

ADS7056

JAJSD54-MARCH 2017

ADS7056 超低消費電力、超小型、14ビット、高速SAR ADC

1 特長

- 2.5MSPSのスループット
- 超小型SAR ADC
 - 占有面積2.25mm²のX2QFN-8パッケージ
- 広い動作範囲:
 - AVDD: 2.35V∼3.6V
 - DVDD: 1.65V~3.6V (AVDDとは独立)
 - 温度範囲: -40℃~+125℃
- ユニポーラ入力範囲: 0V~AVDD
- 優れた性能:
 - 14ビットのNMC DNL、±2LSB INL
 - 2kHzで74.5dBのSINAD
 - 1MHzで73.7dBのSINAD
- 超低消費電力
 - 3.3V AVDD、2.5MSPSで3.5mW
 - 3.3V AVDD、100kSPSで158µW
- オフセット較正機能を搭載
- SPI互換のシリアル・インターフェイス: 60MHz
- JESD8-7A準拠のデジタルI/O

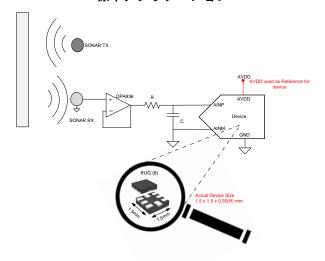
2 アプリケーション

- ソナー受信機
- 光ライン・カードおよびモジュール
- サーマル・イメージング
- 超音波流量計
- モータ制御
- 携帯ラジオ
- 環境センシング
- 火炎および煙検出

3 概要

ADS7056 は、14ビット、2.5MSPSのアナログ/デジタル・コンバータ(ADC)です。このデバイスには、コンデンサをベースとした逐次比較型レジスタ(SAR) ADCが内蔵され、広いアナログ入力電圧範囲(2.35V~3.6Vの範囲のAVDDについて0V~AVDD)に対応しています。

SPI互換のシリアル・インターフェイスは、 CSおよびSCLK 信号により制御されます。 入力信号は CS の立ち下がりエッジでサンプリングされ、変換とシリアル・データ出力にはSCLKが使用されます。 このデバイスは広いデジタル電源範囲(1.65V~3.6V)に対応し、各種のホスト・コントローラと直接接続可能です。 ADS7056は、通常のDVDD範囲(1.65V~1.95V)について、JESD8-7Aに準拠しています。


ADS7056は、8ピンのミニチュアX2QFNパッケージで供給され、拡張産業用温度範囲(-40℃~+125℃)で動作が規定されています。小型のフォーム・ファクタと非常に低い消費電力から、スペースに制限のあるアプリケーションやバッテリ駆動のアプリケーションに適しています。

製品情報⁽¹⁾

型番	パッケージ	本体サイズ(typ)
ADS7056	X2QFN (8)	1.50mm×1.50mm

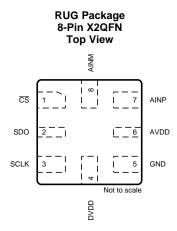
(1) 利用可能なすべてのパッケージについては、このデータシートの末 尾にある注文情報を参照してください。

標準アプリケーション

NOTE: ADS7056は、0805 (2012 metric) SMDコンポーネントよりも小型です。

目次

	#t. E		9.2 Facture Description 46
1	特長1		8.3 Feature Description
2	アプリケーション1		8.4 Device Functional Modes
3	概要1	9	Application and Implementation 23
4	改訂履歴2		9.1 Application Information
5	Pin Configuration and Functions3		9.2 Typical Applications
6	Specifications	10	Power Supply Recommendations 30
•	6.1 Absolute Maximum Ratings		10.1 AVDD and DVDD Supply Recommendations 30
	6.2 ESD Ratings		10.2 Optimizing Power Consumed by the Device 30
	6.3 Recommended Operating Conditions	11	Layout31
	6.4 Thermal Information		11.1 Layout Guidelines 31
	6.5 Electrical Characteristics		11.2 Layout Example 31
	6.6 Timing Requirements	12	デバイスおよびドキュメントのサポート
	6.7 Switching Characteristics		12.1 ドキュメントのサポート32
	6.8 Typical Characteristics 8		12.2 ドキュメントの更新通知を受け取る方法
7	Parameter Measurement Information		12.3 コミュニティ・リソース32
-	7.1 Digital Voltage Levels		12.4 商標
8	Detailed Description		12.5 静電気放電に関する注意事項
•	8.1 Overview		12.6 Glossary32
	8.2 Functional Block Diagram	13	メカニカル、パッケージ、および注文情報
	č		


4 改訂履歴

日付	改訂内容	注
2017年3月	*	初版

JAJSD54-MARCH 2017 www.ti.com

Pin Configuration and Functions

Pin Functions

PIN	PIN		
NAME NO. I/O		I/O	DESCRIPTION
AINM	8	Analog input	Analog signal input, negative
AINP	7	Analog input	Analog signal input, positive
AVDD	6	Supply	Analog power-supply input, also provides the reference voltage to the ADC
CS	1	Digital input	Chip-select signal, active low
DVDD	4	Supply	Digital I/O supply voltage
GND	5	Supply	Ground for power supply, all analog and digital signals are referred to this pin
SCLK	3	Digital input	Serial clock
SDO	2	Digital output	Serial data out

Specifications

6.1 Absolute Maximum Ratings⁽¹⁾

or the crate maximum reasinge			
	MIN	MAX	UNIT
AVDD to GND	-0.3	3.9	V
DVDD to GND	-0.3	3.9	V
AINP to GND	-0.3	AVDD + 0.3	V
AINM to GND	-0.3	0.3	V
Input current to any pin except supply pins	-10	10	mA
Digital input voltage to GND	-0.3	DVDD + 0.3	V
Storage temperature, T _{stq}	-60	150	°C

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

	- ··· J ·			
			VALUE	UNIT
V	Clastrostatia diagharga	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	V
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1000	V

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

TEXAS INSTRUMENTS

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
AVDD	Analog supply voltage range	2.35	3	3.6	V
DVDD	Digital supply voltage range	1.65	1.8	3.6	V
T _A	Operating free-air temperature	-40	25	125	°C

6.4 Thermal Information

		ADS7056	
	THERMAL METRIC ⁽¹⁾	RUG (X2QFN)	UNIT
		8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	177.5	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	51.5	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	76.7	°C/W
ΨЈТ	Junction-to-top characterization parameter	1	°C/W
ΨЈВ	Junction-to-board characterization parameter	76.7	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	N/A	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

at AVDD = 3.3 V, DVDD = 1.65 V to 3.6 V, f_{SAMPLE} = 2.5 MSPS, and V_{AINM} = 0 V (unless otherwise noted); minimum and maximum values for T_{Δ} = -40°C to +125°C; typical values at T_{Δ} = 25°C

	PARAMETE	R	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ANALOG I	INPUT						
	Full-scale input volta	age span ⁽¹⁾		0		AVDD	V
	Absolute input	AINP to GND		-0.1		AVDD + 0.1	
	voltage range	AINM to GND		-0.1		0.1	V
Cs	Sampling capacitan	ce			16		pF
SYSTEM P	PERFORMANCE						
	Resolution				14		Bits
NMC	No missing codes			14			Bits
INL ⁽²⁾	Integral nonlinearity			-3	±2	3	LSB ⁽³⁾
DNL	Differential nonlinea	ırity		-0.99	±0.5	1	LSB
E _O ⁽²⁾	Offset error		After calibration (4)	-6	±2.5	6	LSB
dV _{OS} /dT	Offset error drift with	n temperature			1.75		ppm/°C
E _G ⁽²⁾	Gain error			-0.1	±0.01	0.1	%FS
	Gain error drift with	temperature			0.5		ppm/°C
SAMPLING	G DYNAMICS						
t_{CONV}	Conversion time				18 x t _{SCLK}		ns
t_{ACQ}	Acquisition time	·		95			ns
f _{SAMPLE}	Maximum throughp	ut rate	60-MHz SCLK, AVDD = 2.35 V to 3.6 V			2.5	MHz
	Aperture delay				3		ns
	Aperture jitter, RMS				12		ps

⁽¹⁾ Ideal input span; does not include gain or offset error.

⁽²⁾ See Figure 32, Figure 33, and Figure 34 for statistical distribution data for INL, offset error, and gain error.

⁽³⁾ LSB means least significant bit.

⁽⁴⁾ See the OFFCAL State section for details.

www.ti.com

Electrical Characteristics (continued)

at AVDD = 3.3 V, DVDD = 1.65 V to 3.6 V, f_{SAMPLE} = 2.5 MSPS, and V_{AINM} = 0 V (unless otherwise noted); minimum and maximum values for T_A = -40°C to +125°C; typical values at T_A = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
DYNAMIC	CHARACTERISTICS	,					
0110	0, 1, (5)	AVDD = 3.3 V	72	74.9			
SNR	Signal-to-noise ratio ⁽⁵⁾	AVDD = 2.5 V		73.7		dB	
		f _{IN} = 2 kHz		-85			
THD	Total harmonic distortion (5)(6)	f _{IN} = 250 kHz		-84.8		dB	
		f _{IN} = 1000 kHz		-84.5			
		f _{IN} = 2 kHz	71.75	74.5			
SINAD	Signal-to-noise and distortion (5)	f _{IN} = 250 kHz		73.7		dB	
		f _{IN} = 1000 kHz		73.7			
		f _{IN} = 2 kHz		89.8			
SFDR	Spurious-free dynamic range ⁽⁵⁾	f _{IN} = 250 kHz		88		dB	
		f _{IN} = 1000 kHz		87.5			
BW _(fp)	Full-power bandwidth	At –3 dB		200		MHz	
DIGITAL I	NPUT/OUTPUT (CMOS Logic Family)	•	•		*		
V _{IH}	High-level input voltage (7)		0.65 DVDD		DVDD + 0.3	V	
V _{IL}	Low-level input voltage (7)		-0.3		0.35 DVDD	V	
V_{OH}	High-level output voltage (7)	At I _{source} = 500 μA	0.8 DVDD	DVDD	DVDD	V	
VOH	High-level output voltage 💛	At I _{source} = 2 mA	DVDD - 0.45		DVDD	V	
V_{OL}	Low-level output voltage ⁽⁷⁾	At I _{sink} = 500 μA	0		0.2 DVDD	V	
VOL	Low-level output voltage	At I _{sink} = 2 mA	0		0.45	V	
POWER-S	SUPPLY REQUIREMENTS	·					
AVDD	Analog supply voltage		2.35	3	3.6	V	
DVDD	Digital I/O supply voltage		1.65	3	3.6	V	
		AVDD = 3.3 V , $f_{SAMPLE} = 2.5 \text{ MSPS}$		1050	1250		
		AVDD = 3.3 V, f _{SAMPLE} = 100 kSPS		48	50		
I_{AVDD}	Analog supply current	AVDD = 3.3 V, f _{SAMPLE} = 10 kSPS		5		μΑ	
		AVDD = 2.5 V, f _{SAMPLE} = 2.5 MSPS		750			
		Static current with CS and SCLK high		0.02			
	Digital august august	DVDD = 1.8 V, CSDO = 20 pF, output code = 2AAAh ⁽⁸⁾		630			
I _{DVDD}	Digital supply current	DVDD = 1.8 V, static current with $\overline{\text{CS}}$ and SCLK high		0.01		μA	

⁽⁵⁾ All specifications expressed in decibels (dB) refer to the full-scale input (FSR) and are tested with an input signal 0.5 dB below full-scale, unless otherwise noted.

⁽⁶⁾ Calculated on the first nine harmonics of the input frequency.

⁽⁷⁾ Digital voltage levels comply with the JESD8-7A standard for DVDD from 1.65 V to 1.95 V; see the Parameter Measurement Information section for details.

⁽⁸⁾ See the Estimating Digital Power Consumption section for details.

TEXAS INSTRUMENTS

6.6 Timing Requirements

all specifications are at AVDD = 2.35 V to 3.6 V, DVDD = 1.65 V to 3.6 V, and $C_{LOAD\text{-}SDO}$ = 20 pF (unless otherwise noted); minimum and maximum values for $T_A = -40^{\circ}\text{C}$ to +125°C; typical values at $T_A = 25^{\circ}\text{C}$

		MIN	TYP M	XX U	NIT
t _{CLK}	Time period of SCLK	16.66			ns
t _{su_CSCK}	Setup time: CS falling edge to SCLK falling edge	7			ns
t _{ht_CKCS}	Hold time: SCLK rising edge to $\overline{\text{CS}}$ rising edge	8			ns
t _{ph_CK}	SCLK high time	0.45	0	55 t _s	SCLK
t _{pl_CK}	SCLK low time	0.45	0	55 t _s	SCLK
t _{ph_CS}	CS high time	15			ns

6.7 Switching Characteristics

all specifications are at AVDD = 2.35 V to 3.6 V, DVDD = 1.65 V to 3.6 V, and $C_{LOAD\text{-}SDO}$ = 20 pF (unless otherwise noted); minimum and maximum values for $T_A = -40^{\circ}\text{C}$ to +125°C; typical values at $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{CYCLE} ⁽¹⁾	Cycle time		400			ns
t _{CONV}	Conversion time		1	8 × t _{SCLK}		ns
t _{den_CSDO}	Delay time: CS falling edge to data enable				6.5	ns
t _{d_CKDO}	Delay time: SCLK rising edge to (next) data valid on SDO				10	ns
t _{ht_CKDO}	SCLK rising edge to current data invalid		2.5			
t _{dz_CSDO}	Delay time: $\overline{\text{CS}}$ rising edge to SDO going to tri-state		5.5			ns

(1) $t_{CYCLE} = 1 / f_{SAMPLE}$.

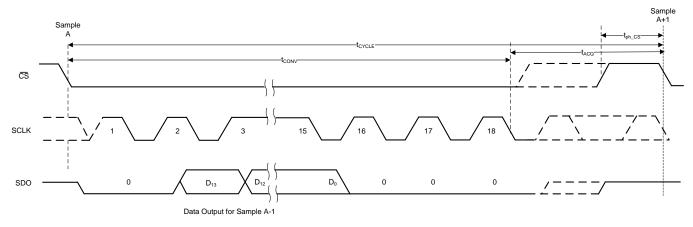
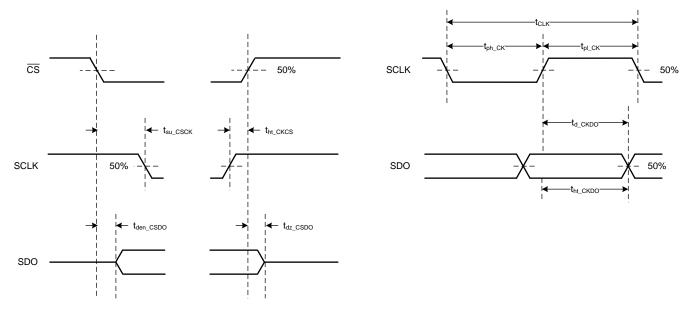
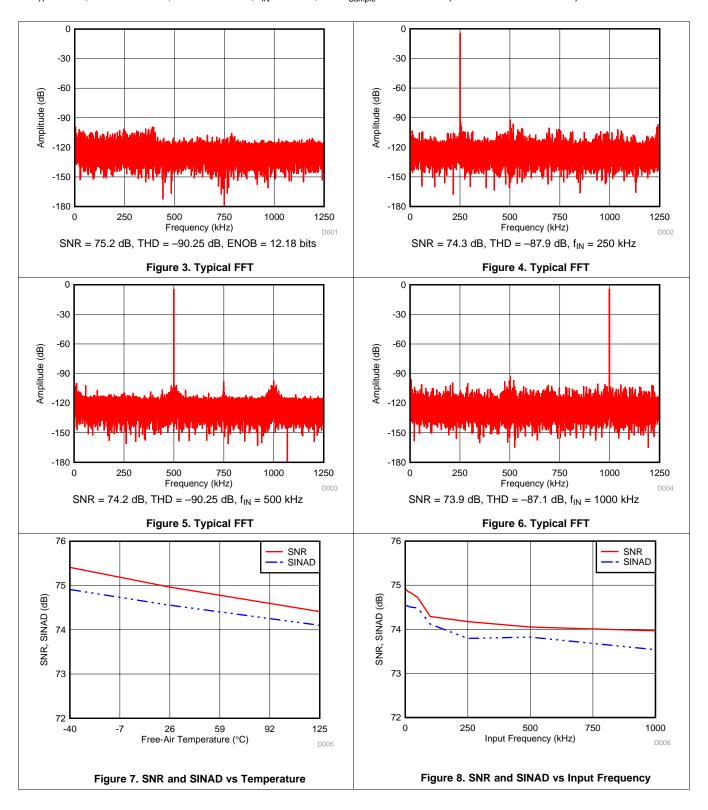


Figure 1. Serial Transfer Frame

www.ti.com



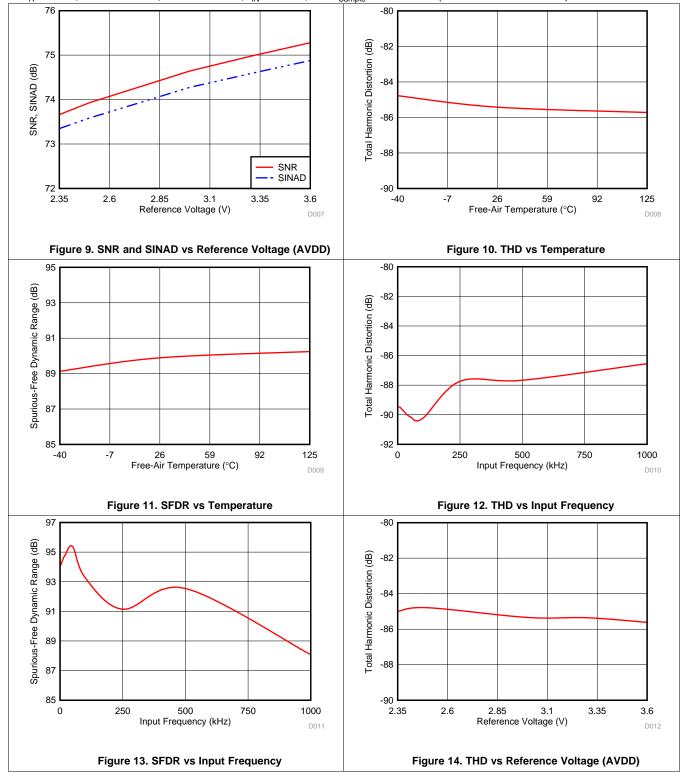

Figure 2. Timing Specifications

JAJSD54 – MARCH 2017 www.ti.com

TEXAS INSTRUMENTS

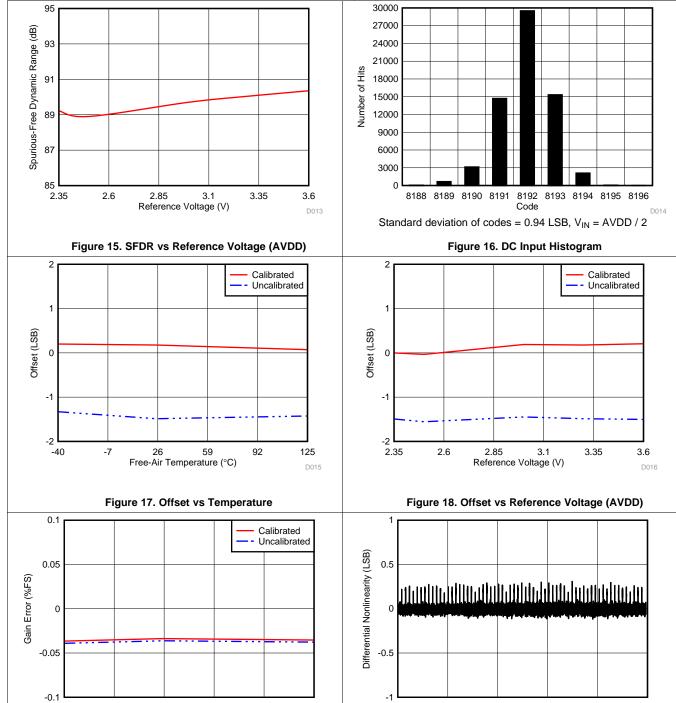
6.8 Typical Characteristics

at $T_A = 25$ °C, AVDD = 3.3 V, DVDD = 1.8 V, $f_{IN} = 2$ kHz, and $f_{Sample} = 2.5$ MSPS (unless otherwise noted)



www.ti.com

Typical Characteristics (continued)


at $T_A = 25$ °C, AVDD = 3.3 V, DVDD = 1.8 V, $f_{IN} = 2$ kHz, and $f_{Sample} = 2.5$ MSPS (unless otherwise noted)

TEXAS INSTRUMENTS

Typical Characteristics (continued)

-40

-7

59

Free-Air Temperature (°C)

Figure 19. Gain Error vs Temperature

92

125

D017

0

3300

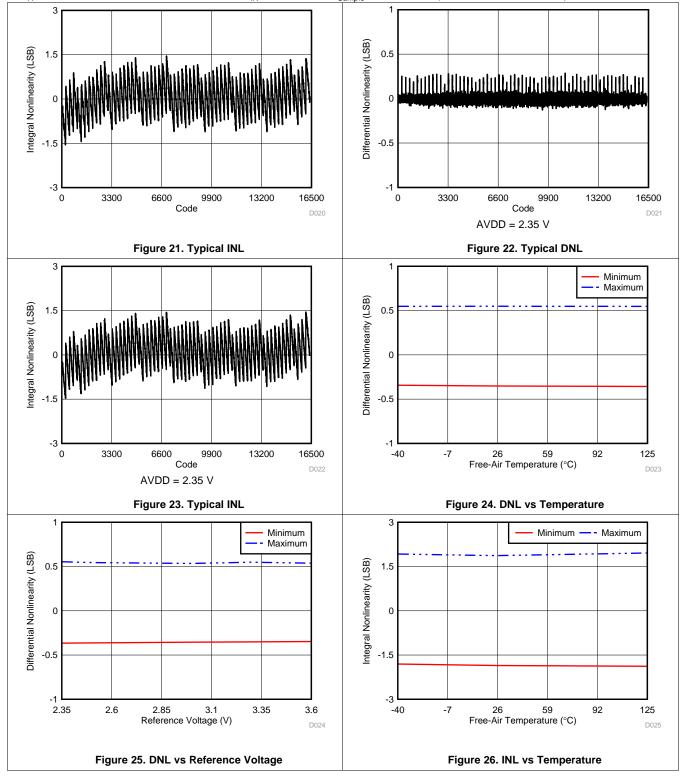
6600

9900

Figure 20. Typical DNL

13200

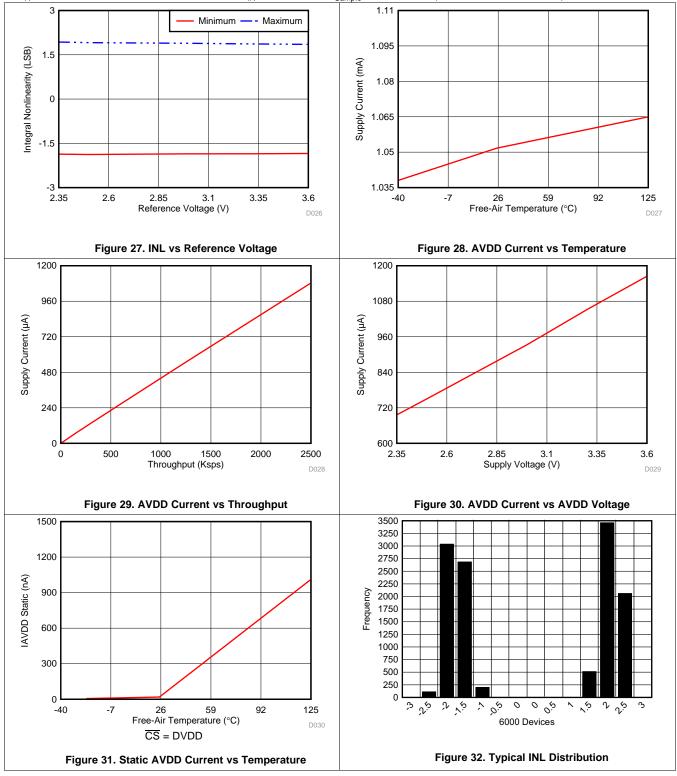
16500


D019

www.ti.com

Typical Characteristics (continued)

at $T_A = 25^{\circ}C$, AVDD = 3.3 V, DVDD = 1.8 V, $f_{IN} = 2$ kHz, and $f_{Sample} = 2.5$ MSPS (unless otherwise noted)

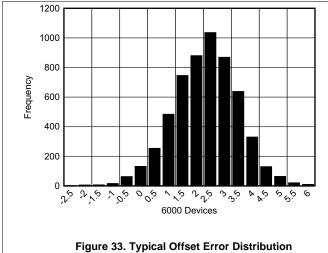


JAJSD54 – MARCH 2017 www.ti.com

TEXAS INSTRUMENTS

Typical Characteristics (continued)

at $T_A = 25$ °C, AVDD = 3.3 V, DVDD = 1.8 V, $f_{IN} = 2$ kHz, and $f_{Sample} = 2.5$ MSPS (unless otherwise noted)



www.ti.com

Typical Characteristics (continued)

at $T_A = 25$ °C, AVDD = 3.3 V, DVDD = 1.8 V, $f_{IN} = 2$ kHz, and $f_{Sample} = 2.5$ MSPS (unless otherwise noted)

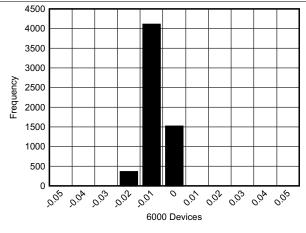
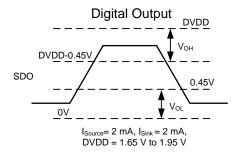


Figure 34. Typical Gain Error Distribution


JAJSD54 – MARCH 2017 www.ti.com

TEXAS INSTRUMENTS

7 Parameter Measurement Information

7.1 Digital Voltage Levels

The device complies with the JESD8-7A standard for DVDD from 1.65 V to 1.95 V. Figure 35 shows voltage levels for the digital input and output pins.

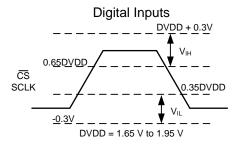
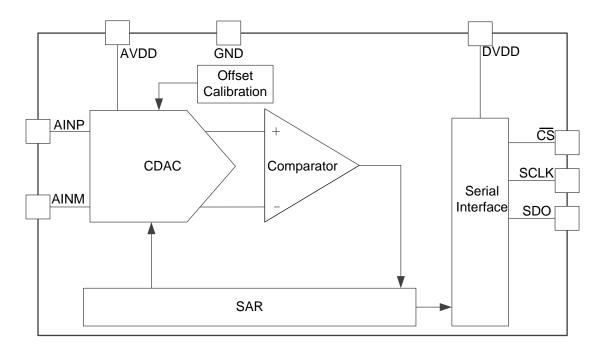


Figure 35. Digital Voltage Levels as per the JESD8-7A Standard

8 Detailed Description

8.1 Overview

section for details.


www.ti.com

The ADS7056 is a 14-bit, 2.5-MSPS, analog-to-digital converter (ADC). The device includes a capacitor-based, successive-approximation register (SAR) ADC that supports a wide analog input voltage range (0 V to AVDD, for AVDD in the range of 2.35 V to 3.6 V). The device uses the AVDD supply voltage as the reference voltage for conversion of analog input to digital output and the AVDD supply voltage also powers the analog blocks of the device. The device has integrated offset calibration feature to calibrate its own offset; see the *OFFCAL State*

The <u>SPI</u>-compatible serial interface is controlled by the $\overline{\text{CS}}$ and SCLK signals. The input signal is sampled with the $\overline{\text{CS}}$ falling edge and SCLK is used for conversion and serial data output. The device supports a wide digital supply range (1.65 V to 3.6 V), enabling direct interface to a variety of host controllers. The ADS7056 complies with the JESD8-7A standard for a normal DVDD range (1.65 V to 1.95 V); see the *Digital Voltage Levels* section for details.

The ADS7056 is available in 8-pin, miniature, X2QFN package and is specified over extended industrial temperature range (–40°C to 125°C). Miniature form-factor and extremely low-power consumption make this device suitable for space-constrained, battery-powered applications.

8.2 Functional Block Diagram

TEXAS INSTRUMENTS

8.3 Feature Description

8.3.1 Analog Input

The device supports a unipolar, single-ended analog input signal. Figure 36 shows a small-signal equivalent circuit of the sample-and-hold circuit. The sampling switch is represented by a resistance (R_{S1} and R_{S2} , typically 50 Ω) in series with an ideal switch (SW₁ and SW₂). The sampling capacitors, C_{S1} and C_{S2} , are typically 16 pF.

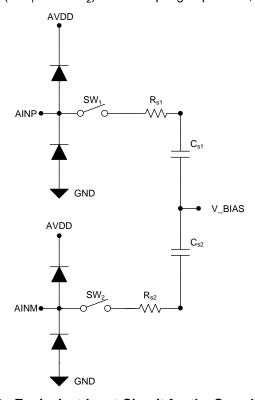


Figure 36. Equivalent Input Circuit for the Sampling Stage

During the acquisition process, both positive and negative inputs are individually sampled on C_{S1} and C_{S2} , respectively. During the conversion process, the device converts for the voltage difference between the two sampled values: $V_{AINP} - V_{AINM}$.

Each analog input pin has electrostatic discharge (ESD) protection diodes to AVDD and GND. Keep the analog inputs within the specified range to avoid turning the diodes on.

The full-scale analog input range (FSR) is 0 V to AVDD and the absolute input range on the AINM and AINP pins is -0.1 V to AVDD + 0.1 V.

Feature Description (continued)

8.3.2 Reference

www.ti.com

The device uses the analog supply voltage (AVDD) as the reference voltage for the analog-to-digital conversion. During the conversion process, the internal capacitors are switched to the AVDD pin as per the successive approximation algorithm. As shown in Figure 37, a $3.3-\mu F$ (C_{AVDD}), low equivalent series resistance (ESR) ceramic capacitor is recommended to be placed between the AVDD and GND pins. The decoupling capacitor provides the instantaneous charge required by the internal circuit during the conversion process and maintains a stable dc voltage on the AVDD pin.

See the *Power Supply Recommendations* and *Layout Example* sections for component recommendations and layout guidelines.

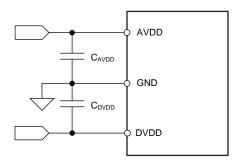


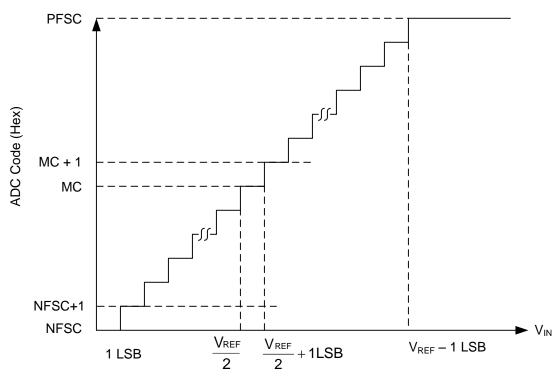
Figure 37. Reference for the Device

TEXAS INSTRUMENTS

Feature Description (continued)

8.3.3 ADC Transfer Function

The device supports a unipolar, single-ended analog input signal. The output is in straight binary format. Figure 38 and Table 1 show the ideal transfer characteristics for the device.


The least significant bit for the device is given by:

$$1 LSB = V_{RFF} / 2^{N}$$

where:

• V_{REF} = Voltage applied between the AVDD and GND pins and

Single-Ended Analog Input (AINP – AINM)

Figure 38. Ideal Transfer Characteristics

Table 1. Transfer Characteristics

INPUT VOLTAGE (AINP – AINM)	CODE	DESCRIPTION	IDEAL OUTPUT CODE (Hex)	
≤1 LSB	NFSC	Negative full-scale code	0000	
1 LSB to 2 LSBs	NFSC + 1	_	0001	
V _{REF} / 2 to V _{REF} / 2 + 1 LSB	MC	Mid code	1FFF	
V_{REF} / 2 + 1 LSB to V_{REF} / 2 + 2 LSBs	MC + 1	_	2000	
≥ V _{REF} – 1 LSB	PFSC	Positive full-scale code	3FFF	

www.ti.com

8.4 Device Functional Modes

The device supports a simple, SPI-compatible interface to the external host. On power-up, the device is in ACQ state. The $\overline{\text{CS}}$ signal defines one conversion and serial data transfer frame. A frame starts with a $\overline{\text{CS}}$ falling edge and ends with a \overline{CS} rising edge. The SDO pin is tri-stated when \overline{CS} is high. With \overline{CS} low, the clock provided on the SCLK pin is used for conversion and data transfer and the output data are available on the SDO pin.

As shown in Figure 39, the device supports three functional states: acquisition (ACQ), conversion (CNV), and offset calibration (OFFCAL). The device status depends on the CS and SCLK signals provided by the host controller.

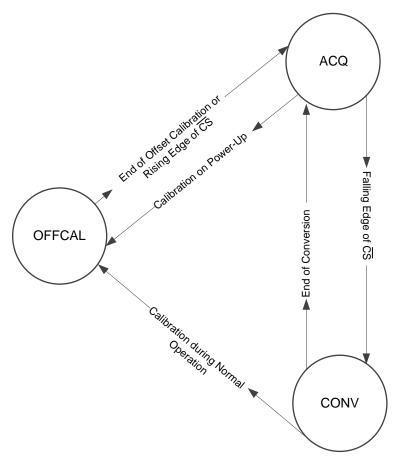


Figure 39. Functional State Diagram

8.4.1 ACQ State

In ACQ state, switches SW₁ and SW₂ connected to the analog input pins close and the device acquires the analog input signal on C_{S1} and C_{S2}. The device enters ACQ state at power-up, at the end of every conversion, and after completing the offset calibration. A $\overline{\text{CS}}$ falling edge takes the device from ACQ state to CNV state.

The device consumes extremely low power from the AVDD and DVDD power supplies when in ACQ state.

Device Functional Modes (continued)

8.4.2 CNV State

In the CNV state, the device uses the external clock to convert the sampled analog input signal to an equivalent digital code as per the transfer function illustrated in Figure 38. The conversion process requires a minimum of 18 SCLK falling edges to be provided within the frame. After the end of conversion process, the device automatically moves from CNV state to ACQ state. For acquisition of the next sample, a minimum time of t_{ACQ} must be provided.

Figure 40 shows a detailed timing diagram for the serial interface. In the first serial transfer frame after power-up, the device provides the first data as all zeros. In any frame, the clocks provided on the SCLK pin are also used to transfer the output data for the previous conversion. A leading 0 is output on the SDO pin on the $\overline{\text{CS}}$ falling edge. The most significant bit (MSB) of the output data is launched on the SDO pin on the rising edge after the first SCLK falling edge. Subsequent output bits are launched on the subsequent rising edges provided on SCLK. When all 14 output bits are shifted out, the device outputs 0's on the subsequent SCLK rising edges. The device enters ACQ state after 18 clocks and a minimum time of t_{ACQ} must be provided for acquiring the next sample. If the device is provided with less than 18 SCLK falling edges in the present serial transfer frame, the device provides an invalid conversion result in the next serial transfer frame.

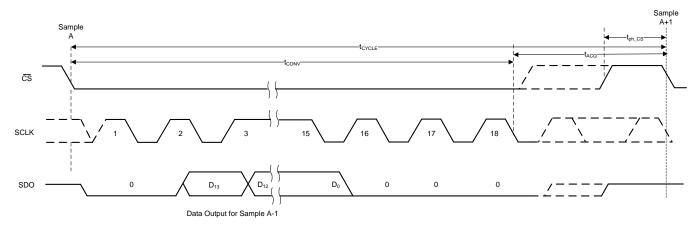


Figure 40. Serial Interface Timing Diagram

8.4.3 OFFCAL State

In OFFCAL state, the device calibrates and corrects for its internal offset errors. In OFFCAL state, the sampling capacitors are disconnected from the analog input pins (AINP and AINM). The offset calibration is effective for all subsequent conversions until the device is powered off. An offset calibration cycle is recommended at power-up and whenever there is a significant change in the operating conditions for the device (such as in the AVDD voltage and operating temperature).

The host controller must provide a serial transfer frame as described in Figure 41 or in Figure 42 to enter OFFCAL state.

www.ti.com

Device Functional Modes (continued)

8.4.3.1 Offset Calibration on Power-Up

On power-up, the host must provide 24 SCLKs in the first serial transfer to enter the OFFCAL state. The device provides 0's on SDO during offset calibration. For acquisition of the next sample, a minimum time of t_{ACQ} must be provided. If the host controller enters the OFFCAL state, but pulls the \overline{CS} pin high before providing 24 SCLKs, then the offset calibration process is aborted and the device enters the ACQ state. Figure 41 and Table 2 provide the timing for offset calibration on power-up.

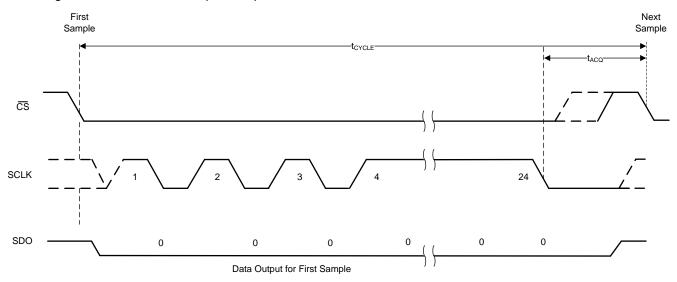


Figure 41. Timing for Offset Calibration on Power-Up

Table 2. Timing Specifications for Offset Calibration on Power-Up⁽¹⁾

		MIN	TYP	MAX	UNIT
t _{cycle}	Cycle time for offset calibration on power-up	$24 \times t_{CLK} + t_{ACQ}$			ns
t _{ACQ}	Acquisition time	95			ns
f _{SCLK}	Frequency of SCLK			60	MHz

⁽¹⁾ In addition to the timing specifications of Figure 41 and Table 2, the timing specifications described in Figure 2 and the *Timing Requirements* table are also applicable for offset calibration on power-up.

JAJSD54 – MARCH 2017 www.ti.com

TEXAS INSTRUMENTS

8.4.3.2 Offset Calibration During Normal Operation

During normal operation, the host must provide 64 SCLKs in the serial transfer frame to enter the OFFCAL state. The device provides the conversion result for the previous sample during the first 18 SCLKs and 0's on SDO for the rest of the SCLKs in the serial transfer frame. For acquisition of the next sample, a minimum time of t_{ACQ} must be provided. If the host controller enters the OFFCAL state, but pulls the $\overline{\text{CS}}$ high before providing 64 SCLKs, then the offset calibration process is aborted and the device enters ACQ state. Figure 42 and Table 3 provide the timing for offset calibration during normal operation.

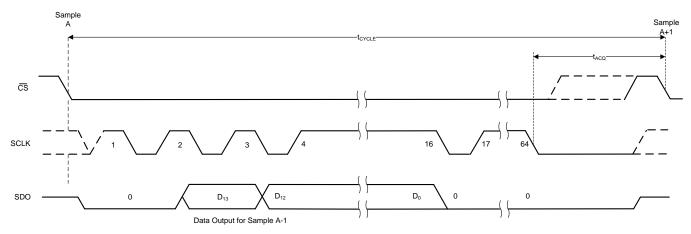


Figure 42. Timing for Offset Calibration During Normal Operation

Table 3. Timing Specifications for Offset Calibration During Normal Operation⁽¹⁾

		MIN	TYP	MAX	UNIT
t _{cycle}	Cycle time for offset calibration on power-up	$64 \times t_{CLK} + t_{ACQ}$			ns
t _{ACQ}	Acquisition time	95			ns
f _{SCLK}	Frequency of SCLK			60	MHz

⁽¹⁾ In addition to the timing specifications of Figure 42 and Table 3, the timing specifications described in Figure 2 and the *Timing Requirements* table are also applicable for offset calibration during normal operation.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The two primary circuits required to maximize the performance of a high-precision, successive approximation register (SAR) analog-to-digital converter (ADC) are the input driver and the reference driver circuits. This section details some general principles for designing the input driver circuit, reference driver circuit, and provides typical application circuits designed for the device.

9.2 Typical Applications

9.2.1 Single-Supply Data Acquisition With the ADS7056

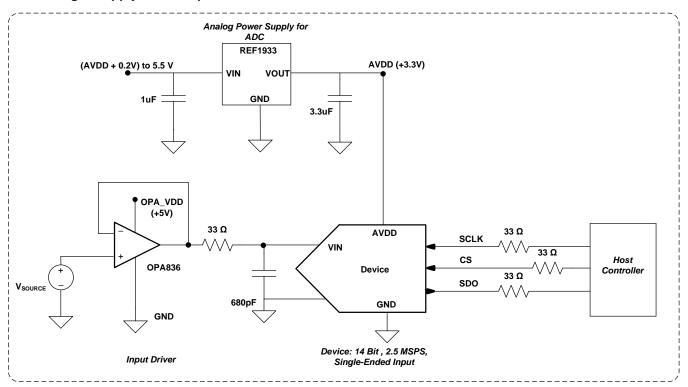


Figure 43. DAQ Circuit: Single-Supply DAQ

9.2.1.1 Design Requirements

The goal of the circuit shown in Figure 43 is to design a single-supply data acquisition (DAQ) circuit based on the ADS7056 with SNR greater than 74 dB and THD less than –85 dB for input frequencies of 2 kHz to 100 kHz at a throughput of 2.5 MSPS for applications such as sonar receivers and ultrasonic flow meters.

9.2.1.2 Detailed Design Procedure

The input driver circuit for a high-precision ADC mainly consists of two parts: a driving amplifier and charge kickback filter. Careful design of the front-end circuit is critical to meet the linearity and noise performance of a high-precision ADC.

Typical Applications (continued)

9.2.1.2.1 Low Distortion Charge Kickback Filter Design

Figure 44 shows the input circuit of a typical SAR ADC. During the acquisition phase, the SW switch closes and connects the sampling capacitor (C_{SH}) to the input driver circuit. This action introduces a transient on the input pins of the SAR ADC. An ideal amplifier with 0 Ω of output impedance and infinite current drive can settle this transient in zero time. For a real amplifier with non-zero output impedance and finite drive strength, this switched capacitor load can create stability issues.

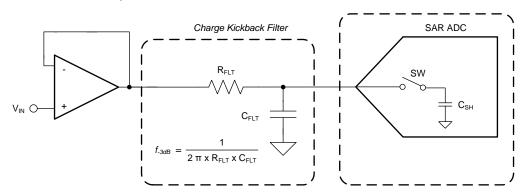


Figure 44. Input Sample-and-Hold Circuit for a Typical SAR ADC

For ac signals, the filter bandwidth must be kept low to band-limit the noise fed into the ADC input, thereby increasing the signal-to-noise ratio (SNR) of the system. Besides filtering the noise from the front-end drive circuitry, the RC filter also helps attenuate the sampling charge injection from the switched-capacitor input stage of the ADC. A filter capacitor, C_{FLT} , is connected across the ADC inputs. This capacitor helps reduce the sampling charge injection and provides a charge bucket to quickly charge the internal sample-and-hold capacitors during the acquisition process. As a rule of thumb, the value of this capacitor is at least 20 times the specified value of the ADC sampling capacitance. For this device, the input sampling capacitance is equal to 16 pF. Thus, the value of C_{FLT} is greater than 320 pF. Select a COG- or NPO-type capacitor because these capacitor types have a high-Q, low-temperature coefficient, and stable electrical characteristics under varying voltages, frequency, and time.

Driving capacitive loads can degrade the phase margin of the input amplifiers, thus making the amplifier marginally unstable. To avoid amplifier stability issues, series isolation resistors (R_{FLT}) are used at the output of the amplifiers. A higher value of R_{FLT} is helpful from the amplifier stability perspective, but adds distortion as a result of interactions with the nonlinear input impedance of the ADC. Distortion increases with source impedance, input signal frequency, and input signal amplitude. Therefore, the selection of R_{FLT} requires balancing the stability and distortion of the design.

Typical Applications (continued)

9.2.1.2.2 Input Amplifier Selection

Selection criteria for the input amplifiers is highly dependent on the input signal type as well as the performance goals of the data acquisition system. Some key amplifier specifications to consider when selecting an appropriate amplifier to drive the inputs of the ADC are:

Small-signal bandwidth: select the small-signal bandwidth of the input amplifiers to be as high as possible after meeting the power budget of the system. Higher bandwidth reduces the closed-loop output impedance of the amplifier, thus allowing the amplifier to more easily drive the low cutoff frequency RC filter (see the Low Distortion Charge Kickback Filter Design section for details.) at the inputs of the ADC. Higher bandwidth also minimizes the harmonic distortion at higher input frequencies. Select the amplifier with the unity-gain bandwidth (UGB) as described in Equation 2 to maintain the overall stability of the input driver circuit.

$$UGB \geq 4 \times \frac{1}{2\pi \times R_{FLT} \times C_{FLT}}$$

where:

(2)

Noise: noise contribution of the front-end amplifiers must be as low as possible to prevent any degradation in SNR performance of the system. Generally, to ensure that the noise performance of the data acquisition system is not limited by the front-end circuit, the total noise contribution from the front-end circuit must be kept below 20% of the input-referred noise of the ADC. As Equation 3 explains, noise from the input driver circuit is band limited by designing a low cutoff frequency RC filter.

$$N_{G} \times \sqrt{\left(\frac{V_{1/f_AMP_PP}}{6.6}\right)^{\!\!2} + e^{2}_{n_RMS} \times \frac{\pi}{2} \times f_{-3dB}} \ \leq \ \frac{1}{5} \times \frac{V_{REF}}{2\sqrt{2}} \times 10^{-\left(\frac{SNR(dB)}{20}\right)}$$

where:

- V_{1/f AMP PP} is the peak-to-peak flicker noise in μVRMS
- e_{n RMS} is the amplifier broadband noise
- f_{-3dB} is the -3-dB bandwidth of the RC filter and
- N_G is the noise gain of the front-end circuit, which is equal to 1 in the buffer configuration

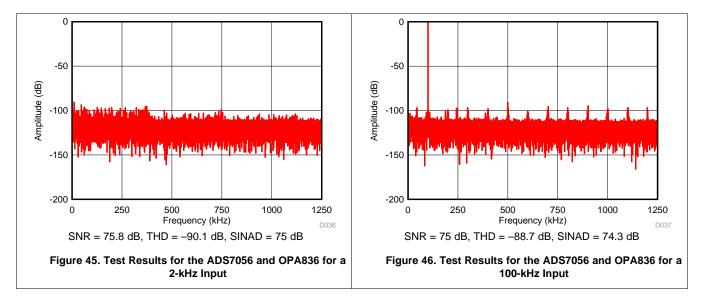
(3)

Distortion: both the ADC and the input driver introduce distortion in a data acquisition block. To ensure that the distortion performance of the data acquisition system is not limited by the front-end circuit, the distortion of the input driver must be at least 10 dB lower than the distortion of the ADC.

For the application circuit of Figure 43, the OPA836 is selected for its high bandwidth (205 MHz), low noise (4.6 nV/√Hz), high output drive capacity (45 mA), and fast settling response (22 ns for 0.1% settling).

9.2.1.2.3 Reference Circuit

The analog supply voltage of the device is also used as a voltage reference for conversion. Decouple the AVDD pin with a 3.3-µF, low-ESR ceramic capacitor.


JAJSD54 – MARCH 2017 www.ti.com

TEXAS INSTRUMENTS

Typical Applications (continued)

9.2.1.3 Application Curves

Figure 45 and Figure 46 provide the measurement results for the circuit described in Figure 43.

9.2.2 High Bandwidth (1 MHz) Data Acquisition With the ADS7056

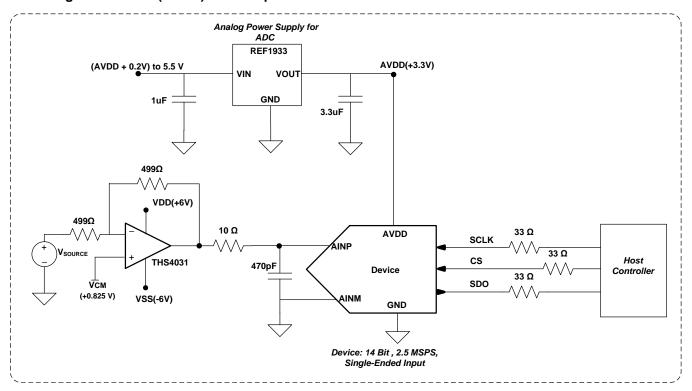


Figure 47. High Bandwidth DAQ Circuit

Typical Applications (continued)

9.2.2.1 Design Requirements

Applications such as ultrasonic flow meters, global positioning systems (GPS), handheld radios, and motor controls need analog-to-digital converters that are interfaced to high-frequency sensors (200 kHz to 1 MHz). The goal of the circuit described in Figure 47 is to design a single-supply digital acquisition (DAQ) circuit based on the ADS7056 with SNR greater than 73 dB and THD less than –85 dB for input frequencies of 200 kHz to 1 MHz at a throughput of 2.5 MSPS.

9.2.2.2 Detailed Design Procedure

To achieve a SINAD greater than 73 dB, the operational amplifier must have high bandwidth in order to settle the input signal within the acquisition time of the ADC. The operational amplifier must have low noise to keep the total system noise below 20% of the input-referred noise of the ADC. For the application circuit shown in Figure 47, the THS4031 is selected for its high bandwidth (275 MHz), low total harmonic distortion of -90 dB at 1 MHz, and ultra-low noise of 1.6 nV/ $\sqrt{\rm Hz}$. The THS4031 is powered up from dual power supply (VDD = 6 V and VSS = -6 V).

For chip-select signals, high-frequency system SNR performance is highly dependent on jitter. Thus, selecting a clock source with very low jitter (< 20-ps RMS) is recommended.

9.2.2.3 Application Curves

Figure 48 shows the FFT plot for the ADS7056 with a 500-kHz input frequency used for the circuit in Figure 47. Figure 49 shows the FFT plot for the ADS7056 with a 1000-kHz input frequency used for the circuit in Figure 47.

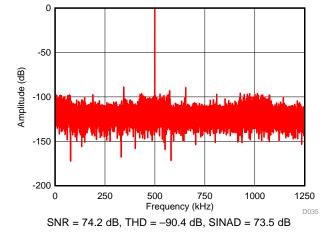


Figure 48. Test Results for the ADS7056 and THS4031 for a 500-kHz Input

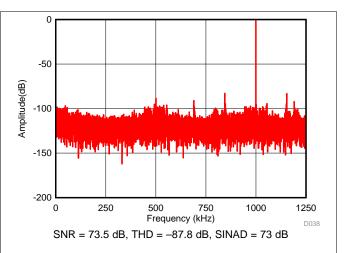


Figure 49. Test Results for the ADS7056 and THS4031 for a 1000-kHz Input

JAJSD54 – MARCH 2017 www.ti.com

TEXAS INSTRUMENTS

Typical Applications (continued)

9.2.3 14-Bit, 10-kSPS DAQ Circuit Optimized for DC Sensor Measurements

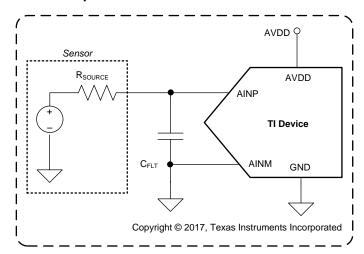


Figure 50. Interfacing the Device Directly With Sensors

In applications such as environmental sensors, gas detectors, and smoke or fire detectors where the input is very slow moving and the sensor can be connected directly to the device operating at a lower throughput rate, a DAQ circuit can be designed without the input driver for the ADC. This type of a use case is of particular interest for applications in which the primary goal is to achieve the absolute lowest power, size, and cost. Typical applications that fall into this category are low-power sensor applications (such as temperature, pressure, humidity, gas, and chemical).

9.2.3.1 Design Requirements

For this design example, use the parameters listed in Table 4 as the input parameters.

DESIGN PARAMETER	GOAL VALUE
Throughput	10 kSPS
SNR at 100 Hz	74 dB
THD at 100 Hz	−85 dB
SINAD at 100 Hz	73 dB
ENOB	12 bits
Power	20 μW

Table 4. Design Parameters

9.2.3.2 Detailed Design Procedure

The ADS7056 can be directly interfaced with sensors at lower throughput without the need of an amplifier buffer. The analog input source drive must be capable of driving the switched capacitor load of a SAR ADC and settling the analog input signal within the acquisition time of the SAR ADC. However, the output impedance of the sensor must be taken into account when interfacing a SAR ADC directly with sensors. Drive the analog input of the SAR ADC with a low impedance source. The input signal requires more acquisition time to settle to the desired accuracy because of the higher output impedance of the sensor. Figure 50 shows the simplified circuit for a sensor as a voltage source with output impedance (R_{source}).

The acquisition time of a SAR ADC (such as the ADS7056) can be increased by reducing throughput in the following ways:

- 1. Reducing the SCLK frequency to reduce the throughput, or
- 2. Keeping the SCLK fixed at the highest permissible value (that is, 60 MHz for the device) and increasing the CS high time.

JAJSD54-MARCH 2017

Table 5 lists the acquisition time for the above two cases for a throughput of 10 kSPS. Clearly, case 2 provides more acquisition time for the input signal to settle.

CASE	SCLK	t _{cycle}	CONVERSION TIME (= 18 × t _{SCLK})	ACQUISITION TIME (= t _{cycle} - t _{conv})
1	0.24 MHz	100 μs	75 µs	25 μs
2	60 MHz	100 µs	0.3 µs	99.7 µs

9.2.3.3 Application Curve

When the output impedance of the sensor increases, the time required for the input signal to settle increases and the performance of the SAR ADC starts degrading if the input signal does not settle within the acquisition time of the ADC. The performance of the SAR ADC can be improved by reducing the throughput to provide enough time for the input signal to settle. Figure 51 provides the results for ENOB achieved from the ADS7056 for case 2 at different throughputs with different input impedances at the device input.

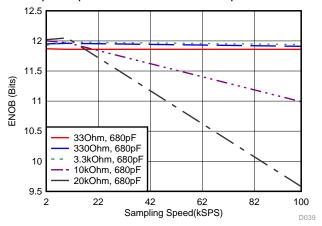


Figure 51. Effective Number of Bits (ENOB) Achieved From the ADS7056 at Different Throughputs

Table 6 shows the results and performance summary for this 14-bit, 10-kSPS DAQ circuit application.

Table 6. Results and Performance Summary for a 14-Bit, 10-kSPS DAQ Circuit for DC Sensor Measurements

DESIGN PARAMETER	GOAL VALUE	ACHIEVED RESULT
Throughput	10 kSPS	10 kSPS
SNR at 100 Hz	74 dB	75 dB
THD at 100 Hz	-85 dB	-89 dB
SINAD at 100 Hz	73 dB	74.3 dB
ENOB	12	12.05
Power	20 μW	17 μW

10 Power Supply Recommendations

10.1 AVDD and DVDD Supply Recommendations

The device has two separate power supplies: AVDD and DVDD. AVDD powers the analog blocks and is also used as the reference voltage for the analog-to-digital conversion. Always set the AVDD supply to be greater than or equal to the maximum input signal to avoid saturation of codes. Decouple the AVDD pin to the GND pin with a 3.3-µF ceramic decoupling capacitor.

DVDD is used for the interface circuits. Decouple the DVDD pin to the GND pin with a 1-µF ceramic decoupling capacitor. Figure 52 shows the decoupling recommendations.

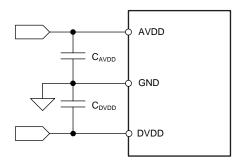


Figure 52. Power-Supply Decoupling

10.2 Optimizing Power Consumed by the Device

- Keep the analog supply voltage (AVDD) in the specified operating range and equal to the maximum analog input voltage.
- Keep the digital supply voltage (DVDD) in the specified operating range and at the lowest value supported by the host controller.
- Reduce the load capacitance on the SDO output.
- Run the device at the optimum throughput. Power consumption reduces proportionally with the throughput.

10.2.1 Estimating Digital Power Consumption

The current consumption from the DVDD supply depends on the DVDD voltage, the load capacitance on the SDO pin ($C_{LOAD-SDO}$), and the output code, and can be calculated as:

$$I_{DVDD} = C_{LOAD-SDO} \times V \times f$$

where:

- C_{LOAD-SDO} = Load capacitance on the SDO pin
- V = DVDD supply voltage
- f = frequency of transitions on the SDO output

The number of transitions on the SDO output depends on the output code, and thus changes with the analog input. The maximum value of f occurs when data output on the SDO change on every SCLK (that is, for output codes of 2AAAh or 1555h). With an output code of 2AAAh, f = 17.5 MHz and when $C_{LOAD-SDO} = 20$ pF and DVDD = 1.8 V, $I_{DVDD} = 630$ μ A.

(4)

11 Layout

www.tij.co.jp

11.1 Layout Guidelines

Figure 53 shows a board layout example for the device. The key considerations for layout are:

- Use a solid ground plane underneath the device and partition the PCB into analog and digital sections
- Avoid crossing digital lines with the analog signal path and keep the analog input signals and the reference
 input signals away from noise sources.
- The power sources to the device must be clean and well-bypassed. Use C_{AVDD} decoupling capacitors in close proximity to the analog (AVDD) power supply pin.
- Use a C_{DVDD} decoupling capacitor close to the digital (DVDD) power-supply pin.
- Avoid placing vias between the AVDD and DVDD pins and the bypass capacitors.
- Connect the ground pin to the ground plane using a short, low-impedance path.
- Place the charge kickback filter components close to the device.

Among ceramic surface-mount capacitors, COG (NPO) ceramic capacitors are recommended because these components provide the most stable electrical properties over voltage, frequency, and temperature changes.

11.2 Layout Example

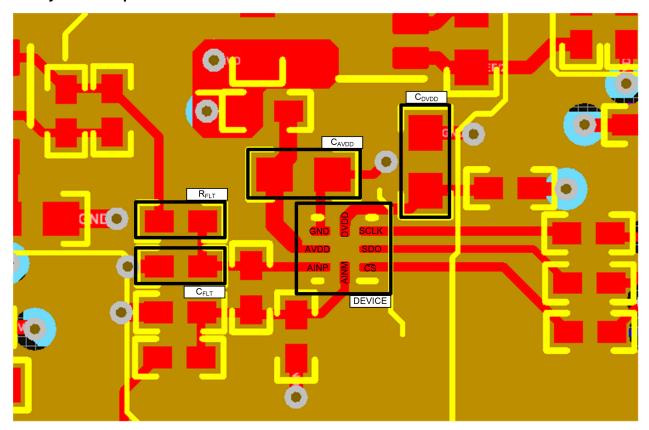


Figure 53. Example Layout

12 デバイスおよびドキュメントのサポート

12.1 ドキュメントのサポート

12.1.1 関連資料

関連資料については、以下を参照してください:

- 『OPAx836 超低消費電力、レール・ツー・レール出力、負のレール入力、電圧フィードバック・オペアンプ』
- 『REF19xx 低ドリフト係数、低消費電力、デュアル出力、VREFおよびVREF/2基準電圧』
- 『OPAx365 50MHz、ゼロ・クロスオーバー、低歪み、高CMRR、RRI/O、単一電源オペアンプ』
- 『REF61xx ADCドライブ・バッファ搭載の高精度基準電圧』
- 『THS4281 超低消費電力、高速、レール・ツー・レール入力および出力の電圧フィードバック型オペアンプ』
- 『ADS7042 超低消費電力、超小型、12ビット、1MSPSのSAR ADC』
- 『ADS7049-Q1 小型、低消費電力、12ビット、2MSPSのSAR ADC』

12.2 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、ti.comのデバイス製品フォルダを開いてください。右上の隅にある「通知を受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。

12.3 コミュニティ・リソース

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™オンライン・コミュニティ *TIのE2E(Engineer-to-Engineer)コミュニティ。*エンジニア間の共同作業を促進するために開設されたものです。e2e.ti.comでは、他のエンジニアに質問し、知識を共有し、アイディアを検討して、問題解決に役立てることができます。

設計サポート *TIの設計サポート* 役に立つE2Eフォーラムや、設計サポート・ツールをすばやく見つけることができます。技術サポート用の連絡先情報も参照できます。

12.4 商標

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.5 静電気放電に関する注意事項

すべての集積回路は、適切なESD保護方法を用いて、取扱いと保存を行うようにして下さい。

静電気放電はわずかな性能の低下から完全なデバイスの故障に至るまで、様々な損傷を与えます。高精度の集積回路は、損傷に対して敏感であり、極めてわずかなパラメータの変化により、デバイスに規定された仕様に適合しなくなる場合があります。

12.6 Glossary

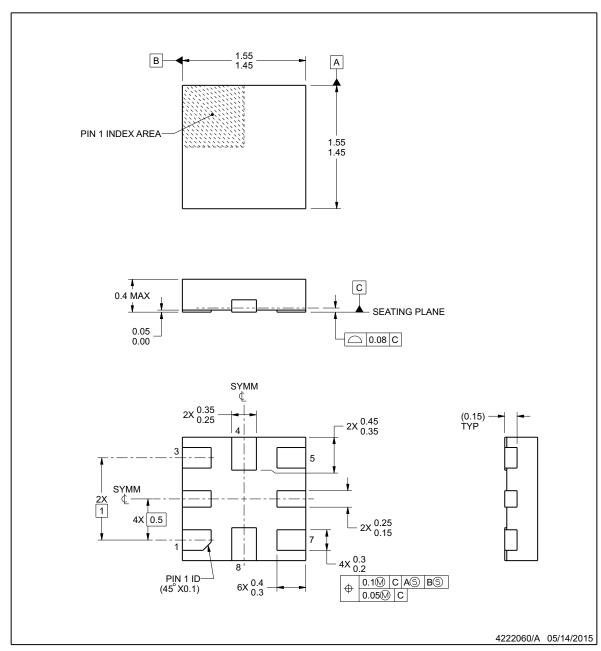
SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、そのデバイスについて利用可能な最新のデータです。このデータは予告なく変更されることがあり、ドキュメントが改訂される場合もあります。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。

INSTRUMENTS


RUG0008A

www.tij.co.jp JAJSD54-MARCH 2017

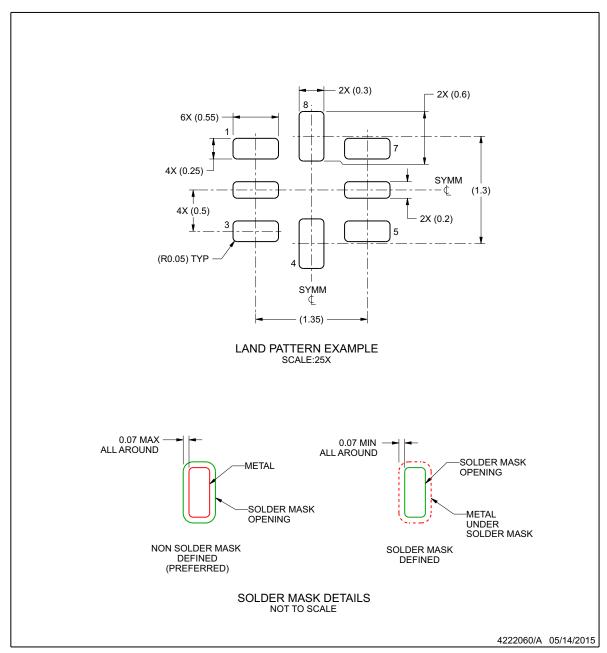
PACKAGE OUTLINE

X2QFN - 0.4 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
- per ASME Y14.5M.


 2. This drawing is subject to change without notice.

EXAMPLE BOARD LAYOUT

RUG0008A

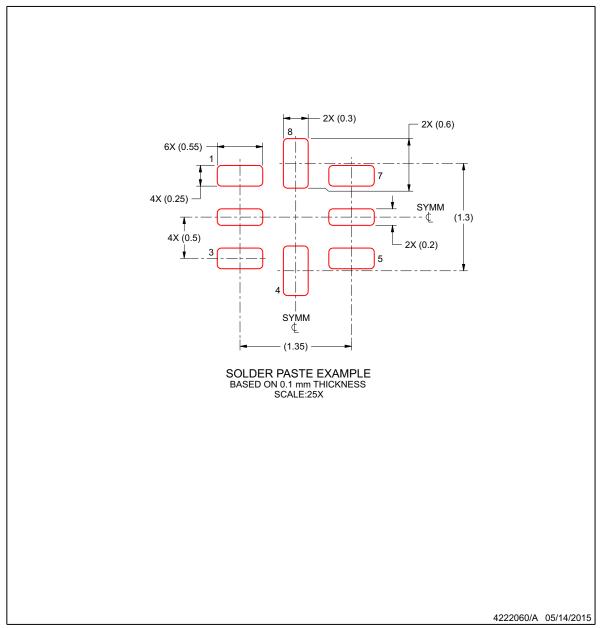
X2QFN - 0.4 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

 $3.\ For\ more\ information,\ see\ Texas\ Instruments\ literature\ number\ SLUA271\ (www.ti.com/lit/slua271).$

www.tij.co.jp JAJSD54-MARCH 2017


EXAMPLE STENCIL DESIGN

RUG0008A

ISTRUMENTS

X2QFN - 0.4 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

www.ti.com 10-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
ADS7056IRUGR	Active	Production	X2QFN (RUG) 8	3000 LARGE T&R	Yes	NIPDAUAG	(5) Level-1-260C-UNLIM	-40 to 125	51
ADS7056IRUGR.A	Active	Production	X2QFN (RUG) 8	3000 LARGE T&R	Yes	NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	51

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、TIの総合的な品質ガイドライン、 ti.com または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TIはそれらに異議を唱え、拒否します。

Copyright © 2025, Texas Instruments Incorporated

最終更新日: 2025 年 10 月