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS7 00h pwm_bri14 pwm bri15 20Fh R/W 8-bits PWM for Dot L0-CS15 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS7 00h 210h R/W 8-bits PWM for Dot L0-CS16 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS8 00h pwm_bri16 pwm_bri17 211h R/W 8-bits PWM for Dot L0-CS17 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS8 00h pwm_bri18 212h R/W 8-bits PWM for Dot L1-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS9 00h pwm bri19 213h R/W 8-bits PWM for Dot L1-CS1 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS9 00h pwm_bri20 214h R/W 8-bits PWM for Dot L1-CS2 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS10 00h pwm_bri21 215h R/W 8-bits PWM for Dot L1-CS3 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS10 00h pwm_bri22 216h R/W 8-bits PWM for Dot L1-CS4 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS11 00h pwm bri23 217h R/W 8-bits PWM for Dot L1-CS5 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS11 00h 00h 218h R/W pwm bri24 8-bits PWM for Dot L1-CS6 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS12 pwm_bri25 219h R/W 8-bits PWM for Dot L1-CS7 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS12 00h

pwm_bri26	21Ah	R/W	8-bits PWM for Dot L1-CS8 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS13	00h
pwm_bri27	21Bh	R/W	8-bits PWM for Dot L1-CS9 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS13	00h
pwm_bri28	21Ch	R/W	8-bits PWM for Dot L1-CS10 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS14	00h
pwm_bri29	21Dh	R/W	8-bits PWM for Dot L1-CS11 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS14	00h
pwm_bri30	21Eh	R/W	8-bits PWM for Dot L1-CS12 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS15	00h
pwm_bri31	21Fh	R/W	8-bits PWM for Dot L1-CS13 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS15	00h
pwm_bri32	220h	R/W	8-bits PWM for Dot L1-CS14 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS16	00h
pwm_bri33	221h	R/W	8-bits PWM for Dot L1-CS15 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS16	00h
pwm_bri34	222h	R/W	8-bits PWM for Dot L1-CS16 OR 16-bits PWM lower 8 bits [7:0] for Dot L0-CS17	00h
pwm_bri35	223h	R/W	8-bits PWM for Dot L1-CS17 OR 16-bits PWM higher 8 bits [15:8] for Dot L0-CS17	00h
pwm_bri36	224h	R/W	8-bits PWM for Dot L2-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS0	00h
pwm_bri37	225h	R/W	8-bits PWM for Dot L2-CS1 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS0	00h
pwm_bri38	226h	R/W	8-bits PWM for Dot L2-CS2 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS1	00h
pwm_bri39	227h	R/W	8-bits PWM for Dot L2-CS3 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS1	00h
pwm_bri40	228h	R/W	8-bits PWM for Dot L2-CS4 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS2	00h
pwm_bri41	229h	R/W	8-bits PWM for Dot L2-CS5 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS2	00h
pwm_bri42	22Ah	R/W	8-bits PWM for Dot L2-CS6 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS3	00h
pwm_bri43	22Bh	R/W	8-bits PWM for Dot L2-CS7 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS3	00h
pwm_bri44	22Ch	R/W	8-bits PWM for Dot L2-CS8 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS4	00h
pwm_bri45	22Dh	R/W	8-bits PWM for Dot L2-CS9 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS4	00h
pwm_bri46	22Eh	R/W	8-bits PWM for Dot L2-CS10 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS5	00h
pwm_bri47	22Fh	R/W	8-bits PWM for Dot L2-CS11 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS5	00h
pwm_bri48	230h	R/W	8-bits PWM for Dot L2-CS12 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS6	00h
pwm_bri49	231h	R/W	8-bits PWM for Dot L2-CS13 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS6	00h
pwm_bri50	232h	R/W	8-bits PWM for Dot L2-CS14 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS7	00h
pwm_bri51	233h	R/W	8-bits PWM for Dot L2-CS15 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS7	00h
pwm_bri52	234h	R/W	8-bits PWM for Dot L2-CS16 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS8	00h
pwm_bri53	235h	R/W	8-bits PWM for Dot L2-CS17 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS8	00h
pwm_bri54	236h	R/W	8-bits PWM for Dot L3-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS9	00h
pwm_bri55	237h	R/W	8-bits PWM for Dot L3-CS1 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS9	00h
pwm_bri56	238h	R/W	8-bits PWM for Dot L3-CS2 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS10	00h
pwm_bri57	239h	R/W	8-bits PWM for Dot L3-CS3 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS10	00h
pwm_bri58	23Ah	R/W	8-bits PWM for Dot L3-CS4 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS11	00h
pwm_bri59	23Bh	R/W	8-bits PWM for Dot L3-CS5 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS11	00h
pwm_bri60	23Ch	R/W	8-bits PWM for Dot L3-CS6 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS12	00h
pwm_bri61	23Dh	R/W	8-bits PWM for Dot L3-CS7 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS12	00h
pwm_bri62	23Eh	R/W	8-bits PWM for Dot L3-CS8 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS13	00h
pwm_bri64	23Fh	R/W	8-bits PWM for Dot L3-CS9 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS13	00h
pwm_bri64	240h	R/W	8-bits PWM for Dot L3-CS10 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS14	00h
pwm_bri65	241h	R/W	8-bits PWM for Dot L3-CS11 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS14	00h
pwm_bri66	242h	R/W	8-bits PWM for Dot L3-CS12 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS15	00h
pwm_bri69	243h	R/W	8-bits PWM for Dot L3-CS13 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS15	00h
pwm_bri69	244h 245h	R/W R/W	8-bits PWM for Dot L3-CS14 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS16	00h
pwm_bri69		R/W	8-bits PWM for Dot L3-CS15 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS16	00h
pwm_bri70	246h		8-bits PWM for Dot L3-CS16 OR 16-bits PWM lower 8 bits [7:0] for Dot L1-CS17 8 bits PWM for Dot L3-CS17 OP 16 bits PWM higher 8 bits [15:8] for Dot L1-CS17	00h 00h
pwm_bri71	247h 248h	R/W R/W	8-bits PWM for Dot L3-CS17 OR 16-bits PWM higher 8 bits [15:8] for Dot L1-CS17 8-bits PWM for Dot L4-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS0	00h
pwm_bri72	2400	IT/VV	8-bits PWM for Dot L4-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS0	Juun

pwm_bri73 249h R/W 8-bits PWM for Dot L4-CS1 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS0 00h pwm_bri74 24Ah R/W 8-bits PWM for Dot L4-CS2 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS1 00h 24Bh R/W 00h pwm bri75 8-bits PWM for Dot L4-CS3 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS1 pwm_bri76 24Ch R/W 8-bits PWM for Dot L4-CS4 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS2 00h R/W pwm bri77 24Dh 8-bits PWM for Dot L4-CS5 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS2 00h pwm bri78 24Eh R/W 8-bits PWM for Dot L4-CS6 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS3 00h pwm_bri79 24Fh R/W 8-bits PWM for Dot L4-CS7 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS3 00h pwm_bri80 250h R/W 8-bits PWM for Dot L4-CS8 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS4 00h R/W pwm bri81 251h 8-bits PWM for Dot L4-CS9 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS4 00h 252h R/W 8-bits PWM for Dot L4-CS10 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS5 00h pwm bri82 R/W 8-bits PWM for Dot L4-CS11 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS5 pwm bri83 253h 00h pwm_bri84 254h R/W 8-bits PWM for Dot L4-CS12 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS6 00h pwm bri85 255h R/W 8-bits PWM for Dot L4-CS13 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS6 00h pwm_bri86 256h R/W 8-bits PWM for Dot L4-CS14 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS7 00h pwm_bri87 257h R/W 8-bits PWM for Dot L4-CS15 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS7 00h R/W pwm bri88 258h 8-bits PWM for Dot L4-CS16 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS8 00h pwm bri89 259h R/W 8-bits PWM for Dot L4-CS17 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS8 00h R/W 00h pwm bri90 25Ah 8-bits PWM for Dot L5-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS9 25Bh R/W pwm_bri91 8-bits PWM for Dot L5-CS1 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS9 00h pwm bri92 25Ch R/W 8-bits PWM for Dot L5-CS2 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS10 00h 25Dh R/W 8-bits PWM for Dot L5-CS3 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS10 00h pwm_bri93 25Eh R/W 8-bits PWM for Dot L5-CS4 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS11 00h pwm_bri94 R/W 00h pwm bri95 25Fh 8-bits PWM for Dot L5-CS5 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS11 260h R/W 8-bits PWM for Dot L5-CS6 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS12 00h pwm bri96 pwm_bri97 261h R/W 8-bits PWM for Dot L5-CS7 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS12 00h pwm bri98 262h R/W 8-bits PWM for Dot L5-CS8 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS13 00h pwm_bri99 263h R/W 8-bits PWM for Dot L5-CS9 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS13 00h pwm bri100 264h R/W 8-bits PWM for Dot L5-CS10 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS14 00h 265h R/W 00h pwm_bri101 8-bits PWM for Dot L5-CS11 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS14 pwm bri102 266h R/W 8-bits PWM for Dot L5-CS12 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS15 00h267h R/W 8-bits PWM for Dot L5-CS13 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS15 00h pwm bri103 R/W pwm_bri104 268h 8-bits PWM for Dot L5-CS14 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS16 00h R/W pwm bri105 269h 8-bits PWM for Dot L5-CS15 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS16 00h pwm_bri106 26Ah R/W 8-bits PWM for Dot L5-CS16 OR 16-bits PWM lower 8 bits [7:0] for Dot L2-CS17 00h R/W pwm bri107 26Bh 8-bits PWM for Dot L5-CS17 OR 16-bits PWM higher 8 bits [15:8] for Dot L2-CS17 00h 26Ch R/W 8-bits PWM for Dot L6-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L3-CS0 00h pwm_bri108 pwm bri109 26Dh R/W 8-bits PWM for Dot L6-CS1 OR 16-bits PWM higher 8 bits [15:8] for Dot L3-CS0 00h 26Eh R/W 00h pwm_bri110 8-bits PWM for Dot L6-CS2 OR 16-bits PWM lower 8 bits [7:0] for Dot L3-CS1 pwm_bri111 26Fh R/W 8-bits PWM for Dot L6-CS3 OR 16-bits PWM higher 8 bits [15:8] for Dot L3-CS1 00h pwm_bri112 270h R/W 8-bits PWM for Dot L6-CS4 OR 16-bits PWM lower 8 bits [7:0] for Dot L3-CS2 00h pwm bri113 271h R/W 8-bits PWM for Dot L6-CS5 OR 16-bits PWM higher 8 bits [15:8] for Dot L3-CS2 00h pwm_bri114 272h R/W 8-bits PWM for Dot L6-CS6 OR 16-bits PWM lower 8 bits [7:0] for Dot L3-CS3 00h pwm_bri115 273h R/W 8-bits PWM for Dot L6-CS7 OR 16-bits PWM higher 8 bits [15:8] for Dot L3-CS3 00h pwm_bri116 274h R/W 8-bits PWM for Dot L6-CS8 OR 16-bits PWM lower 8 bits [7:0] for Dot L3-CS4 00h pwm bri117 275h R/W 8-bits PWM for Dot L6-CS9 OR 16-bits PWM higher 8 bits [15:8] for Dot L3-CS4 00h 00h 276h R/W pwm bri118 8-bits PWM for Dot L6-CS10 OR 16-bits PWM lower 8 bits [7:0] for Dot L3-CS5 pwm_bri119 277h R/W 8-bits PWM for Dot L6-CS11 OR 16-bits PWM higher 8 bits [15:8] for Dot L3-CS5 00h

pwm bri120	278h	R/W	8-bits PWM for Dot L6-CS12 OR 16-bits PWM lower 8 bits [7:0] for Dot L3-CS6	00h				
pwm_bri121	279h	R/W	8-bits PWM for Dot L6-CS13 OR 16-bits PWM higher 8 bits [15:8] for Dot L3-CS6					
pwm_bri122	27Ah	R/W	8-bits PWM for Dot L6-CS14 OR 16-bits PWM lower 8 bits [7:0] for Dot L3-CS7					
 pwm_bri123	27Bh	R/W	8-bits PWM for Dot L6-CS15 OR 16-bits PWM higher 8 bits [15:8] for Dot L3-CS7	00h				
pwm_bri124	27Ch	R/W	8-bits PWM for Dot L6-CS16 OR 16-bits PWM lower 8 bits [7:0] for Dot L3-CS8					
pwm_bri125	27Dh	R/W	8-bits PWM for Dot L6-CS17 OR 16-bits PWM higher 8 bits [15:8] for Dot L3-CS8					
pwm_bri126	27Eh	R/W	8-bits PWM for Dot L7-CS0 OR 16-bits PWM lower 8 bits [7:0] for Dot L3-CS9					
pwm_bri127	27Fh	R/W	8-bits PWM for Dot L7-CS1 OR 16-bits PWM higher 8 bits [15:8] for Dot L3-CS9					
pwm_bri128	280h	R/W	8-bits PWM for Dot L7-CS2 OR 16-bits PWM lower 8 bits [7:0] for Dot L3-CS10					
pwm_bri129	281h	R/W	8-bits PWM for Dot L7-CS3 OR 16-bits PWM higher 8 bits [15:8] for Dot L3-CS10	00h				
pwm_bri130	282h	R/W	8-bits PWM for Dot L7-CS4 OR 16-bits PWM lower 8 bits [7:0] for Dot L3-CS11	00h				
pwm_bri131	283h	R/W	8-bits PWM for Dot L7-CS5 OR 16-bits PWM higher 8 bits [15:8] for Dot L3-CS11	00h				
pwm_bri132	284h	R/W	8-bits PWM for Dot L7-CS6 OR 16-bits PWM lower 8 bits [7:0] for Dot L3-CS12	00h				
pwm_bri133	285h	R/W	8-bits PWM for Dot L7-CS7 OR 16-bits PWM higher 8 bits [15:8] for Dot L3-CS12	00h				
pwm_bri134	286h	R/W	8-bits PWM for Dot L7-CS8 OR 16-bits PWM lower 8 bits [7:0] for Dot L3-CS13	00h				
pwm_bri135	287h	R/W	8-bits PWM for Dot L7-CS9 OR 16-bits PWM higher 8 bits [15:8] for Dot L3-CS13	00h				
pwm_bri136	288h	R/W	8-bits PWM for Dot L7-CS10 OR 16-bits PWM lower 8 bits [7:0] for Dot L3-CS14	00h				
pwm_bri137	289h	R/W	8-bits PWM for Dot L7-CS11 OR 16-bits PWM higher 8 bits [15:8] for Dot L3-CS14	00h				
pwm_bri138	28Ah	R/W	8-bits PWM for Dot L7-CS12 OR 16-bits PWM lower 8 bits [7:0] for Dot L3-CS15	00h				
pwm_bri139	28Bh	R/W	8-bits PWM for Dot L7-CS13 OR 16-bits PWM higher 8 bits [15:8] for Dot L3-CS15					
pwm_bri140	28Ch	R/W	8-bits PWM for Dot L7-CS14 OR 16-bits PWM lower 8 bits [7:0] for Dot L3-CS16					
pwm_bri141	28Dh	R/W	8-bits PWM for Dot L7-CS15 OR 16-bits PWM higher 8 bits [15:8] for Dot L3-CS16					
pwm_bri142	28Eh	R/W	8-bits PWM for Dot L7-CS16 OR 16-bits PWM lower 8 bits [7:0] for Dot L3-CS17	00h				
pwm_bri143	28Fh	R/W	8-bits PWM for Dot L7-CS17 OR 16-bits PWM higher 8 bits [15:8] for Dot L3-CS17	00h				
pwm_bri144	290h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS0	00h				
pwm_bri145	291h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS0	00h				
pwm_bri146	292h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS1	00h				
pwm_bri147	293h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS1	00h				
pwm_bri148	294h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS2	00h				
pwm_bri149	295h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS2	00h				
pwm_bri150	296h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS3	00h				
pwm_bri151	297h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS3	00h				
pwm_bri152	298h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS4	00h				
pwm_bri153	299h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS4	00h				
pwm_bri154	29Ah	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS5	00h				
pwm_bri155	29Bh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS5	00h				
pwm_bri156	29Ch	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS6	00h				
pwm_bri157	29Dh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS6	00h				
pwm_bri158	29Eh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS7	00h				
pwm_bri159	29Fh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS7	00h				
pwm_bri160	2A0h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS8	00h				
pwm_bri161	2A1h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS8	00h 00h				
pwm_bri162	2A2h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS9					
pwm_bri163	2A3h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS9					
pwm_bri164	2A4h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS10					
pwm_bri165	2A5h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS10	00h				
pwm_bri166	2A6h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS11	00h				

ттт.пј.оо.јр			SASSIVIT - BEG	0202202				
pwm_bri167	2A7h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS11					
pwm_bri168	2A8h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS12					
pwm_bri169	2A9h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS12	00h				
pwm_bri170	2AAh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS13	00h				
pwm_bri171	2ABh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS13	00h				
pwm_bri172	2ACh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS14	00h				
pwm_bri173	2ADh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS14	00h				
pwm_bri174	2AEh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS15	00h				
pwm_bri175	2AFh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS15	00h				
pwm_bri176	2B0h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS16	00h				
pwm_bri177	2B1h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS16	00h				
pwm_bri178	2B2h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L4-CS17	00h				
pwm_bri179	2B3h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L4-CS17	00h				
pwm_bri180	2B4h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS0	00h				
pwm_bri181	2B5h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS0	00h				
pwm_bri182	2B6h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS1	00h				
pwm_bri183	2B7h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS1	00h				
pwm_bri184	2B8h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS2	00h				
pwm_bri185	2B9h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS2	00h				
pwm_bri186	2BAh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS3	00h				
pwm_bri187	2BBh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS3	00h				
pwm_bri188	2BCh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS4	00h				
pwm_bri189	2BDh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS4	00h				
pwm_bri190	2BEh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS5	00h				
pwm_bri191	2BFh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS5	00h				
pwm_bri192	2C0h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS6	00h				
pwm_bri193	2C1h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS6	00h				
pwm_bri194	2C2h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS7	00h				
pwm_bri195	2C3h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS7	00h				
pwm_bri196	2C4h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS8	00h				
pwm_bri197	2C5h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS8	00h				
pwm_bri198	2C6h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS9	00h				
pwm_bri199	2C7h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS9	00h				
pwm_bri200	2C8h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS10	00h				
pwm_bri201	2C9h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS10	00h				
pwm_bri202	2CAh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS11	00h				
pwm_bri203	2CBh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS11	00h				
pwm_bri204	2CCh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS12	00h				
pwm_bri205	2CDh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS12	00h				
pwm_bri206	2CEh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS13	00h				
pwm_bri207	2CFh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS13	00h				
pwm_bri208	2D0h 2D1h	R/W R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS14 16-bits PWM higher 8 bits [15:8] for Dot L5-CS14	00h 00h				
pwm_bri209 pwm_bri210	2D1h 2D2h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS15	00h				
pwm_bri211	2D2H	R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS15	00h				
<u> </u>		_						
pwm_bri212	2D4h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS16	00h				
pwm_bri213	2D5h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS16	00h				

AJOINIT - DECEINI				W W.t.j.00.j			
pwm_bri214	2D6h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L5-CS17	00h			
pwm_bri215	2D7h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L5-CS17				
pwm_bri216	2D8h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L6-CS0	00h			
pwm_bri217	2D9h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L6-CS0	00h			
pwm_bri218	2DAh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L6-CS1	00h			
pwm_bri219	2DBh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L6-CS1	00h			
pwm_bri220	2DCh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L6-CS2	00h			
pwm_bri221	2DDh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L6-CS2	00h			
pwm_bri222	2DEh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L6-CS3	00h			
pwm_bri223	2DFh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L6-CS3	00h			
pwm_bri224	2E0h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L6-CS4	00h			
pwm_bri225	2E1h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L6-CS4	00h			
pwm_bri226	2E2h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L6-CS5	00h			
pwm_bri227	2E3h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L6-CS5	00h			
pwm_bri228	2E4h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L6-CS6	00h			
pwm_bri229	2E5h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L6-CS6	00h			
pwm_bri230	2E6h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L6-CS7	00h			
pwm_bri231	2E7h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L6-CS7	00h			
pwm_bri232	2E8h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L6-CS8	00h			
pwm_bri233	2E9h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L6-CS8	00h			
pwm_bri234	2EAh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L6-CS9	00h			
pwm_bri235	2EBh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L6-CS9	00h			
pwm_bri236	2ECh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L6-CS10	00h			
pwm_bri237	2EDh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L6-CS10	00h			
pwm_bri238	2EEh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L6-CS11	00h			
pwm_bri239	2EFh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L6-CS11	00h			
pwm_bri240	2F0h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L6-CS12	00h			
pwm_bri241	2F1h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L6-CS12	00h			
pwm_bri242	2F2h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L6-CS13	00h			
pwm_bri243	2F3h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L6-CS13	00h			
pwm_bri244	2F4h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L6-CS14	00h			
pwm_bri245	2F5h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L6-CS14	00h			
pwm_bri246	2F6h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L6-CS15	00h			
pwm_bri247	2F7h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L6-CS15	00h			
pwm_bri248	2F8h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L6-CS16	00h			
pwm_bri249	2F9h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L6-CS16	00h			
pwm_bri250	2FAh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L6-CS17	00h			
pwm_bri251	2FBh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L6-CS17	00h			
pwm_bri252	2FCh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L7-CS0	00h			
pwm_bri253	2FDh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L7-CS0	00h			
pwm_bri254	2FEh	R/W	16-bits PWM lower 8 bits [7:0] for Dot L7-CS1	00h			
pwm_bri255	2FFh	R/W	16-bits PWM higher 8 bits [15:8] for Dot L7-CS1	00h			
pwm_bri256	300h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L7-CS2	00h 00h			
pwm_bri257	301h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L7-CS2				
pwm_bri258	302h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L7-CS3				
pwm_bri259	303h	R/W	16-bits PWM higher 8 bits [15:8] for Dot L7-CS3	00h			
pwm_bri260	304h	R/W	16-bits PWM lower 8 bits [7:0] for Dot L7-CS4	00h			

305h pwm_bri261 R/W 16-bits PWM higher 8 bits [15:8] for Dot L7-CS4 00h pwm_bri262 306h R/W 16-bits PWM lower 8 bits [7:0] for Dot L7-CS5 00h pwm bri263 307h R/W 16-bits PWM higher 8 bits [15:8] for Dot L7-CS5 00h pwm_bri264 308h R/W 16-bits PWM lower 8 bits [7:0] for Dot L7-CS6 00h 309h R/W 16-bits PWM higher 8 bits [15:8] for Dot L7-CS6 00h pwm bri265 pwm bri266 30Ah R/W 16-bits PWM lower 8 bits [7:0] for Dot L7-CS7 00h pwm_bri267 30Bh R/W 16-bits PWM higher 8 bits [15:8] for Dot L7-CS7 00h R/W pwm_bri268 30Ch 16-bits PWM lower 8 bits [7:0] for Dot L7-CS8 00h 30Dh R/W 16-bits PWM higher 8 bits [15:8] for Dot L7-CS8 00h pwm_bri269 pwm_bri270 30Eh R/W 16-bits PWM lower 8 bits [7:0] for Dot L7-CS9 00h 30Fh R/W 16-bits PWM higher 8 bits [15:8] for Dot L7-CS9 00h pwm_bri271 R/W 00h pwm_bri272 310h 16-bits PWM lower 8 bits [7:0] for Dot L7-CS10 pwm bri273 311h R/W 16-bits PWM higher 8 bits [15:8] for Dot L7-CS10 00h 312h R/W 16-bits PWM lower 8 bits [7:0] for Dot L7-CS11 00h pwm_bri274 pwm_bri275 313h R/W 16-bits PWM higher 8 bits [15:8] for Dot L7-CS11 00h R/W 00h pwm bri276 314h 16-bits PWM lower 8 bits [7:0] for Dot L7-CS12 pwm bri277 315h R/W 16-bits PWM higher 8 bits [15:8] for Dot L7-CS12 00h 316h R/W 16-bits PWM lower 8 bits [7:0] for Dot L7-CS13 00h pwm_bri278 317h R/W 00h pwm_bri279 16-bits PWM higher 8 bits [15:8] for Dot L7-CS13 R/W 00h pwm bri280 318h 16-bits PWM lower 8 bits [7:0] for Dot L7-CS14 pwm_bri281 319h R/W 16-bits PWM higher 8 bits [15:8] for Dot L7-CS14 00h pwm_bri282 31Ah R/W 16-bits PWM lower 8 bits [7:0] for Dot L7-CS15 00h R/W 00h 31Bh pwm_bri283 16-bits PWM higher 8 bits [15:8] for Dot L7-CS15 pwm bri284 31Ch R/W 16-bits PWM lower 8 bits [7:0] for Dot L7-CS16 00h pwm_bri285 31Dh R/W 16-bits PWM higher 8 bits [15:8] for Dot L7-CS16 00h 00h pwm bri286 31Eh R/W 16-bits PWM lower 8 bits [7:0] for Dot L7-CS17 pwm_bri287 31Fh R/W 16-bits PWM higher 8 bits [15:8] for Dot L7-CS17 00h

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

The LP5868 integrates 18 constant current sinks with 8 switching FETs and one LP5868 can drive up to 144 LED dots or 48 RGB pixels and achieve great dimming effect. In smart home, gaming keyboards, and other human-machine interaction applications, the device can greatly improve user experience with a small amount of components.

9.2 Typical Application

9.2.1 Application

☑ 9-1 shows an example of typical application, which uses one LP5868 to drive 66 common-anode RGB LEDs through I²C communication.

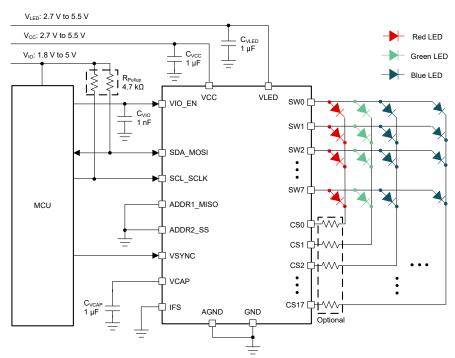


図 9-1. Typical Application – LP5868 Driving 66 RGB LEDs (198 LED Dots)

Submit Document Feedback

Copyright © 2022 Texas Instruments Incorporated

9.2.2 Design Requirements

表 9-1. Design Parameters

PARAMETER	VALUE
VCC / VIO	3.3 V
VLED	5 V
RGB LED count	66
Scan number	8
Interface	I ² C
LED maximum average current (red, green, blue)	4 mA, 3 mA, 2 mA
LED maximum peak current (red, green, blue)	44 mA, 33 mA, 22 mA

9.2.3 Detailed Design Procedure

LP5868 requires an external capacitor C_{VCAP} , whose value is 1 μF connected from V_{CAP} to GND for proper operation of internal LDO. The capacitor must be placed as close to the device as possible.

TI recommends $1-\mu F$ capacitors to be placed between VCC / VLED with GND, and a 1-nF capacitor placed between VIO with GND. Place the capacitors as close to the device as possible.

Pull-up resistors $R_{pull-up}$ are a requirement for SCL and SDA when using I²C as communication method. In typical applications, TI recommends 1.8-k Ω to 4.7-k Ω resistors.

To decrease thermal dissipation from device to ambient, resistors R_{CS} can optionally be placed in serial with the LED. Voltage drop on these resistors must leeave enough margins for VSAT to ensure the device works normally.

9.2.4 Program Procedure

When selecting data refresh Mode 1, outputs are refreshed instantly after data is received.

When selecting data refresh Mode 2/3, VSYNC signal is required for synchronized display. Programming flow is shown as \boxtimes 9-2. To display full pixel of last frame, VSYNC pulse must be sent to the device after the end of last PWM. Time between two pulses t_{SYNC} must be larger than the whole PWM time of all dots t_{frame} . Common selection like 60 Hz, 90 Hz, 120 Hz or even higher refresh frequency can be supported. High pulse width longer than t_{SYNC_H} is required at the beginning of each VSYNC frame, and data must not be write to PWM registers during high pulse width.

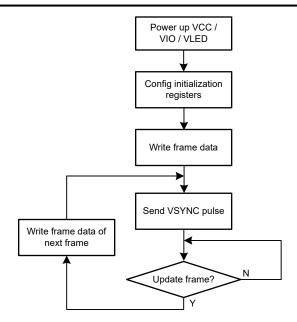


図 9-2. Program Procedure

9.2.5 Application Performance Plots

The following figures show the application performance plots.

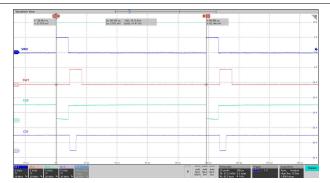
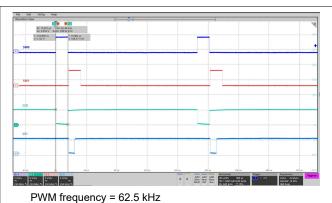
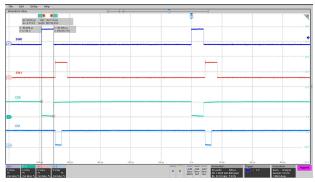
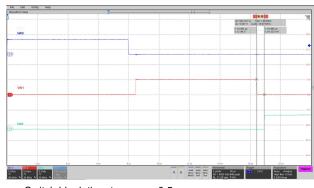
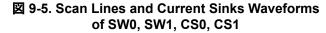


図 9-3. Scan Lines and Current Sinks Waveforms of SW0, SW1, CS0, CS1


図 9-4. Scan Lines and Current Sinks Waveforms of SW0, SW1, CS0, CS1

PWM frequency = 125 kHz

Switch blank time $t_{SW_BLK} = 0.5 \mu s$

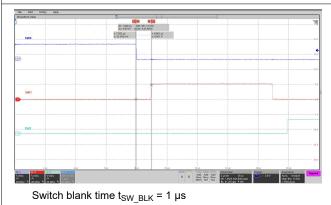


図 9-7. Scan Lines Switching Waveforms of SW0, SW1, SW2

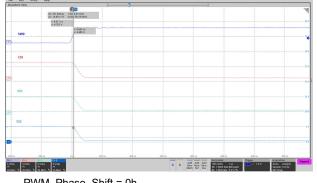
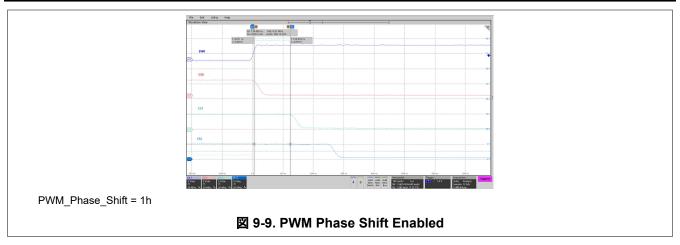



図 9-6. Scan Lines Switching Waveforms of SW0, SW1, SW2

PWM_Phase_Shift = 0h

図 9-8. PWM Phase Shift Disabled

10 Power Supply Recommendations

VDD Input Supply Recommendations

LP5868 is designed to operate from a 2.7-V to 5.5-V VDD voltage supply. This input supply must be well regulated and be able to provide the peak current required by the LED matrix. The resistance of the VDD supply rail must be low enough such that the input current transient does not cause the LP5868 VDD supply voltage to drop below the maximum POR voltage.

VLED Input Supply Recommendations

LP5868 is designed to operate with a 2.7-V to 5.5-V VLED voltage supply. The VLED supply must be well regulated and able to provide the peak current required by the LED configuration without voltage drop, under load transients like start-up or rapid brightness change. The resistance of the input supply rail must be low enough so that the input current transient does not cause the VLED supply voltage to drop below LED V_f + VSAT voltage.

VIO Input Supply Recommendations

LP5868 is designed to operate with a 1.65-V to 5.5-V VIO_EN voltage supply. The VIO_EN supply must be well regulated and able to provide the peak current required by the LED configuration without voltage drop under load transients like start-up or rapid brightness change.

11 Layout

11.1 Layout Guidelines

The below guidelines for layout design can help to get a better on-board performance.

- The decoupling capacitors C_{VCC} and C_{VLED} for power supply must be close to the chip to have minimized the
 impact of high-frequency noise and ripple from power. C_{VCAP} for internal LDO must be put as close to chip as
 possible. GND plane connections to C_{VLED} and GND pins must be on the TOP layer copper with multiple vias
 connecting to system ground plane. C_{VIO} for internal enable block also must be put as close to the chip as
 possible.
- The exposed thermal pad must be well soldered to the board, which can have better mechanical reliability.
 The action can optimize heat transfer so that increasing thermal performance. AGND pin must be connected to thermal pad and system ground.
- The major heat flow path from the package to the ambient is through copper on the PCB. Several methods can help thermal performance. Below exposed thermal pad of IC, putting much vias through the PCB to other ground layer can dissipate more heat. Maximizing the copper coverage on the PCB can increase the thermal conductivity of the board.
- Low inductive and resistive path of switch load loop can help to provide a high slew rate. Therefore, path of VLED – SWx must be short and wide and avoid parallel wiring and narrow trace. Transient current in SWx pins is much larger than CSy pins, so that trace for SWx must be wider than CSy.

11.2 Layout Example

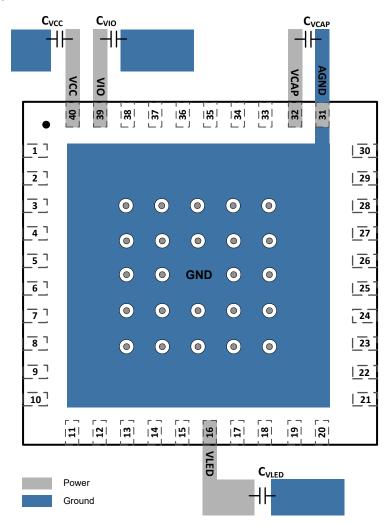


図 11-1. LP5868 Layout Example

12 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

12.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.2 サポート・リソース

TI E2E[™] サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するものではなく、必ずしも TI の見解を反映したものではありません。TI の使用条件を参照してください。

12.3 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

すべての商標は、それぞれの所有者に帰属します。

12.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.5 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 9-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
LP5868RKPR	Active	Production	VQFN (RKP) 40	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LP5868
LP5868RKPR.A	Active	Production	VQFN (RKP) 40	3000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LP5868

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

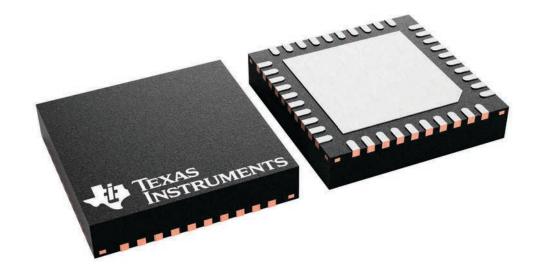
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

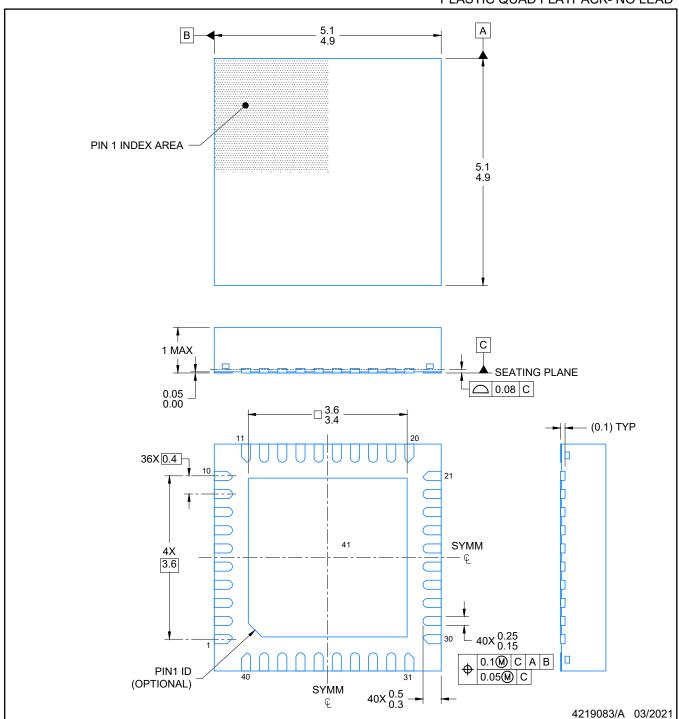
⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

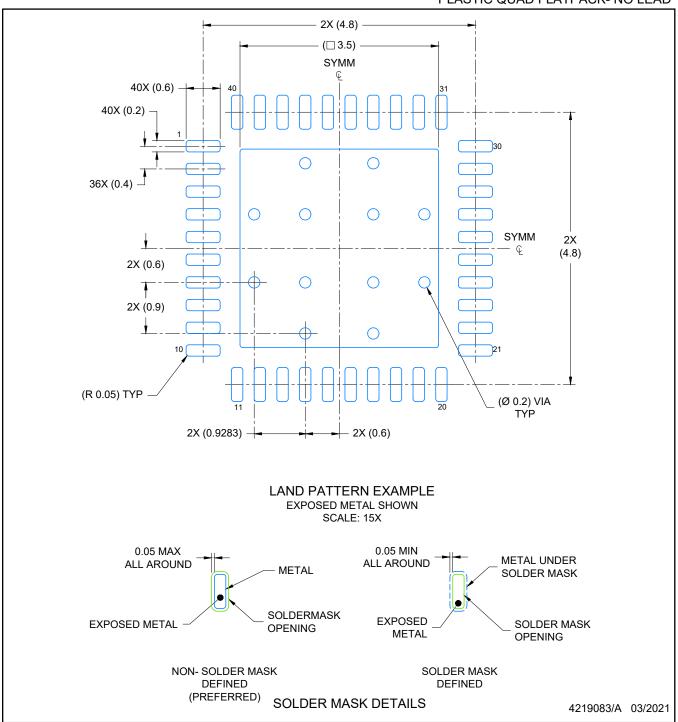
5 x 5, 0.4 mm pitch


PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

Instruments www.ti.com

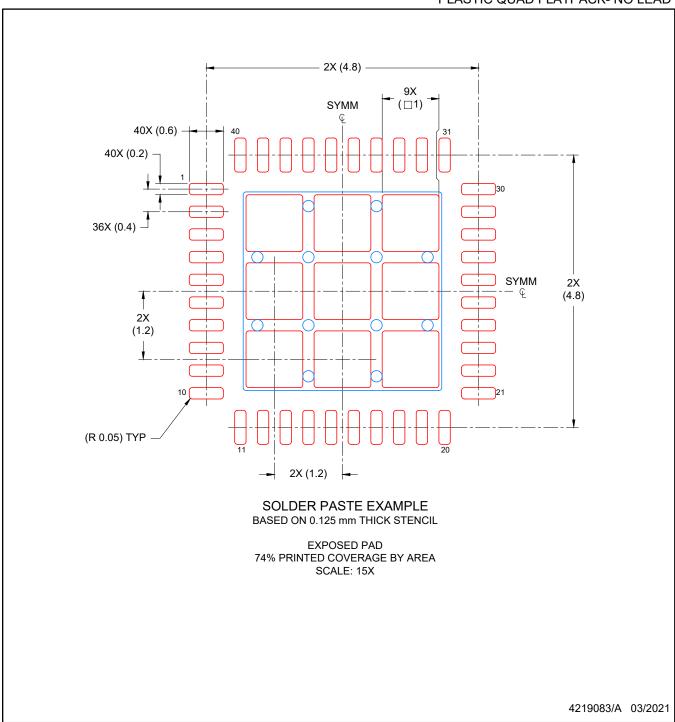
PLASTIC QUAD FLATPACK- NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.

PLASTIC QUAD FLATPACK- NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK- NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、TIの総合的な品質ガイドライン、 ti.com または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TIはそれらに異議を唱え、拒否します。

Copyright © 2025, Texas Instruments Incorporated

最終更新日: 2025 年 10 月