

ISO1500 3kV_{RMS}、基本絶縁、超小型パッケージのRS-485/RS-422トランシーバ

1 特長

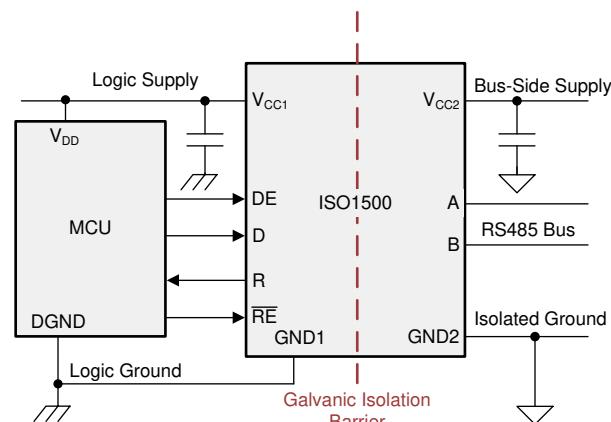
- TIA/EIA-485-A の要件に準拠、または超える仕様
- 半二重トランシーバ
- 低 EMI、1Mbps のデータ・レート
- バス I/O 保護
 - ±16kV の HBM ESD
- 1.71V~5.5V のロジック側電源 (V_{CC1})、4.5V~5.5V のバス側電源 (V_{CC2})
- 1/8 の単位負荷で、バス上に最大 256 のノード
- バスの開放、短絡、アイドルに対するフェイルセーフを備えたレシーバー
- 100kV/ μ s (標準値) の高い同相過渡耐性
- 拡張温度範囲: -40°C~+125°C
- 電源オンおよび電源オフ時にグリッチがなく、ホット・プラグイン可能
- 超小型の SSOP (DBQ-16) パッケージ
- 安全関連の認定
 - DIN VDE V 0884-11:2017-01 準拠で 4242V_{PK} V_{IOTM} および 566V_{PK} V_{IORM}
 - UL 1577 に準拠した絶縁耐圧: 3000V_{RMS} (1 分間)
 - IEC 60950-1、IEC 62368-1、IEC 61010-1 認定
 - CQC、TUV、CSA 認定
 - VDE、UL、CQC、TUV 認定済み、CSA 承認待ち

2 アプリケーション

- 電気メータ
- 保護リレー
- ファクトリ・オートメーション / 制御
- HVAC システムおよびビルディング・オートメーション
- モータ・ドライブ

3 概要

ISO1500デバイスは、ガルバニック絶縁された、TIA/EIA RS-485およびRS-422アプリケーション用の差動ライン・トランシーバです。このデバイスは、3チャネルのデジタル・アイソレータとRS-485トランシーバが、超小型の16ピン SSOPパッケージに搭載されています。このトランシーバのバス・ピンは、IEC ESD接触放電およびIEC EFTイベントから保護されています。レシーバーの出力には、バス開放、短絡、アイドル条件に対してのフェイルセーフがあります。ISO1500はソリューション・サイズが小さいため、他の統合絶縁RS-485ソリューションや、フォトカプラと非絶縁RS-485トランシーバを個別に実装する場合と比較して、必要な基板面積が大幅に削減されます。


このデバイスは、長距離通信に使用されます。絶縁により通信ノード間のグランド・ループが遮断されるため、より広い同相電圧範囲に対応できます。各デバイスの対称型絶縁バリアは、バスライン・トランシーバとロジックレベル・インターフェイスとの間で、UL 1577に従い、3000V_{RMS}で1分間の絶縁を行うことがテスト済みです。

製品情報⁽¹⁾

型番	パッケージ	本体サイズ(公称)
ISO1500	SSOP (16)	4.90mm×3.90mm

(1) 利用可能なすべてのパッケージについては、このデータシートの末尾にある注文情報を参照してください。

概略回路図

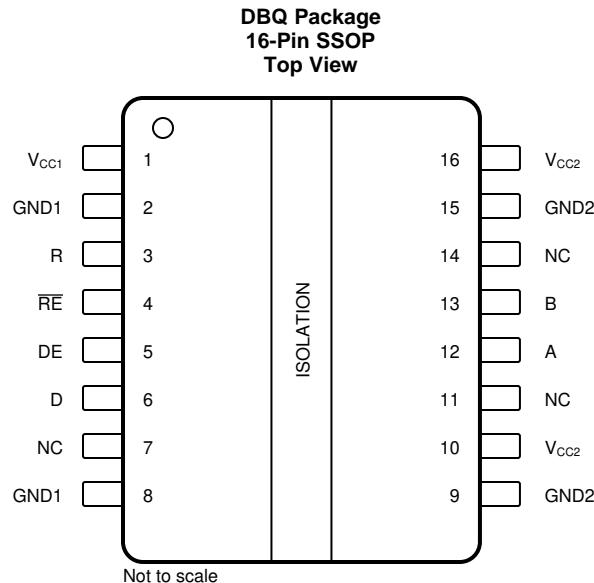
目次

1	特長	1	7.16	Typical Characteristics	12
2	アプリケーション	1	8	Parameter Measurement Information	16
3	概要	1	9	Detailed Description	19
4	改訂履歴	2	9.1	Overview	19
5	概要 (続き)	3	9.2	Functional Block Diagram	19
6	Pin Configuration and Functions	4	9.3	Feature Description	19
7	Specifications	5	9.4	Device Functional Modes	21
7.1	Absolute Maximum Ratings	5	10	Application and Implementation	23
7.2	ESD Ratings	5	10.1	Application Information	23
7.3	Recommended Operating Conditions	5	10.2	Typical Application	24
7.4	Thermal Information	5	11	Power Supply Recommendations	25
7.5	Power Ratings	6	12	Layout	26
7.6	Insulation Specifications	7	12.1	Layout Guidelines	26
7.7	Safety-Related Certifications	8	12.2	Layout Example	26
7.8	Safety Limiting Values	8	13	デバイスおよびドキュメントのサポート	28
7.9	Electrical Characteristics: Driver	9	13.1	ドキュメントのサポート	28
7.10	Electrical Characteristics: Receiver	9	13.2	ドキュメントの更新通知を受け取る方法	28
7.11	Supply Current Characteristics: Side 1(I_{CC1})	10	13.3	コミュニティ・リソース	28
7.12	Supply Current Characteristics: Side 2(I_{CC2})	10	13.4	商標	28
7.13	Switching Characteristics: Driver	11	13.5	静電気放電に関する注意事項	28
7.14	Switching Characteristics: Receiver	11	13.6	Glossary	28
7.15	Insulation Characteristics Curves	11	14	メカニカル、パッケージ、および注文情報	28

4 改訂履歴

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

Revision B (May 2019) から Revision C に変更	Page
• 「特長」セクションの認定関連情報を 変更	1
• Added footnote to Pin function table for NC pin	4
• Changed Insulation Specifications table with test condition for VIOSM and qPD (Partial discharge)	7
• Changed certificate related info in Safety-Related Certifications section	8


Revision A (December 2018) から Revision B に変更	Page
• 「特長」の一覧に HBM ESD を 追加	1

2018年9月発行のものから更新	Page
• デバイスのステータスを事前情報から量産データに 変更	1

5 概要 (続き)

ISO1500xデバイスは、サイド1において1.71V～5.5Vの電圧で動作できるため、デバイスを低電圧のFPGAやASICと接続できます。サイド2の電源電圧は4.5V～5.5Vです。このデバイスは、-40°C～+125°Cの広い動作時周囲温度に対応しています。

6 Pin Configuration and Functions

Pin Functions

PIN		I/O	DESCRIPTION
NAME	NO.		
A	12	I/O	Transceiver noninverting input or output (I/O) on the bus side
B	13	I/O	Transceiver inverting input or output (I/O) on the bus side
D	6	I	Driver input
DE	5	I	Driver enable. This pin enables the driver output when high and disables the driver output when low or open.
GND1	2	—	Ground connection for V _{CC1}
	8		
GND2	9	—	Ground connection for V _{CC2}
	15		
NC ⁽¹⁾	7	—	No internal connection
	11		
	14		
R	3	O	Receiver output
RE	4	I	Receiver enable. This pin disables the receiver output when high or open and enables the receiver output when low.
V _{CC1}	1	—	Logic-side power supply
V _{CC2}	10	—	Transceiver-side power supply. These pins are not connected internally and must be shorted externally on PCB.
	16		

(1) Device functionality is not affected if NC pins are connected to supply or ground on PCB

7 Specifications

7.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾⁽²⁾

		MIN	MAX	UNIT
V_{CC1}	Supply voltage, side 1	-0.5	6	V
V_{CC2}	Supply voltage, side 2	-0.5	6	V
V_{IO}	Logic voltage level (D, DE, \overline{RE} , R)	-0.5	$V_{CC1}+0.5$ ⁽³⁾	V
I_O	Output current on R pin	-15	15	mA
V_{BUS}	Voltage on bus pins (A, B, Y, Z w.r.t GND2)	-18	18	V
T_J	Junction temperature	-40	150	°C
T_{STG}	Storage temperature	-65	150	°C

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak voltage values.

(3) Maximum voltage must not exceed 6 V

7.2 ESD Ratings

			VALUE	UNIT
$V_{(ESD)}$	Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001	All pins except bus pins ⁽¹⁾	±4000	V
		Bus terminals to GND2 ⁽¹⁾	±16000	
	Electrostatic discharge Charged device model (CDM), per JEDEC specification JESD22-C101	All pins ⁽²⁾	±1500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

		MIN	MAX	UNIT
V_{CC1}	Supply Voltage, Side 1, 1.8-V operation	1.71	1.89	V
	Supply Voltage, Side 1, 2.5-V, 3.3-V and 5.5-V operation	2.25	5.5	V
V_{CC2}	Supply Voltage, Side 2	4.5	5.5	V
V_I	Common mode voltage at any bus terminal: A or B	-7	12	V
V_{IH}	High-level input voltage (D, DE, \overline{RE} inputs)	0.7* V_{CC1}	V_{CC1}	V
V_{IL}	Low-level input voltage (D, DE, \overline{RE} inputs)	0	0.3* V_{CC1}	V
V_{ID}	Differential input voltage	-12	12	V
I_O	Output current, Driver	-60	60	mA
I_{OR}	Output current, Receiver	-4	4	mA
R_L	Differential load resistance	54		Ω
$1/t_{UI}$	Signaling rate		1	Mbps
T_A	Operating ambient temperature	-40	125	°C

7.4 Thermal Information

THERMAL METRIC ⁽¹⁾		ISO1500	UNIT
		DBQ (SSOP)	
		16 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	112.7	°C/W
$R_{\theta JC(\text{top})}$	Junction-to-case (top) thermal resistance	57.2	°C/W

(1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC Package Thermal Metrics](#) application report.

Thermal Information (continued)

THERMAL METRIC ⁽¹⁾		ISO1500	UNIT
		DBQ (SSOP)	
		16 PINS	
$R_{\theta JB}$	Junction-to-board thermal resistance	64.0	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	32.1	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	63.7	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	--	°C/W

7.5 Power Ratings

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
P_D	Maximum power dissipation (both sides)	$V_{CC1} = V_{CC2} = 5.5$ V, $T_A=125^\circ\text{C}$, $T_J = 150^\circ\text{C}$, A-B load = $54 \Omega \parallel 50\text{pF}$, Load on $R=15\text{pF}$			278	mW
P_{D1}	Maximum power dissipation (side-1)				28	mW
P_{D2}	Maximum power dissipation (side-2)	Input a 500kHz 50% duty cycle square wave to D pin with $V_{DE}=V_{CC1}$, $V_{RE}=\text{GND1}$			250	mW

7.6 Insulation Specifications

PARAMETER	TEST CONDITIONS	SPECIFICATIONS		UNIT
		DBQ-16		
IEC 60664-1				
CLR	External clearance (1)	Side 1 to side 2 distance through air	>3.7	mm
CPG	External creepage (1)	Side 1 to side 2 distance across package surface	>3.7	mm
DTI	Distance through the insulation	Minimum internal gap (internal clearance)	>17	µm
CTI	Comparative tracking index	IEC 60112; UL 746A	>600	V
	Material Group	According to IEC 60664-1	I	
	Overvoltage category	Rated mains voltage \leq 300 V _{RMS}	I-III	
DIN VDE V 0884-11:2017-01 (2)				
V _{IORM}	Maximum repetitive peak isolation voltage	AC voltage (bipolar)	566	V _{PK}
V _{IOWM}	Maximum isolation working voltage	AC voltage (sine wave); time-dependent dielectric breakdown (TDDB) test;	400	V _{RMS}
		DC voltage	566	V _{DC}
V _{IOTM}	Maximum transient isolation voltage	V _{TEST} = V _{IOTM} , t = 60 s (qualification); V _{TEST} = 1.2 \times V _{IOTM} , t = 1 s (100% production)	4242	V _{PK}
V _{IOSM}	Maximum surge isolation voltage ISO1500 (3)	Test method per IEC 62368-1, 1.2/50 µs waveform, V _{TEST} = 10000 V _{PK} (qualification)	4000	V _{PK}
q _{pd}	Apparent charge (4)	Method a: After I/O safety test subgroup 2/3, V _{ini} = V _{IOTM} , t _{ini} = 60 s; V _{pd(m)} = 1.2 \times V _{IORM} , t _m = 10 s	\leq 5	pC
		Method a: After environmental tests subgroup 1, V _{ini} = V _{IOTM} , t _{ini} = 60 s; V _{pd(m)} = 1.6 \times V _{IORM} , t _m = 10 s	\leq 5	
		Method b1: At routine test (100% production) and preconditioning (type test), V _{ini} = V _{IOTM} , t _{ini} = 1 s; V _{pd(m)} = 1.875 \times V _{IORM} , t _m = 1 s	\leq 5	
C _{IO}	Barrier capacitance, input to output (5)	V _{IO} = 0.4 \times sin (2 π ft), f = 1 MHz	\sim 1	pF
R _{IO}	Insulation resistance, input to output (5)	V _{IO} = 500 V, T _A = 25°C	$>$ 10 ¹²	Ω
		V _{IO} = 500 V, 100°C \leq T _A \leq 150°C	$>$ 10 ¹¹	
		V _{IO} = 500 V at T _S = 150°C	$>$ 10 ⁹	
	Pollution degree		2	
	Climatic category		40/125/21	
UL 1577				
V _{ISO}	Withstand isolation voltage	V _{TEST} = V _{ISO} , t = 60 s (qualification); V _{TEST} = 1.2 \times V _{ISO} , t = 1 s (100% production)	3000	V _{RMS}

- (1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves, ribs, or both on a printed circuit board are used to help increase these specifications.
- (2) ISO1500 is suitable for safe *electrical insulation* within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.
- (3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.
- (4) Apparent charge is electrical discharge caused by a partial discharge (pd).
- (5) All pins on each side of the barrier tied together creating a two-pin device.

7.7 Safety-Related Certifications

VDE	CSA	UL	CQC	TUV
Certified according to DIN VDE V 0884-11:2017- 01	Plan to certify according to IEC 60950-1, IEC 62368-1	Recognized under UL 1577 Component Recognition Program	Certified according to GB4943.1-2011	Certified according to EN 61010-1:2010/A1:2019, EN 60950-1:2006/A2:2013 and EN 62368-1:2014
Maximum transient isolation voltage, 4242 V_{PK} ; Maximum repetitive peak isolation voltage, 566 V_{PK} ; Maximum surge isolation voltage, 4000 V_{PK}	CSA 60950-1-07+A1+A2 and IEC 60950-1 2nd Ed., for pollution degree 2, material group I: 370 V_{RMS}	Single protection, 3000 V_{RMS}	Basic insulation, Altitude \leq 5000 m, Tropical Climate, 400 V_{RMS} maximum working voltage	EN 61010-1:2010/A1:2019, 300 VRMS basic isolation ----- EN 60950-1:2006/A2:2013 and EN 62368-1:2014, 400 VRMS basic isolation
Certificate number: 40040142	Certificate planned	File number: E181974	Certificate number: CQC18001199097	Client ID number: 77311

7.8 Safety Limiting Values

Safety limiting⁽¹⁾ intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DBQ-16 PACKAGE					
I_S	Safety input, output, or supply current	$R_{\theta JA} = 67.9^{\circ}\text{C}/\text{W}$, $V_I = 5.5 \text{ V}$, $T_J = 150^{\circ}\text{C}$, $T_A = 25^{\circ}\text{C}$, see 图 1		201	mA
		$R_{\theta JA} = 67.9^{\circ}\text{C}/\text{W}$, $V_I = 3.6 \text{ V}$, $T_J = 150^{\circ}\text{C}$, $T_A = 25^{\circ}\text{C}$, see 图 1		308	
		$R_{\theta JA} = 67.9^{\circ}\text{C}/\text{W}$, $V_I = 2.75 \text{ V}$, $T_J = 150^{\circ}\text{C}$, $T_A = 25^{\circ}\text{C}$, see 图 1		403	
		$R_{\theta JA} = 67.9^{\circ}\text{C}/\text{W}$, $V_I = 1.89 \text{ V}$, $T_J = 150^{\circ}\text{C}$, $T_A = 25^{\circ}\text{C}$, see 图 1		586	
P_S	Safety input, output, or total power	$R_{\theta JA} = 67.9^{\circ}\text{C}/\text{W}$, $T_J = 150^{\circ}\text{C}$, $T_A = 25^{\circ}\text{C}$, see 图 2		1105	mW
T_S	Maximum safety temperature			150	°C

(1) The maximum safety temperature, T_S , has the same value as the maximum junction temperature, T_J , specified for the device. The I_S and P_S parameters represent the safety current and safety power respectively. The maximum limits of I_S and P_S should not be exceeded. These limits vary with the ambient temperature, T_A .

The junction-to-air thermal resistance, $R_{\theta JA}$, in the table is that of a device installed on a high-K test board for leaded surface-mount packages. Use these equations to calculate the value for each parameter:

$T_J = T_A + R_{\theta JA} \times P$, where P is the power dissipated in the device.

$T_{J(max)} = T_S = T_A + R_{\theta JA} \times P_S$, where $T_{J(max)}$ is the maximum allowed junction temperature.

$P_S = I_S \times V_I$, where V_I is the maximum input voltage.

7.9 Electrical Characteristics: Driver

Typical specs are at $V_{CC1}=3.3V$, $V_{CC2}=5V$, $T_A=27^\circ C$ (Min/Max specs are over recommended operating conditions unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{OOL}	Open circuit voltage, unloaded bus, $4.5V \leq V_{CC2} \leq 5.5V$	1.5	4.3	V_{CC2}	V
	$R_L = 60\Omega$, $-7V \leq V_{TEST} \leq 12V$, $4.5V < V_{CC2} < 5.5V$ (see 图 19)	1.5	2.5		V
	$R_L = 100\Omega$ (see 图 20), RS-422 load	2	2.9		V
	$R_L = 54\Omega$ (see 图 20), RS-485 load, $4.5V < V_{CC2} < 5.5V$	1.5	2.5		V
$\Delta V_{OOL} $	Change in differential output voltage between two states	$R_L = 54\Omega$ or $R_L = 100\Omega$, see 图 20	-50	50	mV
V_{OC}	Common-mode output voltage	$R_L = 54\Omega$ or $R_L = 100\Omega$, see 图 20	$0.5 \times V_{CC2}$	3	V
$\Delta V_{OC(ss)}$	change in steady-state common-mode output voltage between two states	$R_L = 54\Omega$ or $R_L = 100\Omega$, see 图 20	-50	50	mV
$V_{OC(PP)}$	Peak-to-peak common-mode output voltage	$R_L = 54\Omega$ or $R_L = 100\Omega$, see 图 20		300	mV
I_{OS}	Short-circuit output current	$V_D = V_{CC1}$ or $V_D = V_{GND1}$, $V_{DE} = V_{CC1}$, $-7V \leq V_O \leq 12V$, see 图 28	-175	175	mA
I_i	Input current	V_D and $V_{DE} = 0V$ or V_D and $V_{DE} = V_{CC1}$	-10	10	μA
CMTI	Common-mode transient immunity	$V_D = V_{CC1}$ or $GND1$, $V_{CM} = 1200V$, See 图 22	85	100	kV/ μs

7.10 Electrical Characteristics: Receiver

Typical specs are at $V_{CC1}=3.3V$, $V_{CC2}=5V$, $T_A=27^\circ C$ (Min/Max are over recommended operating conditions unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
I_{I1}	Bus input current	$V_{DE} = 0V$, $V_{CC2} = 0V$ or $V_{CC2} = 5.5V$, One bus input at $-7V$ or $12V$, other input at $0V$	-100	100	μA	
V_{TH+}	Positive-going input threshold voltage	$-7V \leq$ Common mode voltage on bus terminals $\leq 12V$	See ⁽¹⁾	-100	-50	mV
V_{TH-}	Negative-going input threshold voltage	$-7V \leq$ Common mode voltage on bus terminals $\leq 12V$	-200	-145	See ⁽¹⁾	mV
V_{HYS}	Input hysteresis ($V_{TH+} - V_{TH-}$)	$-7V \leq$ Common mode voltage on bus terminals $\leq 12V$	20	45	mV	
V_{OH}	Output high voltage on the R pin	$V_{CC1}=5V \pm 10\%$, $I_{OH} = -4mA$, $V_{ID} = 200mV$	$V_{CC1} - 0.4$		V	
		$V_{CC1}=3.3V \pm 10\%$, $I_{OH} = -2mA$, $V_{ID} = 200mV$	$V_{CC1} - 0.3$		V	
		$V_{CC1}=2.5V \pm 10\%$, $1.8V \pm 5\%$, $I_{OH} = -1mA$, $V_{ID} = 200mV$	$V_{CC1} - 0.2$		V	
V_{OL}	Output low voltage on the R pin	$V_{CC1}=5V \pm 10\%$, $I_{OL} = 4mA$, $V_{ID} = -200mV$		0.4	V	
		$V_{CC1}=3.3V \pm 10\%$, $I_{OL} = 2mA$, $V_{ID} = -200mV$		0.3	V	
		$V_{CC1}=2.5V \pm 10\%$, $1.8V \pm 5\%$, $I_{OL} = 1mA$, $V_{ID} = -200mV$		0.2	V	
I_{OZ}	Output high-impedance current on the R pin	$V_R = 0V$ or $V_R = V_{CC1}$, $V_{RE} = V_{CC1}$	-1	1	μA	
I_i	Input current on the \overline{RE} pin	$V_{RE} = 0V$ or $V_{RE} = V_{CC1}$	-10	10	μA	
CMTI	Common-mode transient immunity	$V_{ID} = 1.5V$ or $-1.5V$, $V_{CM} = 1200V$, See 图 22	85	100	kV/ μs	

(1) Under any specific conditions, V_{TH+} is ensured to be at least V_{HYS} higher than V_{TH-} .

7.11 Supply Current Characteristics: Side 1(I_{CC1})

Bus loaded or unloaded (over recommended operating conditions unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DRIVER ENABLED, RECEIVER DISABLED					
Logic-side supply current	$V_D = V_{CC1}$, $V_{CC1} = 5 \text{ V} \pm 10\%$	2.6	4.4	mA	
Logic-side supply current	$V_D = V_{CC1}$, $V_{CC1} = 3.3 \text{ V} \pm 10\%$	2.6	4.4	mA	
Logic-side supply current	$D = 1 \text{ Mbps}$ square wave with 50% duty cycle, $V_{CC1} = 5 \text{ V} \pm 10\%$	3.2	5.1	mA	
Logic-side supply current	$D = 1 \text{ Mbps}$ square wave with 50% duty cycle, $V_{CC1} = 3.3 \text{ V} \pm 10\%$	3.2	5.1	mA	
DRIVER ENABLED, RECEIVER ENABLED					
Logic-side supply current	$\bar{V_{RE}} = V_{GND1}$, $V_D = V_{CC1}$, $V_{CC1} = 5 \text{ V} \pm 10\%$	2.6	4.4	mA	
Logic-side supply current	$\bar{V_{RE}} = V_{GND1}$, $V_D = V_{CC1}$, $V_{CC1} = 3.3 \text{ V} \pm 10\%$	2.6	4.4	mA	
Logic-side supply current	$\bar{V_{RE}} = V_{GND1}$, $D = 1 \text{ Mbps}$ square wave with 50% duty cycle, $V_{CC1} = 5 \text{ V} \pm 10\%$, $C_{L(R)}^{(1)} = 15 \text{ pF}$	3.4	5.2	mA	
Logic-side supply current	$\bar{V_{RE}} = V_{GND1}$, $D = 1 \text{ Mbps}$ square wave with 50% duty cycle, $V_{CC1} = 3.3 \text{ V} \pm 10\%$, $C_{L(R)}^{(1)} = 15 \text{ pF}$	3.2	5.2	mA	
DRIVER DISABLED, RECEIVER ENABLED					
Logic-side supply current	$V_{(A-B)} \geq 200 \text{ mV}$, $V_D = V_{CC1}$, $V_{CC1} = 5 \text{ V} \pm 10\%$	1.5	3.1	mA	
Logic-side supply current	$V_{(A-B)} \geq 200 \text{ mV}$, $V_D = V_{CC1}$, $V_{CC1} = 3.3 \text{ V} \pm 10\%$	1.5	3.1	mA	
Logic-side supply current	$(A-B) = 1 \text{ Mbps}$ square wave with 50% duty cycle, $V_D = V_{CC1}$, $V_{CC1} = 5 \text{ V} \pm 10\%$, $C_{L(R)}^{(1)} = 15 \text{ pF}$	1.7	3.2	mA	
Logic-side supply current	$(A-B) = 1 \text{ Mbps}$ square wave with 50% duty cycle, $V_D = V_{CC1}$, $V_{CC1} = 3.3 \text{ V} \pm 10\%$, $C_{L(R)}^{(1)} = 15 \text{ pF}$	1.7	3.2	mA	
DRIVER DISABLED, RECEIVER DISABLED					
Logic-side supply current	$V_{DE} = V_{GND1}$, $V_D = V_{CC1}$, $V_{CC1} = 5 \text{ V} \pm 10\%$	1.5	3.1	mA	
Logic-side supply current	$V_{DE} = V_{GND1}$, $V_D = V_{CC1}$, $V_{CC1} = 3.3 \text{ V} \pm 10\%$	1.5	3.1	mA	

(1) $C_{L(R)}$ is the load capacitance on the R pin.

7.12 Supply Current Characteristics: Side 2(I_{CC2})

$\bar{V_{RE}} = V_{GND1}$ or $\bar{V_{RE}} = V_{CC1}$ (over recommended operating conditions unless otherwise noted)

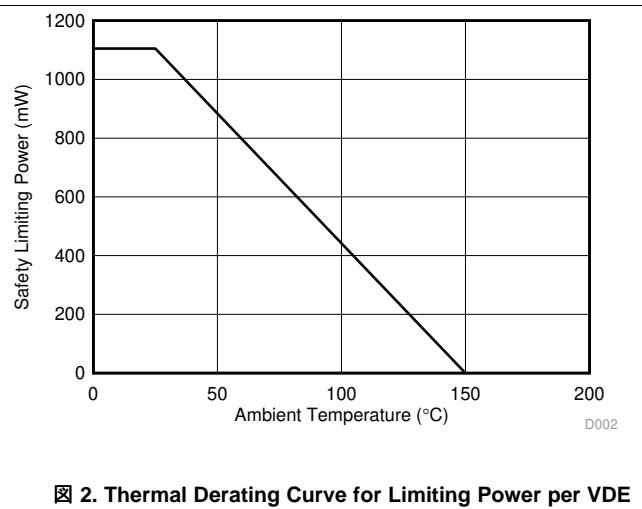
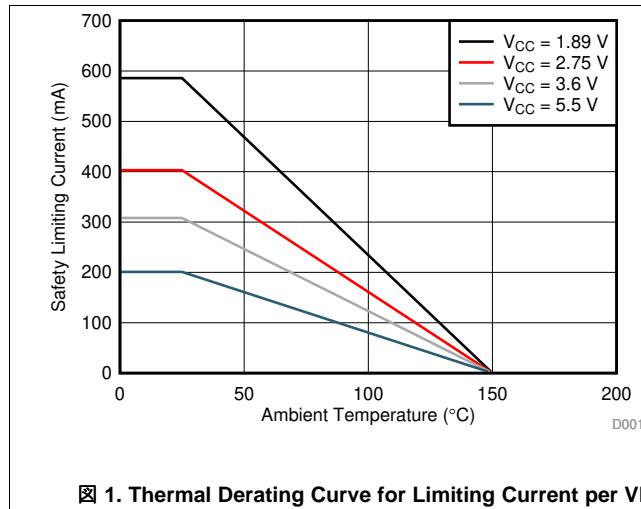
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DRIVER ENABLED, BUS UNLOADED					
Bus-side supply current	$V_D = V_{CC1}$, $V_{CC2} = 5 \text{ V} \pm 10\%$	2.5	4.4	mA	
DRIVER ENABLED, BUS LOADED					
Bus-side supply current	$V_D = V_{CC1}$, $R_L = 54 \Omega$, $V_{CC2} = 5 \text{ V} \pm 10\%$	52	70	mA	
Bus-side supply current	$D = 1 \text{ Mbps}$ square wave with 50% duty cycle, $R_L = 54 \Omega$, $C_L = 50 \text{ pF}$, $V_{CC2} = 5 \text{ V} \pm 10\%$	60	80	mA	
DRIVER DISABLED, BUS LOADED OR UNLOADED					
Bus-side supply current	$V_D = V_{CC1}$, $V_{CC2} = 5 \text{ V} \pm 10\%$	2.4	3.9	mA	

7.13 Switching Characteristics: Driver

Typical specs are at $V_{CC1}=3.3V$, $V_{CC2}=5V$, $T_A=27^\circ C$ (Min/Max specs over recommended operating conditions unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
1Mbps DEVICE						
t_r, t_f	Differential output rise time and fall time	$R_L = 54 \Omega$, $C_L = 50 \text{ pF}$, see 图 21	210	300	ns	
t_{PHL}, t_{PLH}	Propagation delay	$R_L = 54 \Omega$, $C_L = 50 \text{ pF}$, see 图 21	210	300	ns	
PWD	Pulse width distortion ⁽¹⁾ , $ t_{PHL} - t_{PLH} $	$R_L = 54 \Omega$, $C_L = 50 \text{ pF}$, see 图 21	3	30	ns	
t_{PHZ}, t_{PLZ}	Disable time	See 图 23 , and 图 24	160	250	ns	
t_{PZH}, t_{PZL}	Enable time	See 图 23 , and 图 24	200	400	ns	

(1) Also known as pulse skew.



7.14 Switching Characteristics: Receiver

Typical specs are at $V_{CC1}=3.3V$, $V_{CC2}=5V$, $T_A=27^\circ C$ (Min/Max are over recommended operating conditions unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
1Mbps DEVICE						
t_r, t_f	Differential output rise time and fall time	$C_L = 15 \text{ pF}$, see 图 25	2.4	4	ns	
t_{PHL}, t_{PLH}	Propagation delay	$C_L = 15 \text{ pF}$, see 图 25	120	180	ns	
PWD	Pulse width distortion ⁽¹⁾ , $ t_{PHL} - t_{PLH} $	$C_L = 15 \text{ pF}$, see 图 25	5	20	ns	
t_{PHZ}, t_{PLZ}	Disable time	See 图 26 and 图 27	11	30	ns	
t_{PZH}, t_{PZL}	Enable time	See 图 26 and 图 27	7	20	ns	

(1) Also known as pulse skew.

7.15 Insulation Characteristics Curves

7.16 Typical Characteristics

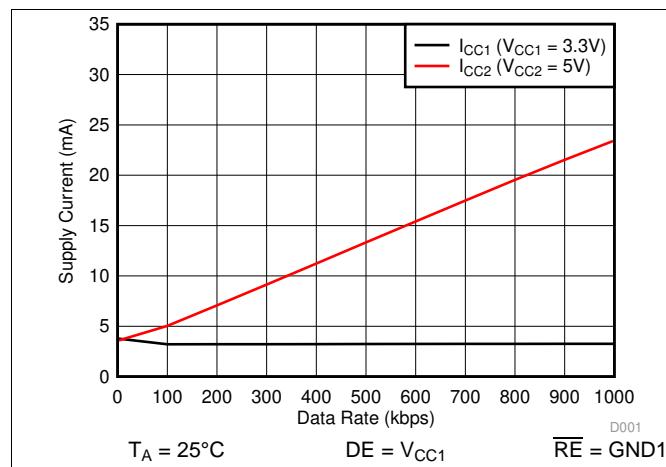


图 3. Supply Current Vs Data Rate- No Load

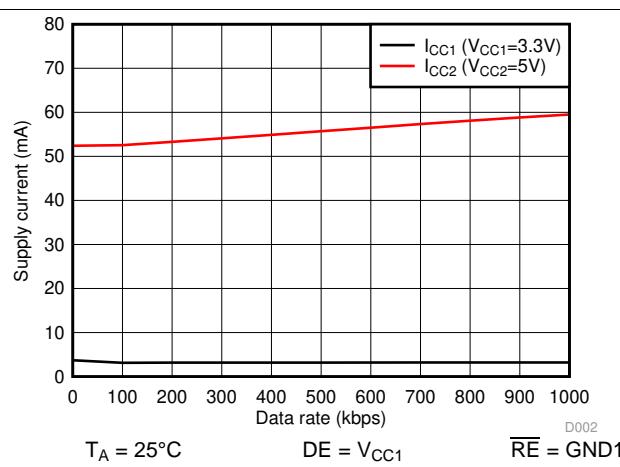


图 4. Supply Current Vs Data Rate- with $54 \Omega \parallel 50 \text{ pF}$ Load

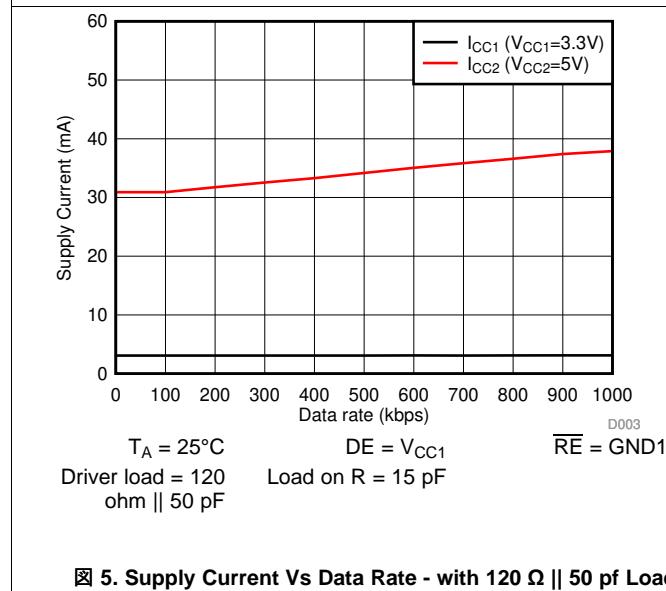


图 5. Supply Current Vs Data Rate - with $120 \Omega \parallel 50 \text{ pF}$ Load

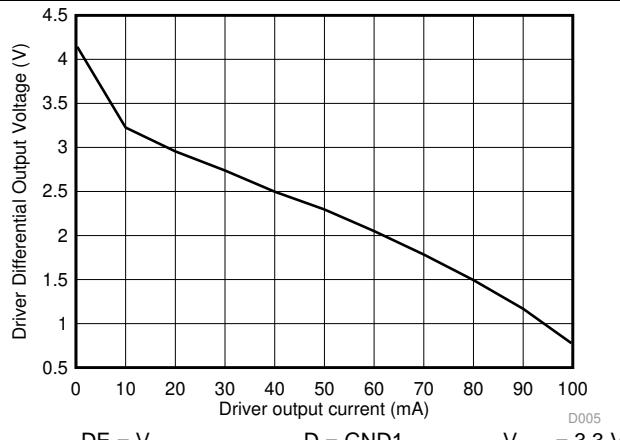
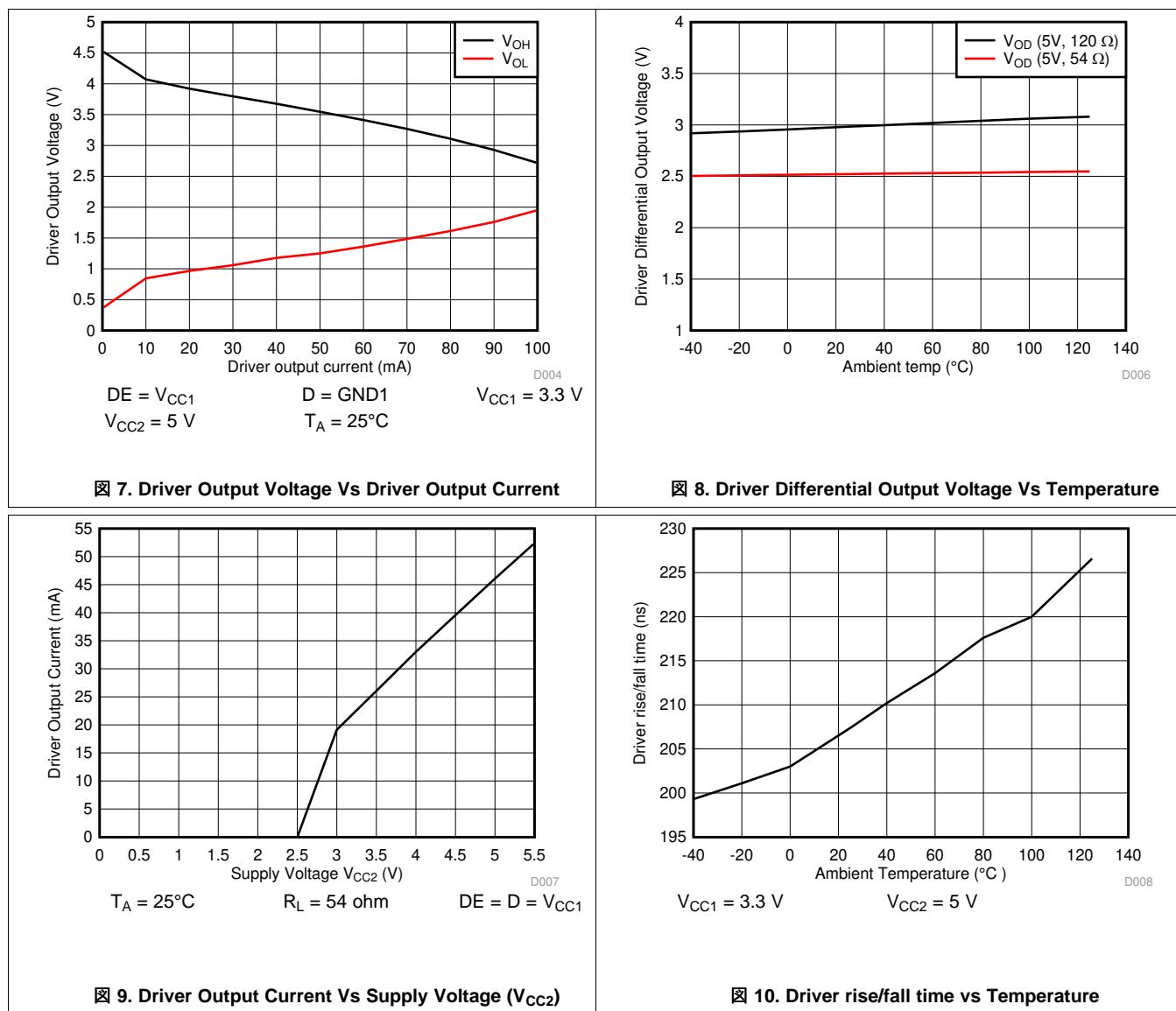



图 6. Driver Differential Output Voltage Vs Driver Output Current

Typical Characteristics (continued)

Typical Characteristics (continued)

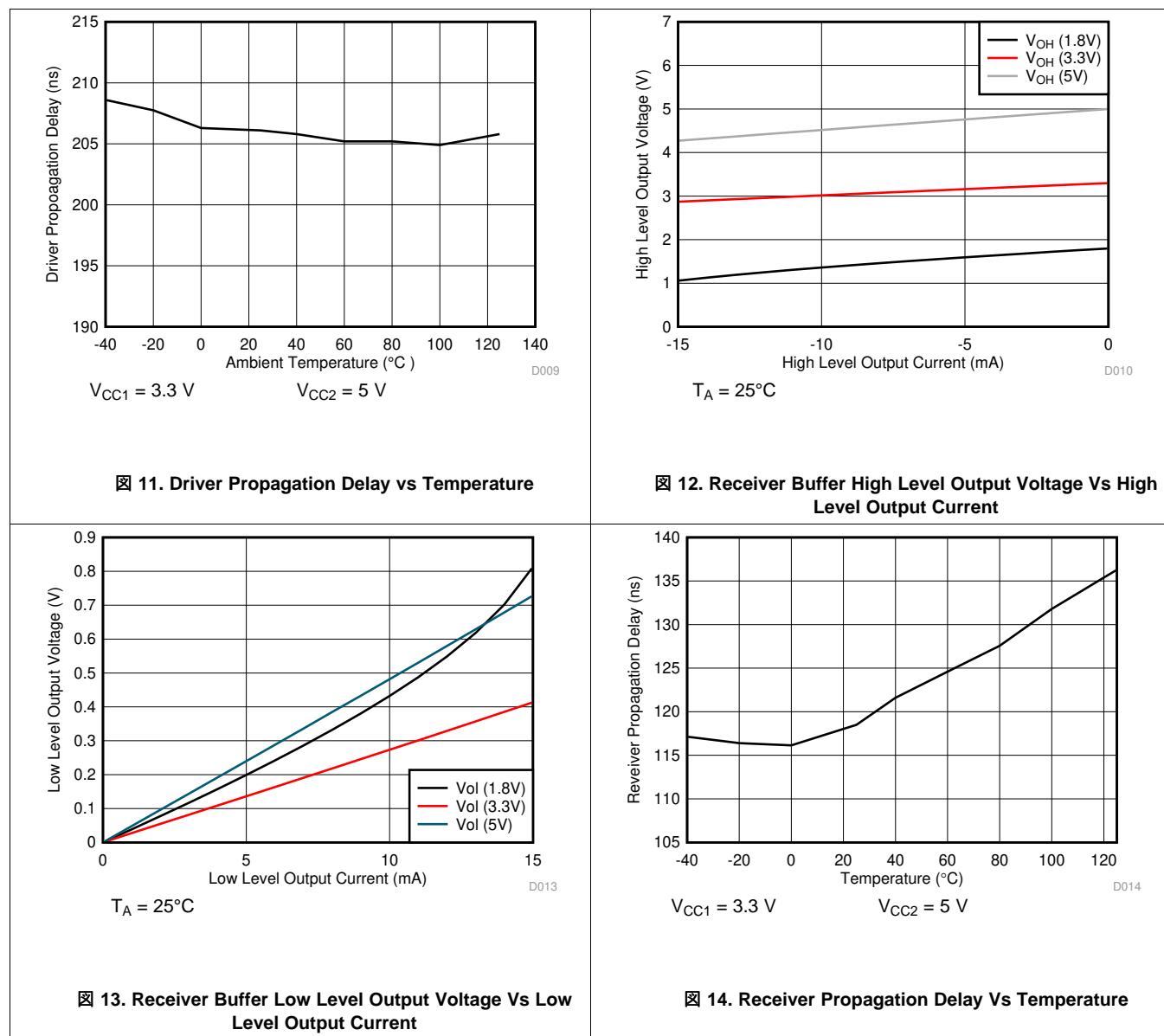


图 11. Driver Propagation Delay vs Temperature

图 12. Receiver Buffer High Level Output Voltage Vs High Level Output Current

图 13. Receiver Buffer Low Level Output Voltage Vs Low Level Output Current

图 14. Receiver Propagation Delay Vs Temperature

Typical Characteristics (continued)

图 15. Driver Propagation delay



图 16. Receiver Propagation Delay

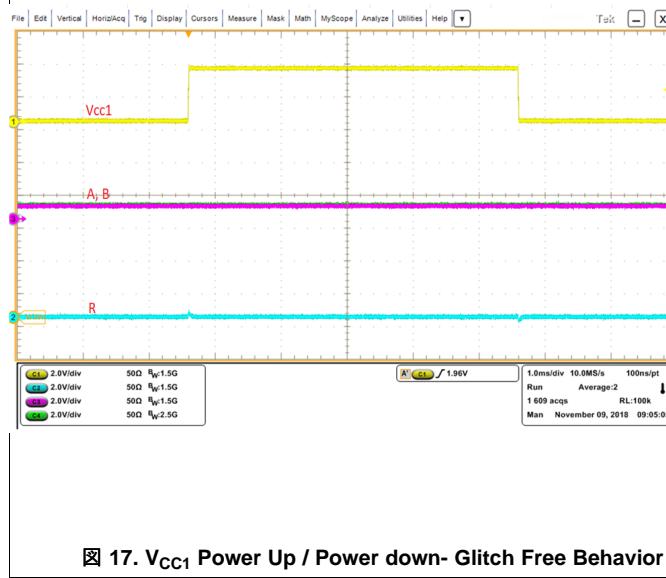


图 17. V_{CC1} Power Up / Power down- Glitch Free Behavior

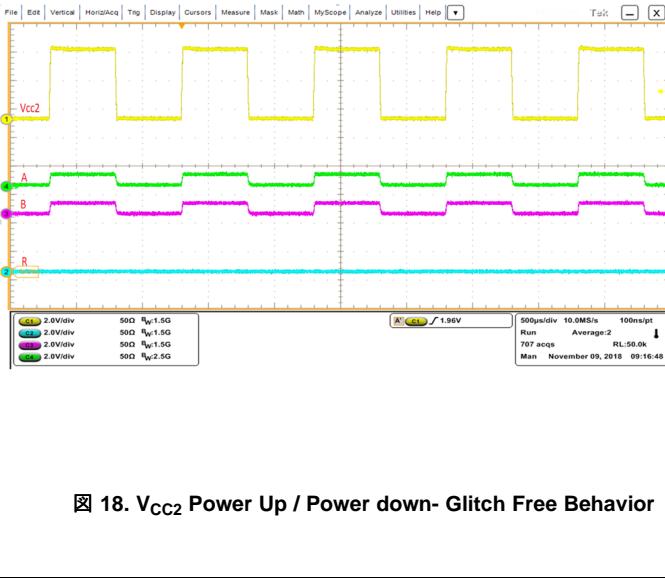


图 18. V_{CC2} Power Up / Power down- Glitch Free Behavior

8 Parameter Measurement Information

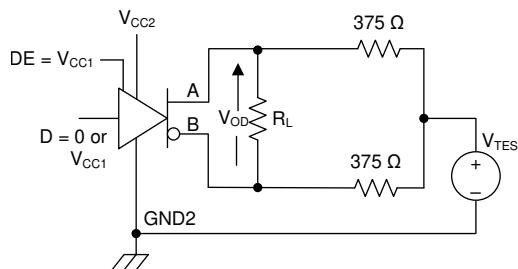
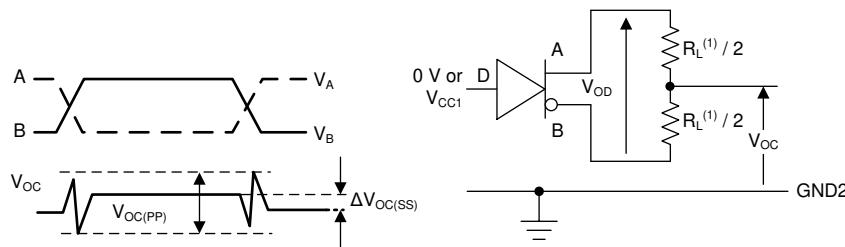
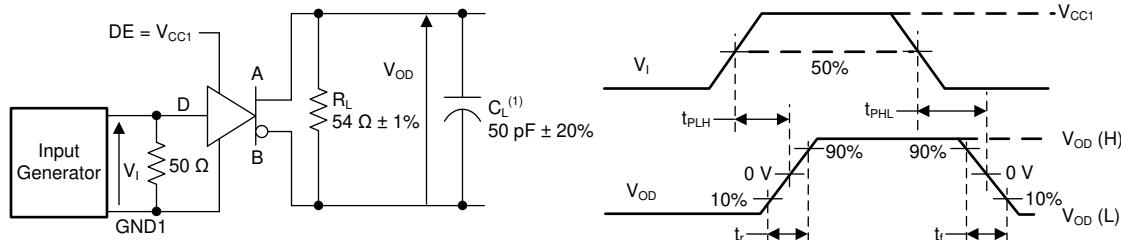




图 19. Driver Voltages

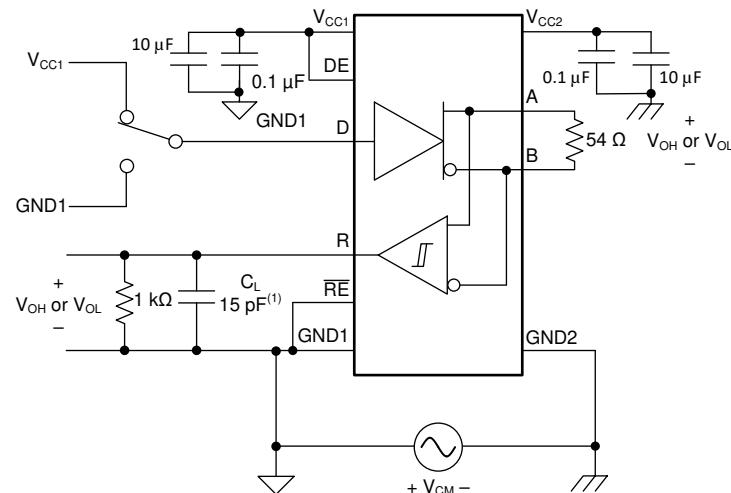
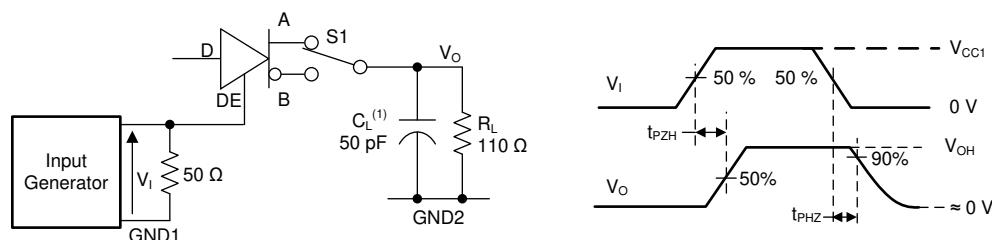

(1) $R_L = 100 \Omega$ for RS422, $R_L = 54 \Omega$ for RS-485

图 20. Driver Voltages

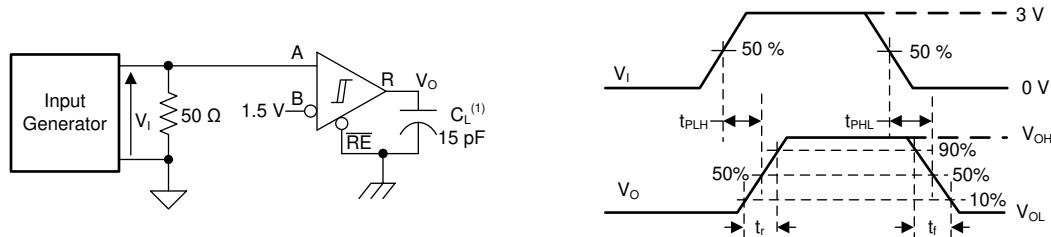
(1) C_L includes fixture and instrumentation capacitance.


图 21. Driver Switching Specifications

(1) Includes probe and fixture capacitance.


图 22. Common Mode Transient Immunity (CMTI)–Half Duplex

Parameter Measurement Information (continued)



(1) C_L includes fixture and instrumentation capacitance

图 23. Driver Enable and Disable Times

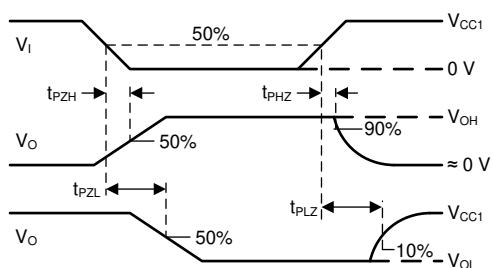


图 24. Driver Enable and Disable Times

(1) C_L includes fixture and instrumentation capacitance.

图 25. Receiver Switching Specifications

图 26. Receiver Enable and Disable Times

Parameter Measurement Information (continued)

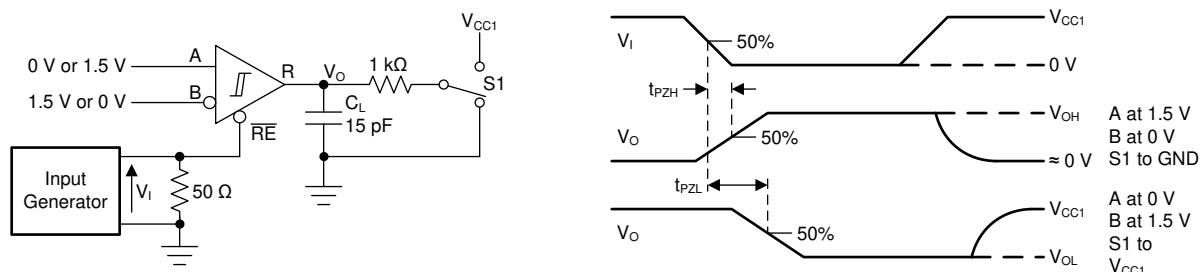
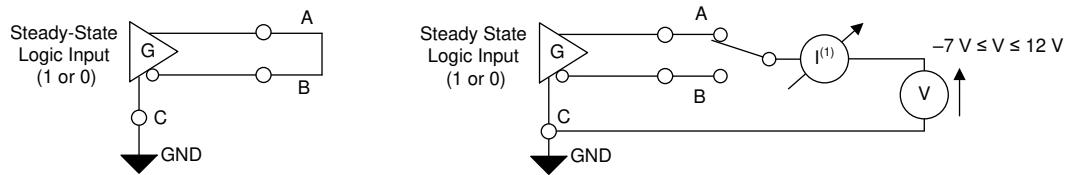
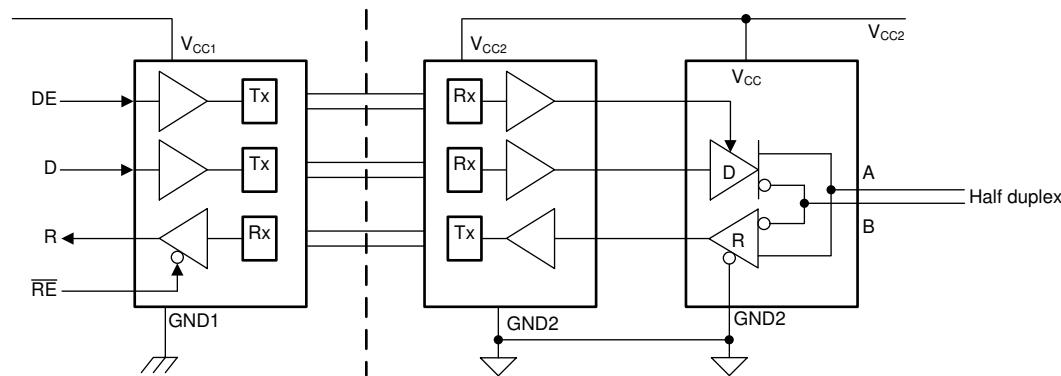



图 27. Receiver Enable and Disable Times

(1) The driver should not sustain any damage with this configuration.


图 28. Short-Circuit Current Limiting

9 Detailed Description

9.1 Overview

The ISO1500 device is an isolated RS-485/RS-422 transceiver designed to operate in harsh industrial environments. This device supports data transmissions up to 1 Mbps. The ISO1500 device has a 3-channel digital isolator and an RS-485 transceiver in an ultra-small SSOP package. The silicon-dioxide based capacitive isolation barrier supports an isolation withstand voltage of 3 kV_{RMS} and an isolation working voltage of 566 V_{PK}. Isolation breaks the ground loop between the communicating nodes and lets data transfer in the presence of large ground potential differences. The wide logic supply of the device (V_{CC1}) supports interfacing with 1.8-V, 2.5-V, 3.3-V, and 5-V control logic. [Functional Block Diagram](#) shows the functional block diagram of the the half-duplex device.

9.2 Functional Block Diagram

9.3 Feature Description

[表 1](#) shows an overview of the device features.

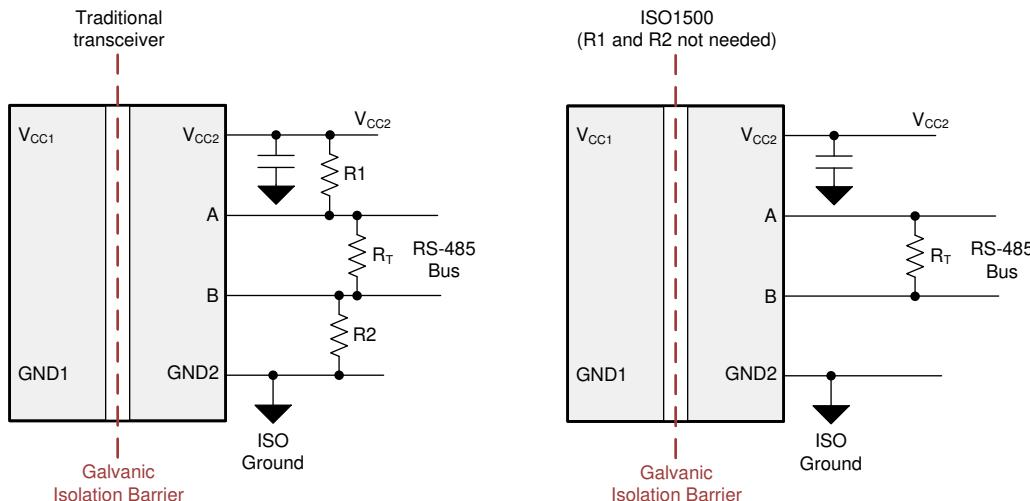
表 1. Device Features

PART NUMBER	ISOLATION	DUPLEX	DATA RATE	PACKAGE
ISO1500	Basic	Half	1 Mbps	16-pin SSOP

9.3.1 Electromagnetic Compatibility (EMC) Considerations

Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge (ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level performance and reliability depends, to a large extent, on the application board design and layout, the ISO1500 device has dedicated circuitry to help protect the transceiver from Contact ESD per IEC61000-4-2.

9.3.2 Failsafe Receiver


The differential receiver of the ISO1500 device has failsafe protection from invalid bus states caused by:

- Open bus conditions such as a broken cable or a disconnected connector
- Shorted bus conditions such as insulation breakdown of a cable that shorts the twisted-pair
- Idle bus conditions that occur when no driver on the bus is actively driving

The differential input of the RS-485 receiver is 0 in any of these conditions for a terminated transmission line. The receiver outputs a failsafe logic-high state so that the output of the receiver is not indeterminate.

The receiver thresholds are offset in the receiver failsafe protection so that the indeterminate range of the input does not include a 0 V differential. The receiver output must generate a logic high when the differential input (V_{ID}) is greater than 200 mV to comply with the RS-485 standard. The receiver output must also generate a logic low when V_{ID} is less than -200 mV to comply with the RS-485 standard. The receiver parameters that determine the failsafe performance are V_{TH+} , V_{TH-} , and V_{HYS} . Differential signals less than -200 mV always cause a low receiver output as shown in the *Electrical Characteristics* table. Differential signals greater than 200 mV always cause a high receiver output. A differential input signal that is near zero is still greater than the V_{TH+} threshold which makes the receiver output logic high. The receiver output goes to a low state only when the differential input decreases by V_{HYS} to less than V_{TH+} .

The internal failsafe biasing feature removes the need for the two external resistors that are typically required with traditional isolated RS-485 transceivers as shown in [图 29](#).

[图 29. Failsafe Transceiver](#)

9.3.3 Thermal Shutdown

The ISO1500 device has a thermal shutdown circuit to protect against damage when a fault condition occurs. A driver output short circuit or bus contention condition can cause the driver current to increase significantly which increases the power dissipation inside the device. An increase in the die temperature is monitored and the device is disabled when the die temperature becomes 170°C (typical) which lets the device decrease the temperature. The device is enabled when the junction temperature becomes 163°C (typical).

9.3.4 Glitch-Free Power Up and Power Down

Communication on the bus that already exist between a master node and slave node in an RS485 network must not be disturbed when a new node is swapped in or out of the network. No glitches on the bus occur when the device is:

- Hot plugged into the network in an unpowered state
- Hot plugged into the network in a powered state and disabled state
- Powered up or powered down in a disabled state when already connected to the bus

The ISO1500 device does not cause any false data toggling on the bus when powered up or powered down in a disabled state with supply ramp rates from 100 μ s to 10 ms.

9.4 Device Functional Modes

表 2 shows the driver functional modes.

表 2. Driver Functional Table⁽¹⁾

V _{CC1}	V _{CC2}	INPUT D	DRIVER ENABLE DE	OUTPUTS	
				A	B
PU	PU	H	H	H	L
		L	H	L	H
		X	L	Hi-Z	Hi-Z
		X	Open	Hi-Z	Hi-Z
		Open	H	H	L
PD ⁽²⁾	PU	X	X	Hi-Z	Hi-Z
X	PD	X	X	Hi-Z	Hi-Z

(1) PU = Powered Up; PD = Powered Down; H = High Level; L = Low level; X = Irrelevant, Hi-Z = High impedance state

(2) A strongly driven input signal can weakly power the floating V_{CC1} through an internal protection diode and cause an undetermined output.

When the driver enable pin, DE, is logic high, the differential outputs, A and B, follow the logic states at data input, D. A logic high at the D input causes the A output to go high and the B output to go low. Therefore the differential output voltage defined by 式 1 is positive.

$$V_{OD} = V_A - V_B \quad (1)$$

A logic low at the D input causes the B output to go high and the A output to go low. Therefore the differential output voltage defined by 式 1 is negative. A logic low at the DE input causes both outputs to go to the high-impedance (Hi-Z) state. The logic state at the D pin is irrelevant when the DE input is logic low. The DE pin has an internal pulldown resistor to ground. The driver is disabled (bus outputs are in the Hi-Z) by default when the DE pin is left open. The D pin has an internal pullup resistor. The A output goes high and the B output goes low when the D pin is left open while the driver enabled.

表 3 shows the receiver functional modes.

表 3. Receiver Functional Table⁽¹⁾

V _{CC1}	V _{CC2}	DIFFERENTIAL INPUT	RECEIVER ENABLE RE	OUTPUT R
PU	PU	V _{ID} = V _A - V _B		
		-0.02 V ≤ V _{ID}	L	H
		-0.2 V < V _{ID} < 0.02 V	L	Indeterminate
		V _{ID} ≤ -0.2 V	L	L
		X	H	Hi-Z
		X	Open	Hi-Z
PD ⁽²⁾	PU	Open, Short, Idle	L	H
	PU	X	X	Hi-Z
	PD	X	L	H
PD ⁽²⁾	PD	X	X	Hi-Z

(1) PU = Powered Up; PD = Powered Down; H = Logic High; L = Logic Low; X = Irrelevant, Hi-Z = High Impedance (OFF) state

(2) A strongly driven input signal can weakly power the floating V_{CC1} through an internal protection diode and cause an undetermined output.

The receiver is enabled when the receiver enable pin, \overline{RE} , is logic low. The receiver output, R , goes high when the differential input voltage defined by 式 2 is greater than the positive input threshold, V_{TH+} .

$$V_{ID} = V_A - V_B \quad (2)$$

The receiver output, R , goes low when the differential input voltage defined by 式 2 is less than the negative input threshold, V_{TH-} . If the V_{ID} voltage is between the V_{TH+} and V_{TH-} thresholds, the output is indeterminate. The receiver output is in the Hi-Z state and the magnitude and polarity of V_{ID} are irrelevant when the \overline{RE} pin is logic high or left open. The internal biasing of the receiver inputs causes the output to go to a failsafe-high when the transceiver is disconnected from the bus (open-circuit), the bus lines are shorted to one another (short-circuit), or the bus is not actively driven (idle bus).

9.4.1 Device I/O Schematics

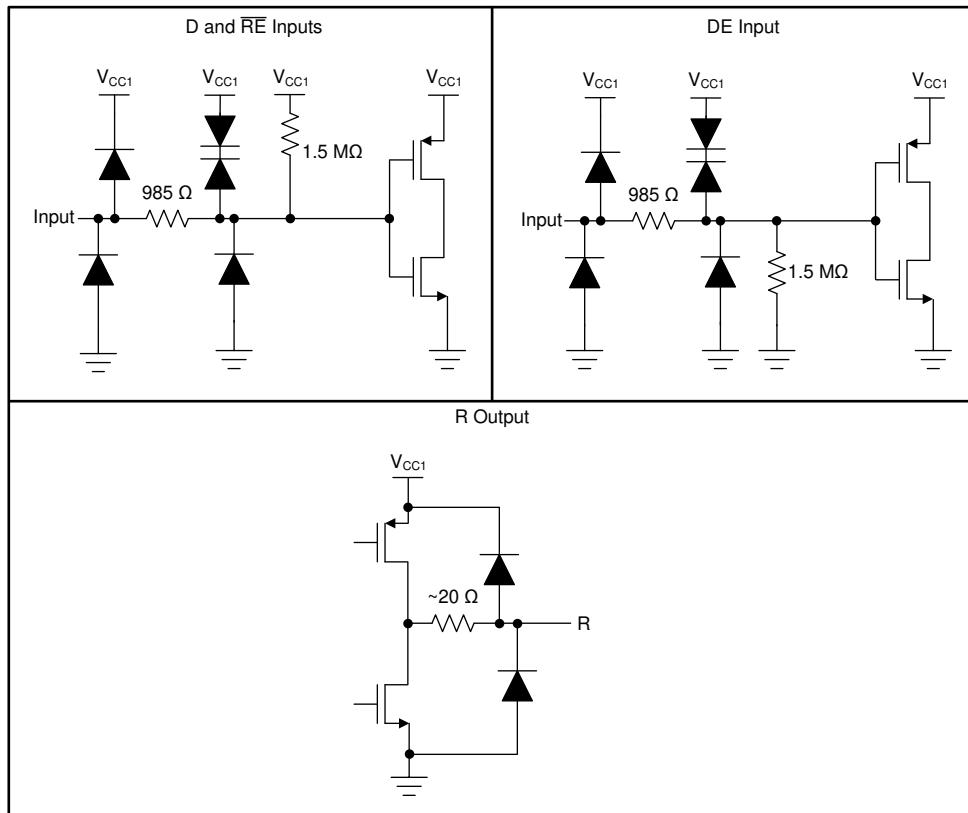


图 30. Device I/O Schematics

10 Application and Implementation

注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

The ISO1500 device is designed for bidirectional data transfer on multipoint RS-485 networks. The design of each RS-485 node in the network requires an ISO1500 device and an isolated power supply as shown in [图 32](#).

An RS-485 bus has multiple transceivers that connect in parallel to a bus cable. Both cable ends are terminated with a termination resistor, R_T , to remove line reflections. The value of R_T matches the characteristic impedance, Z_0 , of the cable. This method, known as parallel termination, lets higher data rates be used over a longer cable length.

In half-duplex implementation, as shown in [图 31](#), the driver and receiver enable pins let any node at any given moment be configured in either transmit or receive mode which decreases cable requirements.

图 31. Half-Duplex Network Circuit

10.2 Typical Application

图 32 shows the application circuit of the ISO1500 device.

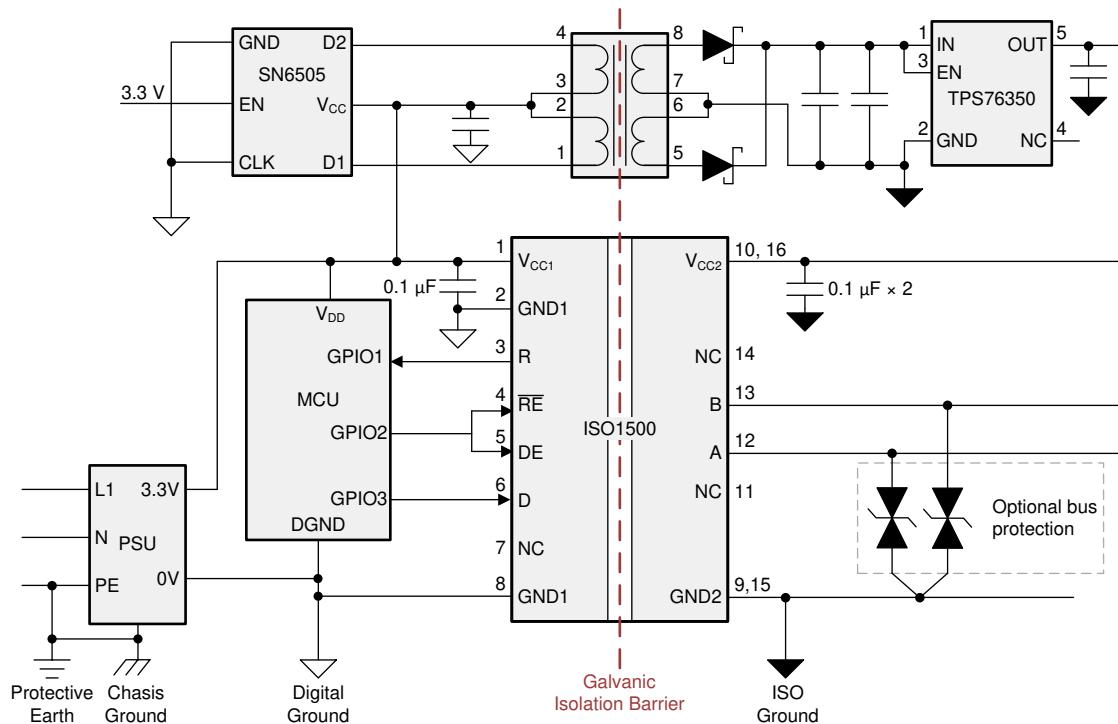
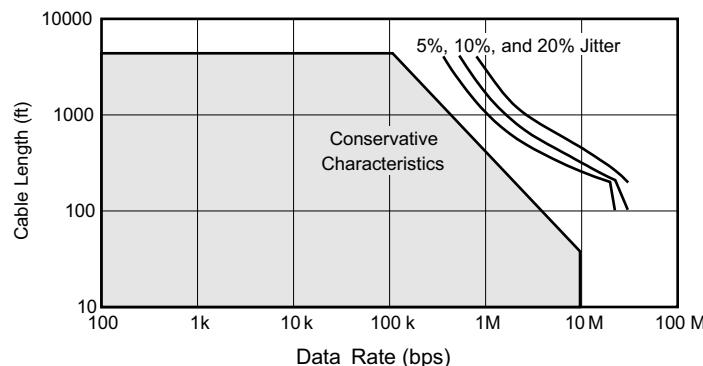


图 32. Typical Application

10.2.1 Design Requirements

Unlike an optocoupler-based solution, which requires several external components to improve performance, provide bias, or limit current, the ISO1500 device only requires external bypass capacitors to operate.


10.2.2 Detailed Design Procedure

The RS-485 bus is a robust electrical interface suitable for long-distance communications. The RS-485 interface can be used in a wide range of applications with varying requirements of distance of communication, data rate, and number of nodes.

10.2.2.1 Data Rate and Bus Length

The RS-485 standard has typical curves similar to those shown in 图 33. These curves show the inverse relationship between signaling rate and cable length. If the data rate of the payload between two nodes is lower, the cable length between the nodes can be longer.

Typical Application (continued)

图 33. Cable Length vs Data Rate Characteristics

Applications can increase the cable length at slower data rates compared to what is shown in 图 33 by allowing for jitter of 5% or higher. Use 图 33 as a guideline for cable selection, data rate, cable length and subsequent jitter budgeting.

10.2.2.2 Stub Length

In an RS-485 network, the distance between the transceiver inputs and the cable trunk is known as the *stub*. The stub should be as short as possible when a node is connected to the bus. Stubs are a non-terminated piece of bus line that can introduce reflections of varying phase as the length of the stub increases. The electrical length, or round-trip delay, of a stub should be less than one-tenth of the rise time of the driver as a general guideline. Therefore, the maximum physical stub length ($L_{(STUB)}$) is calculated as shown in 式 3.

$$L_{(STUB)} \leq 0.1 \times t_r \times v \times c$$

where

- t_r is the 10/90 rise time of the driver.
- c is the speed of light (3×10^8 m/s).
- v is the signal velocity of the cable or trace as a factor of c .

(3)

10.2.2.3 Bus Loading

The current supplied by the driver must supply into a load because the output of the driver depends on this current. Add transceivers to the bus to increase the total bus loading. The RS-485 standard specifies a hypothetical term of a unit load (UL) to estimate the maximum number of possible bus loads. The UL represents a load impedance of approximately 12 k Ω . Standard-compliant drivers must be able to drive 32 of these ULs.

The ISO1500 device has 1/8 UL impedance transceiver and can connect up to 256 nodes to the bus.

11 Power Supply Recommendations

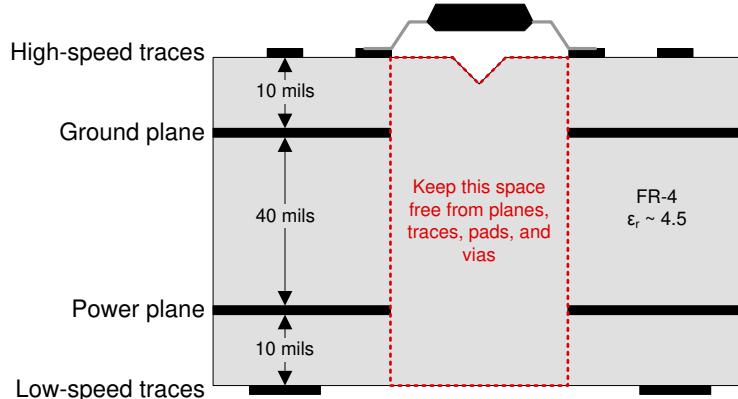
To make sure device operation is reliable at all data rates and supply voltages, a 0.1- μ F bypass capacitor is recommended at the logic and transceiver supply pins (V_{CC1} and V_{CC2}). The capacitors should be placed as near to the supply pins as possible. Side 2 requires one V_{CC2} decoupling capacitor on each V_{CC2} pin. If only one primary-side power supply is available in an application, isolated power can be generated for the secondary-side with the help of a transformer driver such as TI's [SN6505B](#) device. For such applications, detailed power supply design and transformer selection recommendations are available in the [SN6505 Low-Noise 1-A Transformer Drivers for Isolated Power Supplies](#) data sheet.

12 Layout

12.1 Layout Guidelines

A minimum of four layers is required to accomplish a low EMI PCB design (see [Figure 34](#)). Layer stacking should be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency signal layer.

- Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits of the data link.
- Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for transmission line interconnects and provides an excellent low-inductance path for the return current flow.
- Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of approximately 100 pF/in².
- Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links usually have margin to tolerate discontinuities such as vias.


[Figure 35](#) shows the recommended placement and routing of the device bypass capacitors and optional TVS diodes. Put the two V_{CC2} bypass capacitors on the top layer and as near to the device pins as possible. Do not use vias to complete the connection to the V_{CC2} and GND2 pins. If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the power and ground plane of each power system can be placed closer together, thus increasing the high-frequency bypass capacitance significantly.

Refer to the [Digital Isolator Design Guide](#) for detailed layout recommendations.

12.1.1 PCB Material

For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and the self-extinguishing flammability-characteristics.

12.2 Layout Example

Figure 34. Recommended Layer Stack

Layout Example (continued)

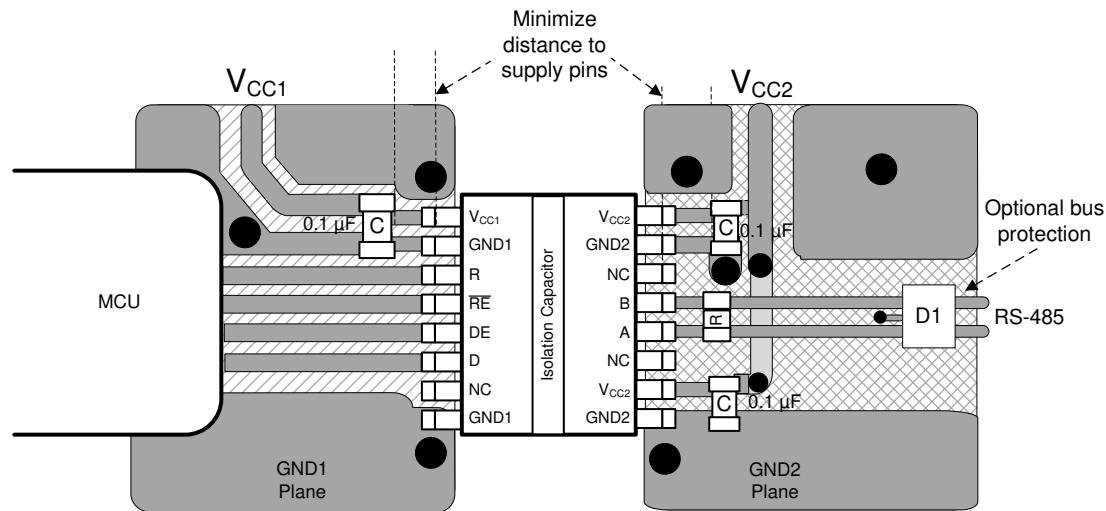


図 35. Layout Example

13 デバイスおよびドキュメントのサポート

13.1 ドキュメントのサポート

13.1.1 関連資料

関連資料については、以下を参照してください。

- テキサス・インスツルメンツ、『デジタル・アイソレータ設計ガイド』
- テキサス・インスツルメンツ、『絶縁の用語集』
- テキサス・インスツルメンツ、『ISO1500絶縁型RS-485半二重評価基板』ユーザー・ガイド

13.2 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、ti.comのデバイス製品フォルダを開いてください。右上の「アラートを受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。

13.3 コミュニティ・リソース

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

13.4 商標

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

13.5 静電気放電に関する注意事項

 すべての集積回路は、適切なESD保護方法を用いて、取扱いと保存を行うようにして下さい。
静電気放電はわずかな性能の低下から完全なデバイスの故障に至るまで、様々な損傷を与えます。高精度の集積回路は、損傷に対して敏感であり、極めてわずかなパラメータの変化により、デバイスに規定された仕様に適合しなくなる場合があります。

13.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

14 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。これらの情報は、指定のデバイスに対して提供されている最新のデータです。このデータは予告なく変更されることがあります。ドキュメントが改訂される場合もあります。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。

PACKAGING INFORMATION

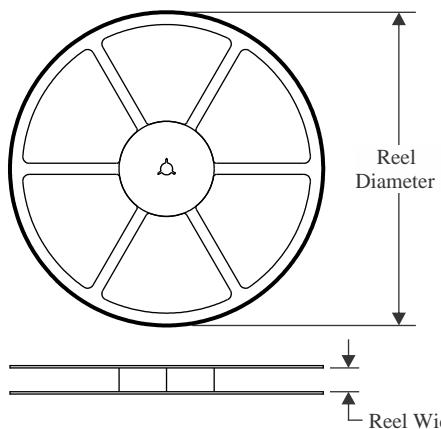
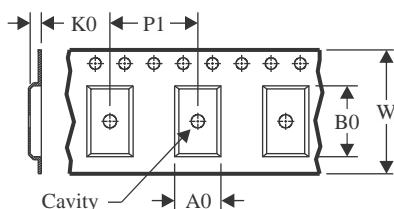
Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
ISO1500DBQ	Active	Production	SSOP (DBQ) 16	75 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	1500
ISO1500DBQR	Active	Production	SSOP (DBQ) 16	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	1500
ISO1500DBQRG4	Active	Production	SSOP (DBQ) 16	2500 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	1500

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

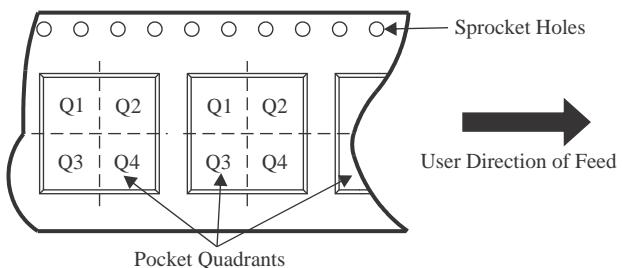
⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

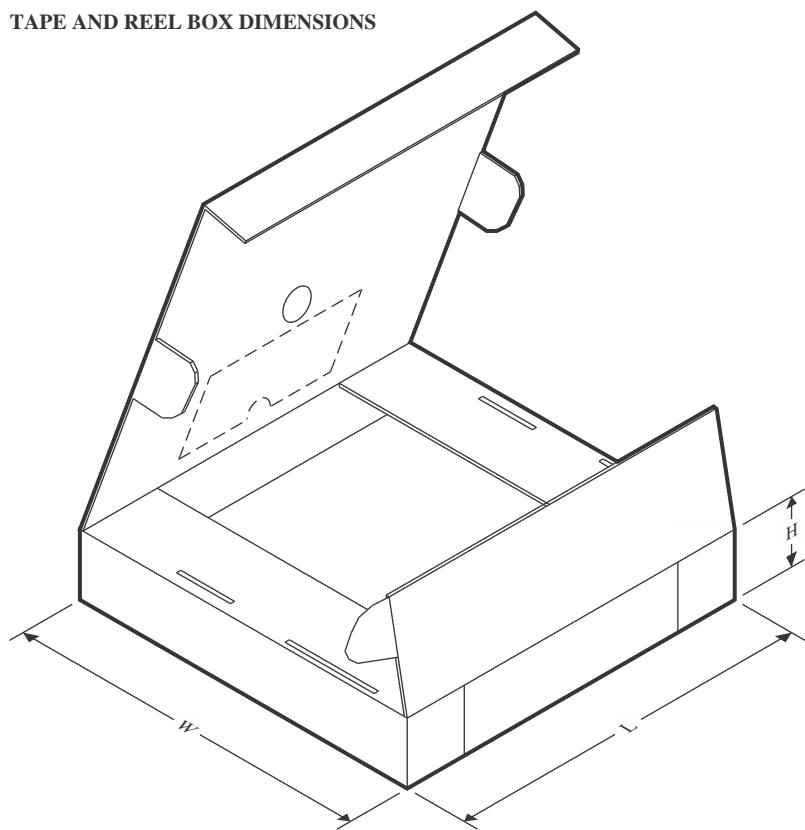


⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.


Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

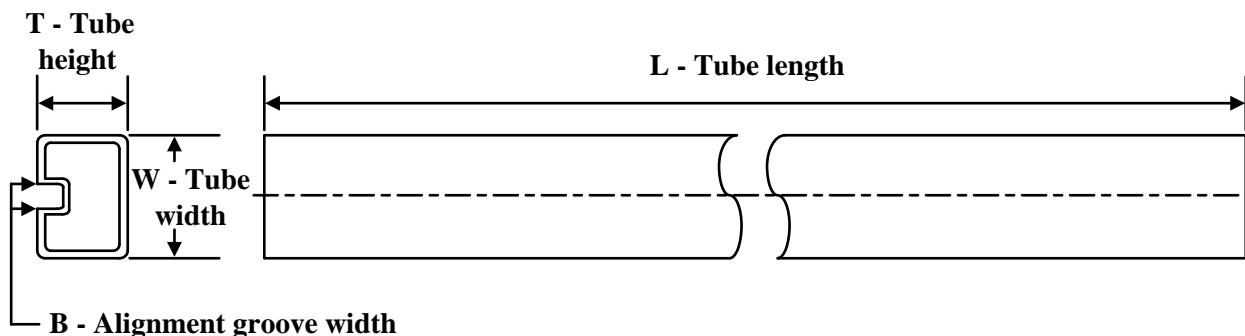
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION
REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ISO1500DBQR	SSOP	DBQ	16	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
ISO1500DBQRG4	SSOP	DBQ	16	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

TAPE AND REEL BOX DIMENSIONS

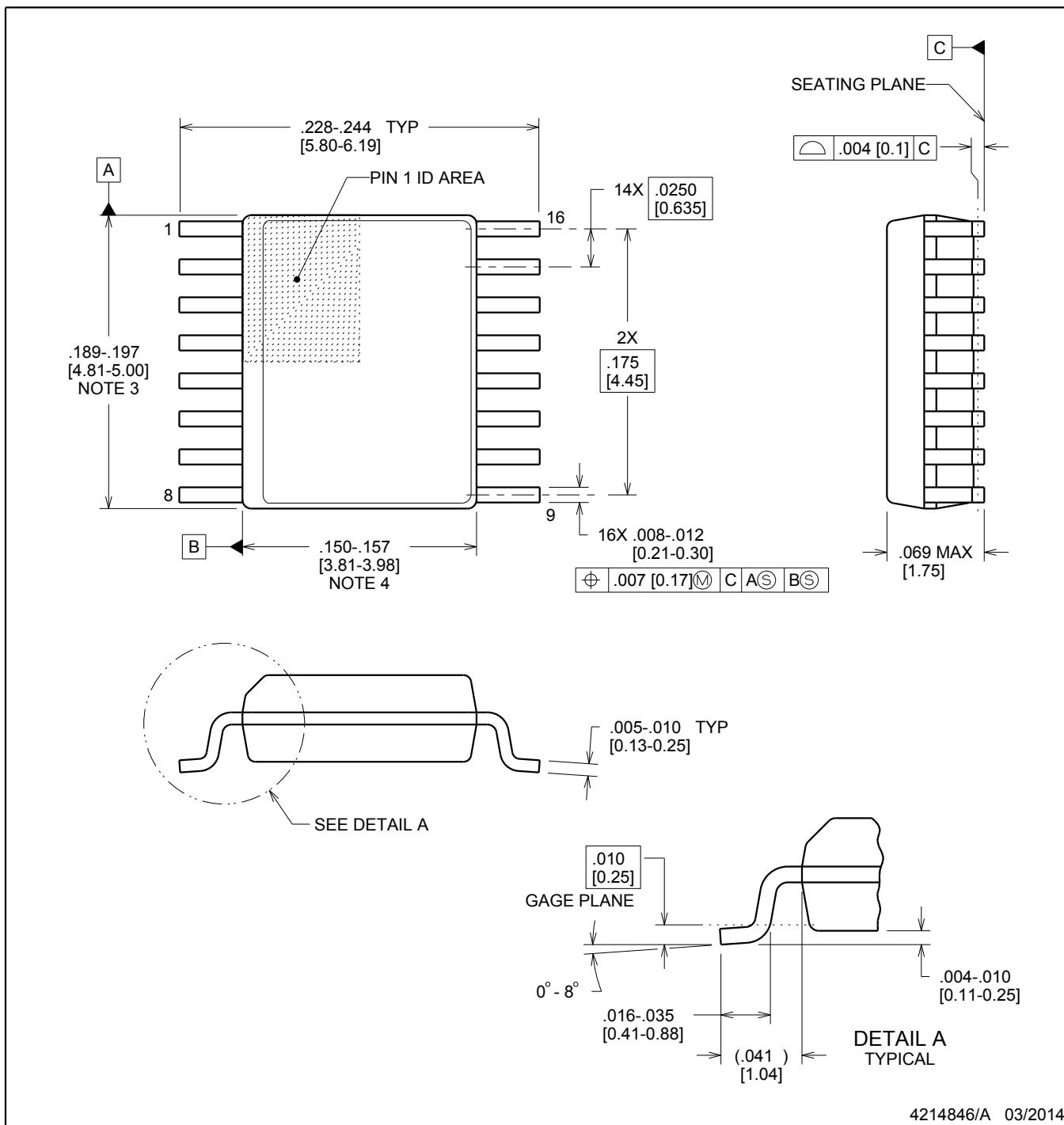
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ISO1500DBQR	SSOP	DBQ	16	2500	350.0	350.0	43.0
ISO1500DBQRG4	SSOP	DBQ	16	2500	350.0	350.0	43.0

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (μ m)	B (mm)
ISO1500DBQ	DBQ	SSOP	16	75	505.46	6.76	3810	4



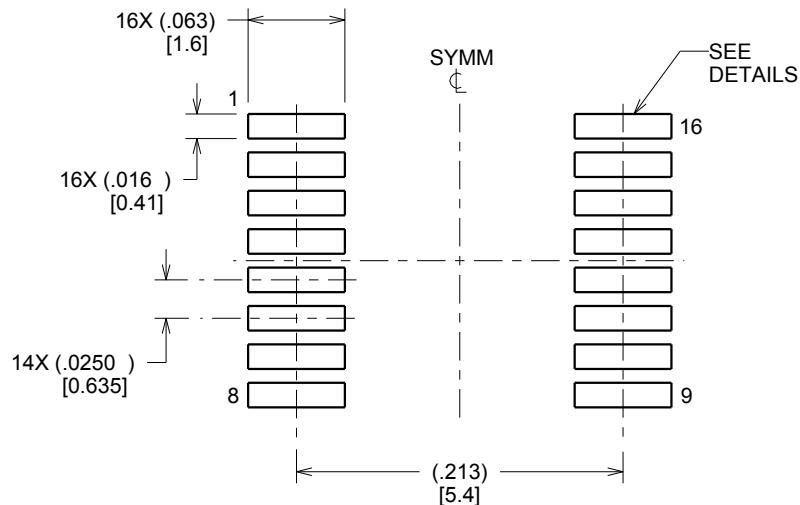
PACKAGE OUTLINE

DBQ0016A

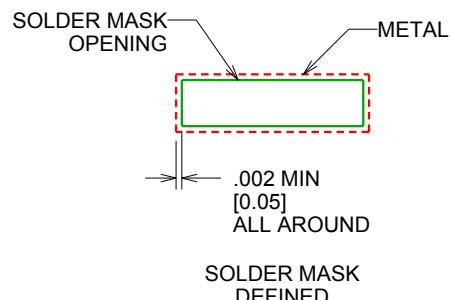
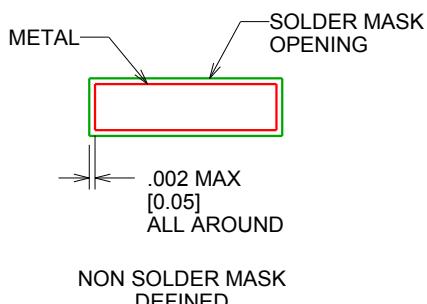
SSOP - 1.75 mm max height

SHRINK SMALL-OUTLINE PACKAGE

NOTES:


- Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- This drawing is subject to change without notice.
- This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 inch, per side.
- This dimension does not include interlead flash.
- Reference JEDEC registration MO-137, variation AB.

EXAMPLE BOARD LAYOUT



DBQ0016A

SSOP - 1.75 mm max height

SHRINK SMALL-OUTLINE PACKAGE

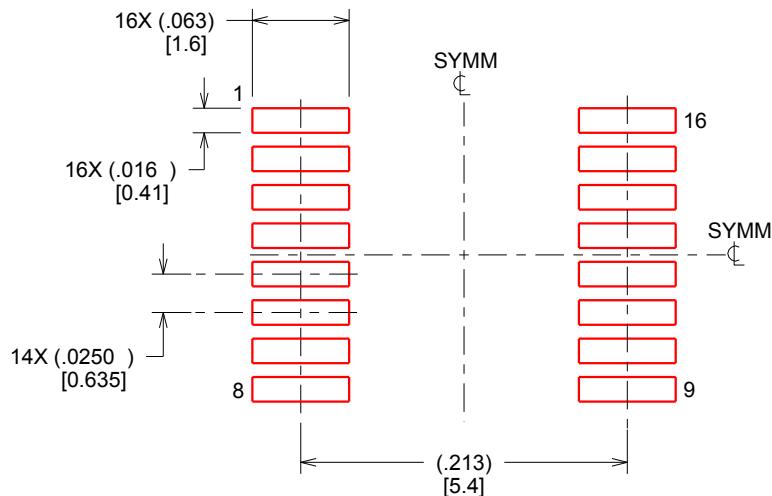
LAND PATTERN EXAMPLE
SCALE:8X

SOLDER MASK DETAILS

4214846/A 03/2014

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.


7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

DBQ0016A

SSOP - 1.75 mm max height

SHRINK SMALL-OUTLINE PACKAGE

SOLDER PASTE EXAMPLE
BASED ON .005 INCH [0.127 MM] THICK STENCIL
SCALE:8X

4214846/A 03/2014

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の默示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または默示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したもので、(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TI の製品は、[TI の販売条件](#)、[TI の総合的な品質ガイドライン](#)、[ti.com](#) または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TI はそれらに異議を唱え、拒否します。

Copyright © 2026, Texas Instruments Incorporated

最終更新日：2025 年 10 月