

Data sheet acquired from Harris Semiconductor SCHS126D

CD54HC03, CD74HC03, CD54HCT03

High-Speed CMOS Logic Quad 2-Input NAND Gate with Open Drain

February 1998 - Revised September 2003

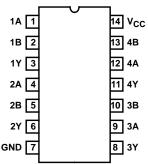
Features

- · Buffered Inputs
- Typical Propagation Delay: 8ns at V_{CC} = 5V, C_L = 15pF, T_A = 25°C
- Output Pull-up to 10V
- Fanout (Over Temperature Range)
- Wide Operating Temperature Range . . . -55°C to 125°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
 - 2V to 6V Operation
 - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at V_{CC} = 5V
- HCT Types
 - 4.5V to 5.5V Operation
 - Direct LSTTL Input Logic Compatibility,
 V_{IL}= 0.8V (Max), V_{IH} = 2V (Min)
 - CMOS Input Compatibility, $I_I \le 1\mu A$ at V_{OL} , V_{OH}

Description

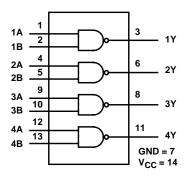
The 'HC03 and 'HCT03 logic gates utilize silicon gate CMOS technology to achieve operating speeds similar to LSTTL gates with the low power consumption of standard CMOS integrated circuits. All devices have the ability to drive 10 LSTTL loads. The HCT logic family is functionally as well as pin compatible with the standard LS logic family.

These open drain NAND gates can drive into resistive loads to output voltages as high as 10V. Minimum values of R_L required versus load voltage are shown in Figure 2.


Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE		
CD54HC03F3A	-55 to 125	14 Ld CERDIP		
CD54HCT03F3A	-55 to 125	14 Ld CERDIP		
CD74HC03E	-55 to 125	14 Ld PDIP		
CD74HC03M	-55 to 125	14 Ld SOIC		
CD74HC03MT	-55 to 125	14 Ld SOIC		
CD74HC03M96	-55 to 125	14 Ld SOIC		
CD74HCT03E	-55 to 125	14 Ld PDIP		
CD74HCT03M	-55 to 125	14 Ld SOIC		
CD74HCT03MT	-55 to 125	14 Ld SOIC		
CD74HCT03M96	-55 to 125	14 Ld SOIC		

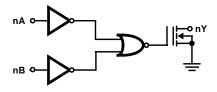
NOTE: When ordering, use the entire part number. The suffix 96 denotes tape and reel. The suffix T denotes a small-quantity reel of 250


Pinout

CD54HC03, CD54HCT03 (CERDIP) CD74HC03, CD74HCT03 (PDIP, SOIC) TOP VIEW

CD54HC03, CD74HC03, CD54HCT03, CD74HCT03

Functional Diagram


TRUTH TABLE

A	В	Y			
L	L	Z (Note 1)	H (Note 2)		
Н	L	Z (Note 1)	H (Note 2)		
L	Н	Z (Note 1)	H (Note 2)		
Н	Н	L	L		

NOTES:

- 1. Without pull-up (high impedance)
- 2. Requires pull-up (R_L to V_L)

Logic Symbol

CD54HC03, CD74HC03, CD54HCT, CD74HCT03

Absolute Maximum Ratings

DC Supply Voltage, V _{CC} 0.5V to 7V
DC Input Diode Current, I _{IK}
For $V_1 < -0.5V$ or $V_1 > V_{CC} + 0.5V$ ±20mA
DC Output Diode Current, I _{OK}
For $V_O < -0.5V$ or $V_O > V_{CC} + 0.5V$ ±20mA
DC Output Source or Sink Current per Output Pin, IO
For $V_O > -0.5V$ or $V_O < V_{CC} + 0.5V$ ±25mA
DC Drain Current, per Output, IO
For -0.5V < V _O 25mA
DC V _{CC} or Ground Current, I _{CC or} I _{GND}

Thermal Information

Thermal Resistance (Typical, Note 3)	θ_{JA} (°C/W)
E (PDIP) Package	80
M (SOIC) Package	
Maximum Junction Temperature (Hermetic Package or Die	
Maximum Junction Temperature (Plastic Package)	
Maximum Storage Temperature Range65	^o C to 150 ^o C
Maximum Lead Temperature (Soldering 10s)	300°C
(SOIC - Lead Tips Only)	

Operating Conditions

Temperature Range (T _A)55°C to 125°C Supply Voltage Range, V _{CC}
HC Types2V to 6V
HCT Types
DC Input or Output Voltage, V _I , V _O 0V to V _{CC}
Input Rise and Fall Time
2V
4.5V 500ns (Max)
6V

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

3. The package thermal impedance is calculated in accordance with JESD 51-7.

DC Electrical Specifications

			ST ITIONS		25		25°C		-40°C TO 85°C		-55°C TO 125°C	
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	v _{cc} (v)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES												
High Level Input	V _{IH}	-	-	2	1.5	-	-	1.5	-	1.5	-	V
Voltage				4.5	3.15	-	-	3.15	-	3.15	-	V
				6	4.2	-	-	4.2	-	4.2	-	V
Low Level Input	V _{IL}	-	-	2	-	-	0.5	-	0.5	-	0.5	V
Voltage				4.5	i	-	1.35	-	1.35	-	1.35	V
				6	-	-	1.8	-	1.8	-	1.8	V
Low Level Output	V _{OL}	V _{IH} or	0.02	2	-	-	0.1	-	0.1	-	0.1	V
Voltage CMOS Loads		VIL	0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
			0.02	6	-	-	0.1	-	0.1	-	0.1	V
Low Level Output			-	-	-	-	-	-	-	-	-	V
Voltage TTL Loads			4	4.5	i	-	0.26	ı	0.33	-	0.4	V
			5.2	6	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	Ц	V _{CC} or GND	-	6	-	-	±0.1	-	±1	-	±1	μА
Quiescent Device Current	Icc	V _{CC} or GND	0	6	-	-	2	-	20	-	40	μА
HCT TYPES												
High Level Input Voltage	V _{IH}	-	-	4.5 to 5.5	2	-	-	2	-	2	-	V
Low Level Input Voltage	V _{IL}	-	-	4.5 to 5.5	-	-	0.8	-	0.8	-	0.8	V

CD54HC03, CD74HC03, CD54HCT03, CD74HCT03

DC Electrical Specifications (Continued)

			ST ITIONS		25°C		-40°C TO 85°C		-55°C TO 125°C			
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
Low Level Output Voltage CMOS Loads	V _{OL}	V _{IH} or V _{IL}	0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
Low Level Output Voltage TTL Loads			4	4.5	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	lı	V _{CC} and GND	-	5.5	-		±0.1	-	±1	-	±1	μА
Quiescent Device Current	Icc	V _{CC} or GND	0	5.5	-	-	2	-	20	-	40	μА
Additional Quiescent Device Current Per Input Pin: 1 Unit Load	ΔI _{CC} (Note 4)	V _{CC} - 2.1	-	4.5 to 5.5	-	100	360	-	450	-	490	μА

NOTE:

HCT Input Loading Table

INPUT	UNIT LOADS
nA, nB	1

NOTE: Unit Load is ΔI_{CC} limit specified in DC Electrical Specifications table, e.g., $360\mu A$ max at $25^{\circ}C$.

Switching Specifications Input t_r, t_f = 6ns

		TEST	v _{cc}		25°C		-40°C 1	O 85°C	-55°C T	O 125°C	
PARAMETER	SYMBOL	CONDITIONS	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES											
Propagation Delay,	t _{PLH} , t _{PHL}	C _L = 50pF	2	-	-	100	-	125	-	150	ns
Input to Output (Figure 1)			4.5	-	-	20	-	25	-	30	ns
			6	-	-	17	-	21	-	26	ns
Propagation Delay, Data Input to Output Y	t _{PLH} , t _{PHL}	C _L = 15pF	5	-	8	-	-	-	-	-	ns
Transition Times (Figure 1)	t _{TLH} , t _{THL}	C _L = 50pF	2	-	-	75	-	95	18	110	ns
			4.5	-	-	15	-	19	-	22	ns
			6	-	-	13	-	16	-	19	ns
Input Capacitance	Cl	-	-	-	-	10	-	10	-	10	pF
Power Dissipation Capacitance (Notes 5, 6)	C _{PD}	-	5	-	6.4	-	-	-	-	-	pF
HCT TYPES		•								•	
Propagation Delay, Input to Output (Figure 1)	t _{PLH} , t _{PHL}	C _L = 50pF	4.5	-	-	24	-	30	-	36	ns
Propagation Delay, Data Input to Output Y	t _{PLH} , t _{PHL}	C _L = 15pF	5	-	9	-	-	-	-	-	ns
Transition Times (Figure 1)	t _{TLH} , t _{THL}	C _L = 50pF	4.5	-	-	15	-	19	-	22	ns
Input Capacitance	Cl	-	-	-	-	10	-	10	-	10	pF

^{4.} For dual-supply systems theoretical worst case (V_I = 2.4V, V_{CC} = 5.5V) specification is 1.8mA.

CD54HC03, CD74HC03, CD54HCT03, CD74HCT03

Switching Specifications Input t_r , $t_f = 6ns$ (Continued)

		TEST	v _{cc}	25		25°C		°C -40°C TO 85°C		-55°C TO 125°C		
PARAMETER	SYMBOL	CONDITIONS	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS	
Power Dissipation Capacitance (Notes 5, 6)	C _{PD}	-	5	-	9	-	-	-	-	-	pF	

NOTES:

- 5. CPD is used to determine the dynamic power consumption, per gate.
- 6. $P_D = C_{PD} \ V_{CC}^2 f_i + \Sigma \ (C_L \ V_{CC}^2 f_0) + \Sigma \ (V_L^2/R_L)$ (Duty Factor "Low") where f_i = input frequency, f_o = output frequency, C_L = output load capacitance, V_{CC} = supply voltage, Duty Factor "Low" = percent of time output is "low", V_L = output voltage, R_L = pull-up resistor.

Test Circuits and Waveforms

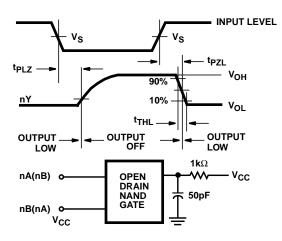


FIGURE 1. TRANSITION TIMES, PROPAGATION DELAY TIMES, AND TEST CIRCUIT

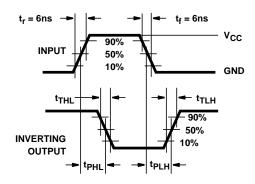


FIGURE 3. HC AND HCU TRANSITION TIMES AND PROPAGA-TION DELAY TIMES, COMBINATION LOGIC

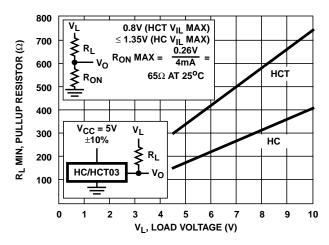


FIGURE 2. MINIMUM RESISTIVE LOAD vs LOAD VOLTAGE

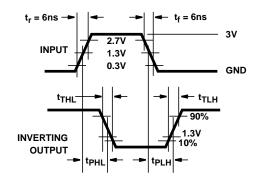


FIGURE 4. HCT TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

www.ti.com 31-Oct-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking
	(1)	(2)			(0)	(4)	(5)		(0)
CD54HC03F	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	CD54HC03F
CD54HC03F.A	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	CD54HC03F
CD54HC03F3A	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	CD54HC03F3A
CD54HC03F3A.A	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	CD54HC03F3A
CD74HC03E	Active	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-55 to 125	CD74HC03E
CD74HC03E.A	Active	Production	PDIP (N) 14	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-55 to 125	CD74HC03E
CD74HC03M	Obsolete	Production	SOIC (D) 14	-	-	Call TI	Call TI	-55 to 125	HC03M
CD74HC03M96	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC03M
CD74HC03M96.A	Active	Production	SOIC (D) 14	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC03M
CD74HC03MT	Obsolete	Production	SOIC (D) 14	-	-	Call TI	Call TI	-55 to 125	HC03M

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 31-Oct-2025

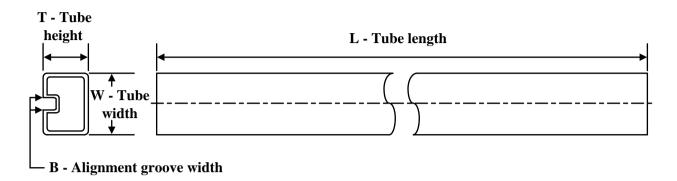
and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD54HC03, CD74HC03:

Catalog : CD74HC03

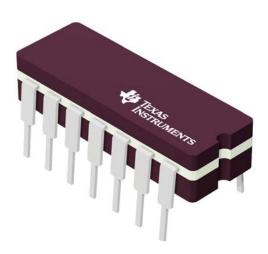
Military: CD54HC03


NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

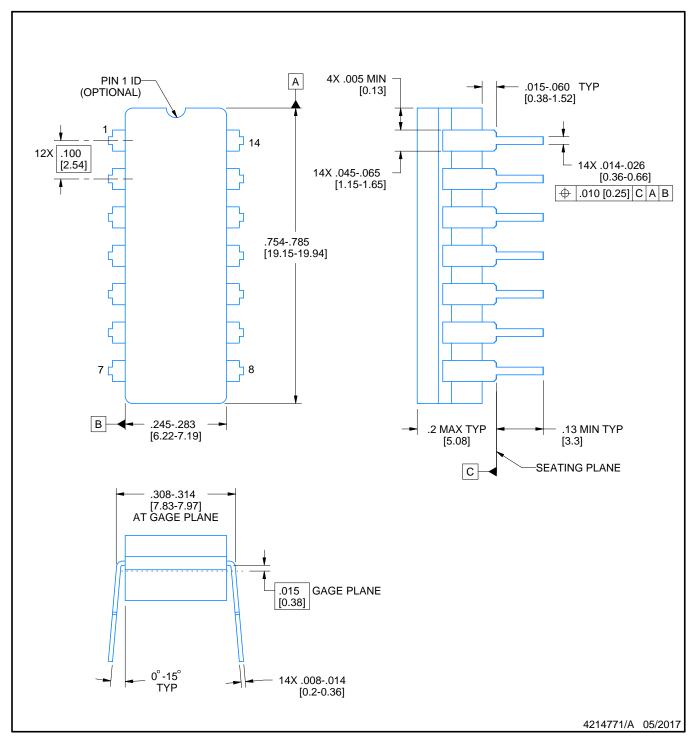
www.ti.com 9-Sep-2025


TUBE

*All dimensions are nominal

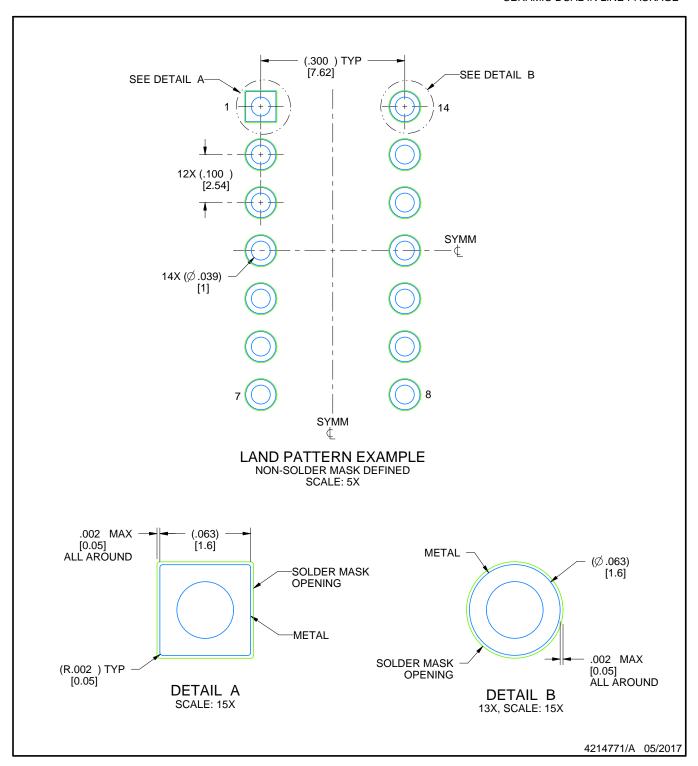
Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
CD74HC03E	N	PDIP	14	25	506	13.97	11230	4.32
CD74HC03E	N	PDIP	14	25	506	13.97	11230	4.32
CD74HC03E.A	N	PDIP	14	25	506	13.97	11230	4.32
CD74HC03E.A	N	PDIP	14	25	506	13.97	11230	4.32

CERAMIC DUAL IN LINE PACKAGE


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

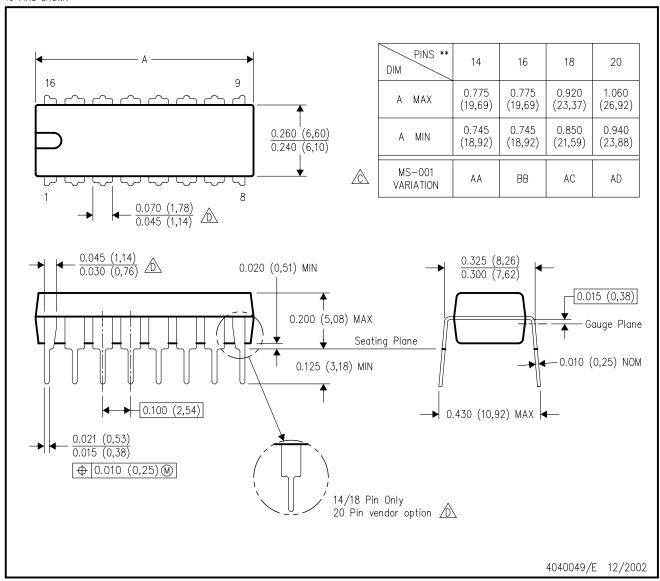
4040083-5/G

CERAMIC DUAL IN LINE PACKAGE



NOTES:

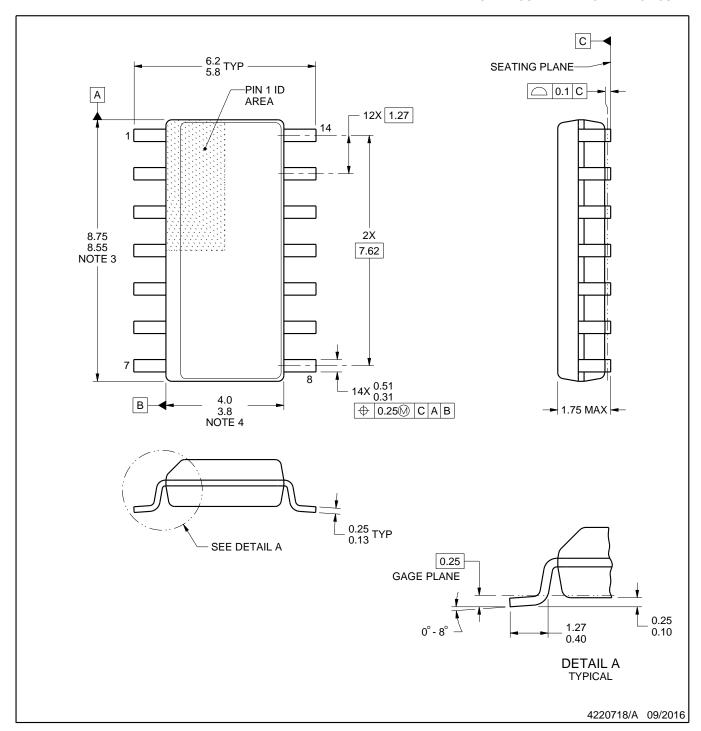
- 1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This package is hermitically sealed with a ceramic lid using glass frit.
- His package is remitted by sealed with a ceramic its using glass mit.
 Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
 Falls within MIL-STD-1835 and GDIP1-T14.


CERAMIC DUAL IN LINE PACKAGE

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

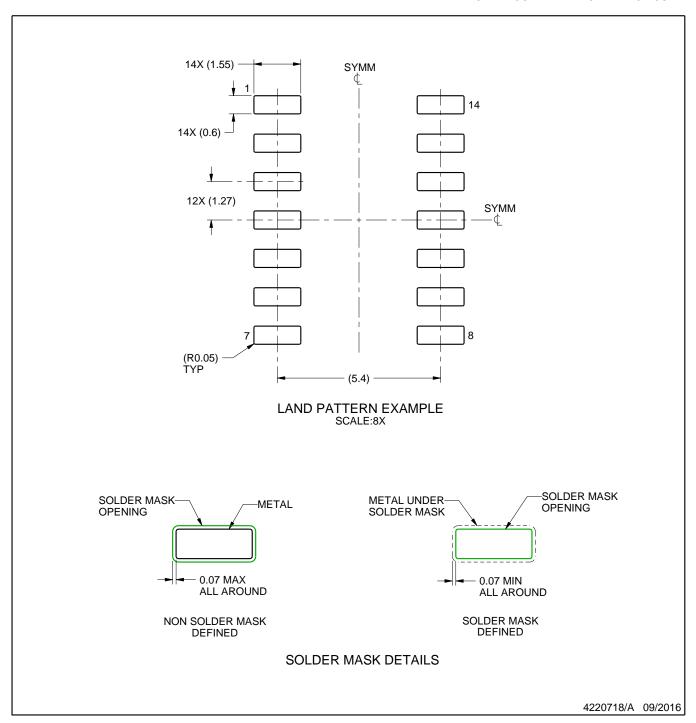
16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

SMALL OUTLINE INTEGRATED CIRCUIT

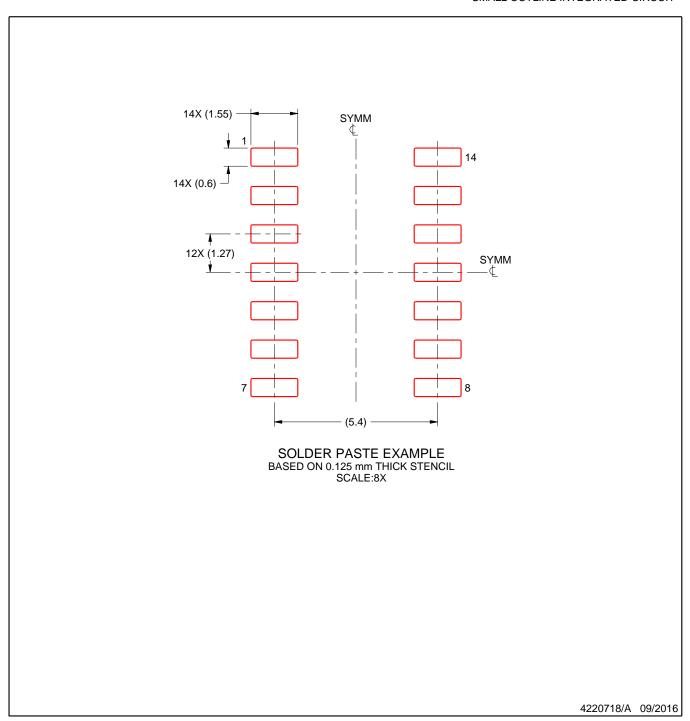
NOTES:


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm, per side.
- 5. Reference JEDEC registration MS-012, variation AB.

SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025