DRV8885 JAJSCX0C - OCTOBER 2015-REVISED NOVEMBER 2018 ## DRV8885 電流検出機能を内蔵した1.5Aステッピング・モータ・ ### 特長 - PWMマイクロステッピングのステッピング・モー タ・ドライバ - 最高1/16のマイクロステッピング - 非循環および標準の½ステップ・モード - 電流検出機能を搭載 - 検出抵抗が不要 - ±6.25%のフルスケール電流精度 - 低速および混合減衰オプション - 8.0~37 Vの電源電圧範囲で動作 - 低いR_{DS(ON)}: 24V、25°Cで0.86Ω HS + LS - 高い電流容量 - ブリッジごとにフルスケールで1.5A - ブリッジごとにrms 1.0A - 固定オフ時間のPWMチョッピング - シンプルなSTEP/DIRインターフェイス - 低消費電流のスリープ・モード(20µA) - 小さなパッケージと占有面積 - 24 HTSSOP PowerPAD™パッケージ - 28 WQFNパッケージ #### 保護機能 - VM低電圧誤動作防止(UVLO) - チャージ・ポンプ低電圧(CPUV) - 過電流保護(OCP) - サーマル・シャットダウン(TSD) - フォルト状況表示ピン(nFAULT) 2 アプリケーション - 多機能プリンタおよびスキャナ - レーザー・ビーム・プリンタ - 3Dプリンタ - 現金自動預払機および金銭処理機 - 防犯カメラ - OA機器 - ファクトリ・オートメーションおよびロボティク #### 3 概要 DRV8885は、産業用機器アプリケーション向けのステッピ ング・モータ・ドライバです。このデバイスには2つのNチャ ネル・パワーMOSFET Hブリッジ・ドライバ、マイクロステッ ピング・インデクサ、および電流検出機能が組み込まれて います。DRV8885は、フルスケールで1.5A、rmsで1.0A までの出力電流を供給できます(24Vおよび $T_{\Delta} = 25$ [°]Cの 場合。放熱のため適切なPCBグランド・プレーンが必要で す)。 DRV8885には電流検出機能が組み込まれているため、2 つの外部検出抵抗が必要ありません。 #### 製品情報(1) | 型番 | パッケージ | 本体サイズ(公称) | |---------|-------------|---------------| | | HTSSOP (24) | 7.80mm×4.40mm | | DRV8885 | WQFN (28) | 5.50mm×3.5mm | (1) 利用可能なすべてのパッケージについては、このデータシートの末 尾にある注文情報を参照してください。 ## マイクロステッピング電流の波形 #### 概略回路図 | ·— | |----| | | | | | 1 4 | 特長1 | 8.4 Device Functional Modes | 2 | |-----|--|--|----------------------| | 2 | アプリケーション1 | 9 Application and Implementation | | | 4 [| 概要 | 9.1 Application Information | 28 | | | Pin Configuration and Functions 4 Specifications 5 | 10.1 Bulk Capacitance | | | | 7.1 Absolute Maximum Ratings 5 7.2 ESD Ratings 5 7.3 Recommended Operating Conditions 6 7.4 Thermal Information 6 7.5 Electrical Characteristics 7 7.6 Indexer Timing Requirements 9 7.7 Typical Characteristics 10 | 11.1 Layout Guidelines | 33
33
33
33 | | ; | Detailed Description 12 8.1 Overview 12 8.2 Functional Block Diagram 13 8.3 Feature Description 14 | 12.5 静電気放電に関する注意事項 | 3 | | 8 [| 7.3 Recommended Operating Conditions 6 7.4 Thermal Information 6 7.5 Electrical Characteristics 7 7.6 Indexer Timing Requirements 9 7.7 Typical Characteristics 10 Detailed Description 12 8.1 Overview 12 8.2 Functional Block Diagram 13 | 12 デバイスおよびドキュメントのサポート 12.1 ドキュメントのサポート 12.2 ドキュメントの更新通知を受け取る方法 12.3 コミュニティ・リソース 12.4 商標 12.5 静電気放電に関する注意事項 12.6 Glossary | | ## 4 改訂履歴 資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。 | Revision B (July 2018) から Revision C に変更 | Page | |---|------| | デバイスのステータスを「事前情報」から「量産データ」に変更 | 1 | | Revision A (April 2016) から Revision B に変更 | Page | | • WQFNパッケージ・オプション 追加 | 1 | | • Deleted and internal indexer from the description of the ENABLE pin in the Pin Functions table | 4 | | • Changed until ENABLE is deasserted to until ENABLE is asserted in the Device Functional Modes section | 27 | | • 追加「ドキュメントの更新通知を受け取る方法」セクション | 33 | | 2015年10月発行のものから更新 | Page | | Updated peak drive current based on OCP | 5 | | Updated R _{PD} and R _{PU} values | | | Fixed chopping current equation | | | Added "Controlling RREF with a PWM Resource" | 19 | | Fixed resistance values in tri-level input pin diagram | 25 | ## 5 概要(続き) STEP/DIRピンは、シンプルな制御インターフェイスとして使用できます。デバイスは、フルステップから1/16ステップまでのモードに構成可能です。低消費電力のスリープ・モードが用意されており、専用のnSLEEPピンを使用することで、静止電流の非常に低いスタンバイ・モードに移行できます。 低電圧、チャージ・ポンプ障害、過電流、短絡、過熱への保護機能が内蔵されています。フォルト状況は、nFAULTピンにより示されます。 ## 6 Pin Configuration and Functions PWP PowerPAD™ Package 24-Pin HTSSOP **Top View** 0 DECAY CPL 24 CPH 23 VCP 22 VM 21 M0 AOUT1 DIR 20 PGND 19 STEP 6 Thermal AOUT2 18 ENABLE BOUT2 17 nSLEEP 8 PGND RREF 16 BOUT1 10 15 nFAULT DVDD VM 11 14 GND 13 AVDD Not to scale RHR Package 28-Pin WQFN With Exposed Thermal Pad Top View #### **Pin Functions** | PIN | | | | | | | |-----------|--------|------|--|--|--|--| | NAME | NC | NO. | | DESCRIPTION | | | | NAIVIE | HTSSOP | WQFN | | | | | | AOUT1 5 3 | | 0 | inding A output. Connect to stepper motor winding. | | | | | AOUT2 | 7 | 5 | U | Winding A dulput. Connect to stepper motor winding. | | | | AVDD | 13 | 12 | PWR | Internal regulator. Bypass to GND with a X5R or X7R, 0.47-μF, 6.3-V ceramic capacitor. | | | | BOUT1 | 10 | 8 | 0 | Winding P output. Connect to stopper meter winding | | | | BOUT2 | 8 | 6 | 0 | Winding B output. Connect to stepper motor winding. | | | | CPH | 2 | 28 | PWR | Charge nump quitabing node. Connect a VEP or VZP, 0.022 uE, VM rated coronic connector from CDH to CDI | | | | CPL 1 27 | | 27 | FVVK | Charge pump switching node. Connect a X5R or X7R, 0.022-μF, VM-rated ceramic capacitor from CPH to CPL. | | | | DECAY | 24 | 25 | I | Decay-mode setting. Sets the decay mode (see the <i>Decay Modes</i> section). Decay mode can be adjusted during operation. | | | | DIR | 20 | 21 | I | Direction input. Logic level sets the direction of stepping; internal pulldown resistor. | | | | DVDD | 14 | 13 | PWR | Internal regulator. Bypass to GND with a X5R or X7R, 0.47-μF, 6.3-V ceramic capacitor. | | | | ENABLE | 18 | 19 | I | Enable driver input. Logic high to enable device outputs; logic low to disable; internal pulldown resistor. | | | | GND | 12 | 10 | PWR | Device ground. Connect to system ground. | | | | MO | 21 | 22 | | Microstepping mode-setting. Sets the step mode; tri-level pins; sets the step mode; internal pulldown resistor. | | | | M1 | 22 | 23 | | microstepping mode-setting. Sets the step mode, tir-level pins, sets the step mode, internal pulldown resistor. | | | | | 11 | | | | | | | NC | | 14 | | No connect. No internal connection | | | | INC | _ | 15 | _ | No connect. No internal connection | | | | | | 26 | | | | | | PGND | 6 | 4 | PWR | Power ground. Connect to system ground. | | | | FGIND | 9 | 7 | FVVK | rower ground. Connect to system ground. | | | | RREF | 16 | 17 | - 1 | Current-limit analog input. Connect a resistor to ground to set full-scale regulation current. | | | (1) I = input, O = output, PWR = power, OD = open-drain #### Pin Functions (continued) | PIN | | PIN | | PIN | | | |--------------|--------|------|--|---|--|--| | NAME | NO. | | TYPE(1) | DESCRIPTION | | | | NAME | HTSSOP | WQFN | | | | | | STEP | 19 | 20 | I | Step input. A rising edge causes the indexer to advance one step; internal pulldown resistor. | | | | TRQ | 23 | 24 | I | Current-scaling control. Scales the output current; tri-level pin. | | | | VCP 3 1 | | 1 | PWR | Charge pump output. Connect a X5R or X7R, 0.22-μF, 16-V ceramic capacitor to VM. | | | | VM | 4 | 2 | PWR | Power supply. Connect to motor supply voltage and bypass to GND with two 0.01-µF ceramic capacitors (one for | | | | VIVI | 11 | 9 | PWK | each pin) plus a bulk capacitor rated for VM. | | | | nFAULT 15 16 | | OD | Fault indication. Pulled logic low with fault condition; open-drain output requires an external pullup resistor. | | | | | nSLEEP | 17 | 18 | 1 | Sleep mode input. Logic high to enable device; logic low to enter low-power sleep mode; internal pulldown resistor. | | | ## 7 Specifications ## 7.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) | | MIN | MAX | UNIT | |---|------|----------|------| | Power supply voltage (VM) | -0.3 | 40 | V | | Power supply voltage ramp rate (VM) | 0 | 2 | V/µs | | Charge pump voltage (VCP, CPH) | -0.3 | VM + 7 | V | | Charge pump negative switching pin (CPL) | -0.3 | VM | V | | Internal regulator voltage (DVDD) | -0.3 | 3.8 | V | | Internal regulator current output (DVDD) | 0 | 1 | mA | | Internal regulator voltage (AVDD) | -0.3 | 5.7 | V | | Control pin voltage (STEP, DIR, ENABLE, nFAULT, M0, M1, DECAY, TRQ, nSLEEP) | -0.3 | 5.7 | V | | Open drain output current (nFAULT) | 0 | 10 | mA | | Current limit input pin voltage (RREF) | -0.3 | 6.0 | V | | Continuous phase node pin voltage (AOUT1, AOUT2, BOUT1, BOUT2) | -0.7 | VM + 0.7 | V | | Peak drive current (AOUT1, AOUT2, BOUT1, BOUT2) | | 2.3 | Α | | Operating junction temperature, T _J | -40 | 150 | °C | | Storage temperature, T _{stq} | -65 | 150 | °C | ⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. #### 7.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|-------------------------|---|-------|------| | V | Clastractatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) | ±2000 | V | | V _(ESD) | Electrostatic discharge | Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) | ±500 | V | ⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. ⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing
with a standard ESD control process. ## 7.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) | | | MIN | MAX | UNIT | |-------------------|-------------------------------|-----|---------|------| | VM | Power supply voltage range | 8 | 37 | ٧ | | VCC | Logic level input voltage | 0 | 5.3 | ٧ | | f_{PWM} | Applied STEP signal (STEP) | 0 | 100 (1) | kHz | | I _{DVDD} | DVDD external load current | 0 | 1 (2) | mA | | I _{FS} | Motor full scale current | 0 | 1.5 | Α | | I _{rms} | Motor rms current | 0 | 1.0 | Α | | T _A | Operating ambient temperature | -40 | 125 | °C | ⁽¹⁾ STEP input can operate up to 500 kHz, but system bandwidth is limited by the motor load(2) Power dissipation and thermal limits must be observed ## 7.4 Thermal Information | | | DRV | 8885 | | |----------------------|--|--------------|------------|------| | | THERMAL METRIC (1) | PWP (HTSSOP) | RHR (WQFN) | UNIT | | | | 24 PINS | 28 PINS | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 36.1 | 33.6 | °C/W | | $R_{\theta JC(top)}$ | Junction-to-case (top) thermal resistance | 18.3 | 23.8 | °C/W | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 15.8 | 12.7 | °C/W | | ΨЈΤ | Junction-to-top characterization parameter | 0.4 | 0.3 | °C/W | | ΨЈВ | Junction-to-board characterization parameter | 15.7 | 12.6 | °C/W | | $R_{\theta JC(bot)}$ | Junction-to-case (bottom) thermal resistance | 1.1 | 3.7 | °C/W | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. ## 7.5 Electrical Characteristics over operating free-air temperature range (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |--------------------|------------------------------------|--|------------|----------|------|------| | POWER S | SUPPLIES (VM, DVDD, AVDD) | | | | | | | VVM | VM operating voltage | | 8 | | 37 | V | | I _{VM} | VM operating supply current | VM ≈ 8 to 35 V, ENABLE = 1,
nSLEEP = 1, No motor load | | 5 | 8 | mA | | | | nSLEEP = 0; T _A = 25°C | | | 20 | | | I_{VMQ} | VM sleep mode supply current | nSLEEP = 0; T _A = 125°C ⁽¹⁾ | | | 40 | μΑ | | t _{SLEEP} | Sleep time | nSLEEP = 0 to sleep-mode | | 50 | 200 | μS | | t _{WAKE} | Wake-up time | nSLEEP = 1 to output transition | | 0.85 | 1.5 | ms | | t _{ON} | Turn-on time | VM > UVLO to output transition | | 0.85 | 1.5 | ms | | V _{DVDD} | Internal regulator voltage | 0- to 1-mA external load | 2.9 | 3.3 | 3.6 | V | | V _{AVDD} | Internal regulator voltage | No external load | 4.5 | 5.0 | 5.5 | V | | CHARGE | PUMP (VCP, CPH, CPL) | | | | 1 | | | V _{VCP} | VCP operating voltage | VM > 8 V | | VM + 5.5 | | V | | | EVEL INPUTS (STEP, DIR, ENABL | E, nSLEEP, M1) | | | | | | V _{IL} | Input logic low voltage | - | 0 | | 0.8 | V | | V _{IH} | Input logic high voltage | | 1.6 | | 5.3 | V | | V _{HYS} | Input logic hysteresis | | 100 | | | mV | | I _{IL} | Input logic low current | VIN = 0 V | -1 | | 1 | μА | | I _{IH} | Input logic high current | VIN = 5.0 V | | | 100 | μA | | R _{PD} | Pulldown resistance | To GND | | 100 | | kΩ | | t _{PD} | Propagation delay | STEP to current change | | | 1.2 | μS | | TRI-LEVE | L INPUT (M0, TRQ) | - | | | | - | | V _{IL} | Tri-level input logic low voltage | | 0 | | 0.65 | V | | V _{IZ} | Tri-level input Hi-Z voltage | | | 1.1 | | V | | V _{IH} | Tri-level input logic high voltage | | 1.5 | | 5.3 | V | | I _{IL} | Tri-level input logic low current | VIN = 0 V | -80 | | | μА | | I _{IZ} | Tri-level input Hi-Z current | VIN = 1.3 V | - 5 | | 5 | μΑ | | I _{IH} | Tri-level input logic high current | VIN = 5.0 V | | | 155 | μΑ | | R _{PD} | Tri-level pulldown resistance | To GND | 18 | 32 | 50 | kΩ | | R _{PU} | Tri-level pullup resistance | To DVDD | 30 | 60 | 90 | kΩ | | | VEL INPUT (DECAY) | | | | | | | V _{I1} | Quad-level input voltage 1 | 5% resistor 5 kΩ to GND | 0.07 | 0.11 | 0.13 | V | | V _{I2} | Quad-level input voltage 2 | 5% resistor 15 kΩ to GND | 0.24 | 0.32 | 0.40 | V | | V _{I3} | Quad-level input voltage 3 | 5% resistor 45 kΩ to GND | 0.71 | 0.97 | 1.20 | V | | V _{I4} | Quad-level input voltage 4 | 5% resistor 135 kΩ to GND | 2.12 | 2.90 | 3.76 | V | | I _O | Output current | To GND | 14 | 22 | 30 | μΑ | | | L OUTPUTS (nFAULT) | | | | | | | V _{OL} | Output logic low voltage | $I_O = 1 \text{ mA}, R_{PULLUP} = 4.7 \text{ k}\Omega$ | | | 0.5 | V | | | | | | | | | ⁽¹⁾ Not tested in production; limits are based on characterization data ## **Electrical Characteristics (continued)** over operating free-air temperature range (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-------------------------------|-----------------------------------|---|--------|----------|-------|------| | MOTOR DR | IVER OUTPUTS (AOUT1, AOUT | T2, BOUT1, BOUT2) | | | | | | R _{DS(ON)} | High-side FET on resistance | VM = 24 V, I = 1 A, T _A = 25°C | | 440 | 490 | mΩ | | R _{DS(ON)} | Low-side FET on resistance | VM = 24 V, I = 1 A, T _A = 25°C | | 420 | 460 | mΩ | | t _{RISE} (2) | Output rise time | | | 100 | | ns | | t _{FALL} (2) | Output fall time | | | 100 | | ns | | t _{DEAD} (2) | Output dead time | | | 200 | | ns | | V _d ⁽²⁾ | Body diode forward voltage | I _{OUT} = 0.5 A | | 0.7 | 1.0 | V | | PWM CURF | RENT CONTROL (RREF) | | | | | | | A _{RREF} | RREF transimpedance gain | | 28.1 | 30 | 31.9 | kAΩ | | V _{RREF} | RREF voltage | RREF = 18 to 132 k Ω | 1.18 | 1.232 | 1.28 | V | | t _{OFF} | PWM off-time | | | 20 | | μS | | C _{RREF} | Equivalent capacitance on RREF | | | | 10 | pF | | | PWM blanking time | I _{RREF} = 1.5 A, 63% to 100% current setting | | 1.5 | | μs | | ^t BLANK | | I _{RREF} = 1.5 A, 0% to 63% current setting | | 1.0 | | | | | Current trip accuracy | I _{RREF} = 1.0 A, 10% to 20% current setting, 1% reference resistor | -25% | | 25% | | | ΔI_{TRIP} | | I _{RREF} = 1.0 A, 20% to 63% current setting, 1% reference resistor | -12.5% | | 12.5% | | | | | I _{RREF} = 1.0 A, 71% to 100% current setting, 1% reference resistor | -6.25% | | 6.25% | | | PROTECTIO | ON CIRCUITS | • | | | | | | | \/M | VM falling; UVLO report | | | 7.8 | | | V_{UVLO} | VM UVLO | VM rising; UVLO recovery | | | 8.0 | V | | V _{UVLO,HYS} | Undervoltage hysteresis | Rising to falling threshold | | 100 | | mV | | V _{CPUV} | Charge pump undervoltage | VCP falling; CPUV report | | VM + 2.0 | | V | | I _{OCP} | Overcurrent protection trip level | Current through any FET | 2.3 | | | А | | t _{OCP} | Overcurrent deglitch time | | 1.3 | 1.9 | 2.8 | μS | | t _{RETRY} | Overcurrent retry time | | 1 | | 1.6 | ms | | T _{TSD} (2) | Thermal shutdown temperature | Die temperature T _J | 150 | | | °C | | T _{HYS} (2) | Thermal shutdown hysteresis | Die temperature T _J | | 20 | | °C | ⁽²⁾ Not tested in production; limits are based on characterization data ## 7.6 Indexer Timing Requirements $T_A = 25$ °C, over recommended operating conditions unless otherwise noted | NO. | | | MIN | MAX UNI | IT | |-----|--------------------------|--|-----|-----------------------|----| | 1 | f_{STEP} | Step frequency | 50 | 00 ⁽¹⁾ kH: | Z | | 2 | t _{WH(STEP)} | Pulse duration, STEP high | 970 | ns | 3 | | 3 | t _{WL(STEP)} | Pulse duration, STEP low | 970 | ns | 3 | | 4 | t _{SU(DIR, Mx)} | Setup time, DIR or USMx to STEP rising | 200 | ns | 3 | | 5 | t _{H(DIR, Mx)} | Hold time, DIR or USMx to STEP rising | 200 | ns | 3 | (1) STEP input can operate up to 500 kHz, but system bandwidth is limited by the motor load Figure 1. Timing Diagram ## 7.7 Typical Characteristics Over recommended operating conditions (unless otherwise noted) ## **Typical Characteristics (continued)** Over recommended operating conditions (unless otherwise noted) #### 8 Detailed Description #### 8.1 Overview The DRV8885 is an integrated motor driver solution for bipolar stepper motors. The device integrates two NMOS H-bridges, integrated current sense and regulation circuitry, and a microstepping indexer. The DRV8885 can be powered with a supply voltage between 8 and 37 V, and is capable of providing an output current up 2.3-A peak, 1.5-A full-scale, or 1.0-A rms. Actual full-scale and rms current will depend on ambient temperature, supply voltage, and PCB ground plane size. The DRV8885 integrates current sense functionality, which eliminates the need for high-power external sense resistors. This integration does not dissipate the external sense resistor power, because the current sense functionality is not implemented using a resistor-based architecture. This functionality helps improve component cost, board size, PCB layout, and system power consumption. A simple STEP/DIR interface allows easy interfacing to the controller circuit. The internal indexer is able to execute high-accuracy microstepping without requiring the processor to control the current level. The indexer is capable of full step and half step as well as microstepping to 1/4, 1/8, and 1/16. In addition to the standard half stepping mode, a non-circular 1/2-stepping mode is available for increased torque output at higher motor rpm. The current regulation is configurable with several decay modes of operation. The decay mode can be selected as a fixed slow, slow/mixed, or mixed decay. The slow/mixed decay mode uses slow decay on increasing steps and mixed decay on decreasing steps. An adaptive blanking time feature automatically scales the minimum drive time with output current. This helps alleviate zero-crossing distortion by limiting the drive time at low-current steps. A torque DAC feature allows the controller to scale the output current without needing to scale the reference resistor. The torque DAC is accessed using a digital input pin.
This allows the controller to save power by decreasing the current consumption when not high current is not required. A low-power sleep mode is included which allows the system to save power when not driving the motor. ## 8.2 Functional Block Diagram Copyright © 2016, Texas Instruments Incorporated #### 8.3 Feature Description Table 1 lists the recommended external components for the DRV8885 device. **Table 1. External Components** | COMPONENT | PIN 1 | PIN 2 | RECOMMENDED | | | | |---------------------|---------|--------|---|--|--|--| | C _{VM} | VM | GND | Two 0.01-µF ceramic capacitors rated for VM | | | | | C _{VM} | VM | GND | Bulk electrolytic capacitor rated for VM | | | | | C _{VCP} | VCP | VM | 16-V, 0.22-µF ceramic capacitor | | | | | C _{SW} | CPH | CPL | 0.022-μF X7R capacitor rated for VM | | | | | C _{AVDD} | AVDD | GND | 6.3-V, 0.47-µF ceramic capacitor | | | | | C _{DVDD} | DVDD | GND | 6.3-V, 0.47-µF ceramic capacitor | | | | | R _{nFAULT} | VCC (1) | nFAULT | >4.7 kΩ | | | | | R _{REF} | RREF | GND | Resistor to limit chopping current must be installed. See the <i>Typical Application</i> section for value selection. | | | | ⁽¹⁾ VCC is not a pin on the DRV8885, but a VCC supply voltage pullup is required for open-drain output nFAULT; nFAULT may be pulled up to DVDD #### 8.3.1 Stepper Motor Driver Current Ratings Stepper motor drivers can be classified using three different numbers to describe the output current: peak, rms, and full-scale. #### 8.3.1.1 Peak Current Rating The peak current in a stepper driver is limited by the overcurrent protection trip threshold I_{OCP} . The peak current describes any transient duration current pulse, for example when charging capacitance, when the overall duty cycle is very low. In general the minimum value of I_{OCP} specifies the peak current rating of the stepper motor driver. For the DRV8885, the peak current rating is 2.3 A per bridge. #### 8.3.1.2 RMS Current Rating The rms (average) current is determined by the thermal considerations of the IC. The rms current is calculated based on the $R_{DS(ON)}$, rise and fall time, PWM frequency, device quiescent current, and package thermal performance in a typical system at 25°C. The real operating rms current may be higher or lower depending on heatsinking and ambient temperature. For the DRV8885, the rms current rating is 1.0 A per bridge. #### 8.3.1.3 Full-Scale Current Rating The full-scale current describes the top of the sinusoid current waveform while microstepping. Since the sineusoid amplitude is related to the rms current, the full-scale current is also determined by the thermal considerations of the IC. The full-scale current rating is approximately $\sqrt{2} \times I_{rms}$. The full-scale current is set by VREF, the sense resistor, and Torque DAC when configuring the DRV8885, see *Current Regulation* for details. For the DRV8885, the full-scale current rating is 1.5 A per bridge. Figure 12. Full-Scale and rms Current #### 8.3.2 PWM Motor Drivers The DRV8885 contains drivers for two full H-bridges. Figure 13 shows a block diagram of the circuitry. Figure 13. PWM Motor Driver Block Diagram #### 8.3.3 Microstepping Indexer Built-in indexer logic in the DRV8885 allows a number of different stepping configurations. The Mx pins are used to configure the stepping format as shown in Table 2. | M1 | МО | STEP MODE | |----|----|---| | 0 | 0 | Full step (2-phase excitation) with 71% current | | 0 | 1 | 1/16 step | | 1 | 0 | 1/2 step | | 1 | 1 | 1/4 step | | 0 | Z | 1/8 step | **Table 2. Microstepping Settings** Table 3 shows the relative current and step directions for full-step through 1/16-step operation. The AOUT current is the sine of the electrical angle; BOUT current is the cosine of the electrical angle. Positive current is defined as current flowing from xOUT1 to xOUT2 while driving. Non-circular 1/2 step At each rising edge of the STEP input the indexer travels to the next state in the table. The direction is shown with the DIR pin logic high. If the DIR pin is logic low, the sequence is reversed. On power-up or when exiting sleep mode, keep the STEP pin logic low, otherwise the indexer will advance one step. Note that if the step mode is changed from full, $\frac{1}{2}$, $\frac{1}{8}$, or $\frac{1}{16}$ to full, $\frac{1}{2}$, $\frac{1}{8}$, or $\frac{1}{16}$ while stepping, the indexer will advance to the next valid state for the new MODE setting at the rising edge of STEP. If the step mode is changed from or to non-circular $\frac{1}{2}$ step the indexer will go immediately to the valid state for that mode. The home state is an electrical angle of 45°. This state is entered after power-up, after exiting logic undervoltage lockout, or after exiting sleep mode. This is shown in the table below with cells outlined in red. Table 3. Microstepping Relative Current Per Step (DIR = 1) | FULL STEP | 1/2 STEP | 1/4 STEP | 1/8 STEP | 1/16 STEP | ELECTRICAL | AOUT | BOUT | |-----------|----------|----------|----------|-----------|--------------------|---------------------------|---------------------------| | | | | | | ANGLE
(DEGREES) | CURRENT (%
FULL-SCALE) | CURRENT (%
FULL-SCALE) | | | 1 | 1 | 1 | 1 | 0.000° | 0% | 100% | | | | | | 2 | 5.625° | 10% | 100% | | | | | 2 | 3 | 11.250° | 20% | 98% | | | | | | 4 | 16.875° | 29% | 96% | | | | 2 | 3 | 5 | 22.500° | 38% | 92% | | | | | | 6 | 28.125° | 47% | 88% | | | | | 4 | 7 | 33.750° | 56% | 83% | | | | | | 8 | 39.375° | 63% | 77% | | 1 | 2 | 3 | 5 | 9 | 45.000° | 71% | 71% | | | | | | 10 | 50.625° | 77% | 63% | | | | | 6 | 11 | 56.250° | 83% | 56% | | | | | | 12 | 61.875° | 88% | 47% | | | | 4 | 7 | 13 | 67.500° | 92% | 38% | | | | | | 14 | 73.125° | 96% | 29% | | | | | 8 | 15 | 78.750° | 98% | 20% | | | | | | 16 | 84.375° | 100% | 10% | | | 3 | 5 | 9 | 17 | 90.000° | 100% | 0% | | | | | | 18 | 95.625° | 100% | -10% | | | | | 10 | 19 | 101.250° | 98% | -20% | | | | | | 20 | 106.875° | 96% | -29% | | | | 6 | 11 | 21 | 112.500° | 92% | -38% | | | | | | 22 | 118.125° | 88% | -47% | | | | | 12 | 23 | 123.750° | 83% | -56% | | | | | | 24 | 129.375° | 77% | -63% | | 2 | 4 | 7 | 13 | 25 | 135.000° | 71% | -71% | | | | | | 26 | 140.625° | 63% | -77% | | | | | 14 | 27 | 146.250° | 56% | -83% | | | | | | 28 | 151.875° | 47% | -88% | | | | 8 | 15 | 29 | 157.500° | 38% | -92% | | | | | | 30 | 163.125° | 29% | -96% | | | | | 16 | 31 | 168.750° | 20% | -98% | | | | | | 32 | 174.375° | 10% | -100% | | | 5 | 9 | 17 | 33 | 180.000° | 0% | -100% | | | | | | 34 | 185.625° | -10% | -100% | | | | | 18 | 35 | 191.250° | -20% | -98% | | | | | | 36 | 196.875° | -29% | -96% | | | | 10 | 19 | 37 | 202.500° | -38% | -92% | | | | | | 38 | 208.125° | -47% | -88% | | | | | 20 | 39 | 213.750° | -56% | -83% | | | | | | 40 | 219.375° | -63% | -77% | Table 3. Microstepping Relative Current Per Step (DIR = 1) (continued) | | | | J | | 5 (Bill = 1) (CC | | | |-----------|----------|----------|----------|-----------|----------------------------------|-----------------------------------|-----------------------------------| | FULL STEP | 1/2 STEP | 1/4 STEP | 1/8 STEP | 1/16 STEP | ELECTRICAL
ANGLE
(DEGREES) | AOUT
CURRENT (%
FULL-SCALE) | BOUT
CURRENT (%
FULL-SCALE) | | 3 | 6 | 11 | 21 | 41 | 225.000° | -71% | -71% | | | | | | 42 | 230.625° | -77% | -63% | | | | | 22 | 43 | 236.250° | -83% | -56% | | | | | | 44 | 241.875° | -88% | -47% | | | | 12 | 23 | 45 | 247.500° | -92% | -38% | | | | | | 46 | 253.125° | -96% | -29% | | | | | 24 | 47 | 258.750° | -98% | -20% | | | | | | 48 | 264.375° | -100% | -10% | | | 7 | 13 | 25 | 49 | 270.000° | -100% | 0% | | | | | | 50 | 275.625° | -100% | 10% | | | | | 26 | 51 | 281.250° | -98% | 20% | | | | | | 52 | 286.875° | -96% | 29% | | | | 14 | 27 | 53 | 292.500° | -92% | 38% | | | | | | 54 | 298.125° | -88% | 47% | | | | | 28 | 55 | 303.750° | -83% | 56% | | | | | | 56 | 309.375° | -77% | 63% | | 4 | 8 | 15 | 29 | 57 | 315.000° | -71% | 71% | | | | | | 58 | 320.625° | -63% | 77% | | | | | 30 | 59 | 326.250° | -56% | 83% | | | | | | 60 | 331.875° | -47% | 88% | | | | 16 | 31 | 61 | 337.500° | -38% | 92% | | | | | | 62 | 343.125° | -29% | 96% | | | | | 32 | 63 | 348.750° | -20% | 98% | | | | | | 64 | 354.375° | -10% | 100% | | | 1 | 1 | 1 | 1 | 360.000° | 0% | 100% | Non-circular 1/2-step operation is shown below. This stepping mode consumes more power than circular ½-step operation, but provides a higher torque at high motor rpm. Table 4. Non-Circular 1/2-Stepping Current | NON-CIRCULAR 1/2 STEP | AOUT CURRENT
(% FULL-SCALE) | BOUT CURRENT
(% FULL-SCALE) | ELECTRICAL ANGLE
(DEGREES) | |-----------------------|--------------------------------|--------------------------------|-------------------------------| | 1 | 0 | 100 | 0 | | 2 | 100 | 100 | 45 | | 3 | 100 | 0 | 90 | | 4 | 100 | -100 | 135 | | 5 | 0 | -100 | 180 | | 6 | -100 | -100 | 225 | | 7 | -100 | 0 | 270 | | 8 | -100 | 100 | 315 | #### 8.3.4 Current Regulation The current through the motor windings is regulated by an adjustable fixed-off-time PWM current regulation circuit. When an H-bridge is enabled, current rises through the winding at a rate dependent on the DC voltage, inductance of the winding, and the magnitude of the back EMF present. Once the current hits the current chopping threshold, the bridge enters a decay mode for a fixed, 20 μ s, period of time to decrease the current. After the off time expires, the bridge is re-enabled, starting another PWM cycle. Figure 14. Current Chopping Waveform The PWM chopping current is set by a comparator which looks at the voltage across current sense FETs in parallel with the low-side drivers. The current sense FETs are biased with a reference current that is the output of a current-mode sine-weighted DAC whose full-scale reference current is set by
the current through the RREF pin. An external resistor is placed from the RREF pin to GND in order to set the reference current. In addition, the TRQ pin can further scale the reference current. The chopping current is calculated as follows: $$I_{FS} (A) = \frac{A_{RREF} (kA\Omega)}{RREF (k\Omega)} \times TRQ (\%) = \frac{30 (kA\Omega)}{RREF (k\Omega)} \times TRQ (\%)$$ (1) Example: If a 30-k Ω resistor is connected to the RREF pin, the chopping current will be 1 A (TRQ at 100%) The TRQ pin is the input to a DAC used to scale the output current. The current scalar value for different inputs is shown below. Table 5. Torque DAC Settings | TRQ | CURRENT SCALAR (TRQ) | |-----|----------------------| | 0 | 100% | | Z | 75% | | 1 | 50% | #### 8.3.5 Controlling RREF With an MCU In some cases, the full-scale output current may need to be changed on the fly between many different values, depending on motor speed and loading. The RREF pin reference current can be adjusted in system by tying the RREF resistor to a DAC output instead of GND. In this mode of operation, as the DAC voltage increases, the reference current will decrease and therefore the full-scale current will decrease as well. For proper operation, the output of the DAC should not rise above V_{RREF}. Figure 15. Controlling RREF with a DAC The chopping current as controlled by a DAC is calculated as follows: $$I_{FS} (A) = \frac{A_{RREF} (kA\Omega) \times \left[V_{RREF} (V) - V_{DAC} (V) \right]}{V_{RREF} (V) \times RREF (k\Omega)} \times TRQ (\%)$$ (2) Example: If a 20-k Ω resistor is connected from the RREF pin to the DAC, and the DAC is outputting 0.74 V, the chopping current will be 600 mA (TRQ at 100%) RREF can also be adjusted using a PWM signal and low-pass filter. Figure 16. Controlling RREF with a PWM Resource #### 8.3.6 Decay Modes The DRV8885 decay mode is selected by setting the quad-level DECAY pin to the voltage range in Table 6. **Table 6. Decay Mode Settings** | DECAY | INCREASING STEPS | DECREASING STEPS | |---------------------------------|-----------------------|-----------------------| | 100 mV
Can be tied to ground | Slow decay | Mixed decay: 30% fast | | 300 mV, 15 kΩ to GND | Mixed decay: 30% fast | Mixed decay: 30% fast | | 1.0 V, 45 kΩ to GND | Mixed decay: 60% fast | Mixed decay: 60% fast | | 2.9 V
Can be tied to DVDD | Slow decay | Slow decay | Increasing and decreasing current are defined in the chart below. For the Slow/Mixed decay mode, the decay mode is set as slow during increasing current steps and mixed decay during decreasing current steps. In full step mode the decreasing steps decay mode is always used. Figure 17. Definition of Increasing and Decreasing Steps #### 8.3.6.1 Mode 1: Slow Decay for Increasing and Decreasing Current Figure 18. Slow/Slow Decay Mode During slow decay, both of the low side FETs of the H-bridge are turned on, allowing the current to be recirculated. Slow decay exhibits the least current ripple of the decay modes for a given t_{OFF} . However on decreasing current steps, slow decay will take a long time to settle to the new l_{TRIP} level because the current decreases very slowly. #### 8.3.6.2 Mode 2: Slow Decay for Increasing Current, Mixed Decay for Decreasing Current Figure 19. Slow/Mixed Decay Mode Mixed decay begins as fast decay for a time, followed by slow decay for the remainder of t_{OFF} . In this mode, mixed decay only occurs during decreasing current. Slow decay is used for increasing current. This mode exhibits the same current ripple as slow decay for increasing current, since for increasing current, only slow decay is used. For decreasing current, the ripple is larger than slow decay, but smaller than fast decay. On decreasing current steps, mixed decay will settle to the new I_{TRIP} level faster than slow decay. #### 8.3.6.3 Mode 3: Mixed Decay for Increasing and Decreasing Current Figure 20. Mixed/Mixed Decay Mode Mixed decay begins as fast decay for a time, followed by slow decay for the remainder of t_{OFF} . In this mode, mixed decay occurs for both increasing and decreasing current steps. This mode exhibits ripple larger than slow decay, but smaller than fast decay. On decreasing current steps, mixed decay will settle to the new I_{TRIP} level faster than slow decay. In cases where current is held for a long time (no input in the STEP pin) or at very low stepping speeds, slow decay may not properly regulate current because no back-EMF is present across the motor windings. In this state, motor current can rise very quickly, and requires an excessively large off-time. Increasing/decreasing mixed decay mode allows the current level to stay in regulation when no back-EMF is present across the motor windings. #### 8.3.7 Blanking Time After the current is enabled in an H-bridge, the current sense comparator is ignored for a period of time (t_{BLANK}) before enabling the current sense circuitry. Note that the blanking time also sets the minimum drive time of the PWM. Table 7 shows the blanking time based on the sine table index and the torque DAC setting. Please note that the torque DAC index is not the same as one step as given in Table 3. Table 7. Adaptive Blanking Time over Torque DAC and Microsteps | t _{blank} = 1.5 μs | t _{blank} = 1.0 μs | |-----------------------------|-----------------------------| | | | | OINE INDEV | TORQUE DAC (TRQ) | | | | | | | |------------|------------------|-------|-------|--|--|--|--| | SINE INDEX | 100% | 75% | 50% | | | | | | 16 | 100% | 75% | 50% | | | | | | 15 | 98% | 73.5 | 49% | | | | | | 14 | 96% | 72% | 48% | | | | | | 13 | 92% | 69% | 46% | | | | | | 12 | 88% | 66% | 44% | | | | | | 11 | 83% | 62.3% | 41.5% | | | | | | 10 | 77% | 57.8% | 38.5% | | | | | | 9 | 71% | 53.3% | 35.5% | | | | | | 8 | 63% | 47.3% | 31.5% | | | | | | 7 | 56% | 42% | 28% | | | | | | 6 | 47% | 35.3 | 23.5% | | | | | | 5 | 38% | 28.5 | 19% | | | | | | 4 | 29% | 21.8% | 14.5% | | | | | | 3 | 20% | 15% | 10% | | | | | | 2 | 10% | 7.5% | 5% | | | | | | 1 | 0% | 0% | 0% | | | | | #### 8.3.8 Charge Pump A charge pump is integrated in order to supply a high-side NMOS gate drive voltage. The charge pump requires a capacitor between the VM and VCP pins. Additionally a low ESR ceramic capacitor is required between pins CPH and CPL. Figure 21. Charge Pump Diagram #### 8.3.9 LDO Voltage Regulator An LDO regulator is integrated into the DRV8885. DVDD can be used to provide a reference voltage. For proper operation, bypass DVDD to GND using a ceramic capacitor. The DVDD output is nominally 3.3 V. When the DVDD LDO current load exceeds 1 mA, the output voltage will drop significantly. The AVDD pin also requires a bypass capacitor to GND. This LDO is for DRV8885 internal use only. Figure 22. LDO Diagram If a digital input needs to be tied permanently high (that is, Mx, DECAY or TRQ), it is preferable to tie the input to DVDD instead of an external regulator. This will save power when VM is not applied or in sleep mode: DVDD is disabled and current will not be flowing through the input pulldown resistors. For reference, logic level inputs have a typical pulldown of $100 \text{ k}\Omega$, and tri-level inputs have a typical pulldown of $60 \text{ k}\Omega$. #### 8.3.10 Logic and Multi-Level Pin Diagrams Figure 23 gives the input structure for logic-level pins STEP, DIR, ENABLE, nSLEEP, M1: Figure 23. Logic-level Input Pin Diagram Tri-level logic pins M0 and TRQ have the following structure: Figure 24. Tri-level Input Pin Diagram Quad-level logic pin DECAY has the following structure: Figure 25. Quad-level Input Pin Diagram #### 8.3.11 Protection Circuits The DRV8885 is fully protected against undervoltage, charge pump undervoltage, overcurrent, and overtemperature events. #### 8.3.11.1 VM Undervoltage Lockout (UVLO) If at any time the voltage on the VM pin falls below the VM undervoltage lockout threshold voltage (V_{UVLO}), all FETs in the H-bridge will be disabled, the charge pump will be disabled, the logic will be reset, the DVDD regulator is disabled, and the nFAULT pin will be driven low. Operation will resume when VM rises above the UVLO threshold. The nFAULT pin will be released after operation has resumed. Decreasing VM below this undervoltage threshold will reset the indexer position. #### 8.3.11.2 VCP Undervoltage Lockout (CPUV) If at any time the voltage on the VCP pin falls below the charge pump undervoltage lockout threshold voltage, all FETs in the H-bridge will be disabled and the nFAULT pin will be driven low. Operation will resume when VCP rises above the CPUV threshold. The nFAULT pin will be released after operation has resumed. #### 8.3.11.3 Overcurrent Protection (OCP) An analog current limit circuit on each FET limits the current through the FET by removing the gate drive. If this analog current limit persists for longer than $t_{\rm OCP}$, all FETs in the H-bridge will be disabled and nFAULT will be driven low. The driver will be re-enabled after the OCP retry period (t_{RETRY}) has passed. nFAULT becomes high again at after the retry time. If the fault condition is still present, the cycle repeats. If the fault is no longer present, normal operation resumes and nFAULT remains deasserted. #### 8.3.11.4 Thermal Shutdown (TSD) If the die temperature exceeds safe limits, all FETs in the H-bridge will be disabled and the nFAULT pin will be driven low. Once the die temperature has fallen to a safe level operation will automatically resume. The nFAULT pin will be released after operation has resumed. #### **Table 8. Fault Condition Summary** | FAULT | CONDITION | ERROR
REPORT | H-BRIDGE | CHARGE
PUMP | INDEXER | DVDD | RECOVERY | |-------------------------|--|-----------------|----------|----------------|-----------|-----------|--| | VM undervoltage (UVLO) | VM < V _{UVLO}
(max 7.8 V) | nFAULT | Disabled | Disabled
| Disabled | Disabled | VM > V _{UVLO}
(max 8.0 V) | | VCP undervoltage (CPUV) | $VCP < V_{CPUV}$
(typ VM + 2.0 V) | nFAULT | Disabled | Operating | Operating | Operating | $VCP > V_{CPUV}$
(typ VM + 2.7 V) | | Overcurrent (OCP) | I _{OUT} > I _{OCP}
(min 2.1 A) | nFAULT | Disabled | Operating | Operating | Operating | t _{RETRY} | | Thermal Shutdown (TSD) | $T_J > T_{TSD}$ (min 150°C) | nFAULT | Disabled | Operating | Operating | Operating | $T_J < T_{TSD} - T_{HYS}$
(T_{HYS} typ 20°C) | #### 8.4 Device Functional Modes The DRV8885 is active unless the nSLEEP pin is brought logic low. In sleep mode the charge pump is disabled, the H-bridge FETs are disabled Hi-Z, and the V3P3 regulator is disabled. Note that t_{SLEEP} must elapse after a falling edge on the nSLEEP pin before the device is in sleep mode. The DRV8885 is brought out of sleep mode automatically if nSLEEP is brought logic high. Note that t_{WAKE} must elapse before the outputs change state after wake-up. TI recommends to keep the STEP pin logic low when coming out of nSLEEP or when applying power. If the ENABLE pin is brought logic low, the H-bridge outputs are disabled, but the internal logic will still be active. A rising edge on STEP will advance the indexer, but the outputs will not change state until ENABLE is asserted. **Table 9. Functional Modes Summary** | CONDITION | | H-BRIDGE | CHARGE PUMP | INDEXER | V3P3 | |-------------------|---|-----------|-------------|-----------|-----------| | Operating | 8 V < VM < 40 V
nSLEEP pin = 1
ENABLE pin = 1 | Operating | Operating | Operating | Operating | | Disabled | 8 V < VM < 40 V
nSLEEP pin = 1
ENABLE pin = 0 | Disabled | Operating | Operating | Operating | | Sleep mode | 8 V < VM < 40
nSLEEP pin = 0 | Disabled | Disabled | Disabled | Disabled | | | VM undervoltage (UVLO) | Disabled | Disabled | Disabled | Disabled | | Fault encountered | VCP undervoltage (CPUV) | Disabled | Operating | Operating | Operating | | | Overcurrent (OCP) | Disabled | Operating | Operating | Operating | | | Thermal Shutdown (TSD) | Disabled | Operating | Operating | Operating | #### 9 Application and Implementation #### NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. #### 9.1 Application Information The DRV8885 is used in bipolar stepper control. ## 9.2 Typical Application The following design procedure can be used to configure the DRV8885. Figure 26. Typical Application Schematic #### 9.2.1 Design Requirements Table 10 gives design input parameters for system design. **Table 10. Design Parameters** | DESIGN PARAMETER | REFERENCE | EXAMPLE VALUE | |----------------------------|---------------------|---------------| | Supply voltage | VM | 24 V | | Motor winding resistance | R_L | 2.6 Ω/phase | | Motor winding inductance | LL | 1.4 mH/phase | | Motor full step angle | $\theta_{\sf step}$ | 1.8°/step | | Target microstepping level | n _m | 1/8 step | | Target motor speed | V | 120 rpm | | Target full-scale current | I _{FS} | 1.0 A | #### 9.2.2 Detailed Design Procedure #### 9.2.2.1 Stepper Motor Speed The first step in configuring the DRV8885 requires the desired motor speed and microstepping level. If the target application requires a constant speed, then a square wave with frequency f_{step} must be applied to the STEP pin. If the target motor speed is too high, the motor will not spin. Make sure that the motor can support the target speed. For a desired motor speed (v), microstepping level (n_m), and motor full step angle (θ_{step}), $$f_{\text{step}} \text{ (steps/s)} = \frac{\text{v (rpm)} \times 360 (^{\circ}/\text{rot})}{\theta_{\text{step}} (^{\circ}/\text{step}) \times n_{\text{m}} \text{ (steps/microstep)} \times 60 \text{ (s/min)}}$$ (3) θ_{step} can be found in the stepper motor data sheet, or written on the motor itself. For the DRV8885, the microstepping level is set by the Mx pins and can be any of the settings in the table below. Higher microstepping will mean a smother motor motion and less audible noise, but will increase switching losses and require a higher fstep to achieve the same motor speed. STEP MODE M1 MO 0 Full step (2-phase excitation) with 71% current 1/16 step 1 0 1/2 step 1 1 1/4 step 0 Z 1/8 step Ζ Non-circular 1/2 step Table 11. Microstepping Indexer Settings **Example:** Target 120 rpm at 1/8 microstep mode. The motor is 1.8°/step $$f_{\text{step}} \text{ (steps/s)} = \frac{120 \text{ rpm} \times 360^{\circ}/\text{rot}}{1.8^{\circ}/\text{step} \times 1/8 \text{ steps/microstep} \times 60 \text{ s/min}} = 3.2 \text{ kHz}$$ (4) #### 9.2.2.2 Current Regulation In a stepper motor, the full-scale current (I_{FS}) is the maximum current driven through either winding. This quantity will depend on the RREF resistor and the TRQ setting. During stepping, I_{FS} defines the current chopping threshold (I_{TRIP}) for the maximum current step. $$I_{FS} (A) = \frac{A_{RREF} (kA\Omega)}{RREF (k\Omega)} = \frac{30 (kA\Omega) \times TRQ\%}{RREF (k\Omega)}$$ (5) Note that I_{FS} must also follow Equation 6 in order to avoid saturating the motor. VM is the motor supply voltage, and R_L is the motor winding resistance. $$I_{FS} (A) < \frac{VM (V)}{R_L (\Omega) + 2 \times R_{DS(ON)} (\Omega)}$$ (6) #### 9.2.2.3 Decay Modes The DRV8885 supports three different decay modes: slow decay, slow/mixed and all mixed decay. The current through the motor windings is regulated using an adjustable fixed-time-off scheme. This means that after any drive phase, when a motor winding current has hit the current chopping threshold (I_{TRIP}), the DRV8885 will place the winding in one of the three decay modes for I_{OFF} . After I_{OFF} , a new drive phase starts. The blanking time t_{BLANK} defines the minimum drive time for the PWM current chopping. I_{TRIP} is ignored during t_{BLANK} , so the winding current may overshoot the trip level. ## 9.2.3 Application Curves #### 10 Power Supply Recommendations The DRV8885 is designed to operate from an input voltage supply (VM) range between 8 V and 35 V. A 0.01 µF ceramic capacitor rated for VM must be placed at each VM pin as close to the DRV8885 as possible. In addition, a bulk capacitor must be included on VM. #### 10.1 Bulk Capacitance Having appropriate local bulk capacitance is an important factor in motor drive system design. It is generally beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size. The amount of local capacitance needed depends on a variety of factors, including: - The highest current required by the motor system - The power supply's capacitance and ability to source current - · The amount of parasitic inductance between the power supply and motor system - The acceptable voltage ripple - The type of motor used (brushed DC, brushless DC, stepper) - · The motor braking method The inductance between the power supply and motor drive system will limit the rate current can change from the power supply. If the local bulk capacitance is too small, the system will respond to excessive current demands or dumps from the motor with a change in voltage. When adequate bulk capacitance is used, the motor voltage remains stable and high current can be quickly supplied. The data sheet generally provides a recommended value, but system-level testing is required to determine the appropriate sized bulk capacitor. The voltage rating for bulk capacitors should be higher than the operating voltage, to provide margin for cases when the motor transfers energy to the supply. Figure 31. Example Setup of Motor Drive System With External Power Supply #### 11 Layout #### 11.1 Layout Guidelines The VM terminal should be bypassed to GND using a low-ESR ceramic bypass capacitor with a recommended value of 0.01 μ F rated for VM. This capacitor should be placed as close to the VM pin as possible with a thick trace or ground plane connection to the device GND pin. The VM pin must be bypassed to ground using a bulk capacitor rated for VM. This component may be an electrolytic. A low-ESR ceramic capacitor must be placed in between the CPL and CPH pins. A value of $0.022~\mu F$ rated for VM is recommended. Place this component as close to the pins as possible. A low-ESR ceramic capacitor must be placed in between the VM and VCP pins. A value of 0.22 µF rated for 16 V is recommended. Place this component as close to the pins as possible. Bypass AVDD and DVDD to ground with a ceramic capacitor rated 6.3 V. Place this bypassing capacitor as close to the pin as possible. #### 11.2 Layout Example Figure 32. Layout Recommendation ## 12 デバイスおよびドキュメントのサポート #### 12.1 ドキュメントのサポート #### 12.1.1 関連資料 関連資料については、以下を参照してください。 - テキサス・インスツルメンツ、『モータ・ドライバの消費電力計算』アプリケーション・レポート - テキサス・インスツルメンツ、『電流再循環および減衰モード』アプリケーション・レポート - テキサス・インスツルメンツ、『デジタル/アナログ・コンバータ(DAC)を使用するフルスケール電流調整』アプリケーション・レポート - テキサス・インスツルメンツ、『DRV8885評価モジュール(EVM)ユーザー・ガイド』 - テキサス・インスツルメンツ、『PowerPAD™の簡単な使用法』アプリケーション・レポート - テキサス・インスツルメンツ、『放熱特性に優れたPowerPAD™パッケージ』アプリケーション・レポート - テキサス・インスツルメンツ、『モータ・ドライバの電流定格について』アプリケーション・レポート #### 12.2 ドキュメントの更新通知を受け取る方法 ドキュメントの更新についての通知を受け取るには、ti.comのデバイス製品フォルダを開いてください。右上の隅にある「通知を受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。 #### 12.3 コミュニティ・リソース The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™オンライン・コミュニティ
*TIのE2E(Engineer-to-Engineer)コミュニティ。*エンジニア間の共同作業を促進するために開設されたものです。e2e.ti.comでは、他のエンジニアに質問し、知識を共有し、アイディアを検討して、問題解決に役立てることができます。 設計サポート *TIの設計サポート* 役に立つE2Eフォーラムや、設計サポート・ツールをすばやく見つけることができます。技術サポート用の連絡先情報も参照できます。 #### 12.4 商標 PowerPAD, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners. ## 12.5 静電気放電に関する注意事項 これらのデバイスは、限定的なESD(静電破壊)保護機能を内蔵しています。保存時または取り扱い時は、MOSゲートに対する静電破壊を防止するために、リード線同士をショートさせておくか、デバイスを導電フォームに入れる必要があります。 #### 12.6 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. ## 13 メカニカル、パッケージ、および注文情報 以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、そのデバイスについて利用可能な最新のデータです。このデータは予告なく変更されることがあり、ドキュメントが改訂される場合もあります。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。 www.ti.com 23-Mar-2024 #### PACKAGING INFORMATION | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking (4/5) | Samples | |------------------|---------|--------------|--------------------|------|----------------|--------------|-------------------------------|---------------------|--------------|----------------------|---------| | | | | | | | | (6) | | | | | | DRV8885PWP | LIFEBUY | HTSSOP | PWP | 24 | 60 | RoHS & Green | NIPDAU | Level-3-260C-168 HR | -40 to 125 | DRV8885 | | | DRV8885PWPR | ACTIVE | HTSSOP | PWP | 24 | 2000 | RoHS & Green | NIPDAU | Level-3-260C-168 HR | -40 to 125 | DRV8885 | Samples | | DRV8885RHRR | ACTIVE | WQFN | RHR | 28 | 3000 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | DRV8885 | Samples | | DRV8885RHRT | LIFEBUY | WQFN | RHR | 28 | 250 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | DRV8885 | | (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. **Green:** TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. ## **PACKAGE OPTION ADDENDUM** www.ti.com 23-Mar-2024 In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ## **PACKAGE MATERIALS INFORMATION** www.ti.com 5-Dec-2023 #### TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |-------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | DRV8885PWPR | HTSSOP | PWP | 24 | 2000 | 330.0 | 16.4 | 6.95 | 8.3 | 1.6 | 8.0 | 16.0 | Q1 | | DRV8885RHRR | WQFN | RHR | 28 | 3000 | 330.0 | 12.4 | 3.8 | 5.8 | 1.2 | 8.0 | 12.0 | Q1 | | DRV8885RHRT | WQFN | RHR | 28 | 250 | 180.0 | 12.4 | 3.8 | 5.8 | 1.2 | 8.0 | 12.0 | Q1 | ## **PACKAGE MATERIALS INFORMATION** www.ti.com 5-Dec-2023 #### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |-------------|--------------|-----------------|------|------|-------------|------------|-------------| | DRV8885PWPR | HTSSOP | PWP | 24 | 2000 | 350.0 | 350.0 | 43.0 | | DRV8885RHRR | WQFN | RHR | 28 | 3000 | 367.0 | 367.0 | 35.0 | | DRV8885RHRT | WQFN | RHR | 28 | 250 | 210.0 | 185.0 | 35.0 | ## **PACKAGE MATERIALS INFORMATION** www.ti.com 5-Dec-2023 #### **TUBE** #### *All dimensions are nominal | Device | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | T (µm) | B (mm) | |------------|--------------|--------------|------|-----|--------|--------|--------|--------| | DRV8885PWP | PWP | HTSSOP | 24 | 60 | 530 | 10.2 | 3600 | 3.5 | 4.4 x 7.6, 0.65 mm pitch PLASTIC SMALL OUTLINE This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details. # · Significant ## PowerPAD™ TSSOP - 1.2 mm max height PLASTIC SMALL OUTLINE #### NOTES: PowerPAD is a trademark of Texas Instruments. - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. - 2. This drawing is subject to change without notice. - 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. - exceed 0.15 mm per side. 4. Reference JEDEC registration MO-153. - 5. Features may not be present and may vary. PLASTIC SMALL OUTLINE NOTES: (continued) - 6. Publication IPC-7351 may have alternate designs. - 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. - 8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004). - 9. Size of metal pad may vary due to creepage requirement. PLASTIC SMALL OUTLINE NOTES: (continued) - 10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 11. Board assembly site may have different recommendations for stencil design. 3.5 x 5.5, 0.5 mm pitch PLASTIC QUAD FLATPACK - NO LEAD Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details. 4210249/B PLASTIC QUAD FLATPACK - NO LEAD #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. - 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). PLASTIC QUAD FLATPACK - NO LEAD NOTES: (continued) 5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. #### 重要なお知らせと免責事項 TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあら ゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI
はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。 TIの製品は、TIの販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。 郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated