

LMG2100R044 JAJSQP5 - JULY 2023

LMG2100R044 100V、35A GaN ハーフ・ブリッジ電力段

1 特長

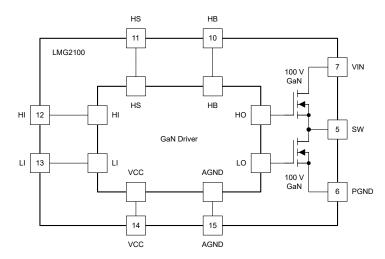
- 4.4mΩ の GaN FET とドライバを内蔵
- 電圧定格:連続 80V、パルス 100V
- 簡単に PCB をレイアウトするよう最適化されたパッケ ージ
- 5V の外部バイアス電源
- 3.3V、5V、12V の入力ロジック・レベルをサポート
- 低リンギングで、高スルーレートのスイッチング
- ゲート・ドライバは最高 10MHz のスイッチングが可能
- 内部的なブートストラップ電源電圧クランピングにより、 GaN FET オーバードライブを防止
- 電源レールの低電圧誤動作防止保護
- 非常に優れた伝搬遅延 (標準値 29.5ns) およびマッ チング (標準値 2ns)
- 低消費電力
- 上面冷却用の露出上面 QFN パッケージ
- 底面冷却用の大型 GND パッド

2 アプリケーション

- 降圧、昇圧、昇降圧コンバータ
- LLC コンバータ
- 太陽光インバータ
- テレコムとサーバー電源
- モータ駆動
- 電動工具
- Class-D オーディオ・アンプ

3 概要

LMG2100R044 デバイスは、80V 連続、100V パルス、 35A ハーフブリッジ電力段で、ゲート・ドライバとエンハン スメント・モードの窒化ガリウム (GaN) FET が内蔵されて います。このデバイスは 2 つの 100V GaN FET で構成さ れ、1 つの高周波数 80V GaN FET ドライバによりハー フ・ブリッジ構成で駆動されます。


GaN FET は逆方向回復時間がほぼゼロで、入力容量 C_{ISS} および出力容量 C_{OSS} が非常に小さいため、電力変 換において大きな利点があります。すべてのデバイスはボ ンド・ワイヤを一切使用しないパッケージ・プラットフォーム に取り付けられ、パッケージの寄生要素は最小限に抑えら れます。LMG2100R044 デバイスは、5.5mm × 4.5mm × 0.89mm の鉛フリー・パッケージで供給され、簡単に PCB へ取り付けできます。

TTL ロジック互換の入力は、VCC 電圧にかかわらず最高 12V の入力電圧に耐えられます。独自のブートストラップ 電圧クランピング技法により、エンハンスメント・モード GaN FET のゲート電圧が安全な動作範囲内であることが 保証されます。

このデバイスは、ディスクリート GaN FET に対してより使 いやすいインターフェイスを提供し、その利点を拡大しま す。小さな外形で高周波数、高効率の動作が必要なアプ リケーションに理想的なソリューションです。

製品情報

SCHOOL IN						
部品番号 パッケージ		本体サイズ (公称)				
LMG2100R044	VQFN (16)	5.50mm × 4.50mm				

概略ブロック図

Table of Contents

1 特長	9.1 Overview11
2 アプリケーション	9.2 Functional Block Diagram11
3 概要	
4 Revision History	
5 Pin Configuration and Functions	10 Application and Implementation14
Pin Functions	10 1 A multi-ation Information
6 Specifications	
6.1 Absolute Maximum Ratings	
6.2 Recommended Operating Conditions	40.414
6.3 ESD Ratings	
6.4 Thermal Information	
6.5 Electrical Characteristics	44.0 D 1.0 O 1
7 Typical Characteristics	
8 Parameter Measurement Information	
8.1 Propagation Delay and Mismatch Measurement	44 5 To along other
9 Detailed Description1	

4 Revision History

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

DATE	REVISION	NOTES
July 2023	*	Advance Information release

Product Folder Links: LMG2100R044

5 Pin Configuration and Functions

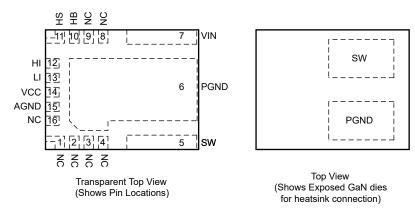


図 5-1. RAR Package 16-Pin VQFN Top View

Pin Functions

PIN		I/O ⁽¹⁾	DESCRIPTION		
NAME	NO.	1/0	DESCRIPTION		
NC	1-4, 8, 9, 16	-	Not connected internally. Leave floating.		
SW	5	Р	Switching node. Electrically shorted to HS pin. Ensure low capacitance at this node on PCB.		
PGND	6	G	Power ground. Low-side GaN FET source. Electrically shorted to AGND pin.		
VIN	7	Р	Input voltage pin. Electrically connected to high-side GaN FET drain.		
НВ	10	Р	High-side gate driver bootstrap rail.		
HS	11	Р	High-side GaN FET source connection		
HI	12	I	High-side gate driver control input		
LI	13	I	Low-side driver control input		
VCC	14	Р	5-V positive gate drive supply		
AGND	15	G	Analog ground. Ground of driver device.		

(1) I = Input, O = Output, G = Ground, P = Power

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

PARAMETER	MIN	MAX	UNIT
VIN to PGND	0	80	V
VIN to PGND (pulsed, 100-ms max duration) ⁽²⁾		100	V
HB to AGND	-0.3	86	V
HS to AGND	-5	80	V
HI to AGND	-0.3	12	V
LI to AGND	-0.3	12	V
VCC to AGND	-0.3	6	V
HB to HS	-0.3	6	V
HB to VCC	0	80	V
SW to PGND	-5	80	V
IOUT from SW pin (Continuous), T _J = 25°C		35	Α
IOUT from SW pin (Pulsed, 300 μ s), T _J = 25°C		125	Α
Junction Temperature, T _J	-40	150	°C
Storage Temperature, T _{stg}	-40	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	,	MIN	NOM	MAX	UNIT
VCC		4.75	5	5.25	V
LI or HI Input		0		12	V
VIN		0		80	V
HS, SW		-5		80	V
НВ		V _{HS} + 4		V _{HS} + 5.25	V
t _{PW}	Minimum input pulse width supported	10			ns
HS, SW Slew rate ⁽¹⁾				50	V/ns
Junction Temperature, T _J		-40		125	°C

⁽¹⁾ This parameter is guaranteed by design. Not tested in production.

6.3 ESD Ratings

			VALUE	UNIT
V	Electrostatic Discharge	Human-body model (HBM), per ANSI/ESDA/ JEDEC JS-001 ⁽¹⁾	±1000	V
(200)	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	V	

Product Folder Links: LMG2100R044

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Submit Document Feedback

⁽²⁾ Device can withstand 1000 pulses up to 100V of 100ms duration and less than 1% duty cycle over its lifetime.

6.4 Thermal Information

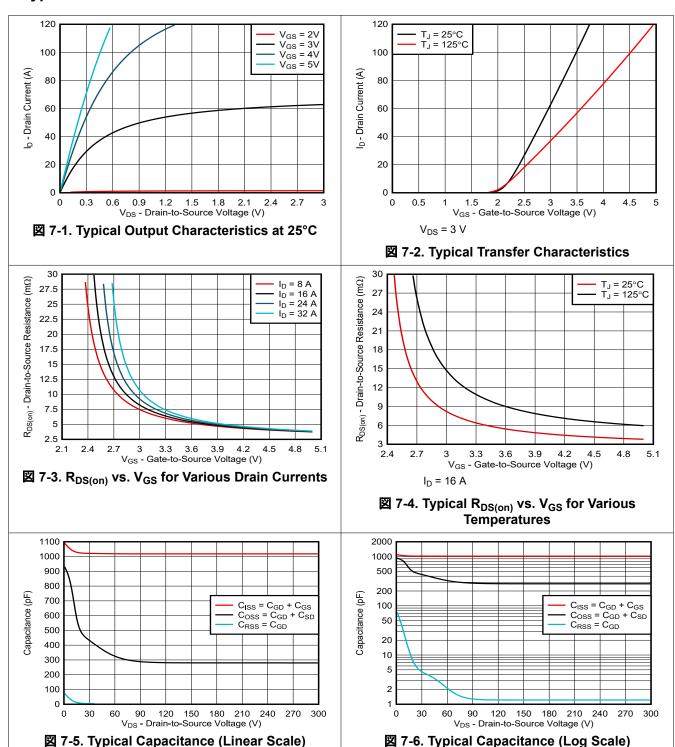
		LMG2100R044		
	THERMAL METRIC (1)			
		9 PINS		
R _{0JA}	Junction-to-ambient thermal resistance	36	°C/W	
R _{0JC(top)}	Junction-to-case (top) thermal resistance	1	C/VV	
R _{0JB}	Junction-to-board thermal resistance	2	°C/W	
Ψ _{JT}	Junction-to-top characterization parameter	1.8	°C/W	
Ψ ЈВ	Junction-to-board characterization parameter	6	°C/W	

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

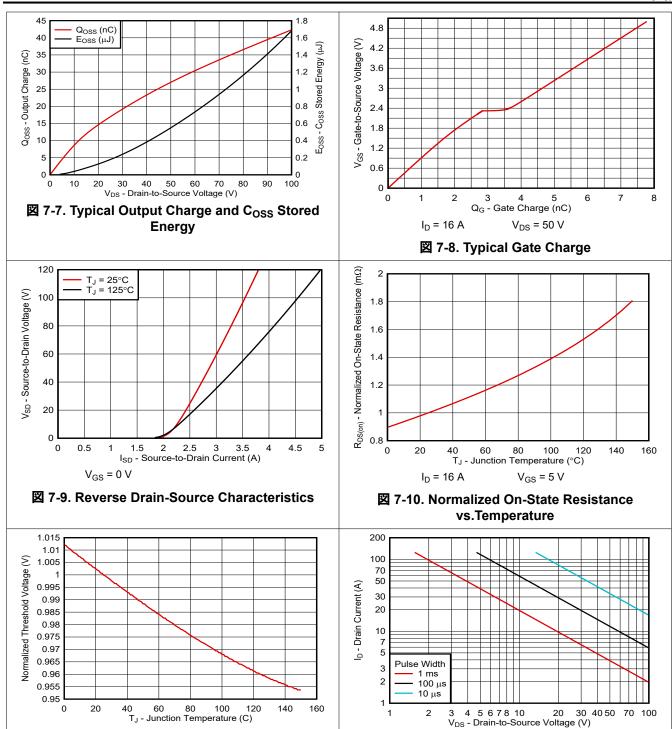
6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY CL	JRRENTS					
I _{CC}	VCC Quiescent Current	LI = HI = 0V, VCC = 5V, HB-HS = 4.6V		0.09	0.125	mA
I _{CC}	VCC Quiescent Current	LI=VCC=5V, HI=0V, HB-HS=4.6V		0.460	7	mA
I _{cco}	Total VCC Operating Current	f = 500 kHz, 50% Duty cycle, V _{IN} = 48V		7.0	10	mA
I _{HB}	HB Quiescent Current	LI = HI = 0V, VCC = 5V, HB-HS = 4.6V		0.1	0.150	mA
I _{HBO}	HB Operating Current	f = 500 kHz, 50% Duty cycle, V _{DD} = 5V, V _{IN} = 0V		3.3	5	mA
INPUT PINS	3					
V _{IH}	High-Level Input Voltage Threshold	Rising Edge	1.87	2.06	2.22	V
V _{IL}	Low-Level Input Voltage Threshold	Falling Edge	1.48	1.66	1.76	V
V _{HYS}	Hysteresis between rising and falling threshold			400		mV
R _I	Input pull down resistance		100	200	300	kΩ
UNDER VO	LTAGE PROTECTION					
V _{CCR}	VCC Rising edge threshold	Rising	3.2	3.8	4.5	V
V _{CCF}	VCC Falling edge threshold		3.0	3.6	4.3	V
V _{CC(hyst)}	VCC UVLO threshold hysteresis			200		mV
V _{HBR}	HB Rising edge threshold	Rising	2.5	3.2	3.9	V
V _{HBF}	HB Falling edge threshold		2.3	3.0	3.7	V
V _{HB(hyst)}	HB UVLO threshold hysteresis			200		mV
BOOTSTRA	AP DIODE					
V_{DL}	Low-Current forward voltage	I _{VDD-HB} = 100μA		0.45	0.65	V
V_{DH}	High current forward voltage	I _{VDD-HB} = 100mA		0.9	1.0	V
R _D	Dynamic Resistance	I _{VDD-HB} = 100mA		1.85	2.8	Ω
	HB-HS Clamp	Regulation Voltage	4.65	5	5.2	V
t _{BS}	Bootstrap diode reverse recovery time	I _F = 100 mA, IR = 100 mA		40		ns
Q _{RR}	Bootstrap diode reverse recovery charge	V _{VIN} = 50 V		2		nC
POWER ST	AGE					
R _{DS(ON)HS}	High-side GaN FET on-resistance	LI=0V, HI=VCC=5V, HB-HS=5V, I(VIN- SW)=16A, T _J = 25°C		4.4	5.7	mΩ
R _{DS(ON)LS}	Low-side GaN FET on-resistance	LI=VCC=5V, HI=0V, HB-HS=5V, I(SW-PGND)=16A, T _J = 25°C		4.4	5.4	mΩ
V _{SD}	GaN 3rd quadrant conduction drop	I _{SD} = 500 mA, V _{IN} floating, VCC = 5 V, HI = LI = 0V		1.6		V
I _{L-VIN-SW}	Leakage from VIN to SW when the high- side GaN FET and low-side GaN FET are off	VIN = 80V, SW=0, HI = LI = 0V, VCC = 5V, T _J =25°C		40	200	μА


over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
I _{L-SW-GND}	Leakage from SW to GND when the high- side GaN FET and low-side GaN FET are off	SW = 80V, HI = LI = 0V, VCC = 5V, T _J =25°C	40	200	μA
C _{OSS}	Output Capacitance of high-side GaN FET or low-side GaN FET	V _{DS} =50V, V _{GS} = 0V (HI = LI = 0V)	304	456	pF
C _{OSS(ER)}	Output Capacitance of high-side GaN FET or low-side GaN FET - Energy Related	V _{DS} =0 to 50V, V _{GS} = 0V (HI = LI = 0V)	401		pF
C _{OSS(TR)}	Output Capacitance of high-side GaN FET or low-side GaN FET - Time Related	V _{DS} =0 to 50V, V _{GS} = 0V (HI = LI = 0V)	501		pF
C _{WELL}	HV-Well Capacitance (SW to PGND)	V _{IN} =V _{SW} =50V, HI = LI = 0V	30		pF
Q_G	Total Gate Charge of high side or low side HEMT	V _{DS} =50V, I _D = 16A, V _{GS} = 5V	7.2		nC
Q_{GD}	Gate to Drain Charge of high side or low side HEMT	V _{DS} =50V, I _D = 16A	0.8		nC
Q _{GS}	Gate to Source Charge of high side or low side HEMT	V _{DS} =50V, I _D = 16A	1.8		nC
Q _{OSS}	Output Charge (sum of high side HEMT, low side HEMT and gate-driver HV-Well charge)	V _{DS} =50V, I _D = 16A	55	84	nC
Q _{RR}	Source to Drain Reverse Recovery Charge	Not including internal driver bootstrap diode	0		nC
t _{HIPLH}	Propagation delay: HI Rising ⁽²⁾	LI=0V, VCC=5V, HB-HS=5V, VIN=48V	29.5	50	ns
t _{HIPHL}	Propagation delay: HI Falling ⁽²⁾	LI=0V, VCC=5V, HB-HS=5V, VIN=48V	29.5	50	ns
t _{LPLH}	Propagation delay: LI Rising ⁽²⁾	HI=0V, VCC=5V, HB-HS=5V, VIN=48V	29.5	50	ns
t _{LPHL}	Propagation delay: LI Falling ⁽²⁾	HI=0V, VCC=5V, HB-HS=5V, VIN=48V	29.5	50	ns
t _{MON}	Delay Matching: LI high & HI low ⁽²⁾		2	8.0	ns
t _{MOFF}	Delay Matching: LI low & HI high ⁽²⁾		2	8.0	ns
t _{PW}	Minimum Input Pulse Width that Changes the Output		10		ns


- (1) Parameters that show only a typical value are guaranteed by design and may not be tested in production
- (2) See Propagation Delay and Mismatch Measurement section

7 Typical Characteristics

Product Folder Links: LMG2100R044

 $I_D = 4.2 \text{ mA}$

図 7-11. Normalized Threshold Voltage vs.

Temperature

T_C = 25 °C

図 7-12. Safe Operating Area

T_{.I} = Max Rated

Single Pulse

8 Parameter Measurement Information

8.1 Propagation Delay and Mismatch Measurement

 \boxtimes 8-1 shows the typical test setup used to measure the propagation mismatch. As the gate drives are not accessible, pullup and pulldown resistors in this test circuit are used to indicate when the low-side GaN FET turns ON and the high-side GaN FET turns OFF and vice versa to measure the t_{MON} and t_{MOFF} parameters. Resistance values used in this circuit for the pullup and pulldown resistors are in the order of 1 kΩ; the current sources used are 2 A.

 \boxtimes 8-2 through \boxtimes 8-5 show propagation delay measurement waveforms. For turnon propagation delay measurements, the current sources are set to 2 A, and a voltage clamp limit is also set, referred to as VIN_(CLAMP). When measuring the high-side component turnoff delay, the current source across the high-side FET is turned on, the current source across the low-side FET is off, HI transitions from high-to-low, and output voltage transitions from V_{IN} to V_{IN(CLAMP)}. Similarly, for low-side component turnoff propagation delay measurements, the high-side component current source is turned off, and the low-side component current source is turned on, LI transitions from high to low and the output transitions from GND potential to V_{IN(CLAMP)}. The time between the transition of LI and the output change is the propagation delay time.

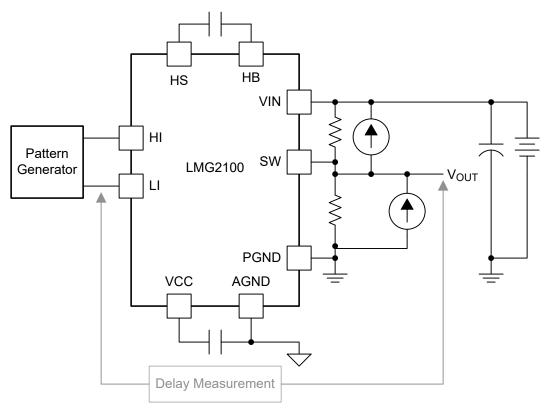
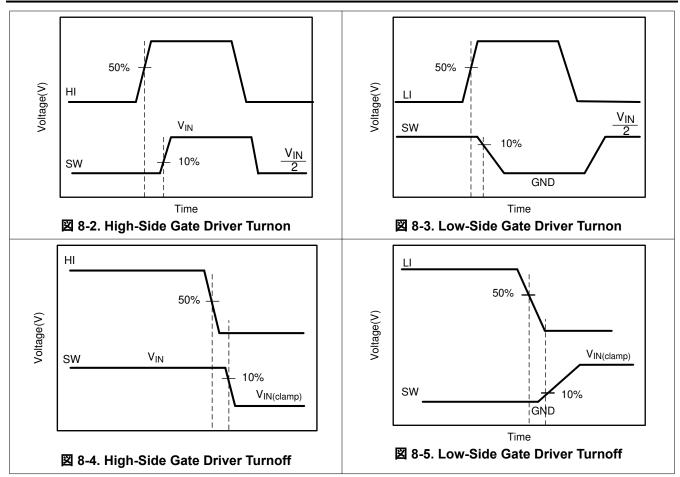



図 8-1. Propagation Delay and Propagation Mismatch Measurement

9 Detailed Description

9.1 Overview

 \boxtimes 9-1 shows the LMG2100R044, half-bridge, GaN power stage with highly integrated high-side and low-side gate drivers, which includes built-in UVLO protection circuitry and an overvoltage clamp circuitry. The clamp circuitry limits the bootstrap refresh operation to ensure that the high-side gate driver overdrive does not exceed 5.4 V. The device integrates two, 4.4-m Ω GaN FETs in a half-bridge configuration. The device can be used in many isolated and non-isolated topologies allowing very simple integration. The package is designed to minimize the loop inductance while keeping the PCB design simple. The drive strengths for turnon and turnoff are optimized to ensure high voltage slew rates without causing any excessive ringing on the gate or power loop.

9.2 Functional Block Diagram

☑ 9-1 shows the functional block diagram of the LMG2100R044 device with integrated high-side and low-side GaN FETs.

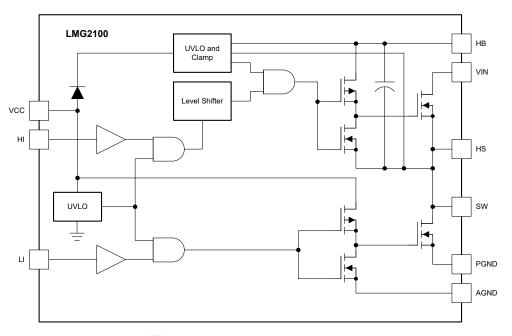


図 9-1. Functional Block Diagram

9.3 Feature Description

The LMG2100R044 device brings ease of designing high power density boards without the need for underfill while maintaining creepage and clearance requirements. The propagation delays between the high-side gate driver and low-side gate driver are matched to allow very tight control of dead time. Controlling the dead time is critical in GaN-based applications to maintain high efficiency. HI and LI can be independently controlled to minimize the third quadrant conduction of the low-side FET for hard switched buck converters. A very small propagation mismatch between the HI and LI to the drivers for both the falling and rising thresholds ensures dead times of < 10 ns. Co-packaging the GaN FET half-bridge with the driver ensures minimized common source inductance. This minimized inductance has a significant performance impact on hard-switched topologies.

The built-in bootstrap circuit with clamp prevents the high-side gate drive from exceeding the GaN FETs maximum gate-to-source voltage (Vgs) without any additional external circuitry. The built-in driver has an undervoltage lockout (UVLO) on the VDD and bootstrap (HB-HS) rails. When the voltage is below the UVLO threshold voltage, the device ignores both the HI and LI signals to prevent the GaN FETs from being partially turned on. Below UVLO, if there is sufficient voltage ($V_{VCC} > 2.5 \text{ V}$), the driver actively pulls the high-side and low-side gate driver output low. The UVLO threshold hysteresis of 200 mV prevents chattering and unwanted turnon due to voltage spikes. Use an external VCC bypass capacitor with a value of 0.1 μ F or higher. TI recommends a size of 0402 to minimize trace length to the pin. Place the bypass and bootstrap capacitors as close as possible to the device to minimize parasitic inductance.

9.3.1 Control Inputs

The LMG2100R044's inputs pins are independently controlled with TTL input thresholds and can withstand voltages up to 12V regardless of the VDD voltage. This allows the inputs to be directly connected to the outputs of an analog PWM controller with up to 12V power supply, eliminating the need for a buffer stage.

In order to allow flexibility to optimize deadtime according to design needs, the LMG2100R044 does not implement an overlap protection functionality. If both HI and LI are asserted, both the high-side and low-side GaN FETs are turned on. Careful consideration must be applied to the control inputs in order to avoid a shoot-through condition.

9.3.2 Start-up and UVLO

The LMG2100R044 has an UVLO on both the V_{CC} and HB (bootstrap) supplies. When the V_{CC} voltage is below the threshold voltage of 3.8 V, both the HI and LI inputs are ignored, to prevent the GaN FETs from being partially turned on. Also, if there is insufficient V_{CC} voltage, the UVLO actively pulls the high- and low-side GaN FET gates low. When the HB to HS bootstrap voltage is below the UVLO threshold of 3.2 V, only the high-side GaN FET gate is pulled low. Both UVLO threshold voltages have 200 mV of hysteresis to avoid chattering.

表 9-1. V_{CC} UVLO Feature Logic Operation

CONDITION (V _{HB-HS} > V _{HBR} for all cases below)	н	LI	sw
V _{CC} - V _{SS} < V _{CCR} during device start-up	Н	L	Hi-Z
V _{CC} - V _{SS} < V _{CCR} during device start-up	L	Н	Hi-Z
V _{CC} - V _{SS} < V _{CCR} during device start-up	Н	Н	Hi-Z
V _{CC} - V _{SS} < V _{CCR} during device start-up	L	L	Hi-Z
V _{CC} - V _{SS} < V _{CCR} - V _{CC(hyst)} after device start-up	Н	L	Hi-Z
V _{CC} - V _{SS} < V _{CCR} - V _{CC(hyst)} after device start-up	L	Н	Hi-Z
V _{CC} - V _{SS} < V _{CCR} - V _{CC(hyst)} after device start-up	Н	Н	Hi-Z
V _{CC} - V _{SS} < V _{CCR} - V _{CC(hyst)} after device start-up	L	L	Hi-Z

表 9-2. V_{HB-HS} UVLO Feature Logic Operation

CONDITION (V _{CC} > V _{CCR} for all cases below)	HI	LI	sw
V _{HB-HS} < V _{HBR} during device start-up	Н	L	Hi-Z
V _{HB-HS} < V _{HBR} during device start-up	L	Н	PGND

Submit Document Feedback

表 9-2. V_{HB-HS} UVLO Feature Logic Operation (continued)

CONDITION (V _{CC} > V _{CCR} for all cases below)	н	LI	sw
V _{HB-HS} < V _{HBR} during device start-up	Н	Н	PGND
V _{HB-HS} < V _{HBR} during device start-up	L	L	Hi-Z
V _{HB-HS} < V _{HBR} - V _{HB(hyst)} after device start-up	Н	L	Hi-Z
V _{HB-HS} < V _{HBR} - V _{HB(hyst)} after device start-up	L	Н	PGND
V _{HB-HS} < V _{HBR} - V _{HB(hyst)} after device start-up	Н	Н	PGND
V _{HB-HS} < V _{HBR} - V _{HB(hyst)} after device start-up	L	L	Hi-Z

9.3.3 Bootstrap Supply Voltage Clamping

The high-side bias voltage is generated using a bootstrap technique and is internally clamped at 5 V (typical). This clamp prevents the gate voltage from exceeding the maximum gate-source voltage rating of the enhancement-mode GaN FETs.

9.3.4 Level Shift

The level-shift circuit is the interface from the high-side input HI to the high-side driver stage, which is referenced to the switch node (HS). The level shift allows control of the high-side GaN FET gate driver output, which is referenced to the HS pin and provides excellent delay matching with the low-side driver.

9.4 Device Functional Modes

The LMG2100R044 operates in normal mode and UVLO mode. See セクション 9.3.2 for information on UVLO operation mode. In the normal mode, the output state is dependent on the states of the HI and LI pins. 表 9-3 lists the output states for different input pin combinations. Note that when both HI and LI are asserted, both GaN FETs in the power stage are turned on. Careful consideration must be applied to the control inputs in order to avoid this state, as it will result in a shoot-through condition, which can permanently damage the device.

夷	9.	-3	Tr	uth	Ta	h	ما
-XX	IJ.	-J.		uui	ıa	v	

HI	LI	HIGH-SIDE GaN FET	LOW-SIDE GaN FET	SW
L	L	OFF	OFF	Hi-Z
L	Н	OFF	ON	PGND
Н	L	ON	OFF	VIN
Н	Н	ON	ON	

10 Application and Implementation

注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

10.1 Application Information

The LMG2100R044 GaN power stage is a versatile building block for various types of high-frequency, switch-mode power applications. The high-performance gate driver IC integrated in the package helps minimize the parasitics and results in extremely fast switching of the GaN FETs. The device design is highly optimized for synchronous buck converters and other half-bridge configurations.

10.2 Typical Application

 \boxtimes 10-1 shows a synchronous buck converter application with V_{CC} connected to a 5-V supply. It is critical to optimize the power loop (loop impedance from VIN capacitor to PGND). Having a high power loop inductance causes significant ringing in the SW node and also causes the associated power loss. The LMG2100R044 has VIN and PGND pins next to each other. This enables the VIN capacitor to be placed very close to LMG2100R044 on the top layer of the PCB, minimizing power loop inductance.

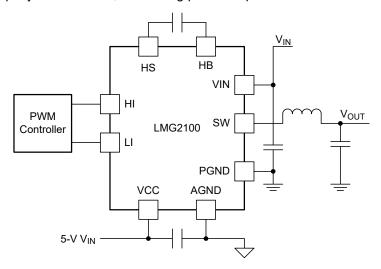


図 10-1. Typical Connection Diagram For a Synchronous Buck Converter

Submit Document Feedback

10.2.1 Design Requirements

When designing a synchronous buck converter application that incorporates the LMG2100R044 power stage, some design considerations must be evaluated first to make the most appropriate selection. Among these considerations are the input voltages, passive components, operating frequency, and controller selection. 表 10-1 shows some sample values for a typical application. See セクション 10.3, セクション 10.4, and セクション 10.2.2.3 for other key design considerations for the LMG2100R044.

表 10-1. Design Parameters

SAMPLE VALUE								
48 V								
12 V								
8 A								
0.1 uF, X5R								
1 MHz								
8 ns								
4.7 μH								
LM5148								

10.2.2 Detailed Design Procedure

This procedure outlines the design considerations of LMG2100R044 in a synchronous buck converter. For additional design help, see セクション 11.2.1.

10.2.2.1 V_{CC} Bypass Capacitor

The V_{CC} bypass capacitor provides the gate charge for the low-side and high-side transistors and to absorb the reverse recovery charge of the bootstrap diode. The required bypass capacitance can be calculated with \pm 1.

$$C_{VCC} = (Q_{dH} + Q_{dL} + Q_{rr}) / \Delta V$$
 (1)

 Q_{gH} and Q_{gL} are the gate charge of the high-side and low-side transistors, respectively. Q_{rr} is the reverse recovery charge of the bootstrap diode. ΔV is the maximum allowable voltage drop across the bypass capacitor. A 0.1- μF or larger value, good-quality, ceramic capacitor is recommended. Place the bypass capacitor as close as possible to the V_{CC} and AGND pins of the device to minimize the parasitic inductance.

10.2.2.2 Bootstrap Capacitor

The bootstrap capacitor provides the gate charge for the high-side gate drive, dc bias power for HB UVLO circuit, and the reverse recovery charge of the bootstrap diode. The required bypass capacitance can be calculated using ± 2 .

$$C_{BST} = (Q_{gH} + Q_{rr} + I_{HB} * t_{ON(max)}) / \Delta V$$
(2)

where

- I_{HB} is the quiescent current of the high-side gate driver (150 μA, maximum)
- t_{ON}(maximum) is the maximum on-time period of the high-side gate driver
- Q_{rr} is the reverse recovery charge of the bootstrap diode
- $Q_{\alpha H}$ is the gate charge of the high-side GaN FET
- ΔV is the permissible ripple in the bootstrap capacitor (< 100 mV, typical)

A 0.1-µF, 16-V, 0402 ceramic capacitor is suitable for most applications. Place the bootstrap capacitor as close as possible to the HB and HS pins.

10.2.2.3 Power Dissipation

Ensure that the power loss in the driver and the GaN FETs is maintained below the maximum power dissipation limit of the package at the operating temperature. The smaller the power loss in the driver and the GaN FETs, the higher the maximum operating frequency that can be achieved in the application. The total power dissipation of the LMG2100R044 device is the sum of the gate driver losses, the bootstrap diode power loss and the switching and conduction losses in the FETs.

The gate driver losses are incurred by charge and discharge of the capacitive load. It can be approximated using 式 3.

$$P = (2 \times Q_g) \times V_{DD} \times f_{SW}$$
(3)

where

- · Q_q is the gate charge
- V_{DD} is the bias supply
- f_{SW} is the switching frequency

There are some additional losses in the gate drivers due to the internal CMOS stages used to buffer the outputs.

The bootstrap diode power loss is the sum of the forward bias power loss that occurs while charging the bootstrap capacitor and the reverse bias power loss that occurs during reverse recovery. Because each of these events happens once per cycle, the diode power loss is proportional to the operating frequency. Higher input voltages (V_{IN}) to the half bridge also result in higher reverse recovery losses.

The power losses due to the GaN FETs can be divided into conduction losses and switching losses. Conduction losses are resistive losses and can be calculated using ± 4 .

$$P_{COND} = \left[(I_{RMS(HS)})^2 \times RDS_{(on)HS} \right] + \left[(I_{RMS(LS)})^2 \times RDS_{(on)LS} \right]$$
(4)

where

- R_{DS(on)HS} is the high-side GaN FET on-resistance
- R_{DS(on)I S} is the low-side GaN FET on-resistance
- I_{RMS(HS)} is the high-side GaN FET RMS current
- I_{RMS(LS)} and low-side GaN FET RMS current

The switching losses can be computed to a first order using , t_{TR} can be approximated by dividing V_{IN} by 25V/ns, which is a conservative estimate of the switched node slew rate. $\gtrsim 5$.

$$P_{SW} = V_{IN} \times I_{OUT} \times f_{SW} \times t_{TR}$$
(5)

where

- t_{TR} is the switch transition time from ON to OFF and from OFF to ON

Note that the low-side FET does not suffer from this loss. The third quadrant loss in the low-side device is ignored in this first order loss calculation.

As described previously, switching frequency has a direct effect on device power dissipation. Although the gate driver of the LMG2100R044 device is capable of driving the GaN FETs at frequencies up to 10 MHz, careful consideration must be applied to ensure that the running conditions for the device meet the recommended operating temperature specification. Specifically, hard-switched topologies tend to generate more losses and self-heating than soft-switched applications.

The sum of the driver loss, the bootstrap diode loss, and the switching and conduction losses in the GaN FETs is the total power loss of the device. Careful board layout with an adequate amount of thermal vias close to the

power pads (VIN and PGND) allows optimum power dissipation from the package. A top-side mounted heat sink with airflow can also improve the package power dissipation.

10.3 Power Supply Recommendations

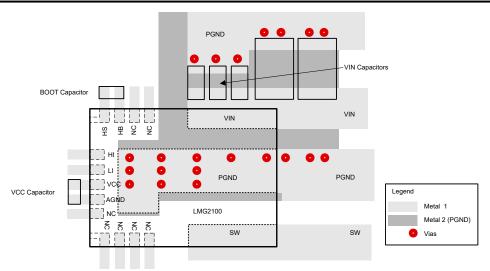
The recommended bias supply voltage range for LMG2100R044 is from 4.75 V to 5.25 V. The lower end of this range is governed by the internal undervoltage lockout (UVLO) protection feature of the V_{CC} supply circuit. The upper end of this range is driven by the 6 V absolute maximum voltage rating of V_{CC} . Note that the gate voltage of the low-side GaN FET is not clamped internally. Hence, it is important to keep the V_{CC} bias supply within the recommended operating range to prevent exceeding the low-side GaN transistor gate breakdown voltage.

The UVLO protection feature also involves a hysteresis function. This means that once the device is operating in normal mode, if the V_{CC} voltage drops, the device continues to operate in normal mode as far as the voltage drop does not exceeds the hysteresis specification, $V_{CC(hyst)}$. If the voltage drop is more than hysteresis specification, the device shuts down. Therefore, while operating at or near the 4.5 V range, the voltage ripple on the auxiliary power supply output must be smaller than the hysteresis specification of LMG2100R044 to avoid triggering device-shutdown.

Place a local bypass capacitor between the VDD and VSS pins. This capacitor must be located as close as possible to the device. A low ESR, ceramic surface-mount capacitor is recommended. TI recommends using 2 capacitors across VDD and GND: a 100 nF ceramic surface-mount capacitor for high frequency filtering placed very close to VDD and GND pin, and another surface-mount capacitor, 220 nF to 10 μ F, for IC bias requirements.

10.4 Layout

10.4.1 Layout Guidelines


To maximize the efficiency benefits of fast switching, it is extremely important to optimize the board layout such that the power loop impedance is minimal. When using a multilayer board (more than 2 layers), power loop parasitic impedance is minimized by having the return path to the input capacitor (between VIN and PGND), small and directly underneath the first layer as shown in \boxtimes 10-2 and \boxtimes 10-3. Loop inductance is reduced due to flux cancellation as the return current is directly underneath and flowing in the opposite direction. It is also critical that the VCC capacitors and the bootstrap capacitors are as close as possible to the device and in the first layer. Carefully consider the AGND connection of LMG2100R044 device. It must NOT be directly connected to PGND so that PGND noise does not directly shift AGND and cause spurious switching events due to noise injected in HI and LI signals.

10.4.2 Layout Examples

Placements shown in 🗵 10-2 and in the cross section of 🗵 10-3 show the suggested placement of the device with respect to sensitive passive components, such as VIN, bootstrap capacitors (HS and HB) and VSS capacitors. Use appropriate spacing in the layout to reduce creepage and maintain clearance requirements in accordance with the application pollution level. Inner layers if present can be more closely spaced due to negligible pollution.

The layout must be designed to minimize the capacitance at the SW node. Use as small an area of copper as possible to connect the device SW pin to the inductor, or transformer, or other output load. Furthermore, ensure that the ground plane or any other copper plane has a cutout so that there is no overlap with the SW node, as this would effectively form a capacitor on the printed circuit board. Additional capacitance on this node reduces the advantages of the advanced packaging approach of the LMG2100R044 and may result in reduced performance.

☑ 10-2. External Component Placement (Multi-layer PCB)

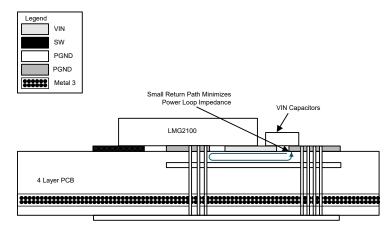


図 10-3. Four-Layer Board Cross Section With Return Path Directly Underneath for Power Loop

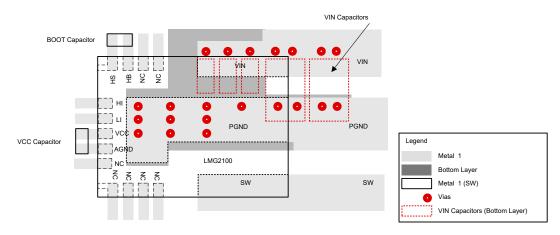


図 10-4. External Component Placement (Double Layer PCB)

Submit Document Feedback

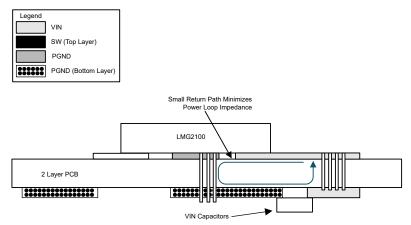


図 10-5. Two-Layer Board Cross Section With Return Path

Two-layer boards are not recommended for use with LMG2100R044 device due to the larger power loop inductance. However, if design considerations allow only two board layers, place the input decoupling capacitors immediately behind the device on the back-side of the board to minimize loop inductance. \boxtimes 10-4 and \boxtimes 10-5 show a layout example for two-layer boards.

11 Device and Documentation Support

11.1 Device Support

11.1.1 Development Support

11.2 Documentation Support

11.2.1 Related Documentation

Layout Guidelines for LMG2100R044 GaN Power Stage Module

Using the LMG2100R044: GaN Half-Bridge Power Module Evaluation Module

11.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.4 Community Resources

11.5 Trademarks

すべての商標は、それぞれの所有者に帰属します。

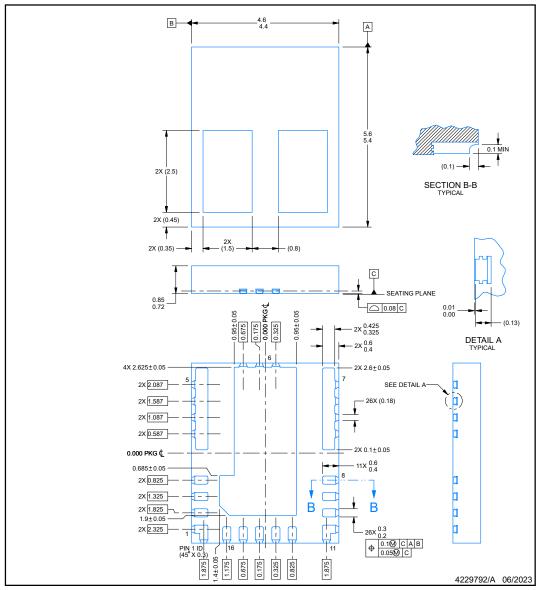
Submit Document Feedback

Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

12.1 Package Information

The LMG2100R044 device package is rated as an MSL3 package (Moisture Sensitivity Level 3). Refer to application report *AN-2029 Handling and Process Recommendations* for specific handling and process recommendations of an MSL3 package.


RAR0016A-C01

PACKAGE OUTLINE

VQFN-FCRLF - 0.85 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

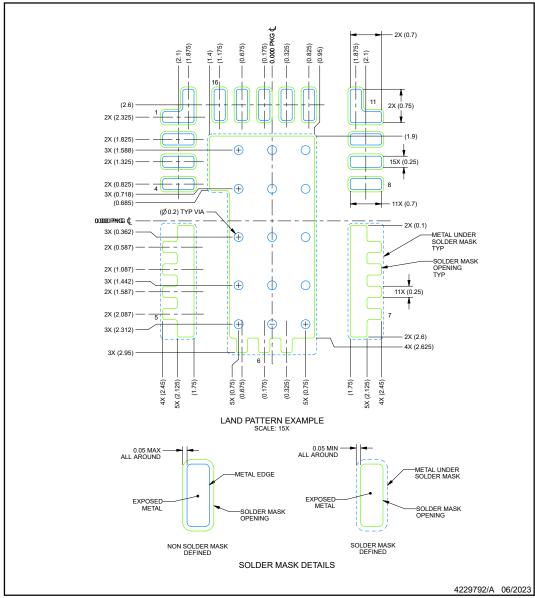
NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

Submit Document Feedback



EXAMPLE BOARD LAYOUT

RAR0016A-C01

VQFN-FCRLF - 0.85 mm max height

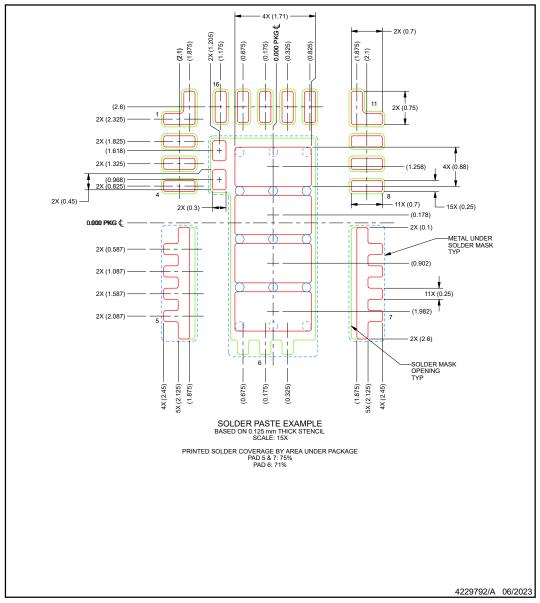
PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

- This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- number SLDAZ/1 (www.u.cominisua2/1).

 S. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

Product Folder Links: LMG2100R044



EXAMPLE STENCIL DESIGN

RAR0016A-C01

VQFN-FCRLF - 0.85 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

Product Folder Links: LMG2100R044

www.ti.com 10-Apr-2024

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LMG2100R044RARR	ACTIVE	VQFN-FCRLF	RAR	16	2500	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	G2100	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあら ゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。

お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。

郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated