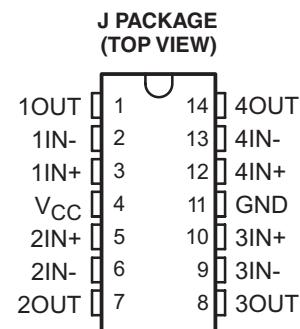


QUADRUPLE OPERATIONAL AMPLIFIER


Check for Samples: [LM124-SP](#), [LM124A-SP](#)

FEATURES

- QML-V Qualified, SMD 5962-7704301VCA, 5962-9950403VCA and 5962-9950403V9B
- Rad-Tolerant: 50 kRad (Si) TID (5962-9950403VCA and 5962-9950403V9B)⁽¹⁾
 - TID Dose Rate = 0.01 rad/sec (Si)
- Wide Supply Ranges
 - Single Supply: 3 V to 32 V
 - Dual Supplies: ± 1.5 V to ± 16 V
- Low Supply-Current Drain Independent of Supply Voltage: 0.8 mA (Typ)
- Low Input Bias and Offset Parameters
 - Input Offset Voltage: 1 mV Typ
 - Input Offset Current: 2 nA Typ
 - Input Bias Current: 30 nA Typ
- Common-Mode Input Voltage Range Includes Ground, Allowing Direct Sensing Near Ground

(1) Radiation tolerance is a typical value based upon initial device qualification with dose rate = 0.01 rad/sec. Radiation lot acceptance testing is available - contact factory for details.

- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage: ± 32 V
- Open-Loop Differential Voltage Amplification: 100 V/mV Typ
- Internal Frequency Compensation

DESCRIPTION/ORDERING INFORMATION

These devices consist of four independent high-gain frequency-compensated operational amplifiers that are designed specifically to operate from a single supply over a wide range of voltages. Operation from split supplies also is possible if the difference between the two supplies is 3 V to 32 V, and V_{CC} is at least 1.5 V more positive than the input common-mode voltage. The low supply-current drain is independent of the magnitude of the supply voltage.

Applications include transducer amplifiers, dc amplification blocks, and all the conventional operational-amplifier circuits that now can be more easily implemented in single-supply-voltage systems. For example, the LM124 can be operated directly from the standard 5-V supply that is used in digital systems and provides the required interface electronics, without requiring additional ± 15 -V supplies.

Table 1. ORDERING INFORMATION⁽¹⁾

T _A	V _{IO} max AT 25°C	MAX V _{CC}	PACKAGE ⁽²⁾	ORDERABLE PART NUMBER		TOP-SIDE MARKING
-55°C to 125°C	5 mV	30 V	J	LM124	5962-7704301VCA	5962-7704301VCA
	3 mV	30 V		LM124A	5962-9950403VCA ⁽³⁾	5962-9950403VCA
	3 mV	30 V	KGD	5962-9950403V9B ⁽³⁾		N/A

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

(3) Radiation tolerant

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

BARE DIE INFORMATION

DIE THICKNESS	BACKSIDE FINISH	BACKSIDE POTENTIAL	BON PAD METALLIZATION COMPOSITION	BOND PAD THICKNESS
15 mils	Silicon with backgrind	Floating	AlCu (0.5%)	0.055 mils

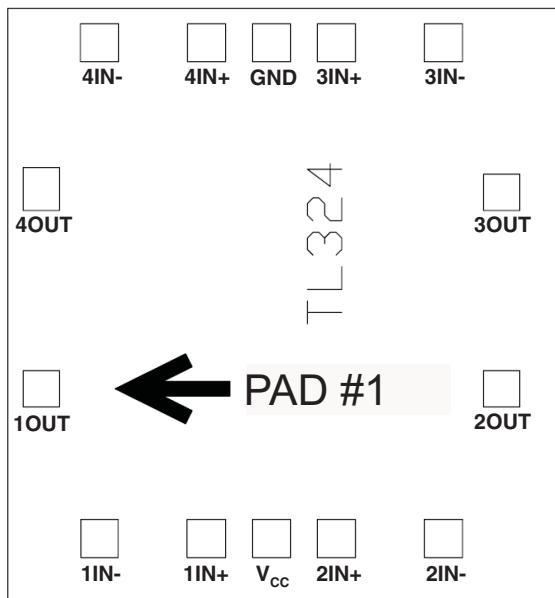
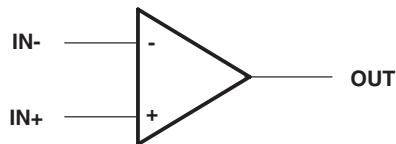
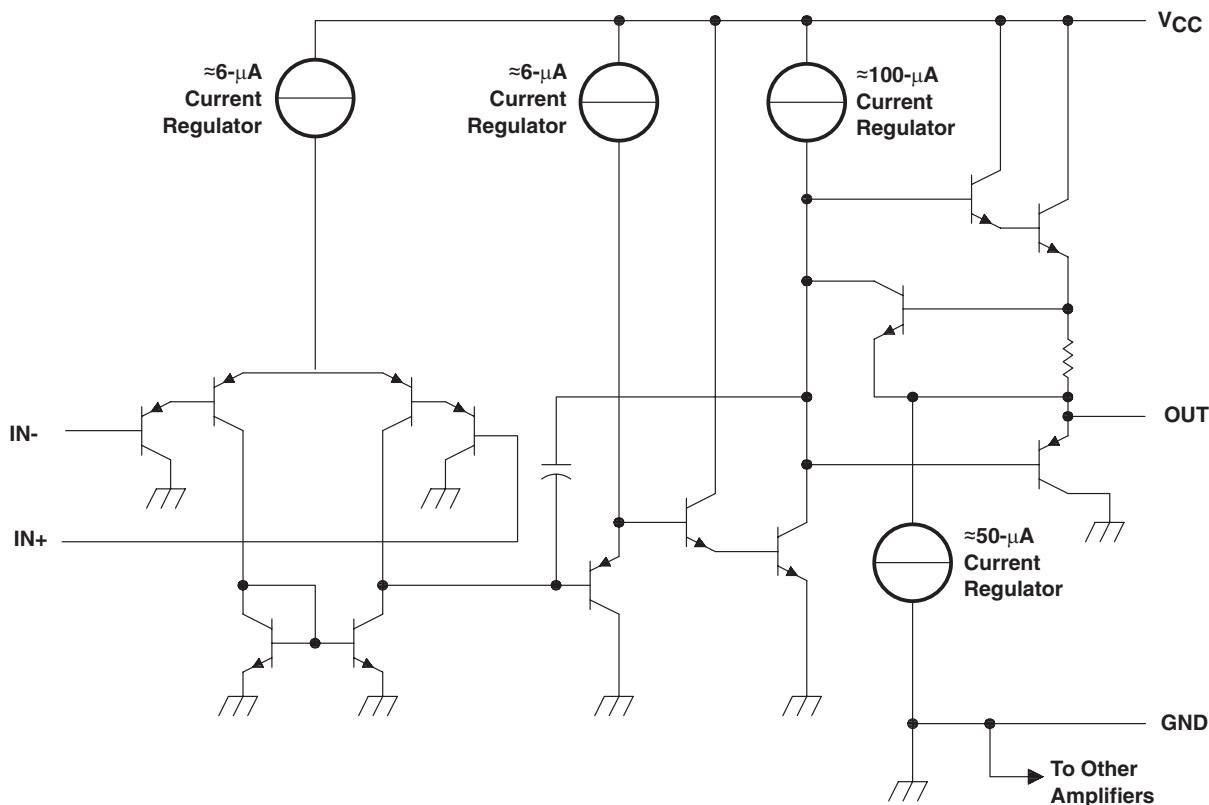




Table 2. Bond Pad Coordinates in Microns

DESCRIPTION	PAD NUMBER	Xmin	Ymin	Xmax	Ymax
1OUT	1	426.72	1249.68	523.24	1346.20
1IN-	2	25.40	1093.47	127	1192.53
1IN+	3	25.40	808.99	127	910.59
V _{cc}	4	25.40	635	127	734.06
2IN+	5	25.40	462.28	127	563.88
2IN-	6	25.40	177.80	127	279.40
2OUT	7	426.72	25.40	523.24	121.92
3OUT	8	949.96	25.40	1046.48	121.92
3IN-	9	1346.20	177.80	1447.80	279.40
3IN+	10	1346.20	462.28	1447.80	563.88
GND	11	1346.20	635	1447.80	736.60
4IN+	12	1346.20	807.72	1447.80	909.32
4IN-	13	1346.20	1092.2	1447.80	1193.80
4OUT	14	949.96	1249.68	1046.48	1346.20

SYMBOL (EACH COMPARATOR)

SCHEMATIC (EACH AMPLIFIER)

COMPONENT COUNT (total device)	
Epi-FET	1
Transistors	95
Diodes	4
Resistors	11
Capacitors	4

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V_{CC}	Supply voltage ⁽²⁾		± 16 or 32	V
V_{ID}	Differential input voltage ⁽³⁾		± 32	V
V_I	Input voltage range (either input)	-0.3	32	V
	Duration of output short circuit to ground ⁽⁴⁾		Unlimited	
θ_{JC}	Package thermal impedance, junction to case ^{(5) (6)}	J package	15.05	°C/W
T_J	Operating virtual-junction temperature		150	°C
	Lead temperature 1.6 mm (1/16 in) from case for 60 s		300	°C
T_{stg}	Storage temperature range	-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values, except differential voltages, are with respect to network ground.

(3) Differential voltages are at IN+ with respect to IN-.

(4) Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction.

(5) Maximum power dissipation is a function of T_J (max), θ_{JC} , and T_C . The maximum allowable power dissipation at any allowable case temperature is $P_D = (T_J \text{ (max)} - T_C) / \theta_{JC}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

(6) The package thermal impedance is calculated in accordance with MIL-STD-883.

ELECTRICAL CHARACTERISTICS FOR LM124

at specified free-air temperature, $V_{CC} = 5$ V (unless otherwise noted)

PARAMETER		TEST CONDITIONS ⁽¹⁾		T _A ⁽²⁾	MIN	TYP ⁽³⁾	MAX	UNIT	
V _{IO}	Input offset voltage	$V_{CC} = 5$ V to MAX, $V_{IC} = V_{ICR}$ min, $V_O = 1.4$ V		25°C		3	5	mV	
				Full range			7		
I _{IO}	Input offset current	$V_O = 1.4$ V		25°C		2	30	nA	
				Full range			100		
I _{IB}	Input bias current	$V_O = 1.4$ V		25°C		-20	-150	nA	
				Full range			-300		
V _{ICR}	Common-mode input-voltage range	$V_{CC} = 5$ V to MAX		25°C	0 to $V_{CC} - 1.5$			V	
				Full range	0 to $V_{CC} - 2$				
V _{OH}	High-level output voltage	$R_L = 2$ kΩ		25°C	$V_{CC} - 1.5$			V	
		$R_L = 10$ kΩ		25°C					
		$V_{CC} = \text{MAX}$	$R_L = 2$ kΩ	Full range	26				
			$R_L \geq 10$ kΩ	Full range	27 28				
V _{OL}	Low-level output voltage	$R_L \leq 10$ kΩ		Full range	5 20			mV	
A _{VD}	Large-signal differential-voltage amplification	$V_{CC} = 15$ V, $V_O = 1$ V to 11 V, $R_L \geq 2$ kΩ		25°C	50	100		V/mV	
				Full range	25				
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}$ min		25°C	70 80			dB	
k _{SVR}	Supply-voltage rejection ratio ($\Delta V_{CC}/\Delta V_{IO}$)			25°C	65 100			dB	
V _{O1} / V _{O2}	Crosstalk attenuation	$f = 1$ kHz to 20 kHz		25°C	120			dB	
I _O	Output current	$V_{CC} = 15$ V, $V_{ID} = 1$ V, $V_O = 0$	Source	25°C	-20 -30 -60			mA	
				Full range	-10				
		$V_{CC} = 15$ V, $V_{ID} = -1$ V, $V_O = 15$ V	Sink	25°C	10 20				
				Full range	5				
I _{OS}	Short-circuit output current	V_{CC} at 5 V, GND at -5 V, $V_O = 0$ V	25°C	$\pm 40 \pm 60$					
I _{CC}	Supply current (four amplifiers)	$V_O = 2.5$ V, No load	Full range	0.7 1.2				mA	
		$V_{CC} = \text{MAX}$, $V_O = 0.5 V_{CC}$, No load	Full range	1.4 3					

(1) All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX V_{CC} for testing purposes is 30 V.

(2) Full range is -55°C to 125°C for LM124.

(3) All typical values are at $T_A = 25$ °C.

ELECTRICAL CHARACTERISTICS FOR LM124A

at specified free-air temperature, $V_{CC} = 5$ V (unless otherwise noted)

PARAMETER		TEST CONDITIONS ⁽¹⁾	T_A ⁽²⁾	MIN	TYP ⁽³⁾	MAX	UNIT
V_{IO}	Input offset voltage	+ $V_{CC} = 30$ V, - $V_{CC} = \text{GND}$, $V_{CM} = 15$ V	25°C			± 3	mV
		Full range				± 5	
		+ $V_{CC} = 2$ V, - $V_{CC} = -28$ V, $V_{CM} = -13$ V	25°C			± 3	mV
		Full range				± 5	
		+ $V_{CC} = 5$ V, - $V_{CC} = \text{GND}$, $V_{CM} = 1.4$ V	25°C			± 3	mV
		Full range				± 5	
I_{IO}	Input offset current	+ $V_{CC} = 2.5$ V, - $V_{CC} = -2.5$ V, $V_{CM} = -1.1$ V	25°C			± 3	nA
		Full range				± 5	
		+ $V_{CC} = 30$ V, - $V_{CC} = \text{GND}$, $V_{CM} = 15$ V	25°C			± 10	nA
		Full range				± 30	
		+ $V_{CC} = 2$ V, - $V_{CC} = -28$ V, $V_{CM} = -13$ V	25°C			± 10	nA
		Full range				± 30	
$+I_{IB}$	Input bias current	+ $V_{CC} = 5$ V, - $V_{CC} = \text{GND}$, $V_{CM} = 1.4$ V	25°C			± 10	nA
		Full range				± 30	
		+ $V_{CC} = 2.5$ V, - $V_{CC} = -2.5$ V, $V_{CM} = -1.1$ V	25°C			± 10	nA
		Full range				± 30	
		+ $V_{CC} = 30$ V, - $V_{CC} = \text{GND}$, $V_{CM} = 15$ V	25°C	-85	0.1		nA
		Full range		-100	0.1		
$-I_{IB}$	Input bias current	+ $V_{CC} = 2$ V, - $V_{CC} = -28$ V, $V_{CM} = -13$ V	25°C	-50	0.1		nA
		Full range		-100	0.1		
		+ $V_{CC} = 5$ V, - $V_{CC} = \text{GND}$, $V_{CM} = 1.4$ V	25°C	-50	0.1		nA
		Full range		-100	0.1		
		+ $V_{CC} = 2.5$ V, - $V_{CC} = -2.5$ V, $V_{CM} = -1.1$ V	25°C	-50	0.1		nA
		Full range		-100	0.1		
PSRR	Power supply rejection ratio	+ $V_{CC} = 30$ V, - $V_{CC} = \text{GND}$, $V_{CM} = 1.4$ V	25°C	-85	0.1		nA
		Full range		-100	0.1		
CMRR	Common-mode rejection ratio	+ $V_{CC} = 5$ V, - $V_{CC} = \text{GND}$, $V_{CM} = 1.4$ V	25°C	-50	0.1		nA
		Full range		-100	0.1		
I_{OS}	Short-circuit output current	+ $V_{CC} = 30$ V, - $V_{CC} = \text{GND}$, $V_{OUT} = 25$ V	25°C	-50	0.1		mA
		Full range		-70	0.1		

(1) All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX V_{CC} for testing purposes is 30 V.

(2) Full range is -55°C to 125°C for LM124A.

(3) All typical values are at $T_A = 25^{\circ}\text{C}$.

ELECTRICAL CHARACTERISTICS FOR LM124A (continued)

at specified free-air temperature, $V_{CC} = 5$ V (unless otherwise noted)

PARAMETER		TEST CONDITIONS ⁽¹⁾	T_A ⁽²⁾	MIN	TYP ⁽³⁾	MAX	UNIT
I_{CC}	Power supply current	$+V_{CC} = 30$ V, $-V_{CC} = GND$,	125°C			3	mA
			-55°C			4	
$\Delta V_{IO}/\Delta T$	Input offset voltage temperature sensitivity ⁽⁴⁾	$+V_{CC} = 5$ V, $-V_{CC} = GND$, $V_{CM} = 1.4$ V	125°C, -55°C	-30	30	30	$\mu V/^\circ C$
$\Delta I_{IO}/\Delta T$	Input offset current temperature sensitivity ⁽⁴⁾	$+V_{CC} = 5$ V, $-V_{CC} = GND$, $V_{CM} = 1.4$ V	125°C	-400	400	400	$pA/^\circ C$
			-55°C	-700	700	700	
V_{OL}	Low-level output voltage	$+V_{CC} = 30$ V, $-V_{CC} = GND$, $R_L = 10$ k Ω	Full range			35	mV
		$+V_{CC} = 30$ V, $-V_{CC} = GND$, $I_{OL} = 5$ mA	Full range			1.5	V
		$+V_{CC} = 4.5$ V, $-V_{CC} = GND$, $I_{OL} = 2$ μ A	Full range			0.4	
V_{OH}	High-level output voltage	$+V_{CC} = 30$ V, $-V_{CC} = GND$, $I_{OH} = 10$ mA	Full range	27			V
		$+V_{CC} = 4.5$ V, $-V_{CC} = GND$, $I_{OH} = -10$ mA	Full range	2.4			
A_{VS+}	Voltage gain	$+V_{CC} = 30$ V, $-V_{CC} = GND$, $1 V \leq V_{OUT} \leq 26$ V $R_L = 10$ k Ω	25°C	50			V/mV
			Full range	25			
		$+V_{CC} = 30$ V, $-V_{CC} = GND$, $5 V \leq V_{OUT} \leq 20$ V $R_L = 2$ k Ω	25°C	50			
			Full range	25			
A_{VS}	Voltage gain	$+V_{CC} = 5$ V, $-V_{CC} = GND$, $1 V \leq V_{OUT} \leq 2.5$ V $R_L = 10$ k Ω	Full range	10			V/mV
			Full range	10			
$+V_{OP}$	Maximum output voltage swing	$+V_{CC} = 30$ V, $-V_{CC} = GND$, $V_{OUT} = 30$ V $R_L = 10$ k Ω	Full range	27			V
			Full range	26			
		$+V_{CC} = 30$ V, $-V_{CC} = GND$, $V_{OUT} = 30$ V $R_L = 2$ k Ω					
$TR(t_r)$	Transient response: rise time ⁽⁴⁾	$+V_{CC} = 30$ V, $-V_{CC} = GND$	Full range			1	μ s
$SR+$	Slew rate: rise ⁽⁴⁾	$+V_{CC} = 30$ V, $-V_{CC} = GND$	Full range	0.1			V/μ s
$SR-$	Slew rate: fall ⁽⁴⁾	$+V_{CC} = 30$ V, $-V_{CC} = GND$	Full range	0.1			V/μ s
$NI(BB)$	Noise broadband ⁽⁴⁾	$+V_{CC} = 15$ V, $-V_{CC} = -15$ V, $BW = 10$ Hz to 5 kHz	25°C			15	$\mu V/rms$

(4) Parameter characterized over temperature, but not production tested.

ELECTRICAL CHARACTERISTICS FOR LM124A (continued)

at specified free-air temperature, $V_{CC} = 5$ V (unless otherwise noted)

PARAMETER	TEST CONDITIONS ⁽¹⁾	T_A ⁽²⁾	MIN	TYP ⁽³⁾	MAX	UNIT
NI(PC) Noise popcorn ⁽⁵⁾	$+V_{CC} = 15$ V, $-V_{CC} = -15$ V, $R_S = 20$ k Ω , BW = 10 Hz to 5 kHz	25°C			50	μ V/peak
CS Channel separation	$+V_{CC} = 30$ V, $-V_{CC} = \text{GND}$, $R_L = 2$ k Ω	25°C	80			dB
	$R_L = 2$ k Ω , $V_{IN} = 1$ V and 16 V	25°C	80			

(5) Parameter characterized over temperature, but not production tested.

OPERATING CONDITIONS

 $V_{CC} = \pm 15$ V, $T_A = 25$ °C

PARAMETER	TEST CONDITIONS	TYP	UNIT
SR Slew rate at unity gain	$R_L = 1$ M Ω , $C_L = 30$ pF, $V_I = \pm 10$ V (see Figure 1)	0.5	V/ μ s
B_1 Unity-gain bandwidth	$R_L = 1$ M Ω , $C_L = 20$ pF (see Figure 1)	1.2	MHz
V_n Equivalent input noise voltage	$R_S = 100$ Ω , $V_I = 0$ V, $f = 1$ kHz (see Figure 2)	35	nV/ $\sqrt{\text{Hz}}$

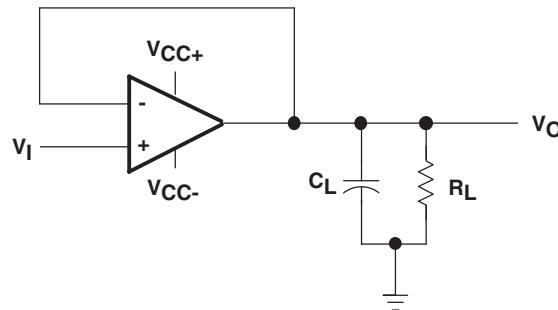


Figure 1. Unity-Gain Amplifier

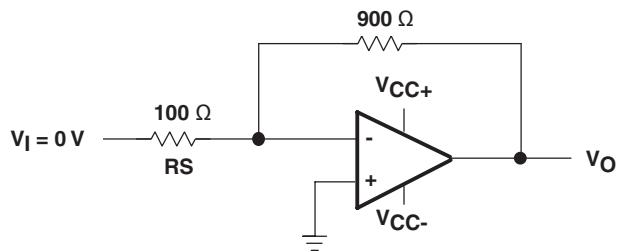


Figure 2. Noise-Test Circuit

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
5962-7704301VCA	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-7704301VC A LM124JQMLV
5962-7704301VCA.A	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-7704301VC A LM124JQMLV
5962-9950403V9B	Active	Production	XCEPT (KGD) 0	100 BULK	Yes	Call TI	N/A for Pkg Type	-55 to 125	
5962-9950403V9B.A	Active	Production	XCEPT (KGD) 0	100 BULK	Yes	Call TI	N/A for Pkg Type	-55 to 125	
5962-9950403VCA	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-9950403VC A LM124AJQMLV
5962-9950403VCA.A	Active	Production	CDIP (J) 14	25 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	5962-9950403VC A LM124AJQMLV

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

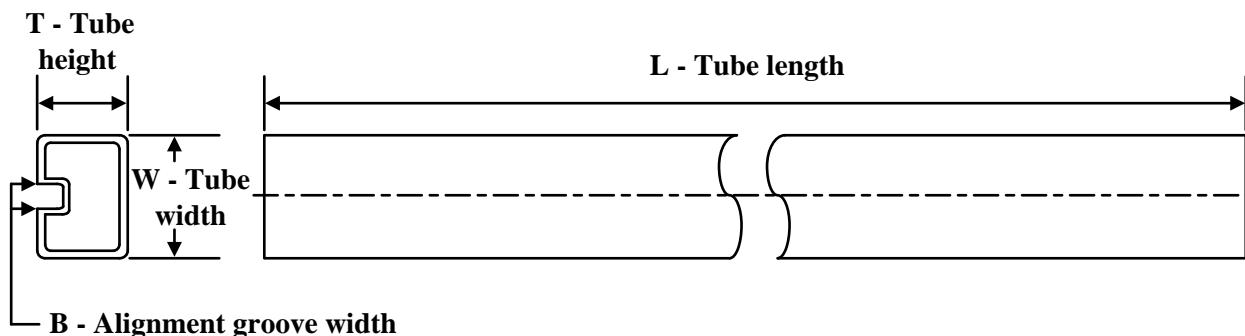
⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF LM124-SP :

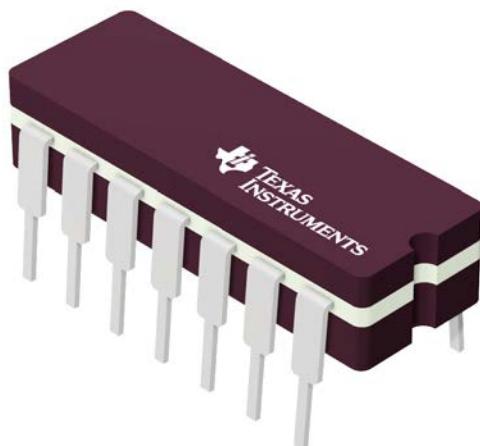
- Catalog : [LM124](#)
- Military : [LM124M](#)

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product
- Military - QML certified for Military and Defense Applications

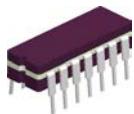
TUBE

*All dimensions are nominal


Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (μ m)	B (mm)
5962-9950403VCA	J	CDIP	14	25	506.98	15.24	13440	NA
5962-9950403VCA.A	J	CDIP	14	25	506.98	15.24	13440	NA

GENERIC PACKAGE VIEW

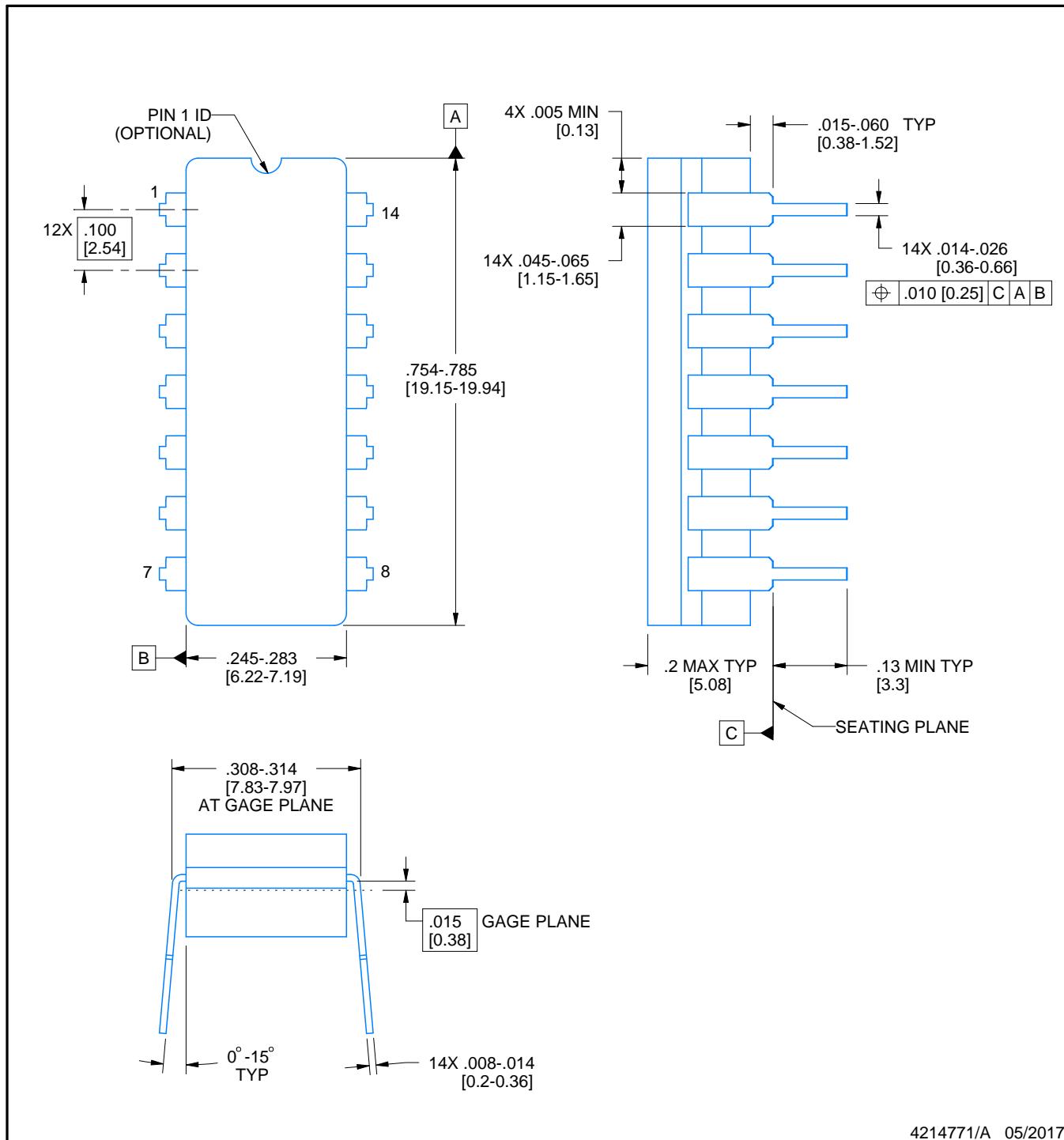
J 14


CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

Images above are just a representation of the package family, actual package may vary.
Refer to the product data sheet for package details.

4040083-5/G



PACKAGE OUTLINE

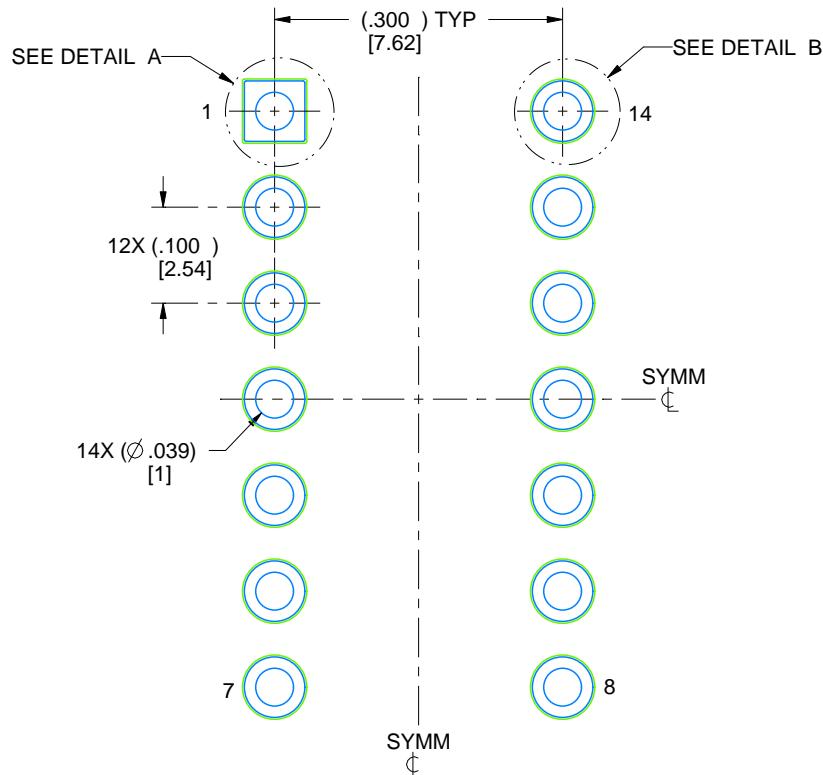
J0014A

CDIP - 5.08 mm max height

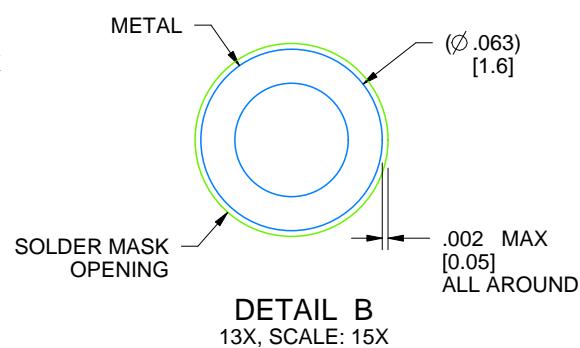
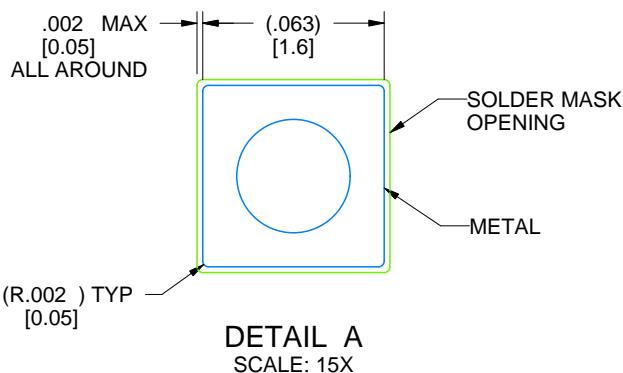
CERAMIC DUAL IN LINE PACKAGE

4214771/A 05/2017

NOTES:


1. All controlling linear dimensions are in inches. Dimensions in brackets are in millimeters. Any dimension in brackets or parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This package is hermetically sealed with a ceramic lid using glass frit.
4. Index point is provided on cap for terminal identification only and on press ceramic glass frit seal only.
5. Falls within MIL-STD-1835 and GDIP1-T14.

EXAMPLE BOARD LAYOUT



J0014A

CDIP - 5.08 mm max height

CERAMIC DUAL IN LINE PACKAGE

LAND PATTERN EXAMPLE
NON-SOLDER MASK DEFINED
SCALE: 5X

4214771/A 05/2017

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025