

LM2767 スイッチド・コンデンサ電圧コンバータ

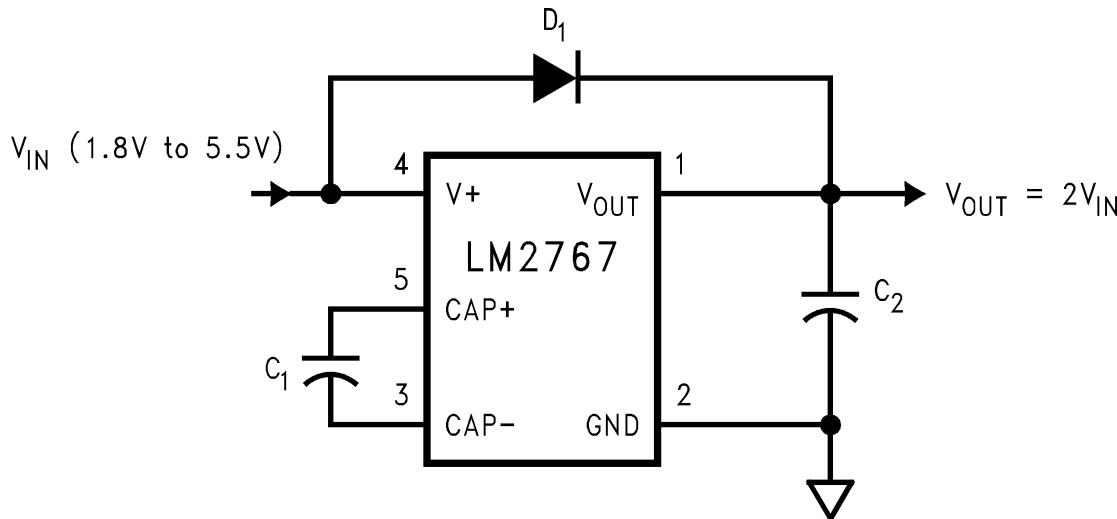
1 特長

- 入力電源電圧が 2 倍に向かう
- SOT-23 5 ピン・パッケージで供給
- 出力インピーダンス: 20Ω (標準値)
- 標準変換効率 96% (15mA 時)

2 アプリケーション

- 携帯電話
- ページャ
- PDA、オーガナイザ
- オペアンプの電源
- インターフェイス電源
- ハンドヘルド機器

3 概要


LM2767 CMOS チャージ・ポンプ電圧コンバータは、1.8V~5.5V の入力電圧範囲で電圧ダブラーとして動作します。この回路では、低コストな 2 つのコンデンサとダイオードを使用して、15mA 以上の出力電流を供給します。

LM2767 は 11kHz のスイッチング周波数で動作するため、オーディオ音域干渉を回避できます。動作電流がわずか $40\mu\text{A}$ (ほとんどの負荷で 90% 以上の動作効率) であるため、LM2767 はバッテリ駆動システムに最適な性能を発揮します。このデバイスは 5 ピン SOT-23 パッケージで供給されます。

製品情報

部品番号	パッケージ ⁽¹⁾	本体サイズ (公称)
LM2767	SOT-23 (5)	2.90mm × 1.60mm

(1) 利用可能なパッケージについては、このデータシートの末尾にある注文情報を参照してください。

代表的なアプリケーション

英語版の TI 製品についての情報を翻訳したこの資料は、製品の概要を確認する目的で便宜的に提供しているものです。該当する正式な英語版の最新情報は、www.ti.com で閲覧でき、その内容が常に優先されます。TI では翻訳の正確性および妥当性につきましては一切保証いたしません。実際の設計などの前には、必ず最新版の英語版をご参照くださいますようお願いいたします。

Table of Contents

1 特長	1	8.4 Device Functional Modes.....	9
2 アプリケーション	1	9 Application and Implementation	10
3 概要	1	9.1 Application Information.....	10
4 Revision History	2	9.2 Typical Application.....	10
5 Pin Configuration and Functions	3	10 Power Supply Recommendations	14
6 Specifications	4	11 Layout	15
6.1 Absolute Maximum Ratings.....	4	11.1 Layout Guidelines.....	15
6.2 ESD Ratings.....	4	11.2 Layout Example.....	15
6.3 Recommended Operating Conditions.....	4	12 Device and Documentation Support	16
6.4 Thermal Information.....	4	12.1 Device Support.....	16
6.5 Electrical Characteristics.....	5	12.2 Receiving Notification of Documentation Updates.....	16
6.6 Typical Characteristics.....	6	12.3 サポート・リソース.....	16
7 Parameter Measurement Information	8	12.4 Trademarks.....	16
7.1 Test Circuit.....	8	12.5 Electrostatic Discharge Caution.....	16
8 Detailed Description	9	12.6 Glossary.....	16
8.1 Overview.....	9	13 Mechanical, Packaging, and Orderable Information	16
8.2 Functional Block Diagram.....	9		
8.3 Feature Description.....	9		

4 Revision History

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

Changes from Revision D (August 2015) to Revision E (January 2022)	Page
• 文書全体の表、図、相互参照の番号形式を更新.....	1
• Added additional I_L specification test condition	5

Changes from Revision C (May 2013) to Revision D (August 2015)	Page
• 「デバイス情報」、「ピン構成および機能」セクション、ESD 定格表、「機能説明」、「デバイスの機能モード」、「アプリケーションと実装」、「電源に関する推奨事項」、「レイアウト」、「デバイスおよびドキュメントのサポート」、「メカニカル、パッケージ、および注文情報」セクションを追加.....	1

5 Pin Configuration and Functions

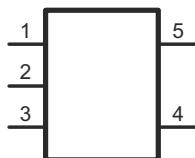


图 5-1. DBV Package 5-Pin SOT-23 Top View

表 5-1. Pin Functions

PIN		TYPE	DESCRIPTION
NUMBER	NAME		
1	VOUT	Power	Positive voltage output.
2	GND	Ground	Power supply ground input.
3	CAP-	Power	Connect this pin to the negative terminal of the charge-pump capacitor.
4	V+	Power	Power supply positive voltage input.
5	CAP+	Power	Connect this pin to the positive terminal of the charge-pump capacitor.

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)^{(1) (2)}

	MIN	MAX	UNIT
Supply voltage (V ₊ to GND, or V ₊ to V _{OUT})		5.8	V
V _{OUT} continuous output current		30	mA
Output short-circuit duration to GND ⁽³⁾		1	sec
Continuous power dissipation (T _A = 25°C) ⁽⁴⁾		400	mW
T _{JMax} ⁽⁴⁾		150	°C
Storage temperature, T _{stg}	-65	150	°C

- (1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) If Military/Aerospace specified devices are required, contact the TI Sales Office/ Distributors for availability and specifications.
- (3) V_{OUT} may be shorted to GND for one second without damage. For temperatures above 85°C, V_{OUT} must not be shorted to GND or device may be damaged.
- (4) The maximum allowable power dissipation is calculated by using $P_{DMax} = (T_{JMax} - T_A)/R_{\theta JA}$, where T_{JMax} is the maximum junction temperature, T_A is the ambient temperature, and R_{θJA} is the junction-to-ambient thermal resistance of the specified package.

6.2 ESD Ratings

		VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000
		Machine model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±200

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

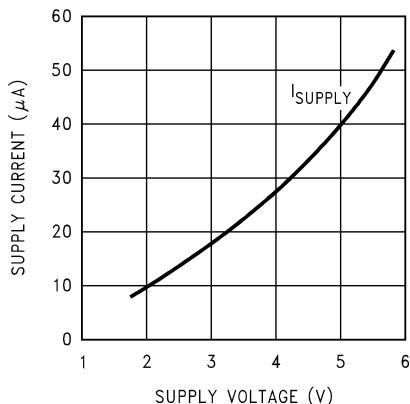
	MIN	NOM	MAX	UNIT
Junction temperature	-40		100	°C
Ambient temperature	-40		85	°C
Lead temperature (soldering, 10 sec.)			240	°C

6.4 Thermal Information

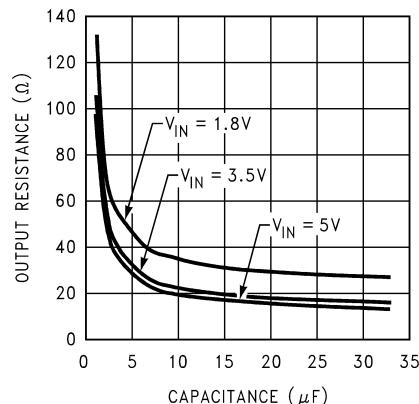
THERMAL METRIC ⁽¹⁾	LM2767	UNIT
	DBV (SOT-23)	
	5 PINS	
R _{θJA} Junction-to-ambient thermal resistance	210	°C/W

- (1) For more information about traditional and new thermal metrics, see the *Semiconductor and IC Package Thermal Metrics* application report, [SPRA953](#).

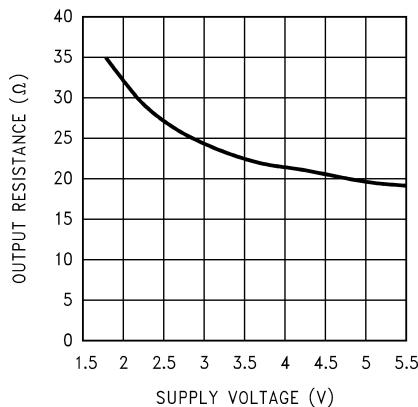
6.5 Electrical Characteristics

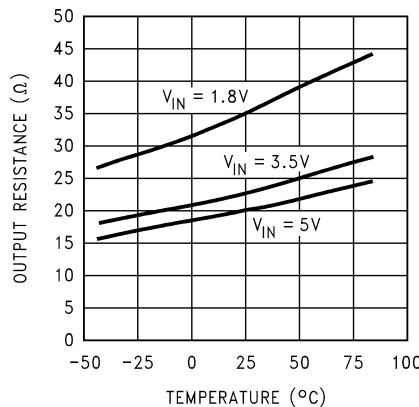

Unless otherwise specified, typical limits are for $T_J = 25^\circ\text{C}$, minimum and maximum limits apply over the full operating temperature range: $V+ = 5\text{ V}$, $C_1 = C_2 = 10\text{ }\mu\text{F}$.⁽¹⁾

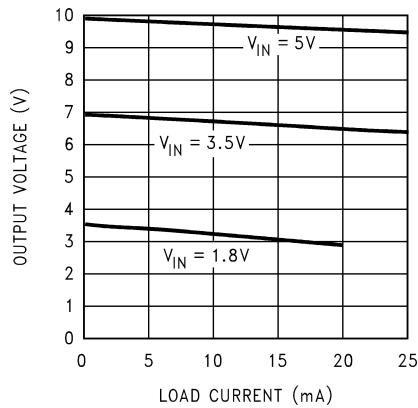
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$V+$ Supply voltage		1.8		5.5	V
I_Q Supply current	No load		40	90	μA
I_L Output current	$2.5\text{ V} \leq V+ \leq 5.5\text{ V}$	15			mA
	$1.8\text{ V} \leq V+ < 2.5\text{ V}$	10			mA
R_{OUT} Output resistance ⁽²⁾	$I_L = 15\text{ mA}$		20	40	Ω
f_{OSC} Oscillator frequency	See ⁽³⁾	8	22	50	kHz
f_{SW} Switching frequency	See ⁽³⁾	4	11	25	kHz
P_{EFF} Power efficiency	R_L (5 k Ω) between GND and OUT	98%			
	$I_L = 15\text{ mA}$ to GND	96%			
V_{OEFF} Voltage conversion efficiency	No load	99.96%			


- (1) In the test circuit, capacitors C_1 and C_2 are 10- μF , 0.3- Ω maximum ESR capacitors. Capacitors with higher ESR may increase output resistance, and reduce output voltage and efficiency.
- (2) Specified output resistance includes internal switch resistance and capacitor ESR. See the details in [セクション 9](#) for positive voltage doubler.
- (3) The output switches operate at one half of the oscillator frequency, $f_{\text{OSC}} = 2 \times f_{\text{SW}}$.

6.6 Typical Characteristics


(Circuit of [图 7-1](#), $V_{IN} = 5$ V, $T_A = 25^\circ\text{C}$ unless otherwise specified).


图 6-1. Supply Current vs Supply Voltage


图 6-2. Output Resistance vs Capacitance

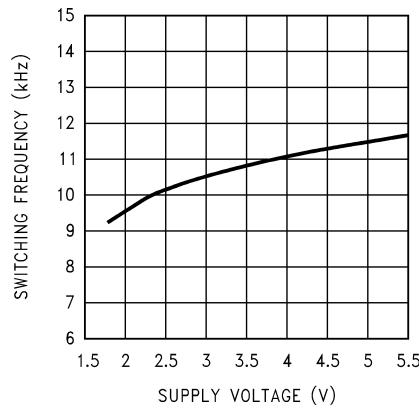

图 6-3. Output Resistance vs Supply Voltage

图 6-4. Output Resistance vs Temperature

图 6-5. Output Voltage vs Load Current

图 6-6. Switching Frequency vs Supply Voltage

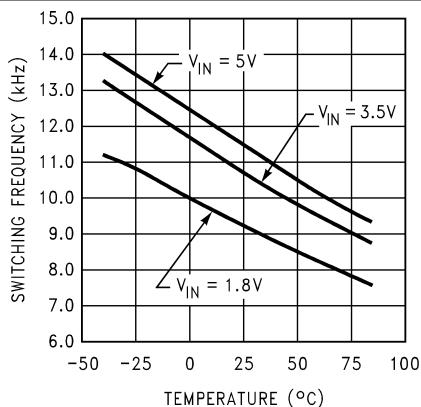


図 6-7. Switching Frequency vs Temperature

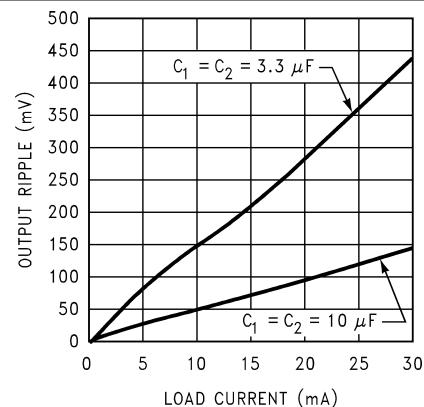
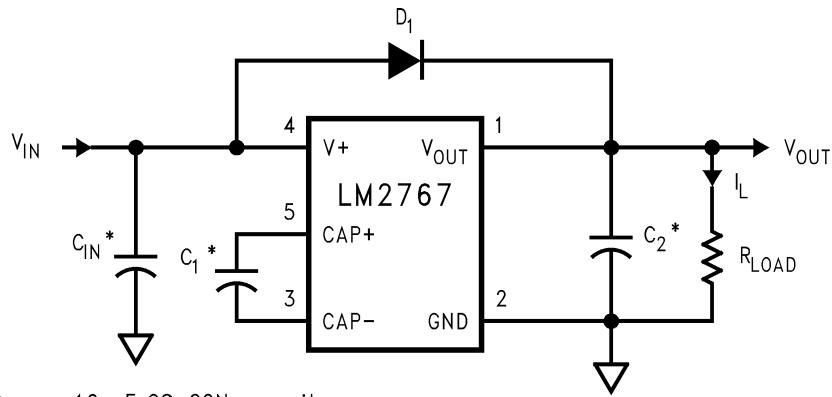
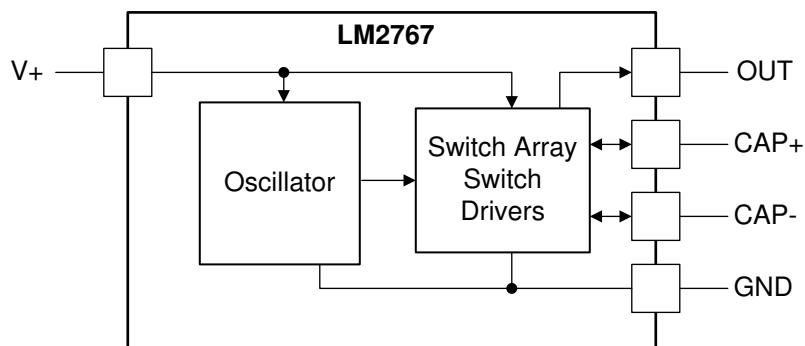


図 6-8. Output Ripple vs Load Current

7 Parameter Measurement Information

7.1 Test Circuit




图 7-1. LM2767 Test Circuit

8 Detailed Description

8.1 Overview

The LM2767 CMOS charge-pump voltage converter operates as a voltage doubler for an input voltage in the range of 1.8 V to 5.5 V. Two low-cost capacitors and a diode (needed during start-up) are used in this circuit.

8.2 Functional Block Diagram

8.3 Feature Description

The LM2767 contains four large CMOS switches which are switched in a sequence to double the input supply voltage. Energy transfer and storage are provided by external capacitors. [図 9-2](#) illustrates the voltage conversion scheme. When S_2 and S_4 are closed, C_1 charges to the supply voltage V_+ . During this time interval, switches S_1 and S_3 are open. In the next time interval, S_2 and S_4 are open; at the same time, S_1 and S_3 are closed, the sum of the input voltage V_+ and the voltage across C_1 gives the $2V_+$ output voltage when there is no load. The output voltage drop when a load is added is determined by the parasitic resistance ($R_{ds(on)}$) of the MOSFET switches and the ESR of the capacitors) and the charge transfer loss between capacitors. Details are discussed in [セクション9](#).

8.4 Device Functional Modes

The LM2767 is always enabled when power is applied to the V_+ pin ($1.8 \text{ V} \leq V_{IN} \leq 5.5 \text{ V}$). To disable the part, power must be removed.

9 Application and Implementation

Note

以下のアプリケーション情報は、TI の製品仕様に含まれるものではなく、TI ではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。

9.1 Application Information

The LM2767 provides a simple and efficient means of creating an output voltage level equal to twice that of the input voltage. Without the need of an inductor, the application solution size can be reduced versus the magnetic DC-DC converter solution.

9.2 Typical Application

The main application of the LM2767 is to double the input voltage. The range of the input supply voltage is 1.8 V to 5.5 V.

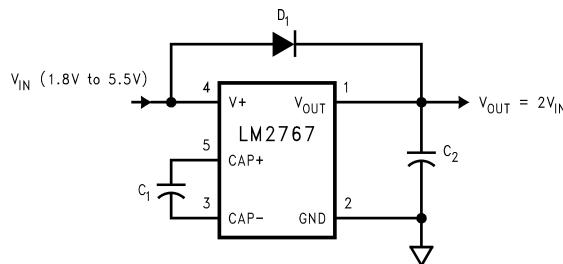


図 9-1. LM2767 Typical Application

9.2.1 Design Requirements

For typical switched-capacitor voltage converter applications, use the parameters listed in 表 9-1.

表 9-1. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Minimum input voltage	1.8 to 5.5 V
Output current (minimum)	15 mA
Switching frequency	11 kHz (typical)

9.2.2 Detailed Design Procedure

9.2.2.1 Positive Voltage Doubler

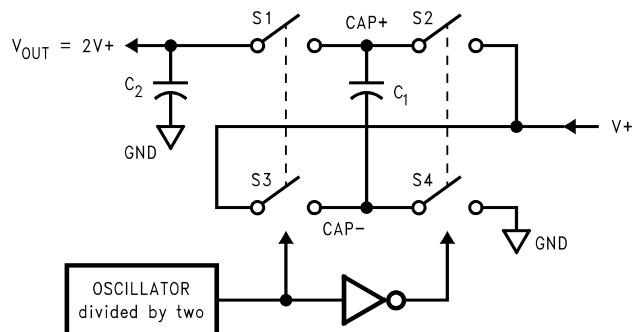


図 9-2. Voltage Doubling Principle

The output characteristics of this circuit can be approximated by an ideal voltage source in series with a resistance. The voltage source equals $2 V_+$. The output resistance R_{out} is a function of the ON resistance of the internal MOSFET switches, the oscillator frequency, and the capacitance and ESR of C_1 and C_2 . Because the switching current charging and discharging C_1 is approximately twice the output current, the effect of the ESR of the pumping capacitor C_1 is multiplied by four in the output resistance. The output capacitor C_2 is charging and discharging at a current approximately equal to the output current, therefore, its ESR only counts once in the output resistance. A good approximation of R_{out} is:

$$R_{out} \approx 2R_{sw} + \frac{2}{f_{osc} \times C_1} + 4ESR_{C1} + ESR_{C2} \quad (1)$$

where

- R_{sw} is the sum of the ON resistance of the internal MOSFET switches shown in [図 9-2](#).

The peak-to-peak output voltage ripple is determined by the oscillator frequency as well as the capacitance and ESR of the output capacitor C_2 :

$$V_{ripple} = \frac{I_L}{f_{osc} \times C_2} + 2 \times I_L \times ESR_{C2} \quad (2)$$

High capacitance, low ESR capacitors can reduce both the output resistance and the voltage ripple.

The Schottky diode D_1 is only needed to protect the device from turning on its own parasitic diode and potentially latching up. During start-up, D_1 also quickly charges up the output capacitor to V_{IN} minus the diode drop thereby decreasing the start-up time. Therefore, the Schottky diode D_1 must have enough current carrying capability to charge the output capacitor at start-up, as well as a low forward voltage to prevent the internal parasitic diode from turning on. A Schottky diode like 1N5817 can be used for most applications. If the input voltage ramp is less than 10 V/ms, a smaller Schottky diode like MBR0520LT1 can be used to reduce the circuit size.

9.2.2.2 Capacitor Selection

As discussed in [セクション 9.2.2.1](#), the output resistance and ripple voltage are dependent on the capacitance and ESR values of the external capacitors. The output voltage drop is the load current times the output resistance, and the power efficiency is

$$\eta = \frac{P_{out}}{P_{in}} = \frac{I_L^2 R_L}{I_L^2 R_L + I_L^2 R_{out} + I_Q(V_+)} \quad (3)$$

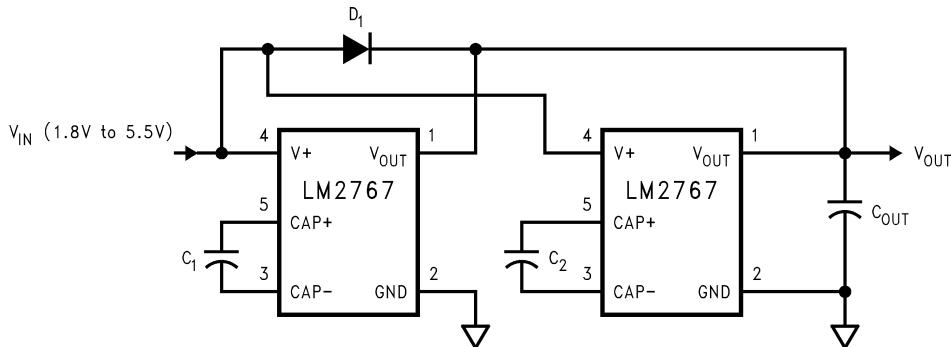
where

- $I_Q(V_+)$ is the quiescent power loss of the device; and
- $I_L^2 R_{out}$ is the conversion loss associated with the switch on-resistance, the two external capacitors and their ESRs.

The selection of capacitors is based on the allowable voltage droop (which equals $I_{out} R_{out}$), and the desired output voltage ripple. Low-ESR capacitors ([表 9-2](#)) are recommended to maximize efficiency, reduce the output voltage drop and voltage ripple.

表 9-2. Low-ESR Capacitor Manufacturers

MANUFACTURER	PHONE	WEBSITE	CAPACITOR TYPE
Nichicon Corp.	(847)-843-7500	www.nichicon.com	PL & PF series, through-hole aluminum electrolytic
AVX Corp.	(843)-448-9411	www.avxcorp.com	TPS series, surface-mount tantalum
Sprague	(207)-324-4140	www.vishay.com	593D, 594D, 595D series, surface-mount tantalum
Sanyo	(619)-661-6835	www.sanyovideo.com	OS-CON series, through-hole aluminum electrolytic
Murata	(800)-831-9172	www.murata.com	Ceramic chip capacitors
Taiyo Yuden	(800)-348-2496	www.t-yuden.com	Ceramic chip capacitors


表 9-2. Low-ESR Capacitor Manufacturers (continued)

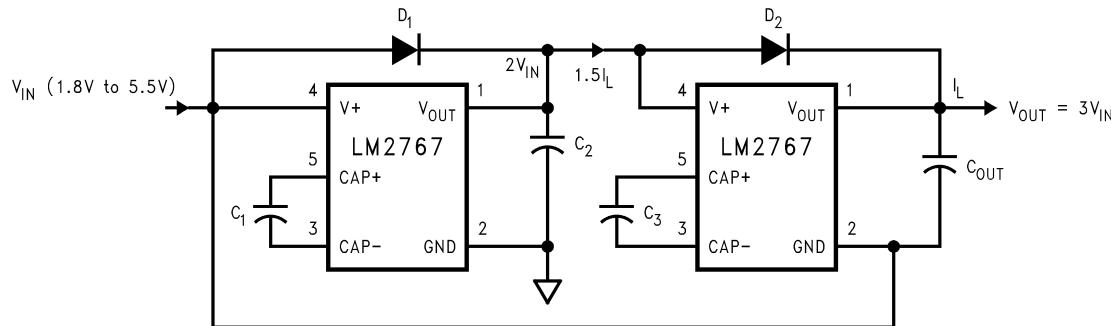
MANUFACTURER	PHONE	WEBSITE	CAPACITOR TYPE
Tokin	(408)-432-8020	www.tokin.com	Ceramic chip capacitors

9.2.2.3 Paralleling Devices

Any number of LM2767 devices can be paralleled to reduce the output resistance. Because there is no closed loop feedback, as found in regulated circuits, stable operation is assured. Each device must have its own pumping capacitor C_1 , while only one output capacitor C_{OUT} is needed as shown in [图 9-3](#). The composite output resistance is:

$$R_{OUT} = \frac{R_{OUT} \text{ of each LM2767}}{\text{Number of Devices}} \quad (4)$$

图 9-3. Lowering Output Resistance by Paralleling Devices


9.2.2.4 Cascading Devices

Cascading the several LM2767 devices is an easy way to produce a greater voltage (a two-stage cascade circuit is shown in [图 9-4](#)).

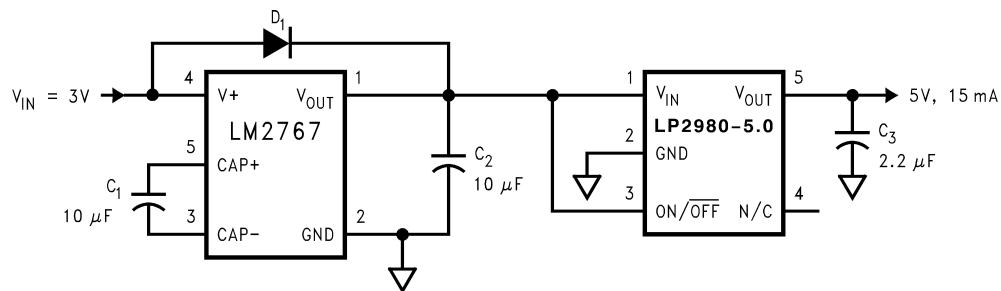
The effective output resistance is equal to the weighted sum of each individual device:

$$R_{OUT} = 1.5 R_{OUT_1} + R_{OUT_2} \quad (5)$$

Note that increasing the number of cascading stages is practically limited because it significantly reduces the efficiency, increases the output resistance and output voltage ripple.

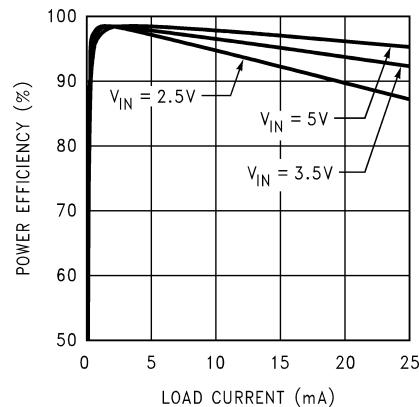
图 9-4. Increasing Output Voltage By Cascading Devices

9.2.2.5 Regulating V_{OUT}


It is possible to regulate the output of the LM2767 by use of a low dropout regulator (such as LP2980-5.0). The whole converter is depicted in [图 9-5](#).

A different output voltage is possible by use of LP2980-3.3, LP2980-3.0, or LP2980-ADJ.

The following conditions must be satisfied simultaneously for worst case design:


$$2V_{IN_MIN} > V_{OUT_MIN} + V_{DROP_MAX} \text{ (LP2980)} + I_{OUT_MAX} \times R_{OUT_MAX} \quad (6)$$

$$2V_{IN_MAX} < V_{OUT_MAX} + V_{DROP_MIN} \text{ (LP2980)} + I_{OUT_MIN} \times R_{OUT_MIN} \quad (7)$$

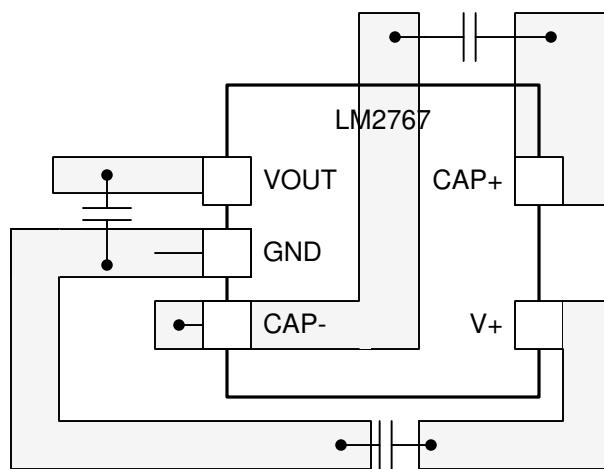
FIG 9-5. Generate a Regulated 5-V From 3-V Input Voltage

9.2.3 Application Curve

FIG 9-6. Efficiency vs Load Current

10 Power Supply Recommendations

The LM2767 is designed to operate from as an inverter over an input voltage supply range from 1.8 V and 5.5 V. This input supply must be well-regulated and capable to supply the required input current. If the input supply is located far from the device, additional bulk capacitance may be required in addition to the ceramic bypass capacitors.


11 Layout

11.1 Layout Guidelines

Use the following steps as a reference to ensure the device is stable across its intended operating voltage and current range.

- Place CIN on the top layer (same layer as the LM2767) and as close to the device as possible. Connecting the input capacitor through short, wide traces to both the V+ and GND pins reduces the inductive voltage spikes that occur during switching which can corrupt the V+ line.
- Place COUT on the top layer (same layer as the LM2767) and as close as possible to the OUT and GND pin. The returns for both CIN and COUT must come together at one point, as close to the GND pin as possible. Connecting COUT through short, wide traces reduce the series inductance on the OUT and GND pins that can corrupt the VOUT and GND lines and cause excessive noise in the device and surrounding circuitry.
- Place C1 on the top layer (same layer as the LM2767 device) and as close to the device as possible. Connect the flying capacitor through short, wide traces to both the CAP+ and CAP- pins.

11.2 Layout Example

 11-1. LM2767 Layout Example

12 Device and Documentation Support

12.1 Device Support

12.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

12.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.3 サポート・リソース

[TI E2E™ サポート・フォーラム](#)は、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するものではなく、必ずしも TI の見解を反映したものではありません。[TI の使用条件](#)を参照してください。

12.4 Trademarks

TI E2E™ is a trademark of Texas Instruments.

すべての商標は、それぞれの所有者に帰属します。

12.5 Electrostatic Discharge Caution

 This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.6 Glossary

[TI Glossary](#) This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
LM2767M5	Active	Production	SOT-23 (DBV) 5	1000 LARGE T&R	No	SNPB	Level-1-260C-UNLIM	-40 to 85	S17B
LM2767M5.A	Active	Production	SOT-23 (DBV) 5	1000 LARGE T&R	No	SNPB	Level-1-260C-UNLIM	-40 to 85	S17B
LM2767M5.B	Active	Production	SOT-23 (DBV) 5	1000 LARGE T&R	No	SNPB	Level-1-260C-UNLIM	-40 to 85	S17B
LM2767M5/NOPB	Active	Production	SOT-23 (DBV) 5	1000 SMALL T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 85	S17B
LM2767M5/NOPB.A	Active	Production	SOT-23 (DBV) 5	1000 SMALL T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 85	S17B
LM2767M5/NOPB.B	Active	Production	SOT-23 (DBV) 5	1000 SMALL T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 85	S17B
LM2767M5X/NOPB	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 85	S17B
LM2767M5X/NOPB.A	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 85	S17B
LM2767M5X/NOPB.B	Active	Production	SOT-23 (DBV) 5	3000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 85	S17B

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

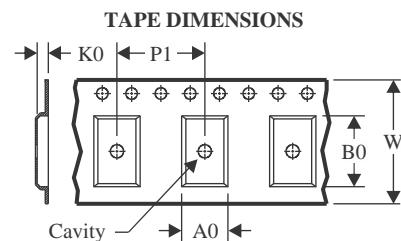
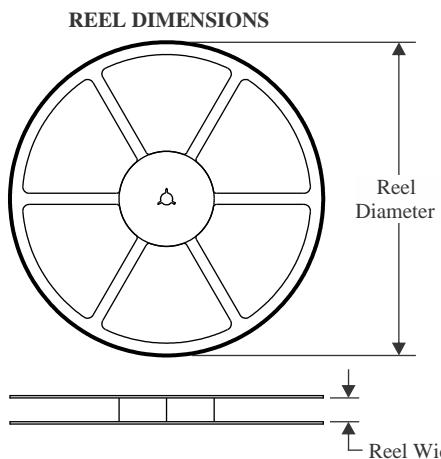
⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

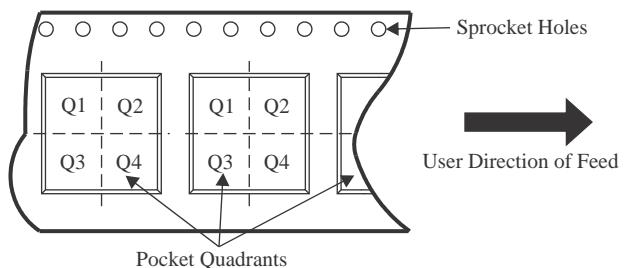
⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

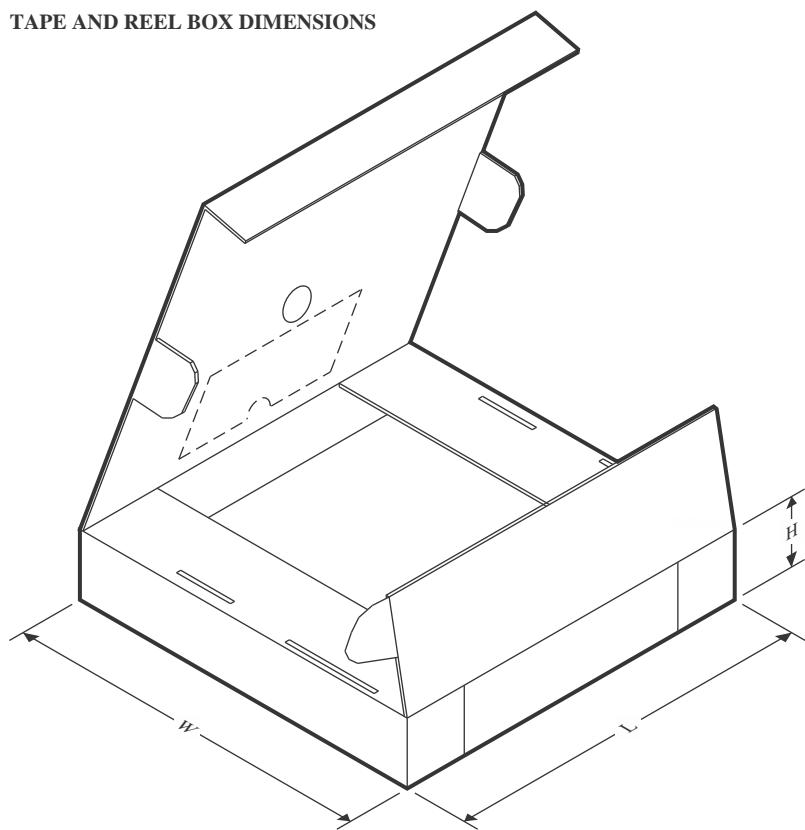


Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative



and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

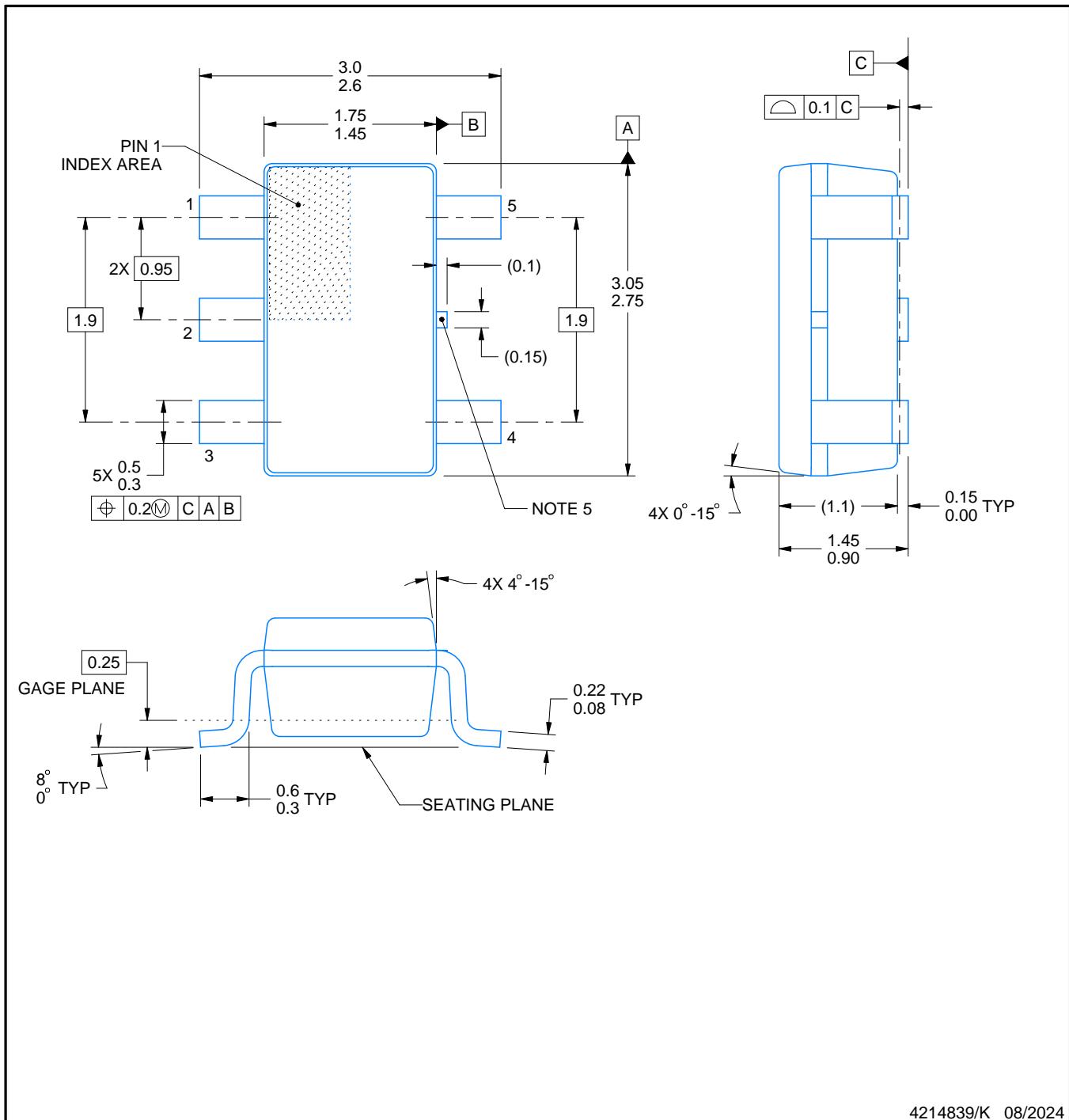
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM2767M5/NOPB	SOT-23	DBV	5	1000	178.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LM2767M5X/NOPB	SOT-23	DBV	5	3000	178.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3

TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM2767M5/NOPB	SOT-23	DBV	5	1000	210.0	185.0	35.0
LM2767M5X/NOPB	SOT-23	DBV	5	3000	210.0	185.0	35.0


PACKAGE OUTLINE

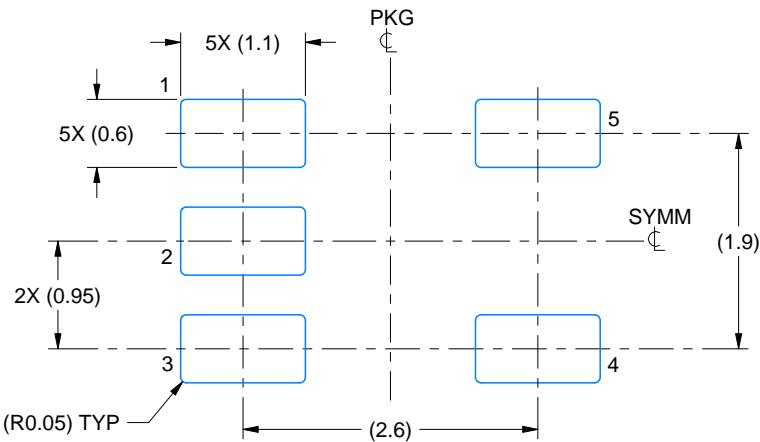
DBV0005A

SOT-23 - 1.45 mm max height

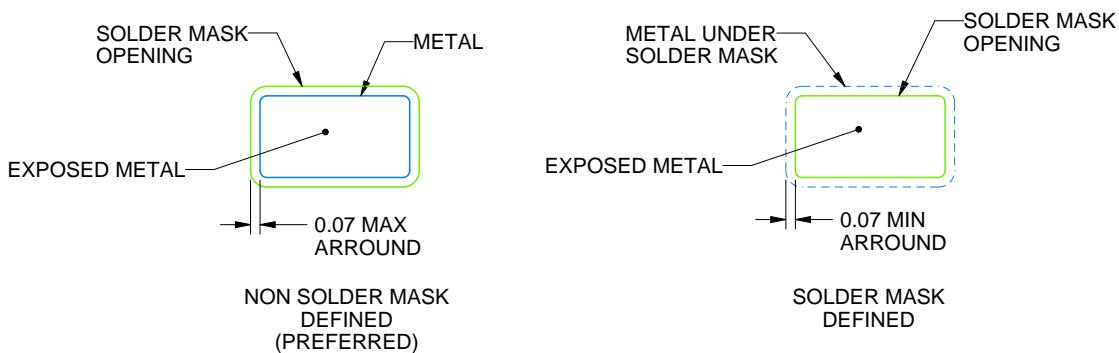
SMALL OUTLINE TRANSISTOR

4214839/K 08/2024

NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Reference JEDEC MO-178.
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25 mm per side.
5. Support pin may differ or may not be present.

EXAMPLE BOARD LAYOUT


DBV0005A

SOT-23 - 1.45 mm max height

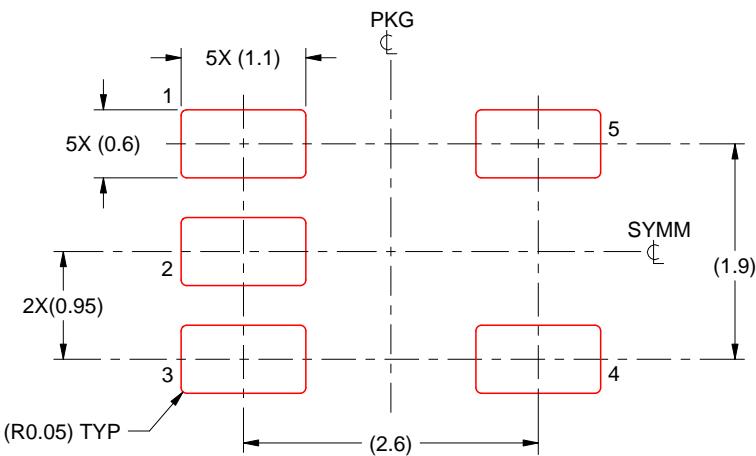
SMALL OUTLINE TRANSISTOR

LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE:15X

SOLDER MASK DETAILS

4214839/K 08/2024

NOTES: (continued)


6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

DBV0005A

SOT-23 - 1.45 mm max height

SMALL OUTLINE TRANSISTOR

SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:15X

4214839/K 08/2024

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の默示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または默示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したもので、(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TI の製品は、[TI の販売条件](#)、[TI の総合的な品質ガイドライン](#)、[ti.com](#) または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TI はそれらに異議を唱え、拒否します。

Copyright © 2026, Texas Instruments Incorporated

最終更新日：2025 年 10 月