

TPS92638-Q1

JAJSCA0B - SEPTEMBER 2014 - REVISED MARCH 2015

TPS92638-Q1 8チャネル・リニアLEDドライバ、PWM調光機能付き

1 特長

- 車載アプリケーションに対応
 - デバイス温度グレード 1: 動作時周囲温度 -40℃~125℃ 範囲
 - デバイスHBM ESD分類レベルH2
 - デバイスCDM ESD分類レベルC3B
- アナログおよびPWM調光機能搭載の8チャネル LEDドライバ
- 広い入力電圧範囲: 5V~40V
- 基準抵抗を使用して定出力電流を調整可能
 - 最大電流: チャネルごとに70mA
 - 最大電流: パラレル動作モードで560mA
 - 精度: チャネルごとに**±3%**
 - 精度: デバイスごとに±4%
- PWM調光入力(PWM)
 - 電源オン/オフ遅延時間: 25μs (代表値)、45μs (最大値)
- 4バンクのPWM調光により8チャネルを制御
- グリッチ除去を備えたオープンおよび短絡LED の検出
- オープン、短絡、およびサーマル・シャットダウン障害通知用のフォルト・ピン、最大15個までのデバイスをパラレル・バスで接続可能
- サーマル・シャットダウンを防ぐための温度-電流 フォールドバック、スレッショルドをプログラミ ング可能
- 単一の抵抗でストップランプ用電流を設定可能
- 単一の抵抗でテールランプ用電流を設定可能
- 動作時の接合部温度範囲: -40℃~150℃
- パッケージ: 20ピンの放熱特性の優れたPWPパッケージ(PDSO)

2 アプリケーション

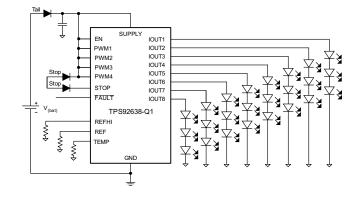
LEDライティング・アプリケーション(昼間走行灯、側灯、フォグライト、尾灯、ストップまたはテール・ライト、車内灯)

3 説明

TPS92638-Q1はPWM調光機能を搭載した8チャネルの リニアLEDドライバです。このデバイスの設計は、中程度ま での電力範囲に属するLEDの、複数のストリングを駆動す るために理想的です。 このデバイスは、8つまでのストリングで、各ストリングに1~3個のLEDを駆動でき、合計電流はチャネルごとに70mAまでです。出力を並列に接続すると、560mAまでの大電流を駆動できます。

複数のストリングを使用するアプリケーションでは、LEDストリングを共通のカソードで接続できる利点があります。このため、ローサイド電流センスのシステムではLEDストリングごとに1本のリターン線が必要になりますが、このデバイスではアプリケーション全体で1本のリターン線しか必要としません。

デバイスには、ストップおよびテール・アプリケーション用にLEDの大電流と小電流とを切り替える機能があります。2つのリファレンス・レジスタにより、各出力の2つのLED電流レベルが設定されます。


内蔵の温度監視機能により、ICの接合部温度がスレッショルド値を超えた場合に、LEDの駆動電流を低減します。温度スレッショルドは、外部の抵抗によりプログラム可能です。TEMPピンをグランドに接続すると、温度電流監視機能をディスエーブルにできます。出荷時設定オプションとして、接合部温度のアナログ電圧出力も用意されています

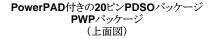
製品情報(1)

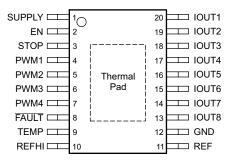
型番	パッケージ	本体サイズ(公称)
TPS92638-Q1	HTSSOP (20)	6.50mm×4.40mm

(1) 提供されているすべてのパッケージについては、巻末の注文情報 を参照してください。

4 代表的なアプリケーションの回路図

目次


	4.÷ ⊏		0.4 #####	40
1	特長1		9.1 概要	
2	アプリケーション1		9.2 機能ブロック図	13
3	説明 1		9.3 機能説明	14
4	代表的なアプリケーションの回路図		9.4 デバイスの機能モード	
5	改訂履歷	10	アプリケーションと実装	21
6	ピン構成および機能		10.1 アプリケーション情報	21
7	仕様		10.2 代表的なアプリケーション	21
1		11	電源に関する推奨事項	28
	7.1 絶対最大定格	12	レイアウト	28
	7.2 ESD定格		12.1 レイアウトのガイドライン	
	7.3 推奨動作条件 4		12.2 レイアウト例	
	7.4 熱特性について 4		12.3 熱特性について	
	7.5 電気的特性 5			
	7.6 スイッチング特性6	13	デバイスおよびドキュメントのサポート	31
	7.7 代表的特性		13.1 商標	31
8	パラメータ測定情報12		13.2 静電気放電に関する注意事項	31
9			13.3 用語集	31
9	詳細説明 13	14	メカニカル、パッケージ、および注文情報	31


5 改訂履歴

Revision A (November 2014) から Revision B に変更	Page
チャネル精度とデバイス精度の値を変更「概要」セクションの4番目の段落からテキストを削除	
2014年9 月発行のものから更新	Page
• 特長リストの一部の項目 変更	1
• 「アプリケーション」セクションの項目変更	1
• 「概要」セクションの段落を新しいテキストに変更	1
既存の「ピン機能」の表を新しい表に置き換え 削除	3
データシートに「仕様」セクションから始まる新しいセクションおよびサブセクションを追加	

6 ピン構成および機能

ピン機能

1.0	ピン 1次化				
		1/0	説明		
名前	番号				
EN	2	I	イネーブルおよびシャットダウン		
FAULT	8	I/O	障害ピン		
GND	12	_	GND		
IOUT1	20	0	電流出力ピン		
IOUT2	19	0	電流出力ピン		
IOUT3	18	0	電流出力ピン		
IOUT4	17	0	電流出力ピン		
IOUT5	16	0	電流出力ピン		
IOUT6	15	0	電流出力ピン		
IOUT7	14	0	電流出力ピン		
IOUT8	13	0	電流出力ピン		
PWM1	4	I	PWM入力と、CH1およびCH2のチャネルのオン/オフ		
PWM2	5	I	PWM入力と、CH3およびCH4のチャネルのオン/オフ		
PWM3	6	I	PWM入力と、CH5およびCH6のチャネルのオン/オフ		
PWM4	7	I	PWM入力と、CH7およびCH8のチャネルのオン/オフ		
REF	11	I	通常電流設定用の基準抵抗端子		
REFHI	10	I	ストップ・ライト電流設定用の基準抵抗ピン		
STOP	3	I	ストップ・ライト用の信号入力		
SUPPLY	1	I	入力ピン – VBAT電源		
TEMP	9	I	温度フォールドバック・スレッショルドのプログラミング		

7 仕様

7.1 絶対最大定格

自由通気で動作温度範囲内の場合(特に記述のない限り)(1)

		最小	最大	単位
SUPPLY、IOUTx、PWMx、 EN、STOP	レギュレーションなしの入力(2)(3)	-0.3	45	V
FAULT	(2)を参照	-0.3	22	V
REF, REFHI, TEMP	(2)を参照	-0.3	7	V
T _J	仮想接合部温度範囲	-40	150	°C
T _A	Operating ambient temperature 範囲	-40	125	°C
T _{stg}	保管温度範囲	-65	150	°C

⁽¹⁾ 絶対最大定格を上回るストレスが加わった場合、デバイスに永続的な損傷が発生する可能性があります。これはストレスの定格のみについて示してあり、このデータシートの「推奨動作条件」に示された値を越える状態での本製品の機能動作は含まれていません。絶対最大定格の状態に長時間置くと、本製品の信頼性に影響を与えることがあります。

7.2 ESD定格

				数値	単位
		Human body model (HBM), pe	r AEC Q100-002 ⁽¹⁾	±2000	
V _(ESD)	V _(ESD) 静電放電	Charged device model	コーナー・ピン(SUPPLY、 IOUT1、REF、REFHI)	±750	V
		(CDM), per AEC Q100-011	Other pins	±500	

⁽¹⁾ AEC Q100-002では、HBMストレス試験をANSI/ESDA/JEDEC JS-001仕様に従って実施することを示しています。

7.3 推奨動作条件

動作温度範囲内(特に記述のない限り)

		MIN	NOM 最大	単位
	SUPPLY	5	40	V
	EN, STOP	2	40	
V_{IH}	FAULT	2	20	V
	PWMx	2	40	
	EN, STOP	0	0.7	
V_{IL}	FAULT	0	0.7	V
	PWMx	0	0.7	
	REF, REFHI, TEMP	0	5	V
T_{J}	Operating junction temperature range	-40	150	°C

7.4 熱特性について

		TPS92638-Q1	
	THERMAL METRIC ⁽¹⁾	PWP (HTSSOP)	UNIT
		20ピン	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	37.8	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	25.2	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	21.7	°C/W
ΨЈТ	Junction-to-top characterization parameter	0.8	°C/W
ΨЈВ	Junction-to-board characterization parameter	21.5	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	2.1	°C/W

(1) 従来および新しい熱測定値の詳細については、半導体およびICパッケージの熱測定値のアプリケーション・レポートSPRA953を参照してください。

²⁾ すべての電圧値は、GNDを基準としたものです。

⁽³⁾ 絶対最大定格電圧45Vは、200ms以内です。

7.5 電気的特性

 $V_{\text{AUN}} = 14V$. $T_1 = -40^{\circ}\text{C} \sim 150^{\circ}\text{C}$ (特に記述のない限り)

	パラメータ	測定条件	最小	標準	最大	単位
SUPPLY VOL	TAGE AND CURRENT (SUPPLY)					
I _(Quiescent)	Quiescent current	$V_{(PWMx)}$, $V_{(EN)} = high$, $I_{(IOUTx)} = 40 \text{ mA}$	0.5	0.6	0.9	mA
I _(Shutdown)	Shutdown current	$V_{(PWMx)} = 0 \text{ V}, V_{(EN)} = 0 \text{ V}$			10	μΑ
la	Shutdown current in fault mode (device to GND)	$V_{(PWMx)}$, $V_{(EN)} = high$, $V_{(FAULT)} = low$,	0.5	0.75	1	mA
I(fault)	Shutdown current in fault mode (from SUPPLY)	$V_{(SUPPLY)} = 5 \text{ V to } 40 \text{ V}, I_{(IOUTx)} = 30 \text{ mA}$			1.15	ША
PWM, EN, ST	OP	,				
I _(EN-pd)	EN internal pulldown	$V_{(EN)} = 0 \ V \ to \ 40 \ V$	0.5		5	μΑ
$V_{IH(PWMx)}$	Logic input, high level (1)	PWMx rising from a low state, IOUTx disabled	1.161	1.222	1.283	V
$V_{IL(PWMx)}$	Logic input, low level (1)	PWMx falling from a high state, IOUTx enabled	1.119	1.178	1.237	V
V _(PWM-hys)	Hysteresis			44		mV
	DVV/Mv internal mulldown ourrent	$V_{(PWMx)} = 0 V \text{ to } 20 V$		180	300	nA
I _(PWM-pd)	PWMx internal pulldown current	V _(PWMx) = 20 V to 40 V		0.2	2	μΑ
I _(STOP-PD)	STOP internal pulldown	V _(STOP) = 0 V to 40 V	0.1		1	μA
CURRENT R	EGULATION (IOUTx)		·			
I _(IOUTx)	Descripted outset ourset reason	Each channel, $V_{(PWMx)} = high$, $V_{(EN)} = high$ $V_{(SUPPLY)} > 5 V$, $V_{(IOUTx)} > 0.9 V$	2		70	mA
I _(IOUT_TOTAL)	Regulated output current range	8 channels in parallel mode, V _(PWMx) = high, V _(EN) = high, V _(SUPPLY) > 5 V, V _(IOUTx) > 0.9 V	16		560	mA
ΔI _{O(channel)} Channel acc	•	5 mA \leq I _(IOUTx) $<$ 10 mA, V _(SUPPLY) = 5 V-40 V Channel accuracy = (I _(IOUTx) - I _(avg)) / I _(avg) (2)	-7%		7%	
	Channel accuracy	10 mA \leq I _(IOUTx) \leq 70 mA, V _(SUPPLY) = 5 V-40 V Channel accuracy = (I _(IOUTx) - I _(avg)) / I _(avg) (2)	-3%		3%	
		2 mA \leq I _(IOUTx) $<$ 5 mA, V _(SUPPLY) = 5 V-40 V Channel accuracy = (I _(IOUTx) - I _(avg)) / I _(avg) (2)	-18%		18%	
		5 mA \leq I _(IOUTx) $<$ 10 mA, V _(SUPPLY) = 5 V to 20 V Device accuracy = (I _(IOUTx) - I _(setting)) / I _(setting) (3)	-8%		8%	
		10 mA \leq I _(IOUTx) \leq 70 mA, V _(SUPPLY) = 5 V to 20 V Device accuracy = (I _(IOUTx) - I _(setting)) / I _(setting) (3)	-4%		4%	
A.1		2 mA \leq I _(IOUTx) $<$ 5 mA, V _(SUPPLY) = 5 V to 20 V Device accuracy = (I _(IOUTx) - I _(setting)) / I _(setting) (3)	-20%		20%	
$\Delta I_{O(device)}$	Device accuracy	5 mA \leq I _(IOUTx) $<$ 10 mA, V _(SUPPLY) = 20 V to 40 V Device accuracy = (I _(IOUTx) - I _(setting)) / I _(setting) (3)	-10%		10%	
		10 mA \leq I _(IOUTx) \leq 70 mA, V _(SUPPLY) = 20 V to 40 V Device accuracy = (I _(IOUTx) - I _(setting)) / I _(setting) (3)	-8%		8%	
		2 mA \leq I _(IOUTx) $<$ 5 mA, V _(SUPPLY) = 20 V to 40 V Device accuracy = (I _(IOUTx) - I _(setting)) / I _(setting) (3)	-20%		20%	
V _(REF)	Reference voltage	$I_{(IOUTx)} = 20 \text{ mA}$	1.198	1.222	1.246	V
V _(REFHI)	STOP reference voltage		1.198	1.222	1.246	V
$G_{(I)}$	Ratio of I _(IOUTx) to reference current I _(IOUTx) / I _(REF) or I _(IOUTx) / (I _(REF)			200		mA/mA
V(DDOD ::::::::::::::::::::::::::::::::::	+ I _(REFHI))	I _(IOUTx) = 70 mA		0.71	0.9	V
$V_{(DROP_IOUTx)}$	Dropout voltage	$I_{\text{(IOUTx)}} = 70 \text{ mA}$ $I_{\text{(IOUTx)}} = 35 \text{ mA}$		0.71	0.45	V

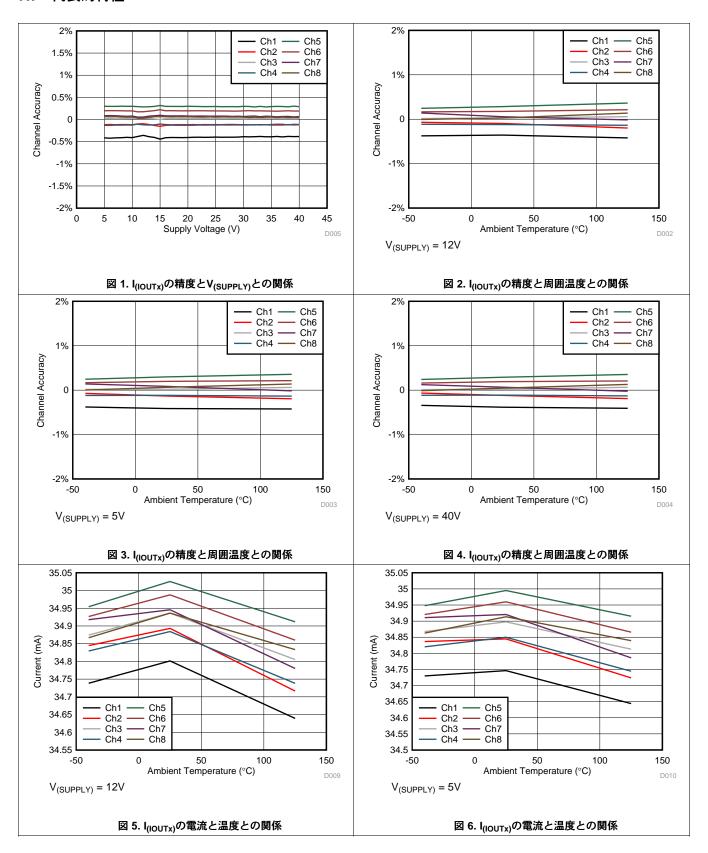
⁽¹⁾ V_{IH} および V_{IL} は互いに追随しています。すなわち、双方は同時にMAX、MIN、または同一の中間点となります。したがって、通常の動作では V_{IH} と V_{IL} の値はオーバーラップしません。
(2) $I_{(AVG)} = [I_{(IOUT1)} + I_{(IOUT2)} + I_{(IOUT3)} + I_{(IOUT5)} + I_{(IOUT6)} + I_{(IOUT7)} + I_{(IOUT8)}] / 8$ (3) $I_{(setting)}$ は、 $R_{(REF)}$ により設定される目標電流です。

電気的特性 (continued)

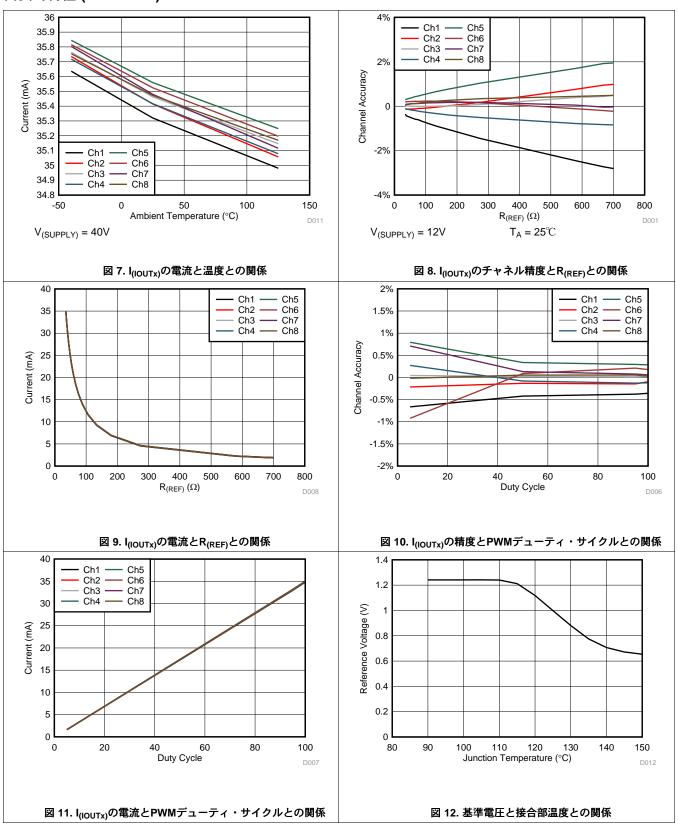
V_(VIN) = 14V、T_J = −40℃~150℃ (特に記述のない限り)

	パラメータ	測定条件	最小	標準	最大	単位
L	Current slew-rate rise and fall	Current rising from 10% to 90% or falling from 90% to 10% at $I_{(IOUTx)} = 35$ mA. (4)	1.5	6	12	mΑ/μs
I(slew)	times	Current rising from 10% to 90% or falling from 90% to 10% at $I_{(IOUTx)} = 70$ mA. ⁽⁴⁾	3	6	12	mA/μs
FAULT (FAU	LT)					
V _{OL}	Logic output low level	500-μA external pullup			0.4	V
V _{OH}	Logic output high level	1-μA external pulldown	2			V
I _(pulldown)	Strong pulldown current		600	780	1000	μΑ
I _(pullup)	Pullup current		4	8	12	μΑ
PROTECTION	N					
$V_{(OL_th)}$	Open-load detection voltage $V_{(OL_TH)} = V_{(SUPPLY)} - V_{(IOUTx)}$		50	100	150	mV
V _(OL_hys)	Open-load detection hysteresis		100	200	300	mV
V _(SHORT_th)	Short-detection voltage		0.846	0.89	0.935	V
V _(SHORT_hys)	Short-detection hysteresis		318	335	352	mV
N _(SHORT_deg)	Open-load detection PWM deglitch cycle number		7		8	Cycles
R _(REF_th) , R _(REFHI_th)	REF and REFHI pins, parallel- resistor short detection		1400		2300	Ω
THERMAL M	ONITOR				<u>'</u>	
T _(shutdown)	Thermal shutdown		155	170		°C
T _(hys)	Thermal shutdown hysteresis			15		°C
T _(th)	Thermal foldback activation temperature	$I_{(IOUTx)} = 90\% \times I_{(setting)}$, TEMP terminal floating	95	110	125	°C
I _(TFC-min)	Minimum foldback current, ratio of I _(setting)		40%	50%	60%	
V _(T-disable)	Thermal-foldback-function disable threshold of V _(TEMP)		0		0.2	V
K _(temp1)	Change of $V_{(TEMP)}$ relative to $T_{(J)}$			25		mV/°C

⁽⁴⁾ スルーレート・テストおよび遅延時間テスト用の負荷モデルについては、パラメータ測定情報を参照してください。


7.6 スイッチング特性

	PARAMETER	TEST CONDITION	MIN	TYP	MAX	単位
t _(startup)	スタートアップ時間	$V_{\text{(SUPPLY)}} > 5V$, $I_{\text{(IOUTx)}} = 15\text{mA}$, $I_{\text{(setting)}} = 30\text{mA}^{(1)}$			150	μs
t _{d(on)}	PWMの立ち上がりエッジから、I (IOUTx)の10%までの遅延時間	直列のLED 2個、並列の10kΩ抵抗		20	45	μs
t _{d(off)}	PWMの立ち下がりエッジから、I (IOUTx)の90%までの遅延時間	直列のLED 2個、並列の10kΩ抵抗		20	45	μs
			1.2	2.2	3.2	ms
	オープン負荷検出のグリッチ除去	PWMの間、V _(SUPPLY) - V _(IOUTx) < V _(OL_th) のとき連続サイクル数をカウント	7		8	Cycles
			1.2	2.2	3.2	ms
	Short-detection deglitch	PWMの間、V _(IOUTx) < V _(SHORT_th) のとき連続サイクル数を カウント	7		8	Cycles


⁽¹⁾ I_(setting)が30mAで、I_(IOUTx)が0から15mAへ増大したときスタートアップは完了します。

7.7 代表的特性

TEXAS INSTRUMENTS

8 パラメータ測定情報

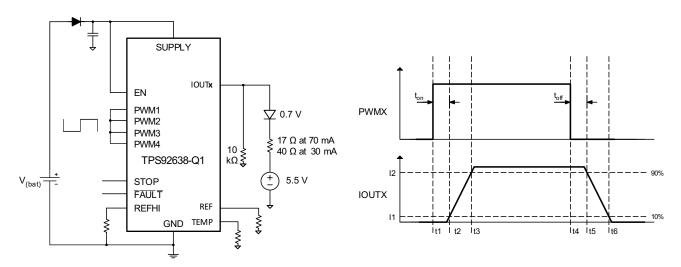
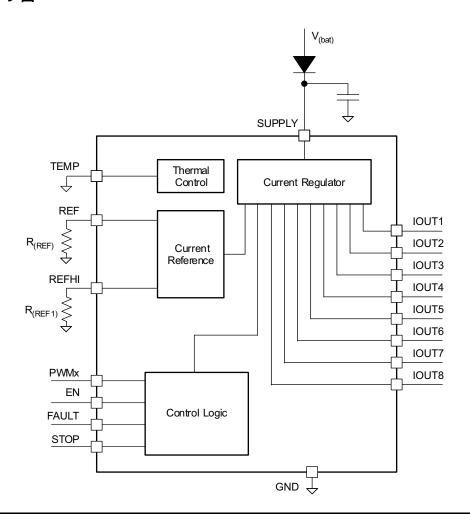


図 31. TPS92638-Q1のテスト回路と波形

9 詳細説明

9.1 概要


TPS92638-Q1デバイスは、PWM調光機能を搭載した8チャネルの定電流レギュレータで、車載照明アプリケーションで使用される高輝度の赤色または白色LED用に設計されています。各チャネルは最大70mAの電流容量を持ち、並列で使用すると最大560mAを供給できます。このデバイスは、チャネル間およびデバイス間で優れた電流マッチングを実現します。ハイサイドの電流ソースにより、LEDの共通カソード接続が可能です。高度な制御ループにより、出力に接続されているLEDの数が異なっても、チャネル間で高い精度が得られます。

TPS92638-Q1デバイスは、ストップおよびテールのアプリケーションで、LEDの電流が大電流(ストップやブレーキを示します)と小電流(通常のテールライト動作用)との間で切り替わる用途向けに設計されています。

TPS92638-Q1デバイスは、出力の障害状況を監視し、FAULTピンで状態を通知します。このデバイスには、出力からグランドへの短絡の検出、オープン負荷の検出、サーマル・シャットダウンが搭載されています。FAULTピンにより、フォルト・モードと、エラーが発生した場合のMCUへの通知を、可能な限り柔軟に決定できます。MCUが存在しないアプリケーションでは、複数のTPS92638-Q1デバイスをバスに接続することも可能です。

内蔵の温度フォールドバック機能により、設定済みのスレッショルドに達したときに出力電流を直線的に減少させることで、デバイスをサーマル・シャットダウンから保護します。温度フォールドバック・スレッショルドは、外部抵抗を使用してプログラムされます。TEMPピンをグランドに接続すると、この機能はディセーブルになります。

9.2 機能ブロック図

9.3 機能説明

9.3.1 LED電流の設定

独立したリニア電流レギュレータが、8つのLED出力チャネルを制御します。グローバルな外部抵抗により、各チャネルの電流が設定されます。また、デバイスにはストップとテールのアプリケーションで使用するため、2つの電流レベルが搭載されています。

内部基準電流I_(REF)は、STOP入力の状態に応じて2つの値が可能です。STOPがLOWのとき、REFピンから取り出される電流であるREFが出力電流を制御します。STOPがHIGHのとき、REFHIピンとREFピンから取り出される電流の合計が、出力電流を制御します。

電流を設定する抵抗の値は、数式式 1および式 2で計算されます。

STOP = LOWのとき

$$I_{(OUTx\text{-TAIL})} = \frac{V_{ref} \times G_{(I)}}{R_{(REF)}}$$

$$R_{(REF)} = \frac{V_{ref} \times G_{(I)}}{I_{(OUTx-TAIL)}}$$
(1)

STOP = HIGHのとき

$$I_{(IOUTx\text{-STOP})} = \frac{V_{ref} \times G_{(I)}}{R_{(REFHI)}} + \frac{V_{ref} \times G_{(I)}}{R_{(REF)}}$$

$$R_{(REFHI)} = \frac{V_{ref} \times G_{(I)}}{I_{(IOUTx-STOP)} - \frac{V_{ref} \times G_{(I)}}{R_{(REF)}}}$$
(2)

ここで

V_{ref}は、内部の基準電圧

Gmは出力電流と基準電流との比

9.3.2 PWM制御

このデバイスには4つの独立したPWMバンク調光制御ピンが搭載され、それぞれのピンは2つのチャネルで構成される1つのバンクを制御します。PWM入力は、未使用バンクのシャットダウン・ピンとしても使用できます。PWMをグランドに接続すると、対応する出力がディセーブルになります。PWM信号には正確なスレッショルドがあり、設計者はSUPPLYからの分割抵抗を使用して、低電圧ロックアウト(UVLO)機能としてLEDのスタートアップ電圧を定義できます。PWMバンクのマッピングを、表1に示します。

表 1. PWMバンクのマッピング

PWM入力	制御される出力
PWM1	OUT1、OUT2
PWM2	OUT3、OUT4
PWM3	OUT5、OUT6
PWM4	OUT7、OUT8

9.3.3 フォルト診断

TPS92638-Q1デバイスにはフォルト・ピンFAULTがあり、短絡、オープン、およびサーマル・シャットダウンの一般的な障害に使用されます。この配置により、すべての要件およびアプリケーションの状況に基づいて、最大限の柔軟性が得られます。

デバイスのFAULTピンをMCUへ接続すると、フォルト通知が可能になります。FAULTピンはオープン・ドレインのトランジスタで、内部的に弱くプルアップされています。

デバイスは、外部の回路がFAULTバスをトグルしたとき、またはデバイスの電力がオフになってから再度オンになる時に、FAULTパスを解放します。MCUを使用しないアプリケーションでは、電力をオフにしてから再度オンにすることによってのみフォルトがクリアされます。

サーマル・シャットダウン、オープン負荷、または出力回路の短絡のフォルトが発生すると、FAULTピンはLOWになります。 サーマル・シャットダウンおよびオープンLEDの場合、サーマル・シャットダウンまたはオープンLEDの状況が解消されると FAULTピンが解放されます。他のフォルトの場合、その状況が解消された後でもFAULTピンはLOWに維持され、FAULT ピンをトグルするか、デバイスの電力をオフにしてから再度オンにすることによってのみクリアできます。

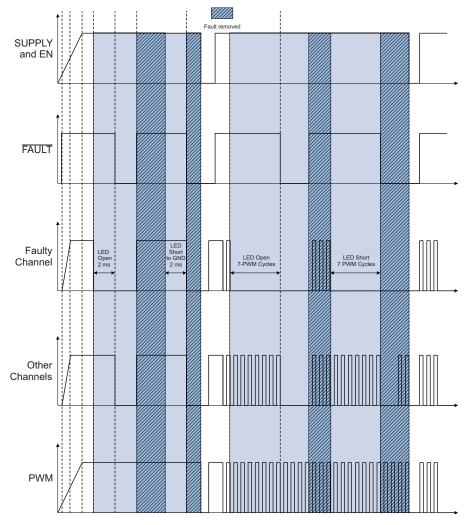


図 32. TPS92638-Q1デバイスのフォルト処理動作、FAULTバスがフローティング状態

MCUを使用しないアプリケーションの設計では、最大15本までのTPS92638-Q1 FAULTピンをまとめて接続できます。1 つ以上のデバイスにエラーが発生した場合、対応するFAULTピンがLOWになり、接続されているFAULTバスをプルダウンして、すべてのデバイス出力がシャットダウンされます。FAULTラインのバス接続を、図 33に示します。

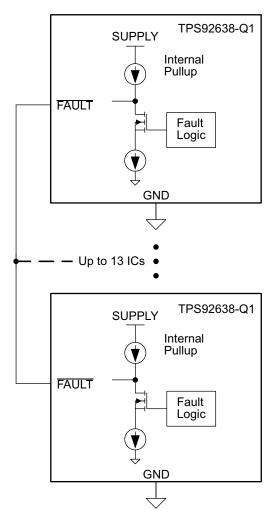


図 33. FAULTラインのバスの接続

外部の回路によってFAULTバスがHIGHにプルされる、ENピンがトグルされる、またはデバイスの電力がオフになってから再度オンになると、デバイスはFAULTバスを解放します。MCUを使用しないアプリケーションでは、電力をオフにしてから再度オンにした場合のみフォルトがクリアされます。図 34は、詳細なタイミング図です。

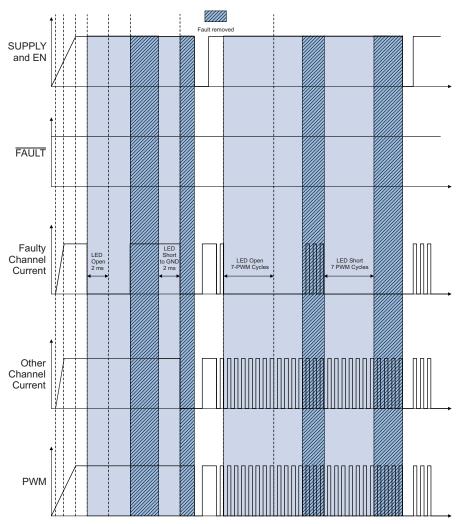


図 34. TPS92638-Q1デバイスのフォルト処理の動作、FAULTバスが外部的にHIGHにプルアップされている場合

表 2. フォルト表

障害モード		判定条件		診断出力ピン(1)	動作	FAULT	デバイスの応答	障害除去	自己クリア	
	検出電圧	チャネル状態	検出メカニズム	砂削山川にクい	1041H1/1C2 301F		ノノマーへの心合	降占除云		
短絡:	Vicuingi vi > 5V オン		V .00V	FAULT	Lowに設定	外部で HIGHにプル	障害ストリングをオフ、 他のチャネルはオン	ENをトグル、 電力をオフにし てから再度オン	なし	
1つまたは複数のLED ストリング	V _(SUPPLY) > 5V	<i>A D</i>	V _(IOUTx) < 0.9V	FAULI	LOWに放止	フローティング	すべてのストリングをオフ	ENをトグル、 電力をオフにし て再度オン	74.0	
オープン負荷:	V - EV	オン	V _(SUPPLY) – V _(IOUTx)	FAULT	Lowに設定	外部で HIGHにプル	すべてのストリングをオンに保 持	障害状況の解 消	あり	
1つまたは複数のLED ストリング	$V_{(SUPPLY)} > 5V$	22	< 100mV	FAULT	LOWICEXAE	フローティン グ	障害ストリングがオンのまま、 他のチャネルをオフ	障害状況の解 消	(<i>y</i>)	
バッテリへの短絡:	V _(SUPPLY) > 5V	オンまたはオ	V _(SUPPLY) – V _(IOUTX)	FAULT	Lowに設定	外部で HIGHにプル	すべてのストリングをオンに保 持	障害状況の解 消	あり	
1つまたは複数のLED ストリング	V (SUPPLY) > 3 V	フ	< 100mV	TAGET	LOWICHXAE	フローティン グ	障害ストリングがオンのまま、 他のチャネルをオフ	障害状況の解 消	יינט	
サーマル・シャットダウ			> 170°C	FAULT	Lowに設定	外部で HIGHにプル	すべてのストリングをオフ	温度 < 155°C	あり	
ン	(SUPPLY) = 0 V	フ			2011(=8272	フローティン グ	7 (135 11,74) (234)	11110	377	
温度フォールドバック	V _(SUPPLY) > 5V	オンまたはオ フ	> 110℃	N/A	なし	N/A	すべてのストリングへの電流 が減少	温度 < 100℃	あり	
基準抵抗の短絡	V _(SUPPLY) > 5V	オンまたはオフ	$R_{(ref)} < 1400\Omega$	FAULT	Lowに設定	N/A	すべてのストリングをオフ	ENをトグル、電 力をオフにして 再度オン	なし	

(1) 診断用のFAULTピンを外部的にHIGHへ接続する場合、内部的なプルダウンを打ち消せるだけの強度のプルアップを行う必要があります。

9.3.3.1 オープン負荷の検出

デバイスは、チャネルにまたがる電圧のV_(SUPPLY) - V_(IOUTx)が、オープン負荷検出電圧であるV_(olv)未満のとき、オープン負荷状況を検出します。この状況が、オープン負荷検出のグリッチ除去時間(PWMが100%のとき2ms、またはPWM調光モードで連続して7つのPMWデューティ・サイクル)よりも長く存在すると、デバイスはFAULTをLOWにプルダウンし、フォルトの発生したチャネルをオフにします。FAULTピンがHIGHに接続されると、すべてのチャネルがシャットダウンします。オープン状態が解消されると、チャネルは回復します。デバイスは、ストリング内のLEDの順方向電圧の合計が、SUPPLYピンの電源電圧に近いか、それを超えている場合にも、オープン負荷を検出する場合があることに注意してください。

9.3.4 温度フォールドバック

TPS92638-Q1デバイスには、ICの過熱を防ぐため、サーマル・シャットダウン保護機能が内蔵されています。さらに、急速な温度変化によるLEDのちらつきを防ぐため、デバイスには接合部温度が高い時の消費電力を低減する、プログラム可能なサーマル電流フォールドバック機能が搭載されています。

TPS92638-Q1デバイスは、デバイスのシリコン接合部温度が上昇するにつれて、LED電流を減少させます(図 35を参照)。 TPS92638-Q1デバイスをLEDと同じサーマル基板上に実装すると、この機能を使用してLEDの消費電力を制限できます。 TPS92638-Q1デバイスの接合部温度が上昇すると、レギュレートされる電流レベルが低下するため、TPS92638-Q1およびLEDの消費電力が減少します。この電流の減少割合は一般に、100%レベルからセ氏温度ごとに2%で、T_(th) + 20℃において電流は最大値の50%まで低下します。

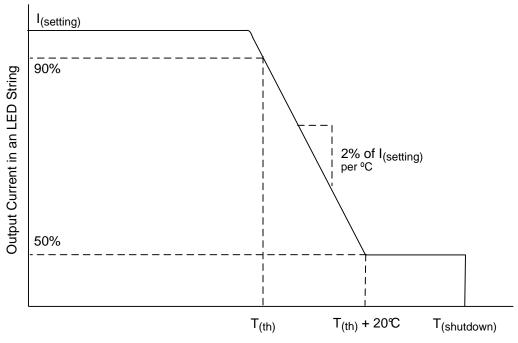


図 35. 温度フォールドバック

これより高い温度では、接合部温度が過熱シャットダウン・スレッショルドである $T_{(shutdown)}$ に達するまで、デバイスは50%の電流レベルを維持します。TEMPピンの電圧を変更することで、電流の減少が開始される温度を調整できます。TEMPがオープンのままのとき、「サーマル・モニタ・アクティベーション温度は、電流の減少が開始する温度 $T_{(th)}$ です。電気的特性の表で、 $T_{(th)}$ の仕様は90%の電流レベルでのものです。TEMPピンの電圧 $V_{(TEMP)}$ が減少すると、 $T_{(th)}$ は増大します。 $T_{(th)}$ の概算値は、式 3で与えられます。

$$T_{(th)} = -121.7 \text{ °C/V} \times V_{(TEMP)} + 228.32 \text{ °C}$$
 (3)

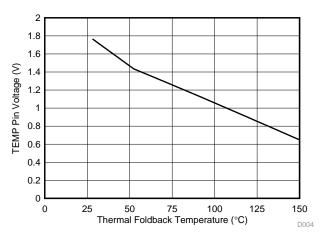


図 36. TEMPピンの電圧とサーマル・フォールドバック温度との関係

TEMPとGNDの間に抵抗を接続すると、 $V_{(TEMP)}$ が低下し、 $T_{(th)}$ が上昇します。TEMPと、1Vを超える基準電源との間に抵抗を接続すると、 $V_{(TEMP)}$ が上昇し、 $T_{(th)}$ が低下します。

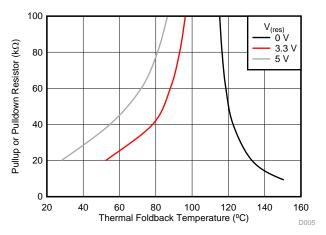


図 37. プルアップおよびプルダウン抵抗とT_(th)との関係

「サーマル・モニタ・アクティベーション温度の公称値は、TEMPの電圧と、GNDに接続されるか3Vまたは5Vにプルアップされる抵抗R_(TEMP)の値によって変化します。このことを、図 37に示します。

極端な場合、接合部温度が過熱制限T_(shutdown)を超えると、デバイスのすべてのレギュレータはディセーブルされます。温度監視は続行され、温度が指定されたヒステリシス・スレッショルド未満に低下すると、デバイスのレギュレータは再度アクティブになります。

TPS92638-Q1デバイスは、サーマル・シャットダウンから通常動作へ急速に移行する可能性があることに注意してください。これは、露出したサーマル・パッドに接続されている熱質量が小さく、T_(th)がシャットダウン温度と非常に近い場合に発生する可能性があります。発振周期は、T_(th)、消費電力、周囲温度、およびヒートシンクがある場合はその熱質量に依存します。

9.4 デバイスの機能モード

TPS92638-Q1デバイスの機能モードは、動作と非動作です。デバイスは、 $V_{(SUPPLY)}$ が5V以上、40V以下のとき通常に動作します。

10 アプリケーションと実装

注: 以降のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。

10.1 アプリケーション情報

ここでは、ストップライトやテールライトなどの車載照明用にTPS92638-Q1デバイスを実装する方法を示した、いくつかのアプリケーションについて説明します。いくつかの例では、フォルト・バス機能の実装や、大電流アプリケーションへのデバイスの使用方法の詳細を示しています。

10.2 代表的なアプリケーション

10.2.1 バンクによるPWM調光

TPS92638-Q1デバイスには、出力調光用に4つのPWMバンクがあります。これらに対してTLC555-Q1 PWMジェネレータを使用すると、MCUが不要になります。

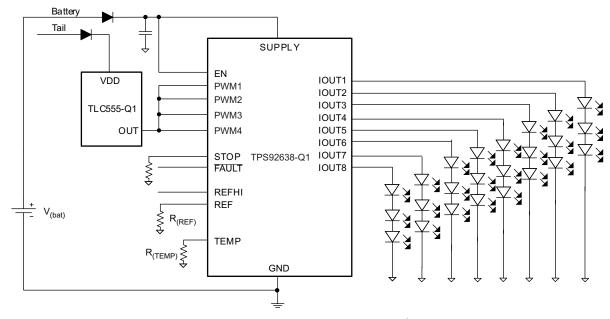


図 38. バンクによるPWM調光の回路図

10.2.1.1 設計要件

設計パラメータ	例での値
I _(TAIL) ⁽¹⁾	20mA
I _(STOP) ⁽¹⁾	40mA

(1) I_(TAIL) = チャネルごとのテールライト電流、I_(STOP) = チャネルごとのストップ ライト電流

10.2.1.2 詳細な設計手順

この設計では、R_(REF)基準抵抗を使用して最大出力電流を設定し、TLC555-Q1で調光率を制御するPWMデューティ・サイクルを設定しています。

$$R_{(REF)} = V_{(REF)} \times \frac{G_{(I)}}{I_{(STOP)}} = 1.222 \times \frac{200}{0.04} = 6.11 \text{ k}\Omega$$
 (4)

Duty cycle =
$$\frac{I_{(TAIL)}}{I_{(STOP)}} = \frac{0.02}{0.04} = 0.5 = 50\%$$
 (5)

10.2.1.3 アプリケーション・パフォーマンスの波形

10.2.2 TAILおよびSTOPライト用の2つの輝度レベル

代表的なTAILおよびSTOPアプリケーションの場合、TPS92638-Q1デバイスに内蔵されているSTOPおよびTAIL機能を使用して簡単に実装できます。次の回路図は、アプリケーションの回路を示したものです。代表的なアプリケーションでは、2つの独立したソース、すなわちTAILとSTOPが、ストップライトとテールライトへ電力を供給します。TPS92638-Q1デバイスとともにブロッキング・ダイオードD0およびD1を使用すると、STOPおよびTAIL機能を結合して単一の電源で駆動できます。ブロッキング・ダイオードD2は、バッテリが逆に接続された場合にSTOPピンを保護します。STOPピンには、アクティブでないときにLOW状態を保証するため、内部的にプルダウン抵抗が存在します。

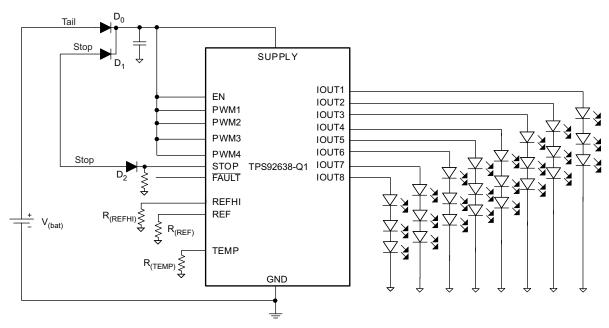


図 41. TAILおよびSTOPライトの2つの輝度レベルの回路図

10.2.2.1 設計要件

設計パラメータ	例での値
I _(TAIL) (1)	10mA
I _(STOP) ⁽¹⁾	40mA

(1) I_(TAIL) = チャネルごとのテールライト電流、I_(STOP) = チャネルごとのストップライト電流

10.2.2.2 詳細な設計手順

アプリケーションの設計では、目的の出力電流を得るために使用する抵抗の値を計算します。

$$R_{(REF)} = V_{(REF)} \times \frac{G_{(I)}}{I_{(TAIL)}} = 1.222 \times \frac{200}{0.01} = 24.44 \text{ k}\Omega$$
 (6)

$$R_{(REFHI)} = V_{(REFHI)} \times \frac{G_{(I)}}{I_{(STOP)} - I_{(TAIL)}} = 1.222 \times \frac{200}{0.04 - 0.01} = 8.146 \text{ k}\Omega$$
(7)

 $R_{(STOP)}$ の推奨値は10k Ω です。

10.2.3 変調電源によるPWM調光

TPS92638-Q1デバイスは、以下に説明するように、電源からのPWM調光をサポートしています。電源調光は一般に、ボディ・コントロール・モジュール(BCM)のハイサイド・スイッチに実装されます。ハイサイド・スイッチの性質から、TPS92638-Q1の電源はグランドへ強くプルダウンされず、デカップリング・コンデンサと合計消費電流に依存します。TPS92638-Q1 デバイスは、電源電圧がLED順方向電圧とドロップアウト電圧を補える十分な能力がある限り、出力電流を一定に維持します。

電源電圧がLEDを駆動できないほど低下すると、デバイスはオープン負荷を検出し、出力チャネルをシャットダウンします。 このため、TIはPWMまたはEN入力を使用してチャネルのシャットダウンを保証することをお勧めします。したがって、最も低い分割電圧がPWMスレッショルドよりも低いことを保証するため、抵抗ストリングR1およびR2が推奨されます。

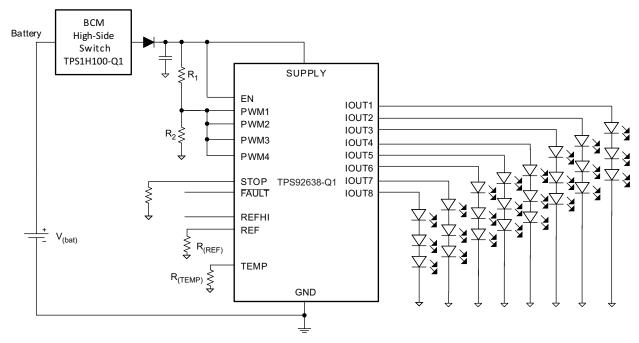


図 42. 変調電源によるPWM調光の回路図

10.2.3.1 設計要件

設計パラメータ	例での値
I _(TAIL) (1)	30mA
I _(STOP) ⁽¹⁾	50mA

(1) I_(TAIL) = チャネルごとのテールライト電流、I_(STOP) = チャネルごとのストップ ライト電流

10.2.3.2 設計手順

R_(REF)基準抵抗は電流を設定します。

$$R_{(REF)} = V_{(REF)} \times \frac{G_{(I)}}{I_{(STOP)}} = 1.222 \times \frac{200}{0.05} = 4.888 \text{ k}\Omega$$
 (8)

Duty cycle =
$$\frac{I_{(TAIL)}}{I_{(STOP)}} = \frac{0.03}{0.05} = 0.6 = 60\%$$
 (9)

$$V_{(SUPPLY)}min \times \frac{R_2}{R_1 + R_2} < V_{(PWM_threshold)}$$
(10)

10.2.4 単一のデバイスから並列のチャネルによりLEDを駆動する

TPS92638-Q1デバイスは、複数のチャネルを並列に組み合わせることで、LEDストリングの並列駆動をサポートします。これによって優れた熱特性が得られ、電流駆動能力が高くなります。

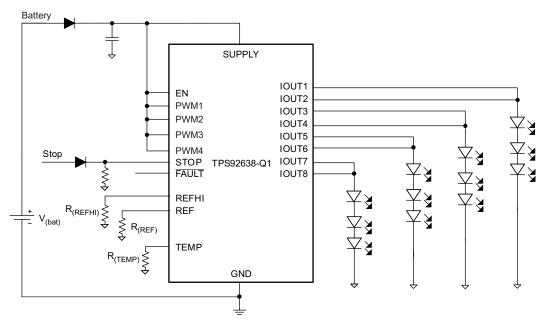


図 43. 単一のデバイスで並列チャネルを使用して駆動を行う回路図

10.2.4.1 設計要件

設計パラメータ	例での値
I _(TAIL) ⁽¹⁾	30mA
I _(STOP) ⁽¹⁾	100mA

(1) I_(TAIL) = チャネルごとのテールライト電流、I_(STOP) = チャネルごとのストップ ライト電流

10.2.4.2 設計手順

 $R_{(REF)}$ および $R_{(REFHI)}$ 基準抵抗は、電流を設定します。 $R_{(REF)}$ はテール電流を、 $R_{(REF)}$ および $R_{(REFHI)}$ はストップ電流を設定します。

$$R_{(REF)} = V_{(REF)} \times \frac{G_{(I)}}{I_{(TAIL)} / N_{(channel)}} = 1.222 \times \frac{200}{0.03 / 2} = 16.29 \text{ k}\Omega$$
(11)

$$R_{(REFHI)} = V_{(REFHI)} \times \frac{G_{(I)}}{\left(I_{(STOP)} - I_{(TAIL)}\right) / N_{(channel)}} = 1.222 \times \frac{200}{(0.1 - 0.03) / 2} = 6.98 \text{ k}\Omega$$
(12)

10.2.5 複数のデバイスから並列のチャネルによりLEDを駆動する

設計の柔軟性のため、複数のTPS92638-Q1デバイスを並列に使用して、別々のデバイスを駆動することもできます。次の図は、デバイスとチャネルの両方を並列に使用して、大電流の負荷を駆動する組み合わせを示したものです。

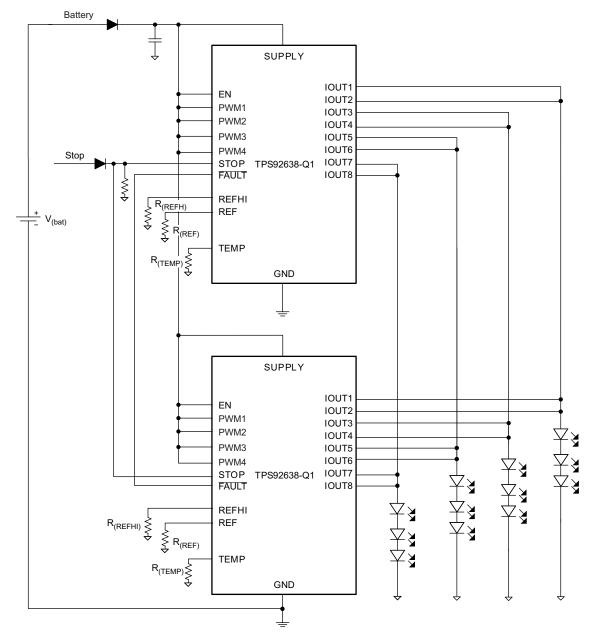


図 44. 複数のデバイスで並列チャネルを使用して駆動を行う回路図

10.2.5.1 設計要件

設計パラメータ	例での値
I _(TAIL) (1)	60mA
I _(STOP) ⁽¹⁾	200mA

(1) $I_{(TAIL)}$ = チャネルごとのテールライト電流、 $I_{(STOP)}$ = チャネルごとのストップ ライト電流

10.2.5.2 設計手順

 $R_{(REFHI)}$ および $R_{(REF)}$ 基準抵抗は、電流を設定します。 $R_{(REF)}$ は、単独でテール電流を設定します。 $R_{(REF)}$ および $R_{(REFHI)}$ の組み合わせにより、ストップ電流を設定します。アプリケーションによっては、電流の柔軟性を得るため、デバイスごとに基準抵抗の設定値を変えることもできます。このデータシートでは単純化のため、アプリケーションではどちらのデバイスにも同じ基準電流を設定するものとします。

$$R_{(REF)} = V_{(REF)} \times \frac{G_{(I)}}{I_{(TAIL)} / N_{(channel)}} = 1.222 \times \frac{200}{0.06 / 4} = 16.29 \text{ k}\Omega$$
(13)

$$R_{(REFHI)} = V_{(REFHI)} \times \frac{G_{(I)}}{\left(I_{(STOP)} - I_{(TAIL)}\right)/N_{(channel)}} = 1.222 \times \frac{200}{(0.2 - 0.06)/4} = 6.98 \text{ k}\Omega$$
(14)

11 電源に関する推奨事項

TPS92638-Q1デバイスは、車載アプリケーション用に認定済みです。したがって通常は、推奨動作条件に規定された範囲内の電圧を供給する車載電気系統に電源が接続されます。

12 レイアウト

12.1 レイアウトのガイドライン

サーマル・シャットダウンを防止するため、T」は150℃未満にする必要があります。入力電圧が非常に高い場合、消費電力が大きくなる可能性があります。現在は、適切な熱インピーダンスを持つTSSOP-EPパッケージを利用できますが、同時にPCBレイアウトが非常に重要です。適切なPCB設計によって熱伝導を最適化でき、これはデバイスの長期的な信頼性にとって絶対的に不可欠です。

- 基板の熱伝導率を高めるために、PCB上の銅領域の面積はできるだけ大きくします。これは、PCB上の銅領域は、パッケージから周囲への主要な熱伝導経路となっているためです。PCB上でパッケージの反対側にヒートシンクが設けられていない場合は、銅領域を最大限大きくすることが極めて重要です。
- 基板の熱伝導率を最適化するため、パッケージのグランド・パッドの直下に、できるだけ多くのサーマル・ビアを追加します。
- すべてのサーマル・ビアは、半田ボイドの発生を防ぐため、基板の両側で、めっきして閉じるか、栓で塞いで覆っておく 必要があります。信頼性と性能を確保するため、半田被覆率は85%以上とします。

12.2 レイアウト例

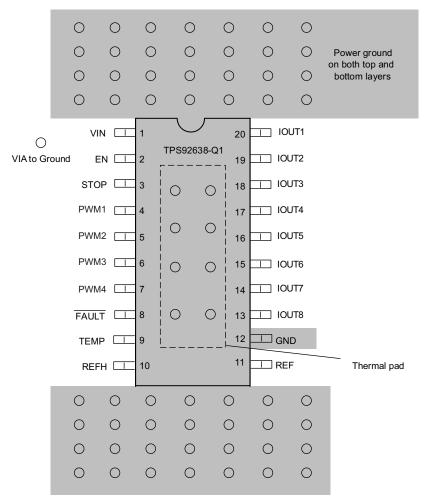


図 45. TPS92638-Q1のレイアウト図

12.3 熱特性について

このデバイスは、過熱状態からの保護のために、過熱シャットダウン(TSD)回路を備えています。連続的な通常動作に対しては、接合部温度が過熱シャットダウンのトリップ点を超えないようにする必要があります。接合部温度がトリップ点を超えた場合は、出力がオフになります。接合部温度が低下し、サーマル・シャットダウンのトリップ点からヒステリシスを引いた値を下回ると、出力が再度オンになります。

デバイスによって消費される電力は、次の数式で計算します。

$$P_{(IC)} = V_{(SUPPLY)} \times I_{(SUPPLY)} - \sum_{k=1}^{3} n_k \times V_{(LEDk)} \times I_{(LEDk)} - \frac{V_{(REF)}^2}{R_{(REF)}} - \frac{V_{(REFHI)}^2}{R_{(REFHI)}}$$
(15)

ここで

 $n_k = x$ チャネルのLED数

V_(LEDk)= xチャネルのLED 1つについての電圧ドロップ

V_(RFF) = 基準電圧、代表値1.24V

 $I_{(LEDk)}$ = チャネルkの平均LED電流

熱特性について (continued)

デバイスによって消費される電力を求めた後、周囲温度とデバイスの熱インピーダンスから接合部温度を計算します。

$$T_{J} = T_{A} + R_{\theta JA} \times P_{(IC)}$$
(16)

アフで

T_A = 周囲温度

R_{0JA} = 接合部から周囲への熱インピーダンス

P_(IC) = 消費電力

13 デバイスおよびドキュメントのサポート

13.1 商標

All trademarks are the property of their respective owners.

13.2 静電気放電に関する注意事項

これらのデバイスは、限定的なESD(静電破壊)保護機能を内蔵しています。保存時または取り扱い時は、MOSゲートに対する静電破壊を防 ▲ 上するために、リード線同士をショートさせておくか、デバイスを導電フォームに入れる必要があります。

13.3 用語集

SLYZ022 — TI用語集.

この用語集には、用語や略語の一覧および定義が記載されています。

14 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。これらの情報は、指定のデバ イスに対して提供されている最新のデータです。このデータは予告なく変更されることがあり、ドキュメントが改訂される場合 もあります。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
TPS92638QPWPRQ1	ACTIVE	HTSSOP	PWP	20	2000	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	TPS92638	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

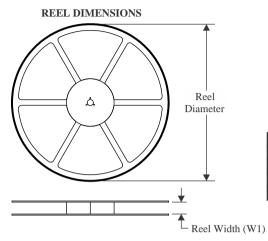
OBSOLETE: TI has discontinued the production of the device.

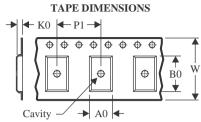
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

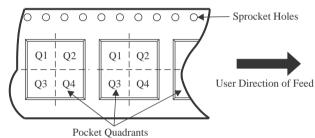
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

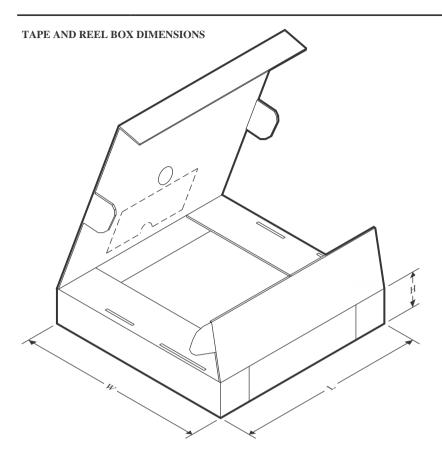

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 5-Dec-2023


TAPE AND REEL INFORMATION

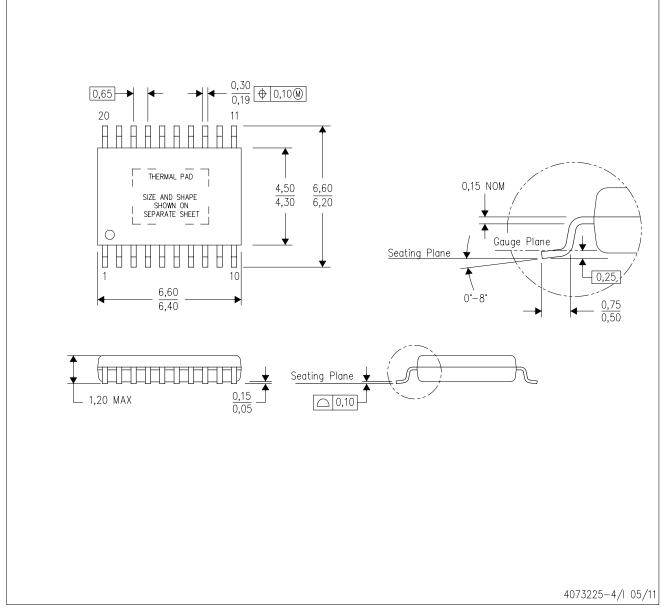
	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS92638QPWPRQ1	HTSSOP	PWP	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1

www.ti.com 5-Dec-2023



*All dimensions are nominal

	Device	Package Type Package Drawing		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
ı	TPS92638QPWPRQ1	HTSSOP	PWP	20	2000	350.0	350.0	43.0	

PWP (R-PDSO-G20)

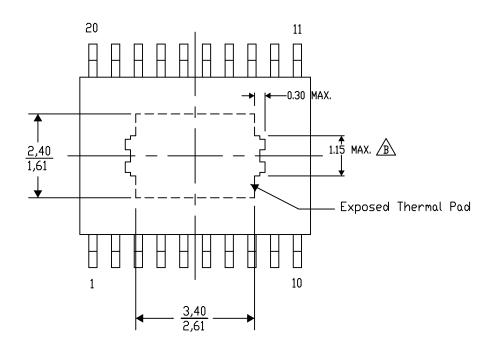
PowerPAD™ PLASTIC SMALL OUTLINE

NOTES:

- All linear dimensions are in millimeters.
- This drawing is subject to change without notice.
- Body dimensions do not include mold flash or protrusions. Mold flash and protrusion shall not exceed 0.15 per side.
- This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com http://www.ti.com.

 E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- E. Falls within JEDEC MO-153

PowerPAD is a trademark of Texas Instruments.


PWP (R-PDSO-G20) PowerPAD™ SMALL PLASTIC OUTLINE

THERMAL INFORMATION

This PowerPADTM package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.

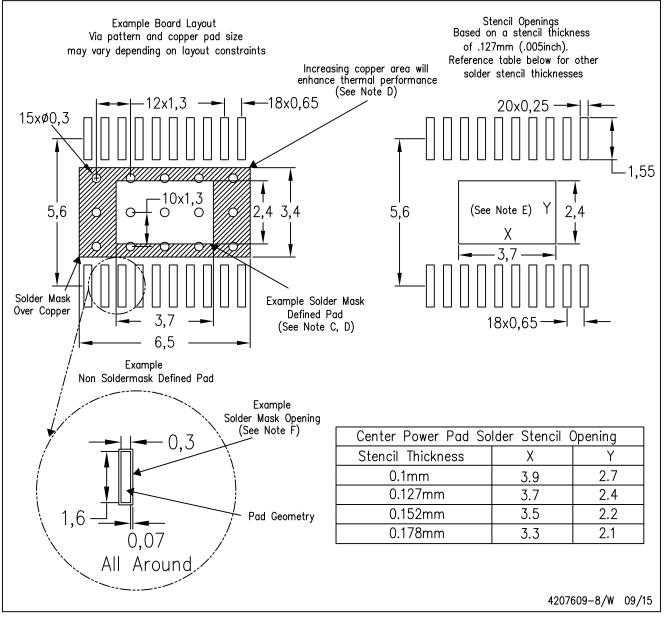
The exposed thermal pad dimensions for this package are shown in the following illustration.

Top View

Exposed Thermal Pad Dimensions

4206332-15/AO 01/16

NOTE: A. All linear dimensions are in millimeters


Exposed tie strap features may not be present.

PowerPAD is a trademark of Texas Instruments

PWP (R-PDSO-G20)

PowerPAD™ PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TI の製品は、TI の販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。

お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。

郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated