

LM7705

JAJSFG5D - NOVEMBER 2008 - REVISED MAY 2018

LM7705 低ノイズ、負のバイアス・ジェネレータ

1 特長

• レギュレートされた出力電圧-0.232V

出力電圧許容範囲: 5%出力電圧リップル4mV_{PP}

電源電圧: 3V~5.25V

• 最大変換効率98%

• 静止電流: 78µA

• シャットダウン時電流: 20nA

• ターンオン時間: 500us

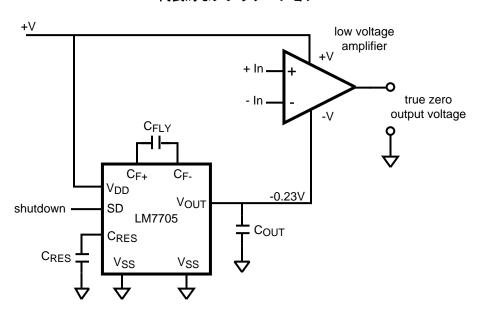
• 動作温度範囲: -40℃~125℃

• 8ピンVSSOPパッケージ

2 アプリケーション

- 真の0アンプ出力
- ポータブル機器
- 低電圧の分離電源

3 概要


LM7705デバイスは、低ノイズ、-0.23Vの固定の負電圧レ ギュレータを備えたスイッチド・キャパシタ電圧インバータ です。このデバイスは低電圧アンプと組み合わせ、アンプ の出力を0ボルトまでスイングできるよう設計されています。 -0.23Vをアンプの負の電源ピンへの給電に使用し、アン プ全体では5.5V未満に維持されます。レール・ツー・レー ル出力アンプは、単一電源電圧で動作するとき0Vを出力 できず、アンプの出力飽和電圧が以後のゲイン段で増幅 され、エラーが累積されることがあります。小さな負の電源 電圧を使用すると、アンプ出力がOVで飽和することを回避 でき、信号処理チェーン全体で正確な0を維持するため役 立ちます。さらに、ADCの入力を駆動するためにアンプが 使用される場合、アンプは0電圧信号を出力でき、ADC の入力範囲全体を使用できます。LM7705デバイスには シャットダウン・ピンがあり、スタンバイ時の消費電力を最小 限に抑えることができます。

製品情報(1)

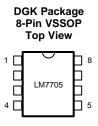
型番	パッケージ	本体サイズ(公称)
LM7705	VSSOP (8)	3.00mm×3.00mm

(1) 提供されているすべてのパッケージについては、巻末の注文情報 を参照してください。

代表的なアプリケーション

·—

1	特長1		7.3 Feature Description	10
2	アプリケーション1		7.4 Device Functional Modes	10
3	概要1	8	Application and Implementation	14
4	改訂履歴		8.1 Application Information	14
5	Pin Configuration and Functions		8.2 Typical Application	16
6	Specifications	9	Power Supply Recommendations	
U	6.1 Absolute Maximum Ratings	10	Layout	19
	6.2 ESD Ratings		10.1 Layout Guidelines	19
	6.3 Recommended Operating Conditions		10.2 Layout Examples	19
	6.4 Thermal Information	11	デバイスおよびドキュメントのサポート	
	6.5 3.3-V Electrical Characteristics		11.1 コミュニティ・リソース	20
	6.6 5-V Electrical Characteristics		11.2 商標	20
	6.7 Typical Characteristics		11.3 静電気放電に関する注意事項	20
7	Detailed Description 10		11.4 Glossary	20
•	7.1 Overview	12	メカニカル、パッケージ、および注文情報	20
	7.2 Functional Block Diagram 10			


4 改訂履歴

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

5 Pin Configuration and Functions

Pin Functions

PIN		TYPE	DESCRIPTION			
NAME	NO.	ITPE	DESCRIPTION			
C _{F+}	1	Analog	C _{FLY} Positive Capacitor Connection			
V _{SS}	2	Ground	Power Ground			
SD	3	Input	Shutdown Pin If SD pin is LOW, device is ON If SD pin is HIGH, device is OFF			
V_{DD}	4	Power	Positive Supply Voltage			
V _{SS}	5	Ground	Power Ground			
V _{OUT}	6	Output	Output Voltage			
C _{RES}	7	Analog	Reserve Capacitor Connection			
C _{F-}	8	Analog	C _{FLY} Negative Capacitor Connection			

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

		MIN	MAX	UNIT
Supply voltage V _{DD} - V _{SS}			5.75	٧
SD		V _{DD} + 0.3	$V_{SS} - 0.3$	٧
Junction temperature (2)	Junction temperature ⁽²⁾			°C
Mounting temperature	Infrared or Convection (20 sec)		260	°C
Storage temperature, T _{stg}		-65	150	°C

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not ensured on shipped production material.

6.2 ESD Ratings

			VALUE	UNIT
		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±2000	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±750	V
		Machine model ⁽³⁾	±200	

- (1) Human Body Model, applicable std. MIL-STD-883, Method 3015.7.
- (2) Field induced Charge-Device Model, applicable std. JESD22-C101-C. (ESD FICDM std of JEDEC).
- (3) Machine model, applicable std JESD22-A115-A (ESSD MM srd of JEDEC).

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	MIN	MAX	UNIT
Supply voltage (V _{DD} to GND)	3	5.25	V
Supply voltage (V _{DD} wrt V _{OUT})	3.23	5.48	V
Temperature range	-40	125	°C

6.4 Thermal Information

	THERMAL METRIC ⁽¹⁾	DGK (VSSOP)	UNIT
		8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	253	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 3.3-V Electrical Characteristics

Unless otherwise specified, all limits are ensured for T_A = 25°C, V_{DD} = 3.3 V, V_{SS} = 0 V, SD = 0 V, C_{FLY} = 5 μF , C_{RES} = 22 μF , C_{OUT} = 22 μF .

PARAMETER		TEST C	ONDITIONS	MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
		I _{OUT} = 0 mA	T _A = 25°C	-0.24 2	-0.232	-0.219	
V		1001 - 0 1117	-40°C to 125°C	-0.25 1		-0.209	V
V _{OUT}	Output Voltage	1 20 mA	T _A = 25°C	-0.24 2	-0.226	-0.219	V
		I _{OUT} = −20 mA	-40°C to 125°C	-0.25 1		-0.209	
V_R	Output Voltage Ripple	$I_{OUT} = -20 \text{ mA}$			4		mV_PP
	Supply Current	No Load	$T_A = 25^{\circ}C$	50	78	100	^
I _S	Supply Current	NO LOAG	-40°C to 125°C			150	μΑ
I _{SD}	Shutdown Supply Current	$SD = V_{DD}$			20		nA
η _{POWER}	Current Conversion Efficiency	-5 mA ≤ I _{OUT} ≤ -20 mA			98%		
η_{POWER}	Current Conversion Efficiency	$I_{OUT} = -5 \text{ mA}$			98%		
t _{ON}	Turnon Time	$I_{OUT} = -5 \text{ mA}$			500		μS
t OFF	Turnoff Time	$I_{OUT} = -5 \text{ mA}$			700		μS
t _{OFF CP}	Turnoff Time Charge Pump	$I_{OUT} = -5 \text{ mA}$			11		μS
7	Output Impedance	-1 mA ≤ I _{OUT} ≤	$T_A = 25^{\circ}C$		0.23	0.8	Ω
Z _{OUT}	Output Impedance	−20 mA	-40°C to 125°C			1.3	32
fosc	Oscillator Frequency				92		kHz
V _{IL}	Shutdown Input Low	$T_A = 25^{\circ}C$	T _A = 25°C -40°C to 125°C			1.6	V
VIL	Shataowh input Low	-40°C to 125°C			1.25		V
\/	Shutdown Input High	$T_A = 25^{\circ}C$	T _A = 25°C -40°C to 125°C				V
V _{IH}	Shataowh input High	-40°C to 125°C			2.15		V
I _C	Shutdown Pin Input Current	$SD = V_{DD}$			50		pA
	Load Regulation	0 mA ≤ I _{OUT} ≤	$T_A = 25^{\circ}C$		0.12	0.6	%/mA
	Load Regulation	-20 mA	-40°C to 125°C			0.85	/0/111/4

¹⁾ All limits are specified by testing or statistical analysis.

⁽²⁾ Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not specified on shipped production material.

3.3-V Electrical Characteristics (continued)

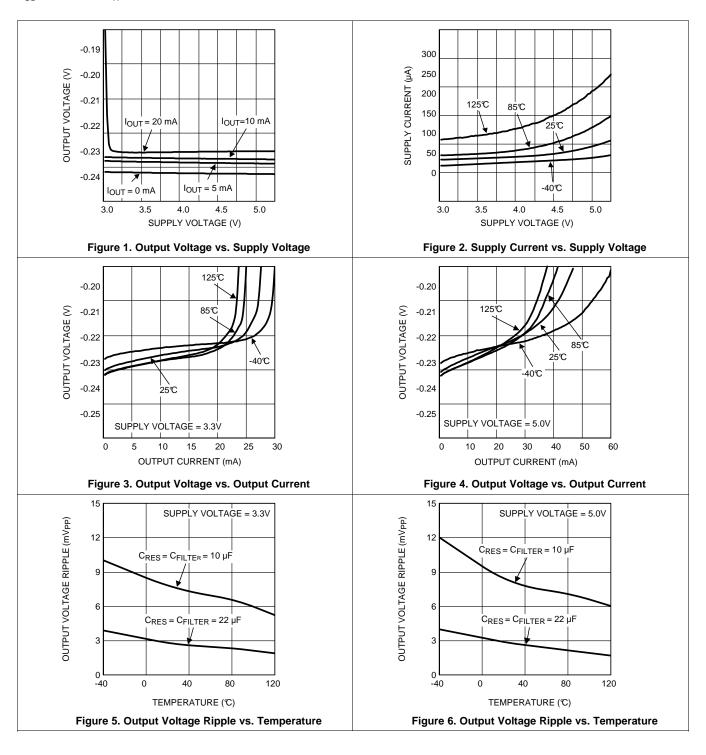
Unless otherwise specified, all limits are ensured for T_A = 25°C, V_{DD} = 3.3 V, V_{SS} = 0 V, SD = 0 V, C_{FLY} = 5 μF , C_{RES} = 22 μF , C_{OUT} = 22 μF .

PARAMETER	TEST CONDITIONS		MIN ⁽¹⁾	TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
Line Degulation	3 V ≤ V _{DD} ≤ 5.25 V (No Load)	T _A = 25°C	-0.2	0.29	0.7	%/V
Line Regulation		-40°C to 125°C			1.1	%/ V

6.6 5-V Electrical Characteristics

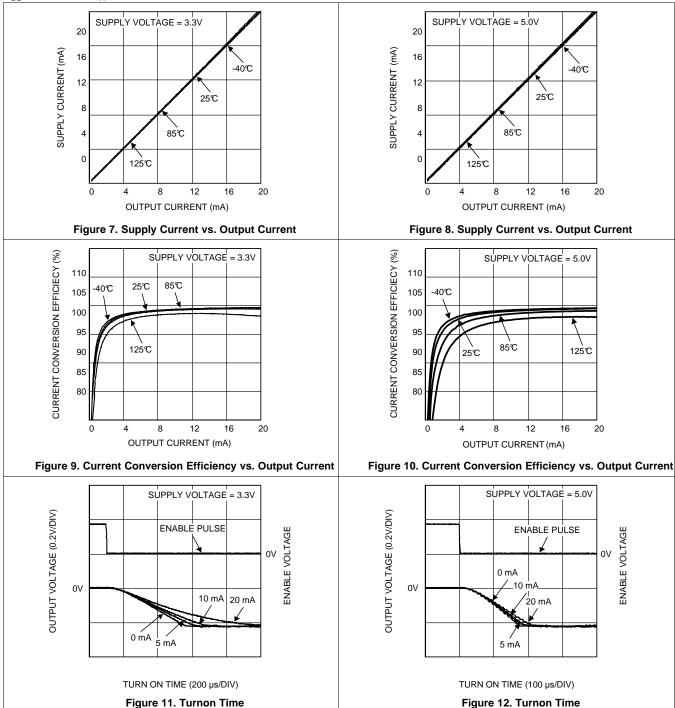
Unless otherwise specified, all limits are ensured for T_A = 25°C, V_{DD} = 5.0V, V_{SS} = 0V, SD = 0V, C_{FLY} = 5 μF , C_{RES} = 22 μF , C_{OUT} = 22 μF .

PARAMETER		TEST C	TEST CONDITIONS		TYP ⁽²⁾	MAX ⁽¹⁾	UNIT
			T _A = 25°C	-0.24 2	-0.233	-0.219	
V		I _{OUT} = 0 mA	-40°C to 125°C	-0.25 1		-0.209	V
V _{OUT}	Output Voltage	I _{OUT} = −20 mA	T _A = 25°C	-0.24 2	-0.226	-0.219	V
		IOUT = -20 IIIA	-40°C to 125°C	-0.25 1		-0.209	
V_{R}	Output Voltage Ripple	I _{OUT} = −20 mA			4		mV_PP
OI.	Supply Current	No Load	$T_A = 25^{\circ}C$	60	103	135	
I _S	Supply Current	INO LOAD	-40°C to 125°C			240	μΑ
I _{SD}	Shutdown Supply Current	SD = V _{DD}			20		nA
η _{POWER}	Current Conversion Efficiency	-5 mA ≤ I _{OUT} ≤	-20 mA		98%		
ηροwer	Current Conversion Efficiency	I _{OUT} = −5 mA			98%		
t _{ON}	Turnon Time	I _{OUT} = −5 mA			200		μS
t _{OFF}	Turnoff Time	I _{OUT} = −5 mA			700		μS
t _{OFF CP}	Turnoff Time Charge Pump	I _{OUT} = −5 mA			11		μS
		-1 mA ≤ I _{OUT}	$T_A = 25^{\circ}C$		0.26	0.8	
Z _{OUT}	Output Impedance	≤ -20 mA	-40°C to 125°C			1.3	Ω
f _{OSC}	Oscillator Frequency				91		kHz
V_{IL}	Shutdown Input Low	$T_A = 25^{\circ}C$	$T_A = 25$ °C			2.55	V
V IL	Shatdown input Low	-40°C to 125°C	-40°C to 125°C			1.95	
V_{IH}	Shutdown Input High	$T_A = 25^{\circ}C$		2.8		V	
VIН	Shataown input riigh	-40°C to 125°C	;	3.25			V
I _C	Shutdown Pin Input Current	$SD = V_{DD}$			50		pA
	Load Regulation	0 mA ≤ I _{OUT} ≤	T _A = 25°C		0.14	0.6	%/mA
	Load Regulation	−20 mA	-40°C to 125°C			0.85	%/MA
		$3 \text{ V} \leq \text{V}_{DD} \leq$	T _A = 25°C	-0.2	0.29	0.7	
	Line Regulation	5.25 V (No Load)	5.25 V (No Load) -40°C to 125°C			1.1	%/V

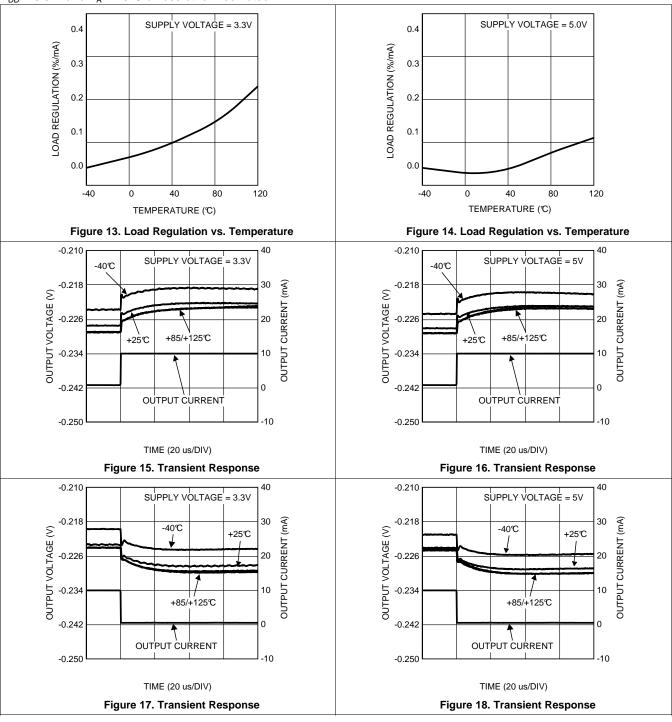

⁽¹⁾ All limits are specified by testing or statistical analysis.

⁽²⁾ Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not specified on shipped production material.

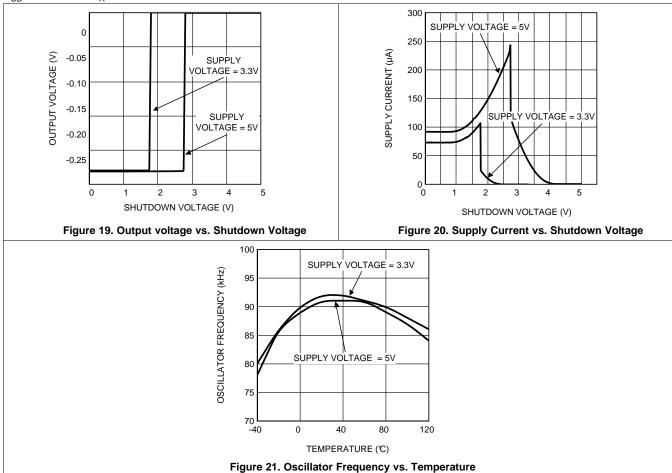
6.7 Typical Characteristics


 V_{DD} = 3.3 V and T_A = 25°C unless otherwise noted.

Typical Characteristics (continued)

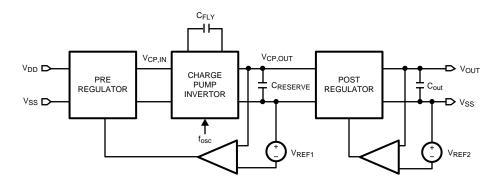

 V_{DD} = 3.3 V and T_A = 25°C unless otherwise noted.

Typical Characteristics (continued)


 V_{DD} = 3.3 V and T_A = 25°C unless otherwise noted.

Typical Characteristics (continued)

 V_{DD} = 3.3 V and T_A = 25°C unless otherwise noted.



7 Detailed Description

7.1 Overview

The LM7705 is a switched capacitor voltage inverter with a low-noise, −0.23-V fixed negative bias output. The part will operate over a supply voltage range of 3 V to 5.25 V. Applying a logical low level to the SD input will activate the part, and generate a fixed −0.23-V output voltage. The part can be disabled; the output is switched to ground level, by applying a logical high level to the SD input of the part.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Supply Voltage

The LM7705 will operate over a supply voltage range of 3 V to 5.25 V, and meet the specifications given in the 3.3-V *Electrical Characteristics* Table. Supply voltage lower than 3.3 V will decrease performance (The output voltage will shift towards zero, and the current sink capabilities will decrease) A voltage higher than 5.25 V will exceed the *Absolute Maximum Ratings* ratings and therefore damage the part.

7.3.2 Output Voltage and Line Regulation

The fixed and regulated output voltage of -0.23 V has tight limits, as indicated in the 3.3-V Electrical Characteristics table, to ensure a stable voltage level. The usage of the pre- and post regulator in combination with the charge pump inverter ensures good line regulation of 0.29%/V

7.3.3 Output Current and Load Regulation

The LM7705 can sink currents more than 26 mA, causing an output voltage shift to −200 mV. A specified load-regulation of 0.14% mA/V ensures a minor voltage deviation for load current up to 20 mA.

7.3.4 Quiescent Current

The LM7705 consumes a quiescent current less than 100 μA. Sinking a load current, will result in a current conversion efficiency better than 90%, even for load currents of 1 mA, increasing to 98% for a current of 5mA.

7.4 Device Functional Modes

7.4.1 General Amplifier Application

This section will discuss a general DC coupled amplifier application. First, one of the limitations of a DC coupled amplifier is discussed. This is illustrated with two application examples. A solution is a given for solving this limitation by using the LM7705.

Due to the architecture of the output stage of general amplifiers, the output transistors will saturate. As a result, the output of a general purpose op amp can only swing to a few 100 mV of the supply rails. Amplifiers using CMOS technology do have a lower output saturation voltage. This is illustrated in Figure 22. For example, Texas Instruments' LM7332 can swing to 200 mV to the negative rail, for a 10-k Ω load, over all temperatures.

Device Functional Modes (continued)

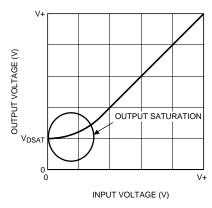


Figure 22. Limitation of the Output of an Amplifier

The introduction of operational amplifiers with output rail-to-rail drive capabilities is a strong improvement and the (output) performance of op amps is for many applications no longer a limiting factor. For example, Texas Instruments' LMP7701 (a typical rail-to-rail op amp), has an output drive capability of only 50 mV over all temperatures for a $10\text{-k}\Omega$ load resistance. This is close to the lower supply voltage rail.

However, for true zero output applications with a single supply, the saturation voltage of the output stage is still a limiting factor. This limitation has a negative impact on the functionality of true zero output applications. This is illustrated in Figure 23.

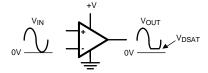


Figure 23. Output Limitation for Single-Supply True Zero Output Application

In the One-Stage, Single-Supply True Zero Amplifier section, two applications will be discussed, showing the limitations of the output stage of an op amp in a single supply configuration:

- A single stage true zero amplifier, with a 12-bit ADC back end.
- · A dual stage true zero amplifier, with a 12-bit ADC back end.

7.4.1.1 One-Stage, Single-Supply True Zero Amplifier

This application shows a sensor with a DC output signal, amplified by a single supply op amp. The output voltage of the op amp is converted to the digital domain using an Analog to Digital Converter (ADC). Figure 24 shows the basic set-up of this application.

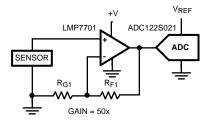


Figure 24. Sensor With DC Output and a Single-Supply Op Amp

Device Functional Modes (continued)

The sensor has a DC output signal that is amplified by the op amp. For an optimal signal-to-noise ratio, the output voltage swing of the op amp must be matched to the input voltage range of the Analog to Digital Converter (ADC). For the high side of the range this can be done by adjusting the gain of the op amp. However, the low side of the range cannot be adjusted and is affected by the output swing of the op amp.

Example:

Assume the output voltage range of the sensor is 0 to 90 mV. The available op amp is a LMP7701, using a 0/+5-V supply voltage, having an output drive of 50 mV from both rails. This results in an output range of 50 mV to 4.95V.

Select two resistors values for R_{G1} and R_{F1} that result in a gain of 50x. The output of the LMP7701 must swing from 0 mV to 4.5 V. The higher value is no problem, however the lower swing is limited by the output of the LM7701 and won't go below 50 mV instead of the desired 0 V, causing a non-linearity in the sensor reading. When using a 12-bit ADC, and a reference voltage of 5 V (having an ADC step size of approximate 1.2 mV), the output saturation results in a loss of the lower 40 quantization levels of the ADCs dynamic range.

7.4.1.2 Two-Stage, Single-Supply True Zero Amplifier

This sensor application produces a DC signal, amplified by a two cascaded op amps, having a single supply. The output voltage of the second op amp is converted to the digital domain. Figure 25 shows the basic setup of this application.

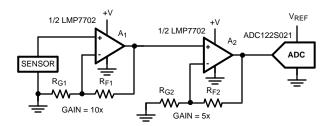


Figure 25. Sensor With DC Output and a 2-Stage, Single-Supply Op Amp

The sensor generates a DC output signal. In this case, a DC coupled, 2-stage amplifier is used. The output voltage swing of the second op amp must me matched to the input voltage range of the Analog to Digital Converter (ADC). For the high side of the range this can be done by adjusting the gain of the op amp. However, the low side of the range can't be adjusted and is affected by the output drive of the op amp.

Example:

Assume; the output voltage range of the sensor is 0 to 90 mV. The available op amp is a LMP7702 (Dual LMP7701 op amp) that can be used for A_1 and A_2 . The op amp is using a 0/+5-V supply voltage, having an output drive of 50 mV from both rails. This results in an output range of 50 mV to 4.95 V for each individual amplifier.

Select two resistors values for R_{G1} and R_{F1} that result in a gain of 10x for the first stage (A_1) and a gain of 5x for the second stage (A_2) The output of the A_2 in the LMP7702 must swing from 0V to 4.5 V. This swing is limited by the 2 different factors:

- 1. The high voltage swing is no problem; however the low voltage swing is limited by the output saturation voltage of A₂ from the LM7702 and will not go below 50 mV instead of the desired 0 V.
- 2. Another effect has more impact. The output saturation voltage of the first stage will cause an offset for the input of the second stage. This offset of A₁ is amplified by the gain of the second stage (10x in this example), resulting in an output offset voltage of 500mV. This is significantly more that the 50 mV (V_{DSAT}) of A₂.

When using a 12-bit ADC, and a reference voltage of 5 Volt (having an ADC step size of approximate 1.2 mV), the output saturation results in a loss of the lower 400 quantization levels of the ADCs dynamic range. This will cause a major non-linearity in the sensor reading.

Device Functional Modes (continued)

7.4.1.3 Dual-Supply, True Zero Amplifiers

The limitations of the output stage of the op amp, as indicated in both examples, can be omitted by using a dual supply op amp. The output stage of the used op amp can then still swing from 50 mV of the supply rails. However, the functional output range of the op amp is now from ground level to a value near the positive supply rail. Figure 26 shows the output drive of an amplifier in a true zero output voltage application.

Figure 26. Amplifier Output Drive With a Dual-Supply

Disadvantages of this solution are:

- The usage of a dual-supply instead of a simple single supply is more expensive.
- A dual supply voltage for the op amps requires parts that can handle a larger operating range for the supply voltage. If the op amps used in the current solution cannot handle this, a redesign can be required.

A better solution is to use the LM7705. This low-noise negative bias generator has some major advantages with respect to a dual-supply solution:

- Operates with only a single positive supply, and is therefore a much cheaper solution.
- The LM7705 generates a negative supply voltage of only -0.23 V. This is more than enough to create a Truezero output for most op amps.
- In many applications, this *small* extension of the supply voltage range can be within the abs max rating for many op amps, so an expensive redesign is not necessary.

In the *Typical Application* section, a typical amplifier application will be evaluated. The performance of an amplifier will be measured in a single supply configuration. The results will be compared with an amplifier using a LM7705 supplying a negative voltage to the bias pin.

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

8.1.1 Functional Description

The LM7705, low-noise negative bias generator, can be used for many applications requiring a fixed negative voltage. A key application for the LM7705 is an amplifier with a true zero output voltage using the original parts, while not exceeding the maximum supply voltage ratings of the amplifier.

The voltage inversion in the LM7705 is achieved using a switched capacitor technique with two external capacitors (C_{FLY} and C_{RES}). An internal oscillator and a switching network transfers charge between the two storage capacitors. This switched capacitor technique is given in Figure 27.

Figure 27. Voltage Inverter

The internal oscillator generates two anti-phase clock signals. Clock 1 controls switches S1 and S2. Clock 2 controls switches S3 and S4. When Switches S1 and S2 are closed, capacitor C_{FLY} is charged to V^+ . When switches S3 and S4 are closed (S1 and S2 are open) charge from C_{FLY} is transferred to C_{RES} and the output voltage OUT is equal to $-V^+$.

Due to the switched capacitor technique, a small ripple will be present at the output voltage with a frequency of the oscillator. The magnitude of this ripple will increase for increasing output currents. The magnitude of the ripple can be influenced by changing the values of the used capacitors.

8.1.2 Technical Description

As indicated in *Functional Description*, the main function of the LM7705 is to supply a stabilized negative bias voltage to a load, using only a positive supply voltage. A general block diagram for this charge pump inverter is given in Figure 28. The external power supply and load are added in this diagram as well.

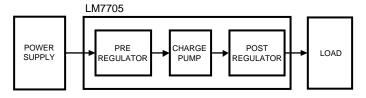


Figure 28. LM7705 Architecture

The architecture given in Figure 28 shows that the LM7705 contains 3 functional blocks:

- Pre-regulator
- Charge pump inverter
- Post-regulator

Application Information (continued)

The output voltage is stabilized by:

- Controlling the power supplied from the power supply to the charge pump input by the pre-regulator
- The power supplied from the charge pump output to the load by the post-regulator.

A more detailed block diagram of the negative bias generator is given in Figure 29. The control of the preregulator is based on measuring the output voltage of the charge pump. The goal of the post-regulator is to provide an accurate controlled negative voltage at the output, and acts as a lowpass filter to attenuate the output voltage ripple. The voltage ripple is a result of the switching behavior of the charge pump and is dependent of the output current and the values of the used capacitors.

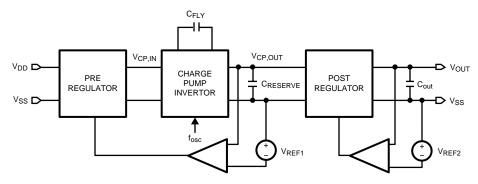


Figure 29. Charge Pump Inverter With Input and Output Control

In *Charge Pump Theory*, a simple equation will be derived that shows the relation between the ripple of the output current, the frequency of the internal clock generator and the value of the capacitor placed at the output of the LM7705.

8.1.3 Charge Pump Theory

This section uses a simplified but realistic equivalent circuit that represents the basic function of the charge pump. The schematic is given in Figure 30.

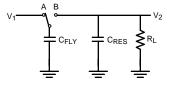


Figure 30. Charge Pump

When the switch is in position A, capacitor C_{FLY} will charge to voltage V_1 . The total charge on capacitor C_{FLY} is $Q_1 = C_{FLY} \times V_1$. The switch then moves to position B, discharging C_{FLY} to voltage V_2 . After this discharge, the charge on C_{FLY} will be $Q_2 = C_{FLY} \times V_2$. The charge has been transferred from the source V_1 to the output V_2 . The amount of charge transferred is:

$$\Delta q = q1 - q2 = C_{FLY}(V1 - V2)$$
 (1)

When the switch changes between A and B at a frequency f, the charge transfer per unit time, or current is:

$$I = f \Delta q = f C_{FLY} (V1 - V2)$$
 (2)

The switched capacitor network can be replaced by an equivalent resistor, as indicated in Figure 31.

Application Information (continued)

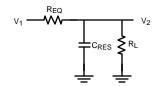


Figure 31. Switched Capacitor Equivalent Circuit

The value of this resistor is dependent on both the capacitor value and the switching frequency as given in Equation 3

$$I = \frac{V1 - V2}{\left(\frac{1}{f \, C_{FLY}}\right)} = \frac{V1 - V2}{R_{EQ}}$$
(3)

The value for R_{EO} can be calculated from Equation 3 and is given in Equation 4

$$R_{EQ} = \left(\frac{1}{f C_{FLY}}\right) \tag{4}$$

Equation 4 show that the value for the resistance at an increased internal switching frequency, allows a lower value for the used capacitor.

8.2 Typical Application

This section shows the measurement results of a true zero output amplifier application with an analog to digital converter (ADC) used as back-end. The biasing of the op amp can be done in two ways:

- A single supply configuration
- A single supply in combination with the LM7705, extending the negative supply from ground level to a fixed

 –0.23 Voltage.

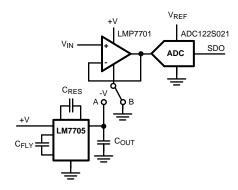


Figure 32. Typical True Zero Output Voltage Application With or Without LM7705

Typical Application (continued)

8.2.1 Design Requirements

The key specifications of the used components are shown in Table 1.

Table 1. Design Parameters

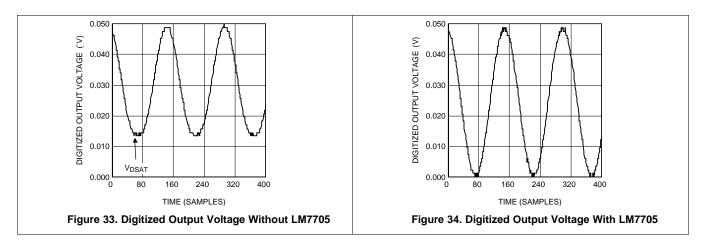
PARAMETERS	EXAMPLE VALUE
SUPPLY VOLTAGE/REFERENCE VOLTAGE	
Supply voltage	5 V
ADC Voltage Reference	5 V
LMP7701	
V _{DSAT} (typical)	18 mV
V _{DSAT} (over temperature)	50 mV
LM7705	
Output voltage ripple	4 mV _{PP}
Output voltage noise	10 mV _{PP}
ADC	
Туре	ADC122S021
Resolution	12-bit
Quantization level	5V/4096 = 1.2 mV

8.2.2 Detailed Design Procedure

8.2.2.1 Basic Setup

The basic setup of this true zero output amplifier is given in Figure 32. The LMP7701 op amp is configured as a voltage follower to demonstrate the output limitation, due to the saturation of the output stage. The negative power supply pin of the op amp can be connected to ground level or to the output of the negative bias generator, to demonstrate the V_{DSAT} effect at the output voltage range.

The output voltage of the LMP7701 is converted to the digital domain using an ADC122S021. This is an 12-bit analog to digital converter with a serial data output. Data processing and graphical displaying is done with a computer. The negative power supply pin of the op amp can be connected to ground level or to the output of the negative bias generator, to demonstrate the effect at the output voltage range of the op amp.


8.2.3 Application Curves

The output voltage range of the LMP7701 has been measured, especially the range to ground level. A small DC signal, with a voltage swing of 50 mV_{PP} is applied to the input. The digitized output voltage of the op amp is measured over a given time period, when its negative supply pin is connected to ground level or connected to the output of the LM7705.

Figure 33 shows the digitized output voltage of the op amp when its negative supply pin is connected to ground level. The output of the amplifier saturates at a level of 14 mv (this is in line with the typical value of 18 mV given in the datasheet) The graph shows some fluctuations (1-bit quantization error). Figure 34 show the digitized output voltage of the op amp when its negative supply pin is connected to the output of the LM7705. Again, the graph shows some 1-bit quantization errors caused by the voltage ripple and output noise. In this case the op amps output level can reach the true zero output level.

Figure 33 and Figure 34 show that:

- With a single supply, the output of the amplifier is limited by the V_{DSAT} of the output stage.
- The amplifier can be used as a true zero output using a LM7705.
- The quantization error of the digitized output voltage is caused by the noise and the voltage ripple.
- Using the LM7705 does not increase the quantization error in this set up.

9 Power Supply Recommendations

To prevent large variations at the V_{DD} pin of the package it is recommended to add a decouple capacitor as close to the pin as possible.

10 Layout

10.1 Layout Guidelines

The LM7705 is a switched capacitor voltage inverter. This means that charge is transferred from different external capacitors, to generate a negative voltage. For this reason the part is very sensitive for contact resistance between the package and external capacitors. TI also recommends to use low ESR capacitors for C_{FLY} , C_{RES} and C_{OUT} in combination with short traces.

The output voltage noise can be suppressed using a small RF capacitor, will a value of, for example, 100 nF.

10.2 Layout Examples

Figure 35 contains a layout example for the LM7705.

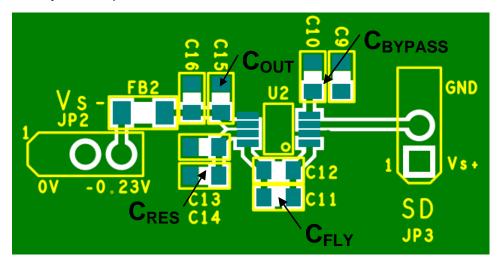


Figure 35. Example PCB Layout: Top layer

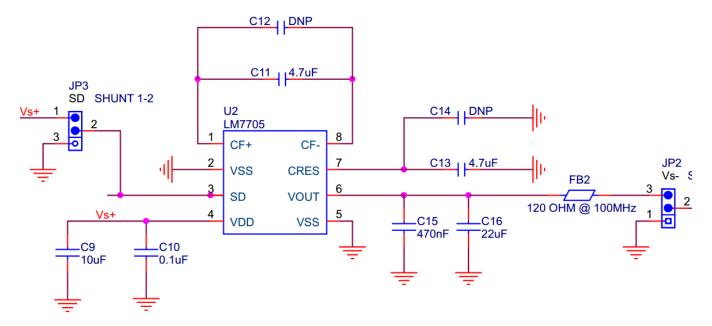


Figure 36. Schematics for Example PCB Layout

11 デバイスおよびドキュメントのサポート

11.1 コミュニティ・リソース

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Lise

TI E2E™オンライン・コミュニティ *TIのE2E(Engineer-to-Engineer)コミュニティ。*エンジニア間の共同作業を促進するために開設されたものです。e2e.ti.comでは、他のエンジニアに質問し、知識を共有し、アイディアを検討して、問題解決に役立てることができます。

設計サポート *TIの設計サポート* 役に立つE2Eフォーラムや、設計サポート・ツールをすばやく見つけることができます。技術サポート用の連絡先情報も参照できます。

11.2 商標

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.3 静電気放電に関する注意事項

これらのデバイスは、限定的なESD(静電破壊)保護機能を内蔵しています。保存時または取り扱い時は、MOSゲートに対する静電破壊を防止するために、リード線同士をショートさせておくか、デバイスを導電フォームに入れる必要があります。

11.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、そのデバイスについて利用可能な最新のデータです。このデータは予告なく変更されることがあり、ドキュメントが改訂される場合もあります。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。

www.ti.com 31-Oct-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
LM7705MM/NOPB	Active	Production	VSSOP (DGK) 8	1000 SMALL T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	F26A
LM7705MM/NOPB.A	Active	Production	VSSOP (DGK) 8	1000 SMALL T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	F26A
LM7705MME/NOPB	Active	Production	VSSOP (DGK) 8	250 SMALL T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	F26A
LM7705MME/NOPB.A	Active	Production	VSSOP (DGK) 8	250 SMALL T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	F26A
LM7705MMX/NOPB	Active	Production	VSSOP (DGK) 8	3500 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	F26A
LM7705MMX/NOPB.A	Active	Production	VSSOP (DGK) 8	3500 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	F26A

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

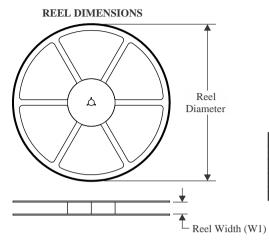
⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

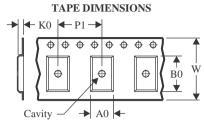
⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

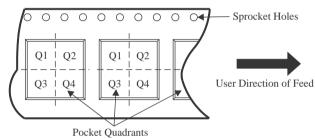
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.


PACKAGE OPTION ADDENDUM

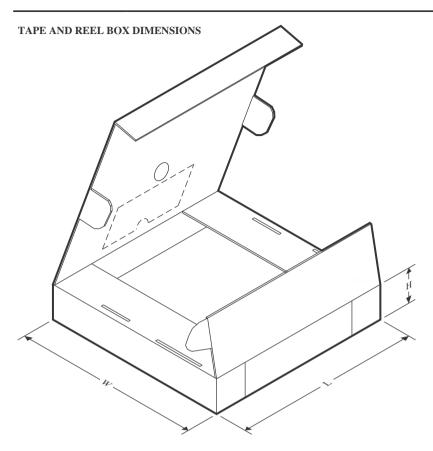

www.ti.com 31-Oct-2025

PACKAGE MATERIALS INFORMATION

www.ti.com 31-Jul-2025


TAPE AND REEL INFORMATION

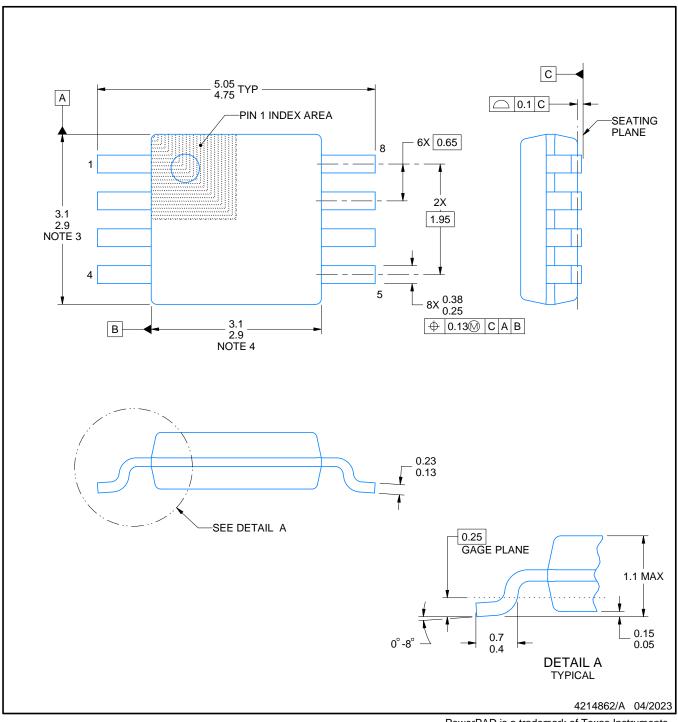
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM7705MM/NOPB	VSSOP	DGK	8	1000	177.8	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM7705MME/NOPB	VSSOP	DGK	8	250	177.8	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM7705MMX/NOPB	VSSOP	DGK	8	3500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

www.ti.com 31-Jul-2025



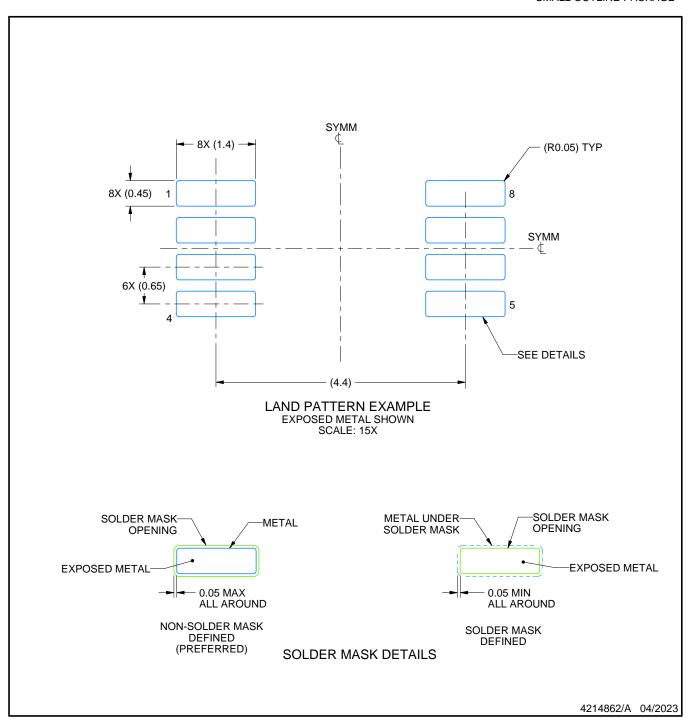
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM7705MM/NOPB	VSSOP	DGK	8	1000	208.0	191.0	35.0
LM7705MME/NOPB	VSSOP	DGK	8	250	208.0	191.0	35.0
LM7705MMX/NOPB	VSSOP	DGK	8	3500	367.0	367.0	35.0

SMALL OUTLINE PACKAGE

NOTES:

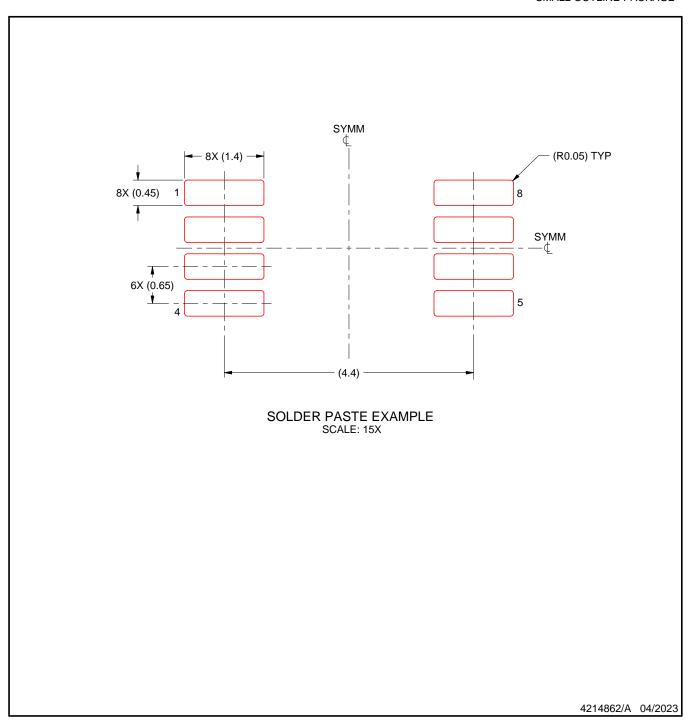
PowerPAD is a trademark of Texas Instruments.


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-187.

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 6. Publication IPC-7351 may have alternate designs.
- 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- 8. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.
- 9. Size of metal pad may vary due to creepage requirement.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 12. Board assembly site may have different recommendations for stencil design.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、TIの総合的な品質ガイドライン、 ti.com または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TIはそれらに異議を唱え、拒否します。

Copyright © 2025, Texas Instruments Incorporated

最終更新日: 2025 年 10 月