

Support & training

SN54ACT373, SN74ACT373 SCAS544F - OCTOBER 1995 - REVISED MAY 2024

SNx4ACT373 Octal D-Type Transparent Latches with 3-State Outputs

1 Features

Texas

INSTRUMENTS

- Operation of 4.5V to 5.5V V_{CC}
- Inputs accept voltages to 5.5V
- Max t_{pd} of 10ns at 5V
- Inputs are TTL-voltage compatible

2 Description

These 8-bit latches feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. The devices are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

Device information										
PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE ⁽²⁾	BODY SIZE ⁽³⁾							
	DB (SSOP, 20)	7.2mm × 7.8mm	7.50mm x 5.30mm							
	DW (SOIC, 20)	12.8mm × 10.3mm	12.80mm x 7.50mm							
SNx4ACT373	N (PDIP, 20)	24.33mm × 9.4mm	24.33mm x 6.35mm							
	NS (SOP, 20)	12.6mm × 7.8mm	12.6mm x 5.3mm							
	PW (TSSOP, 20)	6.5mm × 6.4mm	6.50mm x 4.40mm							

Device In	formation
------------------	-----------

For all available packages, see the orderable addendum at (1) the end of the data sheet.

The package size (length × width) is a nominal value and (2) includes pins, where applicable.

(3)The body size (length × width) is a nominal value and does not include pins.

To Seven Other Channels Logic Diagram (Positive Logic)

Table of Contents

1 Features 2 Description	1 1
3 Pin Configuration and Functions	3
4 Specifications	4
4.1 Absolute Maximum Ratings	4
4.2 Recommended Operating Conditions	4
4.3 Thermal Information	4
4.4 Electrical Characteristics	5
4.5 Timing Requirements	5
4.6 Switching Characteristics	6
4.7 Operating Characteristics	6
5 Parameter Measurement Information	7
6 Detailed Description	<mark>8</mark>
6.1 Overview	8
6.2 Functional Block Diagram	8

6.3 Device Functional Modes	8
7 Application and Implementation	9
7.1 Power Supply Recommendations	9
7.2 Layout	9
8 Device and Documentation Support	10
8.1 Documentation Support (Analog)	10
8.2 Receiving Notification of Documentation Updates	10
8.3 Support Resources	10
8.4 Trademarks	10
8.5 Electrostatic Discharge Caution	10
8.6 Glossary	10
9 Revision History	. 10
10 Mechanical, Packaging, and Orderable	
Information	10

3 Pin Configuration and Functions

		U		h
OE L	1		20	V _{CC}
1Q [2		19	8Q
1D	3		18	8D
2D 🛛	4		17	7 D
2Q 🛛	5		16	7 Q
3Q 🛛	6		15] 6Q
3D	7		14	6 D
4D 🛛	8		13	5 D
4Q 🛛	9		12	5 Q
GND	10		11	LE

Figure 3-1. SN54ACT373 J or W Package; Figure SN74ACT373 DB, DW, N, NS, or PW Package (Top View)

Figure 3-2. SN54ACT373 FK Package (Top View)

	PIN			
NO.	SSOP, TVSOP, SOIC, SO, or TSSOP	VQFN	ТҮРЕ	DESCRIPTION
1	ŌĒ	ŌĒ	I	Output Enable
2	1Q	1Q	0	1Q Output
3	1D	1D	I	1D Input
4	2D	2D	I	2D Input
5	2Q	2Q	0	2Q Output
6	3Q	3Q	0	3Q Output
7	3D	3D	I	3D Input
8	4D	4D	I	4D Input
9	4Q	4Q	0	4Q Output
10	GND	GND	_	Ground Pin
11	LE	LE	I	Latch Enable
12	5Q	5Q	0	5Q Output
13	5D	5D	I	5D Input
14	6D	6D	I	6D Input
15	6Q	6Q	0	6Q Output
16	7Q	7Q	0	7Q Output
17	7D	7D	I	7D Input
18	8D	8D	I	8D Input
19	8Q	8Q	0	8Q Output
20	V _{CC}	V _{CC}	—	Power Pin

Table 3-1. Pin Functions

4 Specifications

4.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	7	V
V _I ²	Input voltage range	Input voltage range		V _{CC} + 0.5	V
V _O ²	Output voltage range	Output voltage range		V _{CC} + 0.5	V
I _{IK}	Input clamp current	$(V_1 < 0 \text{ or } V_1 > V_{CC})$		±20	mA
I _{OK}	Output clamp current	$(V_O < 0 \text{ or } V_O > V_{CC})$		±20	mA
lo	Continuous output current	$(V_O = 0 \text{ to } V_{CC})$		±50	mA
	Continuous current through V _{CC} or GND			±200	mA
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

4.2 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		SN54ACT3	SN54ACT373 SN74ACT373		SN74ACT373	
		MIN	MAX	MIN	MAX	UNIT
V _{CC}	Supply voltage	4.5	5.5	4.5	5.5	V
V _{IH}	High-level input voltage	2		2		V
V _{IL}	Low-level input voltage		0.8		0.8	V
VI	Input voltage	0	V _{CC}	0	V _{CC}	V
Vo	Output voltage	0	V _{CC}	0	V_{CC}	V
I _{OH}	High-level output current		-24		-24	mA
I _{OL}	Low-level output current		24		24	mA
Δt/Δv	Input transition rise or fall rate		8		8	ns/V
T _A	Operating free-air temperature	-55	125	-40	85	°C

 All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

4.3 Thermal Information

			SNx4ACT373							
	THERMAL METRIC ⁽¹⁾	DB (SSOP)	DW (SOIC)	N (PDIP)	NS (SO)	PW (TSSOP)	UNIT			
				20 PINS	1					
R_{\thetaJA}	Junction-to-ambient thermal resistance	117.2	101.2	69	60	126.2	°C/W			

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

4.4 Electrical Characteristics

DADAMETED	TEST CONDITIONS	v	T _A = 25°C		SN54ACT373		SN74ACT373			
PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
	1	4.5 V	4.4	4.49		4.4		4.4		
	ι <u>0</u> μ30 μΑ	5.5 V	5.4	5.49		5.4		5.4		
Varia	1	4.5 V	3.86			3.7		3.76		V
V _{OH}		5.5 V	4.86			4.7		4.76		v
	$I_{OH} = -50 \text{ mA}^{(1)}$	5.5 V				3.85				
	$\begin{array}{c c c c c c } \mbox{TEST CONDITIONS} & V_{CC} & \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$						3.85			
	Ι _{OL} = 50μΑ	4.5 V			0.1		0.1		0.1	
		5.5 V			0.1		0.1		0.1	
N/	I _{OL} = 24 mA	4.5 V			0.36		0.44		0.44	V
VOL		5.5 V			0.36		0.44		0.44	v
	$I_{OL} = 50 \text{ mA}^{(1)}$	5.5 V					1.65			
	$\begin{tabular}{ c c c c c } \hline TEST CONDITIONS & V_{CC} & \hline IA = 25 \ C & OI \\ \hline MIN TYP MAX $ M$ \\ \hline MIN $ TYP$ Max $ m$ \\ \hline MIN $ TYP$ $ Max $ m$ \\ \hline MIN $ TYP$ $ Max $ m$ \\ \hline MIN $ TYP$ $ Max $ m$ \\ \hline MIN $ To MA $ $ 5.5 V$ $ 0.1 $ $ $ 10.1 $ $ $ 10.25 $ $ $ 10.1 $ $ $ 10.25 $ $ $ $ 10.1 $ $ $ 10.1 $ $ $ $ 10.1 $ $ $ $ 10.1 $ $ $ $ 10.1 $ $ $ $ $ $ 10.1 $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$				1.65					
I _{OZ}	V _O = V _{CC} or GND	5.5 V			±0.25		±5		±2.5	μA
lı –	V _I = V _{CC} or GND	5.5 V			±0.1		±1		±1	μA
I _{CC}	$V_1 = V_{CC}$ or GND, $I_0 = 0$	5.5 V			4		80		40	μA
ΔI_{CC} ⁽²⁾	One input at 3.4 V, Other inputs at GND or V_{CC}	5.5 V		0.6			1.5		1.5	mA
Ci	V _I = V _{CC} or GND	5 V		4.5						pF

over recommended operating free-air temperature range (unless otherwise noted)

(1) Not more than one output should be tested at a time, and the duration of the test should not exceed 2 ms.

(2) This is the increase in supply current for each input that is at one of the specified TTL voltage levels, rather than 0 V or V_{CC}.

4.5 Timing Requirements

over recommended operating free-air temperature range, V_{CC} = 5 V ± 0.5 V (unless otherwise noted) (see Load Circuit and Voltage Waveforms)

		T _A = 25°C		SN54ACT373		SN74ACT373	
		MIN	MAX	MIN	MAX	MIN MA	X
tw	Pulse duration, LE high	7		8.5		8	ns
t _{su}	Setup time, data before LE↓	7		8.5		8	ns
t _h	Hold time, data after LE \downarrow	0		1		1	ns

4.6 Switching Characteristics

over recommended operating free-air temperature range, V_{CC} = 5 V ± 0.5 V (unless otherwise noted) (see Load Circuit and Voltage Waveforms)

DADAMETED			$T_A = 25^{\circ}C$			SN54ACT373		SN74ACT373			
PARAMETER		10 (001901)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT	
t _{PLH}	D	0	2.5	8.5	10	1.5	12.5	1.5	11.5	nc	
t _{PHL}	D	Q Q	2	8	10	1.5	12.5	1.5	11.5	115	
t _{PLH}			0	2.5	8.5	11	1.5	12.5	2	11.5	ne
t _{PHL}			2	8	10	1.5	11.5	1.5	11.5	113	
t _{PZH}		0	2	8	9.5	1.5	11.5	1.5	10.5	nc	
t _{PZL}		Q Q	2	7.5	9	1.5	11	1.5	10.5	115	
t _{PHZ}	OF	0	2.5	9	11	1.5	14	2.5	12.5	nc	
t _{PLZ}			1.5	7.5	8.5	1.5	11	1	10	115	

4.7 Operating Characteristics

$V_{CC} = 5 V, T_A = 25^{\circ}C$

PARAMETER			TEST CONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	C _L = 50 pF,	f = 1 MHz	40	pF

5 Parameter Measurement Information

- A. C_L includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z₀ = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one input transition per measurement.

Figure 5-1	Load	Circuit and	Voltage	Waveforms
------------	------	-------------	---------	-----------

TEST	S1
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	$2 \times V_{CC}$
t _{PHZ} /t _{PZH}	Open

6 Detailed Description

6.1 Overview

The eight latches are D-type transparent latches. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the logic levels set up at the D inputs.

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines in bus-organized systems without need for interface or pullup components.

OE does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

6.2 Functional Block Diagram

To Seven Other Channels

Figure 6-1. Logic Diagram (Positive Logic)

6.3 Device Functional Modes

Table 6-1. Function Table (Each Latch)					
INPUTS			OUTPUT Q		
OE	LE	D			
L	Н	Н	Н		
L	Н	L	L		
L	L	Х	Q ₀		
Н	Х	Х	Z		

Table 6-1. Function Table (Each Latch)

7 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

7.1 Power Supply Recommendations

The power supply can be any voltage between the MIN and MAX supply voltage rating located in the Section 4.2.

Each V_{CC} pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 μ F is recommended; if there are multiple V_{CC} pins, then 0.01 μ F or 0.022 μ F is recommended for each power pin. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. A 0.1 μ F and a 1 μ F are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

7.2 Layout

7.2.1 Layout Guidelines

When using multiple bit logic devices, inputs should not float. In many cases, functions or parts of functions of digital logic devices are unused. Some examples are when only two inputs of a triple-input AND gate are used, or when only 3 of the 4-buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states.

Specified in Layout Diagram are rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} , whichever makes more sense or is more convenient. It is acceptable to float outputs unless the part is a transceiver. If the transceiver has an output enable pin, it will disable the outputs section of the part when asserted. This will not disable the input section of the I/Os so they also cannot float when disabled.

7.2.2 Layout Example

Figure 7-1. Layout example for the SNx4ACT373

8 Device and Documentation Support

8.1 Documentation Support (Analog)

8.1.1 Related Documentation

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
SN54ACT373	Click here	Click here	Click here	Click here	Click here
SN74ACT373	Click here	Click here	Click here	Click here	Click here

Table 8-1. Related Links

8.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

8.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

8.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.6 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision E (October 2002) to Revision F (May 2024)

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Page

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated