

LMC7660

LMC7660 Switched Capacitor Voltage Converter

Literature Number: JAJSBC6

ご注意: この日本語データシートは参考資料として提供しており、内容が最新でない場合があります。製品のご検討およびご採用に際しては、必ず最新の英文データシートをご確認ください。

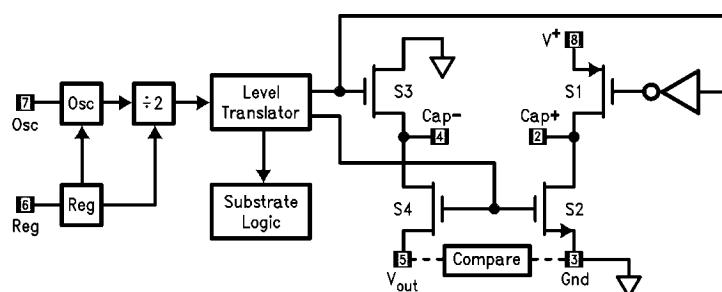
1997年4月

LMC7660 スイッチ・キャパシタ型電圧コンバータ

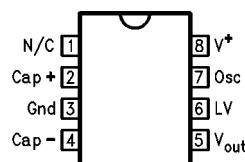
LMC7660

スイッチ・キャパシタ型電圧コンバータ

概要


LMC7660 は、+1.5V から +10V までの正電圧をその対応する負電圧 -1.5V から -10V の範囲で変換させることのできるCMOS 電圧コンバータです。LMC7660 は業界標準の 7660 とピンコンパチです。このコンバータの特長は外付けダイオードなしで全動作温度範囲と電圧範囲において動作すること、低待機時消費電流、そして高い電力効率です。

LMC7660 の内蔵発振器は、4 つのパワー MOS スイッチを切換え、2 つの安価な電解コンデンサに充電します。


特長

- 外付けダイオードなしで、全温度及び、全電圧範囲で動作可能
- 低電源電流、最大 200 μ A
- 業界標準の 7660 とピンコンパチ
- 1.5V から 10V までの広い動作電圧範囲
- 97% の電圧変換効率
- 95% の電力変換効率
- 外付け部品は 2 つのみ
- 広い動作温度範囲
- SO-8 パッケージと 8 ピン DIP で供給

ブロック図

ピン配置図

製品情報

Package	Temperature Range	NSC Drawing
	Industrial - 40 ~ + 85	
8-Lead Molded DIP	LMC7660IN	N08E
8-Lead Molded Small Outline	LMC7660IM	M08A

絶対最大定格 (Note 1)

本データシートには軍用・航空宇宙用の規格は記載されていません。
関連する電気的信頼性試験方法の規格を参照下さい。

電源電圧 ピン 6, 7 における入力電圧 (Note 2)	10.5V - 0.3V ~ (V ⁺ + 0.3V) V ⁺ < 5.5V 時 (V ⁺ - 5.5V) ~ (V ⁺ + 0.3V) V ⁺ > 5.5V 時	T _J Max (Note 3) JA (Note 3)	消費電力 (Note 3) N M	1.4W 0.6W
ピン 6 における電流 (Note 2)	20 μ A	T _J Max (Note 3)	N M	150 150
出力回路短絡時間 (V ⁺ = 5.5V)	連続	JA (Note 3)	N M	90 /W 160 /W
		保存温度範囲	- 65	T 150
		リード温度 (ハンダ付け、5秒)		260
		ESD 耐圧 (Note 7)		\pm 2000V

電気的特性 (Note 4)

Symbol	Parameter	Conditions	Typ	LMC7660IN/ LMC7660IM	Units Limits
				Limit (Note 5)	
I _s	Supply Current	R _L =	120	200 400	μ A max
V ⁺ H	Supply Voltage Range High (Note 6)	R _L = 10 k Ω , Pin 6 Open Voltage Efficiency 90%	3 to 10	3 to 10 3 to 10	V
V ⁺ L	Supply Voltage Range Low	R _L = 10 k Ω , Pin 6 to Gnd. Voltage Efficiency 90%	1.5 to 3.5	1.5 to 3.5 1.5 to 3.5	V
R _{out}	Output Source Resistance	I _L = 20 mA	55	100 120	max
		V = 2V, I _L = 3 mA Pin 6 Short to Gnd.	110	200 300	
F _{osc}	Oscillator Frequency		10		kHz
P _{eff}	Power Efficiency	R _L = 5 k Ω	97	95 90	% min
V _{o eff}	Voltage Conversion Efficiency	R _L =	99.9	97 95	% min
I _{osc}	Oscillator Sink or Source Current	Pin 7 = Gnd. or V ⁺	3		μ A

Note 1: 絶対最大定格とは、IC に破壊が発生する可能性のある制限値をいいます。動作定格を越えて動作させている IC には、DC 特性・AC 特性いずれの規格も適用されません。Note 4 の条件を参照して下さい。

Note 2: 入力端子を V⁺より高い、又はグランドより低い電圧につなぐと、破壊的ラッチアップの原因となります。従って、外部電源により動作している信号源から、LMC7660 の“パワーアップ”以前に入力を印加せしないで下さい。

Note 3: 高温の動作では、熱抵抗 J_A と $T_{J, \text{max}}$, $T_J = T_A + J_A P_D$ に従いディレイーティングして使用して下さい。

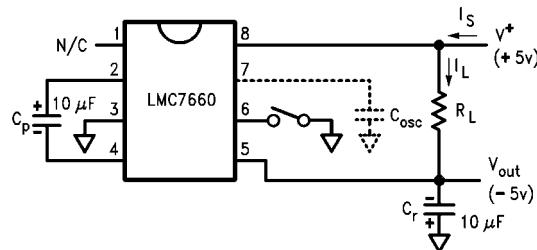
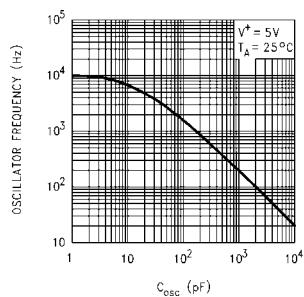
Note 4: 太文字の数値は、全動作温度範囲に適用され、標準の文字は、特記のない限り、 $T_A = 25^\circ\text{C}$ 、 $V^+ = 5\text{V}$ 、 $C_{OSC} = 0$ の条件下で適用されます。Figure 1 にテスト回路を示します。

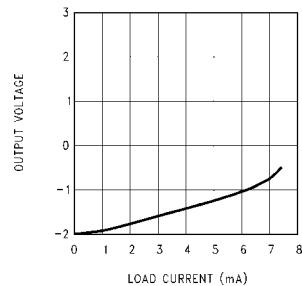
Note 5: 室温でのリミット値は 100% テストされ、保証されます。太字のリミット値は全動作温度範囲において保証されます（しかし 100% 試験されているわけではありません。）これらのリミット値は工場出荷検査時の品質レベルの計算には使用されません。

Note 6: LMC7660 は、全温度及び電圧範囲で外付けダイオードなしで動作可能です。LMC7660 は、旧型の 7660 と置換える時、外付けダイオード DX を使用することも可能です。

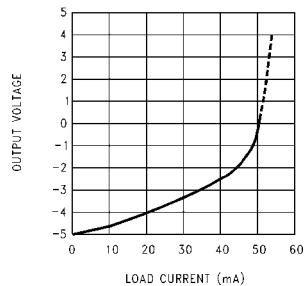
Note 7: 使用した試験回路は、人体モデルにもとづき、直列抵抗 1500 Ω と 100pF のコンデンサから成る回路を使用し、各端子に放電せます。

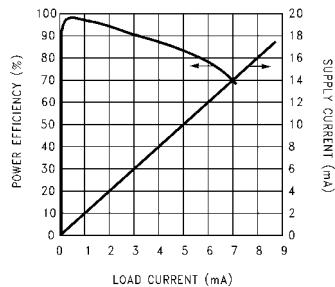
電気的特性 (Note 4) (つづき)

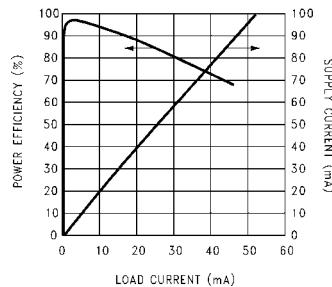



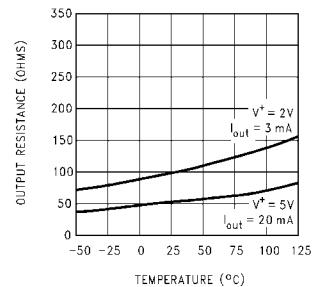

FIGURE 1. LMC7660 Test Circuit

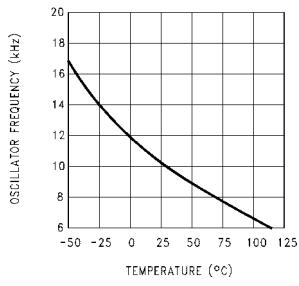
代表的な性能特性

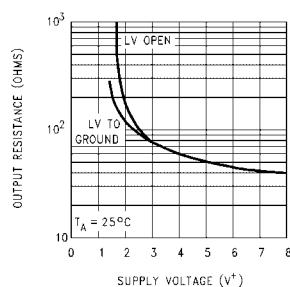

OSC Freq. vs OSC Capacitance

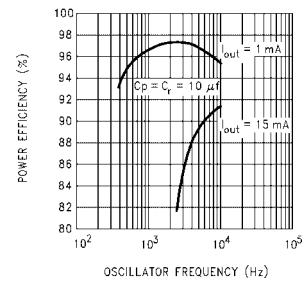

Vout vs Iout @ V+ = 2V


Vout vs Iout @ V+ = 5V


Supply Current & Power Efficiency vs Load Current (V+ = 2V)


Supply Current & Power Efficiency vs Load Current (V+ = 5V)


Output Source Resistance as a Function of Temperature


Unloaded Oscillator Frequency as a Function of Temperature

Output R vs Supply Voltage

Peff vs OSC Freq. @ V+ = 5V

アプリケーション情報

回路説明

LMC7660 は 4 つの大きな CMOS スイッチを内蔵しています。このスイッチは、 $V_{OUT} = -V_{IN}$ の電圧変換を行うため連続して切換えられます。エネルギーの転送と蓄積は、2 つの安価な電解コンデンサによって行われます。Figure 2 に、 V^+ から $-V^+$ に変換する時、LMC7660 がどのように使われるのかを示しました。スイッチ S1 と S3 が閉じている時、 C_p は電源電圧 V^+ で充電されます。この時スイッチ S2 と S4 は開いています。 C_p が V^+ に充電されると、S1 と S3 は開かれ、S2 と S4 は閉じられます。S2 をグランドへ接地することによって、 C_p と C_r は $-V^+/2$ の電圧になります。数サイクル後、 C_r は $-V^+$ まで、引き下げられます。この転送は無負荷で、そしてスイッチによる損失はない仮定しています。

Figure 2 の回路図では、S1 は P チャネル・デバイスで、S2、S3、S4 は N チャネル・デバイスです。グランド以下に出力がバイアスされるので、S3、S4 の P-ウェル (WELLS) は、そのソースまたはドレインのいずれかに対して決してフォワード・バイアスされないということが重要です。サブストレート・ロジック回路は、これらの P-ウェル (WELLS) が常に適当な電圧に維持されるのを保証しています。全条件下で、S4 P-ウェル (WELLS) は、回路内において一番低い電位でなければなりません。スイッチ S4 を切るために、レベル・トランスレータは $V_{GS4} = 0V$ を発生させますが、これは S4 P-ウェル (WELLS) から、レベル・トランスレータをバイアスすることによって実行されます。

内蔵の RC 発振器と $\div 2$ 回路はレベル・トランスレータに対しタイミング信号を供給します。内蔵のレギュレータは、高電源電圧時の電力損失を減少させるため、発振器とデバイダをバイアスします。レギュレータは、およそ $V^+ = 6.5V$ でアクティブとなります。LV ピンを $V^+ = 3.5V$ の時グランドにショートさせると、低電圧時の動作を改善できます。 $V^+ = 3.5V$ の時、LV ピンはデバイスの損傷をさけるため、オープンのままにします。

電力効率とリップル

以下の条件に合致すれば、理論上 100% の電力効率をあげることは可能です。

- 1) ドライブ回路の消費電力がほとんどない。
- 2) 電力スイッチはマッチングしており、低 R_{ON} である。
- 3) リザーバコンデンサ (C_r) とポンピングコンデンサ (C_p) のインピーダンスが動作周波数において無視してよい程、小さい。

LMC7660 は上記 1 と 2 の条件にほぼ合致します。大きなポンプ容量 C_p を用いることによって、リザーバ (蓄積) 容量に供給する間に移動する電荷は、 C_p の全電荷にくらべると少量です。移動電荷が少量であるということは、ポンプ容量電圧における変化が小さいということを意味し、又、エネルギー損失が少なく効率が良いということを意味します。 C_p によるエネルギー損失は次のように計算されます。

$$E = \frac{1}{2}C_p(V1^2 - V2^2)$$

リザーバ容量が大きい場合は、出力リップルを許容レベルに減少させることができます。例えば、負荷電流が 5mA で許容リップルが 200mV の時、リザーバ容量は、次式から概算されます。

$$I_s = C_r \frac{dv}{dt}$$

$$\sim C_r \times \frac{V_{ripple\ p-p}}{4/F_{osc}} \quad C_r = \frac{0.5\text{ mA}}{0.5\text{V/ms}} = 10\ \mu\text{F}$$

注意

- 1) 最大電源電圧もしくは接合部温度を越えないこと。
- 2) 3.5V 以上の電源電圧時、ピン 6(LV 端子) をグランドへ短絡させないこと。
- 3) V^+ に対して出力を短絡にしないこと。
- 4) 外付け電解コンデンサ C_r と C_p は、Figure 1 に示された極性に接続すること。

旧 7660 型との置換

IC を破壊するラッチアップを防止するために、旧タイプの 7660 は温度もしくは電源電圧上昇時の動作では出力に直列ダイオードが必要となります。この旧タイプの 7660 でのラッチアップ問題を直列ダイオードで防止したとしても、使用できる出力電圧は低められ、出力直列抵抗は増大します。

ナショナル セミコンダクター社の LMC7660 は、この固有のラッチアップ問題を解決できるよう設計されています。LMC7660 は、出力ダイオードなしで、全電源電圧及び温度範囲で動作が可能です。現在ある 7660 型と置換える時、LMC7660 はダイオード D_x を残したままでも動作可能です。

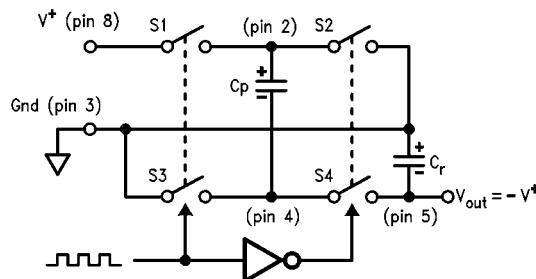


FIGURE 2. Idealized Voltage Converter

応用例

発振器周波数の変更

発振器周波数を下げることによりLMC7660の静(無信号)動作電流を劇的に減少させることができます。スローダウン・コンデンサ C_{osc} をつけ加えることによって(Figure 3)、発振周波数は10kHzから数百ヘルツに低下させることができます。代表的な性能特性で示した様に、電源電流は10 μ Aレンジに下がります。この低電流ドレインは低電力やバッテリ・バックアップ装置に使用する時、非常に有効です。より低い動作周波数と電源電流は C_r や C_p のインピーダンスを増加させる原因となるということを忘れてはなりません。低いスイッチイングレートのために増加したインピーダンスは、要求するリップルと負荷電流を得るため C_r と C_p を増加させることによって打ち消します。

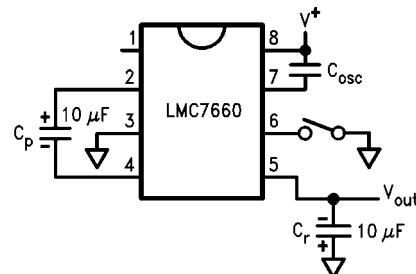


FIGURE 3. Reduce Supply Current by Lowering Oscillator Frequency

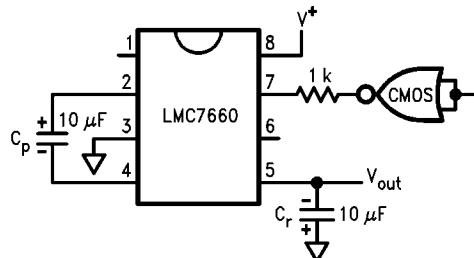


FIGURE 4. Synchronizing to an External Clock

応用例 (つづき)

出力インピーダンスの低減

2つ以上のLMC7660を並列接続させると、出力インピーダンスは低下します。それぞれのデバイスは、各自各自ボンディング・コンデンサ C_p を持たなくてはなりませんが、リザーバ・コンデンサ C_r はFigure 5に表されているように共有されています。複合出力抵抗値は次のように計算されます。

$$R_{out} = \frac{R_{out} \text{ of one LMC7660}}{\text{Number of devices}}$$

出力電圧の増加

LMC7660のスタック(積み重ね)接続はより大きな負電圧を生み出すための手軽な方法です。Figure 6で示されているように、各段で必要とされる入力電流は、その段での負荷電流の2倍であることに注目して下さい。実効出力抵抗値は、それぞれの R_{out} 値のほぼ合計値となるので、簡単なかけ算で計算できます。

Figure 7に示すように、2番目の7660のピン8をグランドのかわりに+5Vへ接続させることによって+5Vから-15Vを生成する事が可能になります。2番目の7660にかかる電圧は20Vであり、入力電源は+5Vをこえてはならないことに注意して下さい。

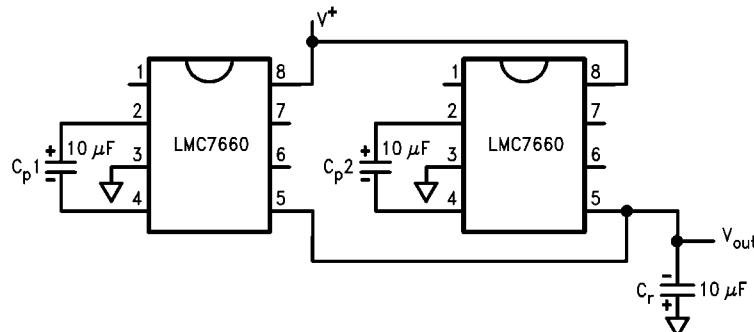


FIGURE 5. Lowering Output Resistance by Paralleling Devices

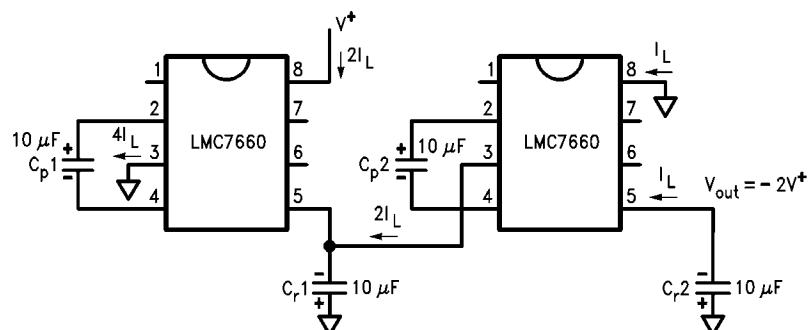


FIGURE 6. Higher Voltage by Cascade

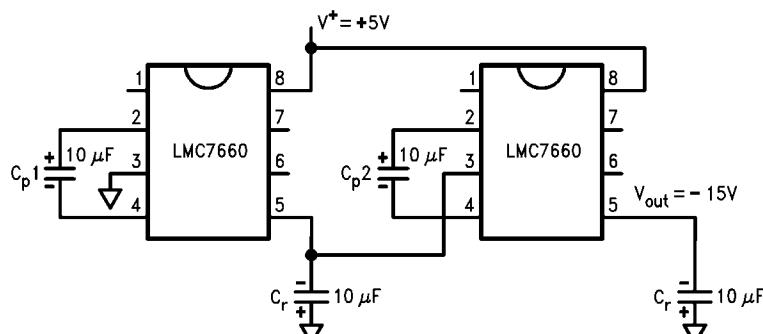


FIGURE 7. Getting -15V from +5V

応用例 (つづき)

$V^+ / 2$ 電圧出力

Figure 8 は LMC7660 のさらに興味ある応用例の一つです。この回路は、(非常に軽い負荷用の)高精度電圧デバイスとして使われ、バッテリーの応用において、中間電位をつくるために使用されます。1/2 サイクルで S1 と S3 が閉じている時、それぞれの数値に比例し、通常の方法でコンデンサ両端電圧を分解します。1/2 サイクルで S2 と S4 が閉じている時、コンデンサは直列接続から並列接続へ切りかわります。このため、コンデンサは同量の電圧を持つように強制され、電荷は C_p と C_r の端子電圧で、正確に $V^+ / 2$ を維持するよう再配分されます。この応用例では、デバイスにかかる電圧は $V^+ / 2$ のみとなり、電源電圧は、 V_{OUT} で正確な 10V を供給するためとして、20V まで上昇させることができます。

電圧倍増動作

LMC7660 は、正電圧倍増器としても使うことができます。Figure 9 に示す様に、この応用の場合、2 つの付加ダイオードが必要となります。最初の 1/2 サイクル中、S2 は D1 を通って C_{p1} へ充電し、D2 は逆バイアスされます。次の 1/2 サイクルで、S2 は開き、S1 は閉じられます。 C_{p1} は、 $V^+ - V_{D1}$ まで充電され、そしてその電圧は S1 を通じて V^+ に対してリファレンスされるので、D1 と D2 の接続部は $V^+ + (V^+ - V_{D1})$ となります。D1 はこの期間逆バイアスされています。この応用回路では、7660 の 4 つのスイッチのうち 2 つだけを使用しています。残りの 2 つのスイッチは、Figure 10 に示されている様に、同時に負極性へ変換するのに使う事が出来ます。D1 が C_{p1} を充電している 1/2 サイクル中、 C_{p2} はグランドから S2 と S4 を経て $-V_{OUT}$ へ接続され、 C_{r2} は C_{p2} の電荷を蓄積します。S1 と S3 が閉じている期間は、 C_{p1} は V^+ 上で D1 と D2 の接続部を押し上げ、一方 C_{p2} は V^+ から新たに充電されます。

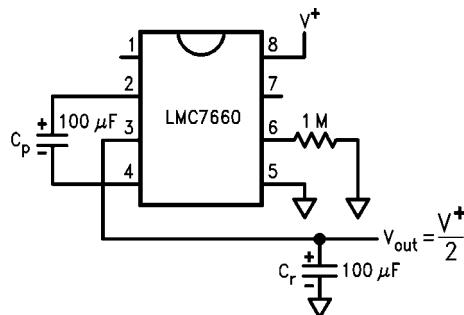


FIGURE 8. Split V^+ in Half

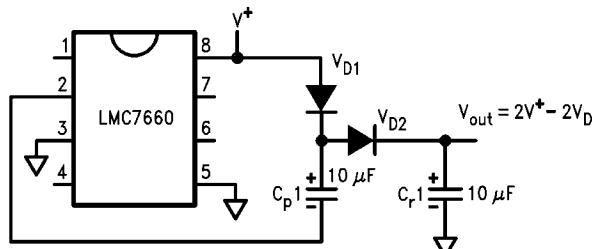


FIGURE 9. Positive Voltage Multiplier

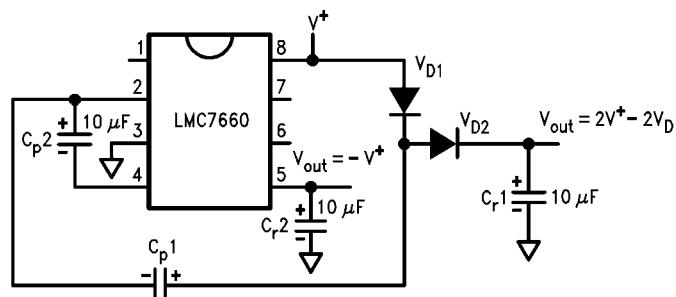
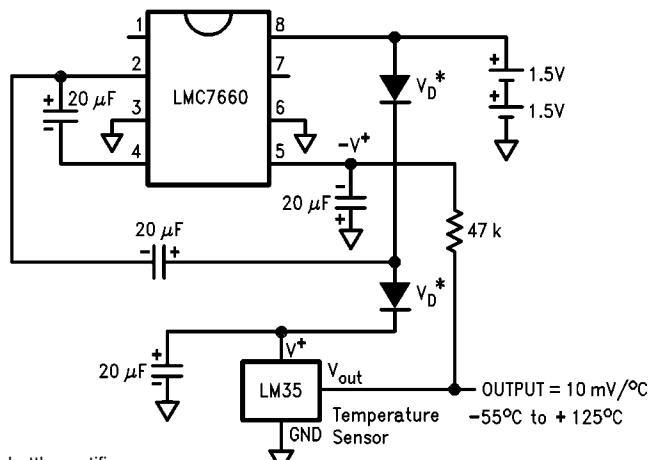


FIGURE 10. Combined Negative Converter and Positive Multiplier

応用例 (つづき)

180 温度範囲温度計


Figure 11 に示す様に LM35 と正・負極性乗算器を組み合わせたものを使用すると、180 °まで温度範囲を広げた μ パワー温度計を作り出すことが可能です。LM35 温度センサーはたった 50 μA の待機時消費電流で、10 mV/ °の出力感度を持っています。LM35 で負極性の温度を計るためには、負電圧まで電圧を下げる必要があります。Figure 11 では、-55 °から +125 °までの温度を計り、たった 2 つの 1.5V セルしか必要としない温度計回路を示しました。変換ダイオードをショットキー・ダイオードに取り換える事によりバッテリ寿命をのばすことができます。

- V_{OUT} の安定化

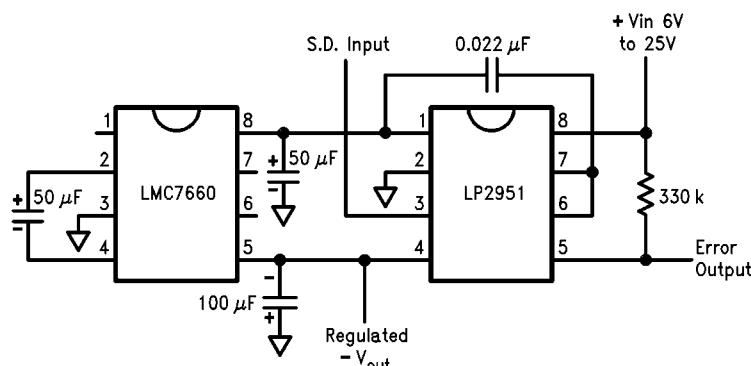
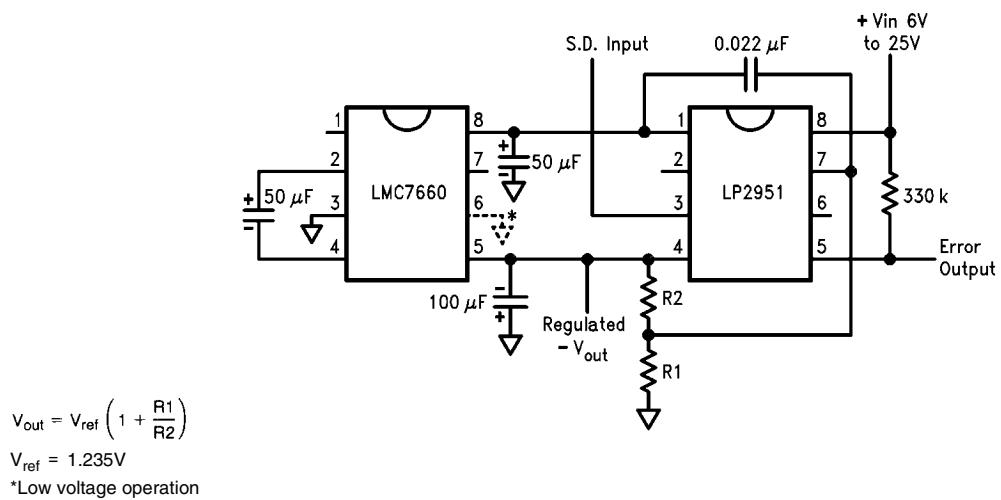
LMC7660 の出力を安定化し、かつ μ パワーの性能をそのまま維持する事が可能になります。これは、LMC7660 を LP2951 のループにどけることによります。Figure 12 の回路は $I_L = 10 \text{ mA}$ 、 $V_{IN} = 6 \text{ V}$ で、 V_{OUT} を -5V に安定化します。 $V_{IN} > 7 \text{ V}$ の場合は、 $I_L = 25 \text{ mA}$ まで得ることができます。LP2951 のビン 5 におけるエラー・フラグは、ビン 4 での安定化出力が約 5% まで下がる時、ローに設定されます。LP2951 はビン 3 をハイにすることによりシャット・ダウンでき、LMC7660 はビン 7 とビン 8 を短絡することによってシャット・ダウンさせる事ができます。

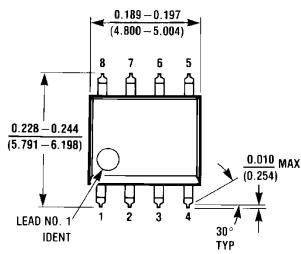
LP2951 は可変型レギュレータとして使う事ができますが、これは、Figure 13 に示すように、LMC7660 が、R1 と R2 の抵抗比により、-2.0V から -10V まで出力調整できるということを意味します。 $V_{REF} = 1.235 \text{ V}$ で $V_{OUT} = V_{REF}$ から計算できます。

$$V_{out} = V_{ref} \left(1 + \frac{R1}{R2} \right)$$

*For lower voltage operation, use Schottky rectifiers

FIGURE 11. μPower Thermometer Spans 180 °, and Pulls Only 150 μA



FIGURE 12. Regulated -5V with 200 μA Standby Current

応用例 (つづき)

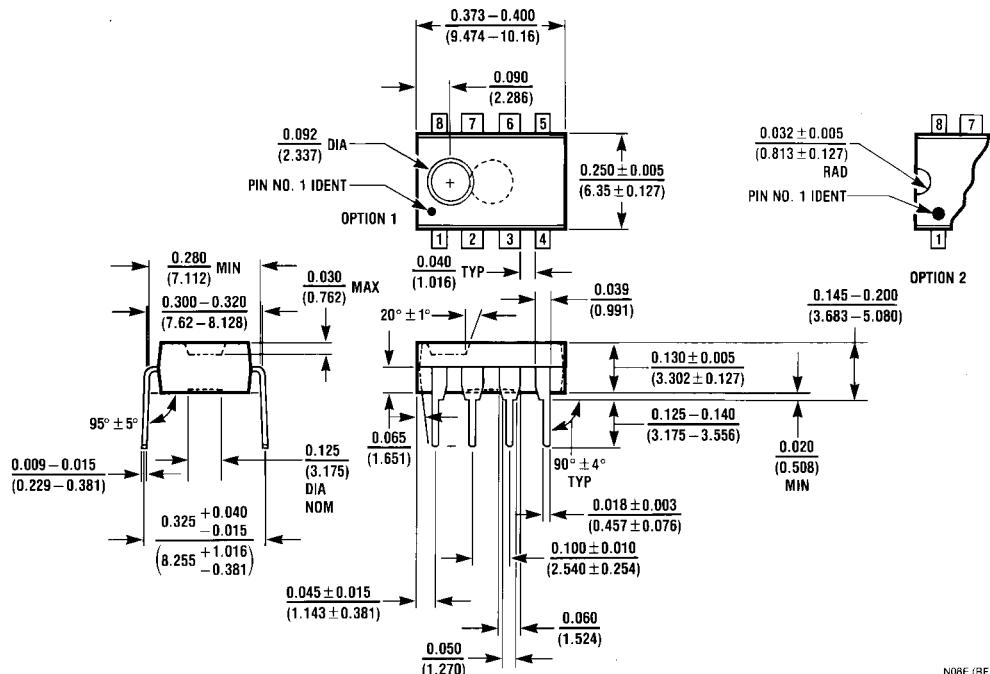


FIGURE 13. LMC7660 and LP2951 Make a Negative Adjustable Regulator

外形寸法図 特記のない限り inches (millimeters)

**Molded Small Outline Package (M)
Order Number LMC7660IM
NS Package Number M08A**

Molded Dual-In-Line Package (N)
Order Number LMC7660IN
NS Package Number N08E

生命維持装置への使用について

弊社の製品はナショナル セミコンダクター社の書面による許可なくしては、生命維持用の装置またはシステム内の重要な部品として使用することはできません。

1. 生命維持用の装置またはシステムとは (a) 体内に外科的に使用されることを意図されたもの、または (b) 生命を維持あるいは支持するものをいい、ラベルにより表示される使用法に従って適切に使用された場合に、これの不具合が使用者に身体的障害を与えると予想されるものをいいます。
2. 重要な部品とは、生命維持にかかわる装置またはシステム内のすべての部品をいい、これの不具合が生命維持用の装置またはシステムの不具合の原因となりそれらの安全性や機能に影響を及ぼすことが予想されるものをいいます。

ナショナル セミコンダクター ジャパン株式会社

本社 / 〒135-0042 東京都江東区木場 2-17-16 TEL.(03)5639-7300

技術資料（日本語／英語）はホームページより入手可能です。 その他のお問い合わせはフリーダイヤルをご利用下さい。

<http://www.nsjk.co.jp/>

 0120-666-116

ご注意

日本テキサス・インスツルメンツ株式会社（以下TIJといいます）及びTexas Instruments Incorporated（TIJの親会社、以下TIJないしTexas Instruments Incorporatedを総称してTIといいます）は、その製品及びサービスを任意に修正し、改善、改良、その他の変更をし、もしくは製品の製造中止またはサービスの提供を中止する権利を留保します。従いまして、お客様は、発注される前に、関連する最新の情報を取得して頂き、その情報が現在有効かつ完全なものであるかどうかご確認下さい。全ての製品は、お客様とTIJとの間に取引契約が締結されている場合は、当該契約条件に基づき、また当該取引契約が締結されていない場合は、ご注文の受諾の際に提示されるTIJの標準販売契約款に従って販売されます。

TIは、そのハードウェア製品が、TIの標準保証条件に従い販売時の仕様に対応した性能を有していること、またはお客様とTIJとの間で合意された保証条件に従い合意された仕様に対応した性能を有していることを保証します。検査およびその他の品質管理技法は、TIが当該保証を支援するのに必要とみなす範囲で行なわれております。各デバイスの全てのパラメーターに関する固有の検査は、政府がそれ等の実行を義務づけている場合を除き、必ずしも行なわれておりません。

TIは、製品のアプリケーションに関する支援もしくはお客様の製品の設計について責任を負うことはありません。TI製部品を使用しているお客様の製品及びそのアプリケーションについての責任はお客様にあります。TI製部品を使用したお客様の製品及びアプリケーションについて想定される危険を最小のものとするため、適切な設計上および操作上の安全対策は、必ずお客様にてお取り下さい。

TIは、TIの製品もしくはサービスが使用されている組み合せ、機械装置、もしくは方法に関連しているTIの特許権、著作権、回路配置利用権、その他のTIの知的財産権に基づいて何らかのライセンスを許諾するということは明示的にも黙示的にも保証も表明もしておりません。TIが第三者の製品もしくはサービスについて情報を提供することは、TIが当該製品もしくはサービスを使用することについてライセンスを与えるとか、保証もしくは是認するということを意味しません。そのような情報を使用するには第三者の特許その他の知的財産権に基づき当該第三者からライセンスを得なければならない場合もあり、またTIの特許その他の知的財産権に基づきTIからライセンスを得て頂かなければならぬ場合もあります。

TIのデータ・ブックもしくはデータ・シートの中にある情報を複製することは、その情報に一切の変更を加えること無く、かつその情報と結び付られた全ての保証、条件、制限及び通知と共に複製がなされる限りにおいて許されるものとします。当該情報に変更を加えて複製することは不公正で誤認を生じさせる行為です。TIは、そのような変更された情報や複製については何の義務も責任も負いません。

Copyright © 2011, Texas Instruments Incorporated
日本語版 日本テキサス・インスツルメンツ株式会社

弊社半導体製品の取り扱い・保管について

半導体製品は、取り扱い、保管・輸送環境、基板実装条件によっては、お客様での実装前後に破壊/劣化、または故障を起こすことがあります。

弊社半導体製品のお取り扱い、ご使用にあたっては下記の点を遵守して下さい。

1. 静電気

- 素手で半導体製品単体を触らないこと。どうしても触る必要がある場合は、リストストラップ等で人体からアースをとり、導電性手袋等をして取り扱うこと。
- 弊社出荷梱包単位（外装から取り出された内装及び個装）又は製品単品で取り扱いを行う場合は、接地された導電性のテーブル上で（導電性マットにアースをとったもの等）、アースをした作業者が行うこと。また、コンテナ等も、導電性のものを使うこと。
- マウンタやはんだ付け設備等、半導体の実装に関わる全ての装置類は、静電気の帯電を防止する措置を施すこと。
- 前記のリストストラップ・導電性手袋・テーブル表面及び実装装置類の接地等の静電気帯電防止措置は、常に管理されその機能が確認されていること。

2. 湿度環境

- 温度：0～40°C、相対湿度：40～85%で保管・輸送及び取り扱いを行うこと。（但し、結露しないこと。）

TIの製品もしくはサービスについてTIにより示された数値、特性、条件その他のパラメーターと異なる、あるいは、それを超えてなされた説明で当該TI製品もしくはサービスを再販売することは、当該TI製品もしくはサービスに対する全ての明示的保証、及び何らかの黙示的保証を無効にし、かつ不公正で誤認を生じさせる行為です。TIは、そのような説明については何の義務も責任もありません。

TIは、TIの製品が、安全でないことが致命的となる用途ないしアプリケーション（例えば、生命維持装置のように、TI製品に不良があった場合に、その不良により相当な確率で死傷等の重篤な事故が発生するようなもの）に使用されることを認めておりません。但し、お客様とTIの双方の権限有る役員が書面でそのような使用について明確に合意した場合は除きます。たとえTIがアプリケーションに関連した情報やサポートを提供したとしても、お客様は、そのようなアプリケーションの安全面及び規制面から見た諸問題を解決するために必要とされる専門的知識及び技術を持ち、かつ、お客様の製品について、またTI製品をそのような安全でないことが致命的となる用途に使用することについて、お客様が全ての法的責任、規制を遵守する責任、及び安全に関する要求事項を満足させる責任を負っていることを認め、かつそのことに同意します。さらに、もし万一、TIの製品がそのような安全でないことが致命的となる用途に使用されたことによって損害が発生し、TIないしその代表者がその損害を賠償した場合は、お客様がTIないしその代表者にその全額の補償をするものとします。

TI製品は、軍事的用途もしくは宇宙航空アプリケーションないし軍事的環境、航空宇宙環境にて使用されるようには設計もされていませんし、使用されることを意図されておりません。但し、当該TI製品が、軍需対応グレード品、若しくは「強化プラスティック」製品としてTIが特別に指定した製品である場合は除きます。TIが軍需対応グレード品として指定した製品のみが軍需品の仕様書に合致いたします。お客様は、TIが軍需対応グレード品として指定していない製品を、軍事的用途もしくは軍事的環境下で使用することは、もっぱらお客様の危険負担においてなされるということ、及び、お客様がもっぱら責任をもって、そのような使用に関して必要とされる全ての法的要件及び規制上の要求事項を満足させなければならないことを認め、かつ同意します。

TI製品は、自動車用アプリケーションないし自動車の環境において使用されるようには設計もされていませんし、また使用されることを意図されておりません。但し、TIがISO/TS 16949の要求事項を満たしていると特別に指定したTI製品は除きます。お客様は、お客様が当該TI指定品以外のTI製品を自動車用アプリケーションに使用しても、TIは当該要求事項を満たしていなかったことについて、いかなる責任も負わないことを認め、かつ同意します。

- 直射日光があたる状態で保管・輸送しないこと。
- 3. 防湿梱包
 - 防湿梱包品は、開封後は個別推奨保管環境及び期間に従い基板実装すること。
- 4. 機械的衝撃
 - 梱包品（外装、内装、個装）及び製品単品を落下させたり、衝撃を与えないこと。
- 5. 熱衝撃
 - はんだ付け時は、最低限260°C以上の高温状態に、10秒以上さらさないこと。（個別推奨条件がある時はそれに従うこと。）
- 6. 汚染
 - はんだ付け性を損なう、又はアルミ配線腐食の原因となるような汚染物質（硫黄、塩素等ハロゲン）のある環境で保管・輸送しないこと。
 - はんだ付け後は十分にフラックスの洗浄を行うこと。（不純物含有率が一定以下に保証された無洗浄タイプのフラックスは除く。）

以上