

LMR23615-Q1

JAJSEW0-MARCH 2018

LMR23615-Q1 SIMPLE SWITCHER[®] 36V、1.5A、同期整流降圧型コン バータ

1 特長

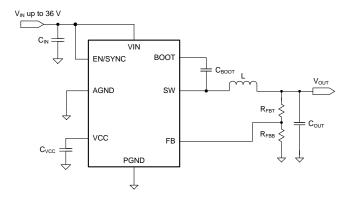
- 車載アプリケーションに対応
- 下記内容でAEC-Q100認定済み:
 - デバイス温度グレード 1: 動作時周囲温度 -40℃~+125°C
 - デバイスHBM ESD分類レベルH2
 - デバイスCDM ESD分類レベルC4A
- 入力電圧範囲: 4V~36V
- 1.5Aの連続出力電流をサポート
- 同期整流器内蔵
- 最小スイッチ・オン時間: 60ns
- 設計を容易にする内部補償
- 可変スイッチング周波数
- 軽負荷時のPFMモード
- 外部クロックへの周波数同期
- プリバイアスされた負荷へのソフトスタート
- 高いデューティ・サイクルでの動作をサポート
- ヒカップ・モードによる出力短絡保護
- 12ピンのWSONウェッタブル・フランク・パッケージ、PowerPAD™
- WEBENCH® Power Designerにより、LMR23615-Q1を使用するカスタム設計を作成

2 アプリケーション

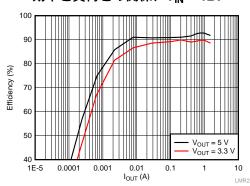
- 車載用インフォテイメント: クラスタ、ヘッド・ ユニット、ヘッド・アップ・ディスプレイ
- USBの充電
- 一般的なオフ・バッテリ電源

3 概要

LMR23615-Q1 SIMPLE SWITCHER®は、使いやすい 36V、1.5Aの同期整流降圧型レギュレータです。4V~36Vという幅広い入力範囲により、産業用から車載向けまで、非レギュレーション電源からの電源調整を行うさまざまなアプリケーションに適しています。ピーク電流モード制御の採用によって、単純な制御ループ補償とサイクル単位の電流制限を実現しています。静止電流が75µAであるため、バッテリ駆動のシステムに適しています。シャットダウン電流も2µAと極めて低いことから、バッテリ駆動時間のさらなる延長が可能です。内部ループ補償により、ユーザーはループ補償を設計する煩雑な作業から解放されます。これによって、外付け部品の数も最小限に抑えられます。


拡張ファミリとして、2.5A (LMR23625-Q1)、3A (LMR23630-Q1)の負荷電流オプションを提供しており、いずれもピン互換パッケージを採用しているため、PCB レイアウトの簡素化と最適化が実現します。高精度のイネーブル入力により、レギュレータ制御とシステムの電力シーケンシングが簡単になります。保護機能として、サイクル単位の電流制限、ヒカップ・モードの短絡保護、過剰な消費電力によるサーマル・シャットダウンが搭載されています。

製品情報⁽¹⁾


3000 HJ 184						
型番	パッケージ	本体サイズ(公称)				
LMR23615-Q1	WSON (12)	3.00mm×3.00mm				

(1) 提供されているすべてのパッケージについては、このデータシートの末尾にある注文情報を参照してください。

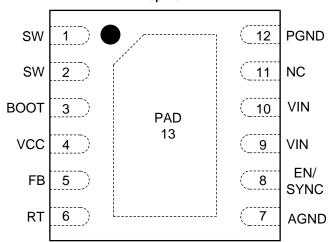
概略回路図

効率と負荷との関係、V_{IN} = 12V

目次

1	特長1		7.3 Feature Description	
2	アプリケーション1		7.4 Device Functional Modes	16
3	概要1	8	Application and Implementation	17
4	改訂履歴 2		8.1 Application Information	1
5	Pin Configuration and Functions		8.2 Typical Applications	1
6	Specifications	9	Power Supply Recommendations	23
•	6.1 Absolute Maximum Ratings 4	10	Layout	23
	6.2 ESD Ratings		10.1 Layout Guidelines	23
	6.3 Recommended Operating Conditions 4		10.2 Layout Example	2
	6.4 Thermal Information	11	, 1, 4,000 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	
	6.5 Electrical Characteristics		11.1 デバイス・サポート	20
	6.6 Timing Characteristics 6		11.2 ドキュメントの更新通知を受け取る方法	20
	6.7 Switching Characteristics		11.3 コミュニティ・リソース	<u>2</u> 0
	6.8 Typical Characteristics		11.4 商標	20
7	Detailed Description 9		11.5 静電気放電に関する注意事項	<u>2</u> 0
•	7.1 Overview		11.6 Glossary	20
	7.2 Functional Block Diagram9	12	メカニカル、パッケージ、および注文情報	27

4 改訂履歴


日付	改訂内容	注	
2018年3月	*	初版	

www.ti.com JAJSEW0-MARCH 2018

5 Pin Configuration and Functions

DRR Package 12-Pin WSON With RT Top View

Pin Functions

			1 III I diletions
PIN		I/O ⁽¹⁾	DESCRIPTION
NO.	NAME	1/0	DESCRIPTION
1, 2	sw	Р	Switching output of the regulator. Internally connected to both power MOSFETs. Connect to power inductor.
3	воот	Р	Boot-strap capacitor connection for high-side driver. Connect a high-quality, 100-nF capacitor from BOOT to SW.
4	VCC	Р	Internal bias supply output for bypassing. Connect a 2.2-µF, 16-V or higher capacitance bypass capacitor from this pin to AGND. Do not connect external loading to this pin. Never short this pin to ground during operation.
5	FB	Α	Feedback input to regulator, connect the feedback resistor divider tap to this pin.
6	RT	А	Connect a resistor RT from this pin to AGND to program switching frequency. Leave floating for 400-kHz default switching frequency.
7	AGND	G	Analog ground pin. Ground reference for internal references and logic. Connect to system ground.
8	EN/SYNC	А	Enable input to regulator. High = On, Low = Off. Can be connected to VIN. Do not float. Adjust the input undervoltage lockout with two resistors. The internal oscillator can be synchronized to an external clock by coupling a positive pulse into this pin through a small coupling capacitor. See <i>EN/SYNC</i> for detail.
9, 10	VIN	Р	Input supply voltage.
11	NC	N/A	Not for use. Leave this pin floating.
12	PGND	G	Power ground pin, connected internally to the low side power FET. Connect to system ground, PAD, AGND, ground pins of C _{IN} and C _{OUT} . Path to C _{IN} must be as short as possible.
13	PAD	G	Low impedance connection to AGND. Connect to PGND on PCB. Major heat dissipation path of the die. Must be used for heat sinking to ground plane on PCB.

⁽¹⁾ A = Analog, P = Power, G = Ground.

6 Specifications

6.1 Absolute Maximum Ratings

Over the recommended operating junction temperature range of -40°C to +125°C (unless otherwise noted)⁽¹⁾

	PARAMETER	MIN	MAX	UNIT	
	VIN to PGND	-0.3	42		
	EN/SYNC to AGND	-5.5	42		
Input voltages	FB to AGND	-0.3	4.5	V	
	RT to AGND	-0.3	4.5		
	AGND to PGND	-0.3	0.3		
	SW to PGND	-1	V _{IN} + 0.3		
Output valtages	SW to PGND less than 10-ns transients	-5	42	V	
Output voltages	BOOT to SW	-0.3	5.5	V	
	VCC to AGND	-0.3	4.5 ⁽²⁾		
Junction temperature, T _J		-40	150	°C	
Storage temperature, T _{stg}		-65	150	°C	

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
V		Human-body model (HBM) (1)	±2500	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM)	±1000	V

⁽¹⁾ AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

Over the recommended operating junction temperature range of -40°C to 125°C (unless otherwise noted) (1)

		MIN	MAX	UNIT
	VIN	4	36	
Input voltage	EN/SYNC	-5	36	V
	FB	-0.3	1.2	
Output voltage, V _{OUT}		1	28	V
Output current, I _{OUT}		0	1.5	Α
Operating junction te	mperature, T _J	-40	125	°C

⁽¹⁾ Recommended Operating Ratings indicate conditions for which the device is intended to be functional, but do not ensured specific performance limits. For specified specifications, see *Electrical Characteristics*.

⁽²⁾ In shutdown mode, the VCC to AGND maximum value is 5.25 V.

www.ti.com

6.4 Thermal Information

		LMR23615-Q1	
	THERMAL METRIC ⁽¹⁾⁽²⁾	DDR (WSON)	UNIT
		12 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	41.5	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	0.3	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	16.5	°C/W
ΨЈТ	Junction-to-top characterization parameter	39.1	°C/W
ΨЈВ	Junction-to-board characterization parameter	3.4	°C/W
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	16.3	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

Limits apply over the recommended operating junction temperature (T_J) range of -40° C to $+125^{\circ}$ C, unless otherwise stated. Minimum and Maximum limits are specified through test, design or statistical correlation. Typical values represent the most likely parametric norm at $T_J = 25^{\circ}$ C, and are provided for reference purposes only.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER SU	PPLY (VIN PIN)					
V _{IN}	Operation input voltage		4		36	V
\/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	He demodes as to describe a detaile	Rising threshold	3.3	3.7	3.9	V
VIN_UVLO	Undervoltage lockout thresholds	Falling threshold	2.9	3.3	3.5	V
I _{SHDN}	Shutdown supply current	$V_{EN} = 0 \text{ V}, V_{IN} = 12 \text{ V}, T_{J} = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$		2	4	μА
I _Q	Operating quiescent current (non-switching)	$V_{IN} = 12 \text{ V}, V_{FB} = 1.2 \text{ V}, T_J = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$		75		μА
ENABLE (EN	N/SYNC PIN)					
V _{EN_H}	Enable rising threshold voltage		1.4	1.55	1.7	V
V _{EN_HYS}	Enable hysteresis voltage			0.4		V
V_{WAKE}	Wake-up threshold		0.4			V
	land balance summed at EN ale	V _{IN} = 4 V to 36 V, V _{EN} = 2 V		10	100	nA
I _{EN}	Input leakage current at EN pin	V _{IN} = 4 V to 36 V, V _{EN} = 36 V			1	μΑ
VOLTAGE R	EFERENCE (FB PIN)				'	
.,	D. (V _{IN} = 4 V to 36 V, T _J = 25°C	0.985	1	1.015	
V_{REF}	Reference voltage	$V_{IN} = 4 \text{ V to } 36 \text{ V}, T_{J} = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	0.98	1	1.02	V
I _{LKG_FB}	Input leakage current at FB pin	V _{FB} = 1 V		10		nA
INTERNAL L	DO (VCC PIN)					
V _{CC}	Internal LDO output voltage			4.1		V
\(\(\alpha\)	VCC undervoltage lockout	Rising threshold	2.8	3.2	3.6	
VCC_UVLO	thresholds	Falling threshold	2.4	2.8	3.2	V
CURRENT L	IMIT					
I _{HS_LIMIT}	Peak inductor current limit		2.9	3.9	4.9	Α
I _{LS_LIMIT}	Valley inductor current limit		1.9	2.5	3.2	Α
I _{L_ZC}	Zero cross current limit			-0.04		Α
INTEGRATE	D MOSFETS					
R _{DS_ON_HS}	High-side MOSFET ON-resistance	V _{IN} = 12 V, I _{OUT} = 1 A		160		mΩ
R _{DS_ON_LS}	Low-side MOSFET ON-resistance	V _{IN} = 12 V, I _{OUT} = 1 A		95		mΩ
THERMAL S	HUTDOWN					
T _{SHDN}	Thermal shutdown threshold		162	170	178	°C
T _{HYS}	Hysteresis			15		°C

⁽²⁾ Determine power rating at a specific ambient temperature (T_A) with a maximum junction temperature (T_J) of 125°C, which is illustrated in *Recommended Operating Conditions* section.

TEXAS INSTRUMENTS

6.6 Timing Characteristics

Over the recommended operating junction temperature range of -40°C to +125°C (unless otherwise noted)

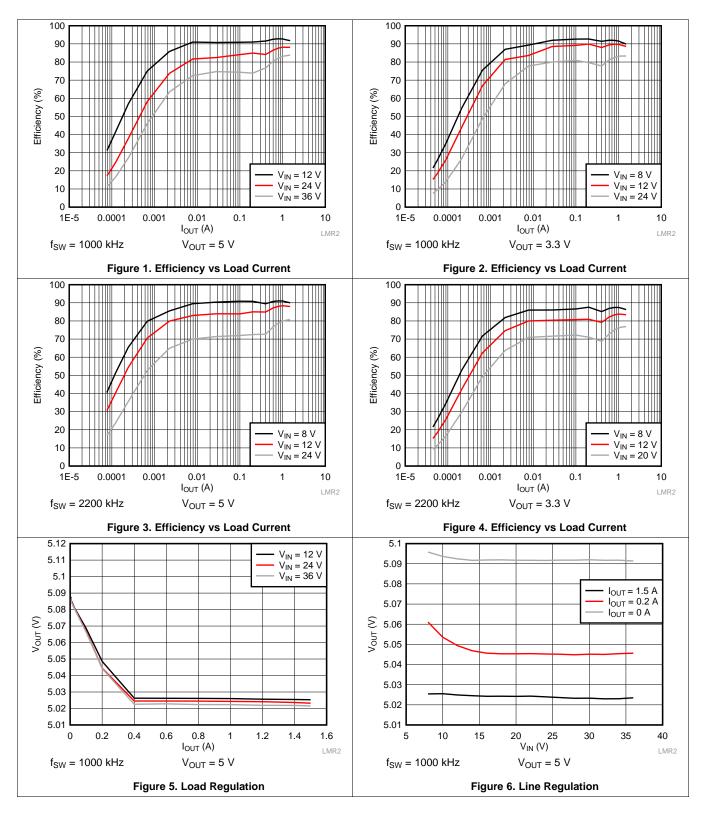
			MIN	NOM	MAX	UNIT		
HICCUP MOD	HICCUP MODE							
N _{OC} ⁽¹⁾	Number of cycles that LS current limit is tripped to enter hiccup mode			64		Cycles		
T _{OC}	Hiccup retry delay time			10		ms		
SOFT START								
T _{SS}	Internal soft-start time. The time of internal reference to increase from 0 V to 1 V			6		ms		

⁽¹⁾ Specified by design.

6.7 Switching Characteristics

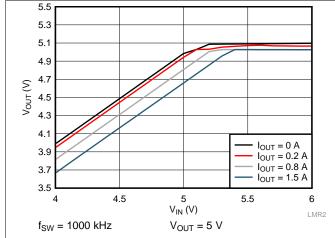
Over the recommended operating junction temperature range of -40°C to +125°C (unless otherwise noted)

	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
SW (SW PIN)						
T _{ON_MIN}	Minimum turnon time			60	90	ns
T _{OFF_MIN} ⁽¹⁾	Minimum turnoff time			100		ns
SYNC (EN/SY	(NC PIN)					
f_{SW}	Oscillator default frequency	RT pin open circuit	340	400	460	kHz
	Minimum adjustable frequency	RT = 198 k Ω with 1% accuracy	150	200	250	kHz
f_{ADJ}	Maximum adjustable frequency	RT = 17.8 k Ω with 1% accuracy	1750	2150	2425	
f _{SYNC}	SYNC frequency range		200		2200	kHz
V _{SYNC}	Amplitude of SYNC clock AC signal (measured at SYNC pin)		2.8		5.5	V
T _{SYNC_MIN}	Minimum sync clock ON and OFF time			100		ns


⁽¹⁾ Specified by design.

www.ti.com

6.8 Typical Characteristics


Unless otherwise specified the following conditions apply: V_{IN} = 12 V, f_{SW} = 1600 kHz, L = 4.7 μ H, C_{OUT} = 47 μ F, T_A = 25°C.

TEXAS INSTRUMENTS

Typical Characteristics (continued)

Unless otherwise specified the following conditions apply: V_{IN} = 12 V, f_{SW} = 1600 kHz, L = 4.7 μ H, C_{OUT} = 47 μ F, T_A = 25°C.

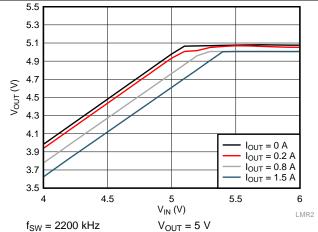
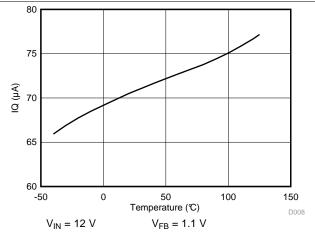



Figure 7. Dropout Curve

Figure 8. Dropout Curve

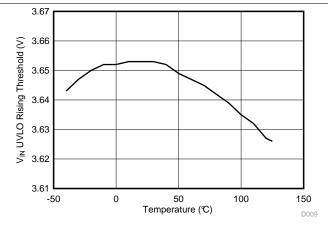
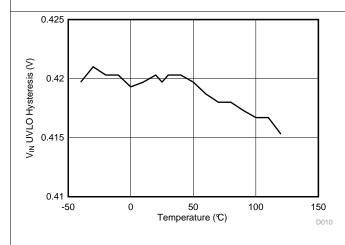



Figure 9. I_Q vs Junction Temperature

Figure 10. VIN UVLO Rising Threshold vs Junction Temperature

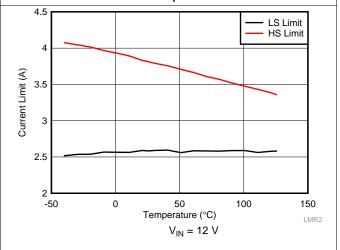


Figure 11. VIN UVLO Hysteresis vs Junction Temperature

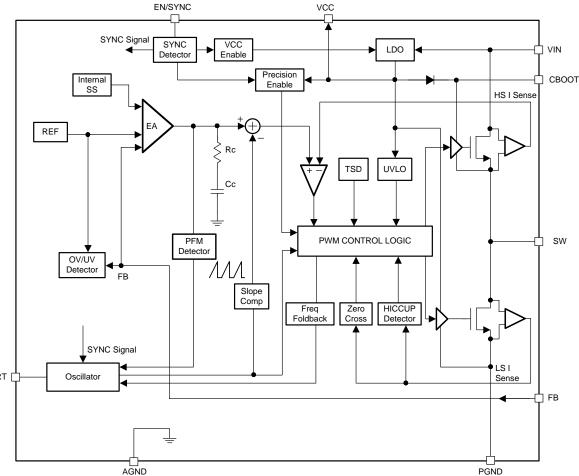
Figure 12. HS and LS Current Limit vs Junction Temperature

JAJSEW0-MARCH 2018 www.ti.com

Detailed Description

INSTRUMENTS

Overview


The LMR23615-Q1 SIMPLE SWITCHER regulator is an easy-to-use synchronous step-down DC/DC converter operating from 4-V to 36-V supply voltage. The device is capable of delivering up to 1.5-A DC load current with good thermal performance in a small solution size. An extended family is available in multiple current options from 1.5 A to 3 A in pin-to-pin compatible packages.

The LMR23615-Q1 employs fixed-frequency peak-current-mode control. The device enters PFM mode at light load to achieve high efficiency. The device is internally compensated, which reduces design time and requires few external components. The switching frequency is adjustable from 200 kHz to 2.2 MHz, leave RT pin open for 400-kHz default switching frequency. The LMR23615-Q1 is capable of synchronization to an external clock within the range of 200 kHz to 2.2 MHz.

Additional features such as precision enable and internal soft start provide a flexible and easy-to-use solution for a wide range of applications. Protection features include thermal shutdown, VIN and VCC undervoltage lockout (UVLO), cycle-by-cycle current limit, and hiccup-mode short-circuit protection.

The family requires very few external components and has a pinout designed for simple, optimum PCB layout.

7.2 Functional Block Diagram

Copyright © 2017, Texas Instruments Incorporated

JAJSEW0 – MARCH 2018 www.ti.com

TEXAS INSTRUMENTS

7.3 Feature Description

7.3.1 Fixed-Frequency Peak-Current-Mode Control

The following operating description of the LMR23615-Q1 refers to the *Functional Block Diagram* and to the waveforms in Figure 13. The LMR23615-Q1 is a step-down synchronous buck regulator with integrated high-side (HS) and low-side (LS) switches (synchronous rectifier). The LMR23615-Q1 supplies a regulated output voltage by turning on the HS and LS NMOS switches with controlled duty cycle. During high-side switch ON-time, the SW pin voltage swings up to approximately V_{IN} , and the inductor current i_L increase with linear slope ($V_{IN} - V_{OUT}$) / L. When the HS switch is turned off by the control logic, the LS switch is turned on after an anti-shoot-through dead time. Inductor current discharges through the LS switch with a slope of $-V_{OUT}$ / L. The control parameter of a buck converter is defined as duty cycle D = t_{ON} / T_{SW} , where t_{ON} is the high-side switch ON-time and T_{SW} is the switching period. The regulator control loop maintains a constant output voltage by adjusting the duty cycle D. In an ideal buck converter, where losses are ignored, D is proportional to the output voltage and inversely proportional to the input voltage: D = V_{OUT} / V_{IN} .

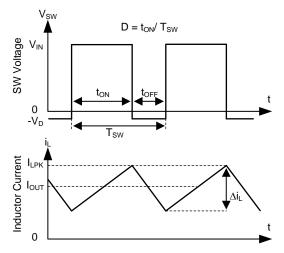


Figure 13. SW Node and Inductor Current Waveforms in Continuous Conduction Mode (CCM)

The LMR23615-Q1 employs fixed-frequency peak-current-mode control. A voltage feedback loop is used for accurate DC voltage regulation by adjusting the peak current command based on voltage offset. The peak inductor current is sensed from the high-side switch and compared to the peak current threshold to control the ON-time of the high-side switch. The voltage feedback loop is internally compensated, which allows for fewer external components, makes it easy to design, and provides stable operation with almost any combination of output capacitors. The regulator operates with fixed switching frequency at normal load condition. At light load condition, the LMR23615-Q1 operates in PFM mode to maintain high efficiency.

7.3.2 Adjustable Frequency

The switching frequency can be programmed by the impedance R_T from the RT pin to ground. The frequency is inversely proportional to the R_T resistance. The RT pin can be left floating and the LMR23615 will operate at 400 kHz default switching frequency. The RT pin is not designed to be shorted to ground. For a desired frequency, typical R_T resistance can be found by Equation 1. Table 1 gives typical R_T values for a given f_{SW} .

$$R_{T}(k\Omega) = 40200 / f_{SW}(kHz) - 0.6$$
 (1)

Feature Description (continued)

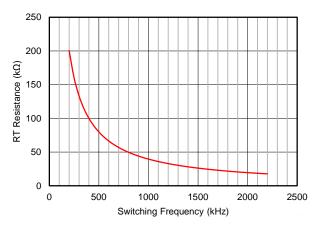


Figure 14. RT vs Frequency Curve

 f_{SW} (kHz)
 R_T (kΩ)

 200
 200

 350
 115

 500
 78.7

 750
 53.6

 1000
 39.2

Table 1. Typical Frequency Setting RT Resistance

26.1

19.6

17.8

7.3.3 Adjustable Output Voltage

1500

2000

2200

A precision 1-V reference voltage is used to maintain a tightly regulated output voltage over the entire operating temperature range. The output voltage is set by a resistor divider from output voltage to the FB pin. TI recommends using 1% tolerance resistors with a low temperature coefficient for the FB divider. Select the low-side resistor R_{FBB} for the desired divider current and use Equation 2 to calculate high-side R_{FBT} . R_{FBT} in the range from 10 k Ω to 100 k Ω is recommended for most applications. A lower R_{FBT} value can be used if static loading is desired to reduce V_{OUT} offset in PFM operation. Lower R_{FBT} reduces efficiency at very light load. Less static current goes through a larger R_{FBT} and might be more desirable when light load efficiency is critical. But R_{FBT} larger than 1 $M\Omega$ is not recommended because it makes the feedback path more susceptible to noise. Larger R_{FBT} value requires more carefully designed feedback path on the PCB. The tolerance and temperature variation of the resistor dividers affect the output voltage regulation.

Figure 15. Output Voltage Setting

$$R_{FBT} = \frac{V_{OUT} - V_{REF}}{V_{REF}} \times R_{FBB}$$
 (2)

JAJSEW0 – MARCH 2018 www.ti.com

TEXAS INSTRUMENTS

7.3.4 EN/SYNC

The voltage on the EN/SYNC pin controls the ON or OFF operation of LMR23615-Q1. A voltage less than 1 V (typical) shuts down the device while a voltage higher than 1.6 V (typical) is required to start the regulator. The EN pin is an input and cannot be left open or floating. The simplest way to enable the operation of the LMR23615-Q1 is to connect the EN to V_{IN} . This allows self-start-up of the LMR23615-Q1 when V_{IN} is within the operation range.

Many applications benefit from the employment of an enable divider R_{ENT} and R_{ENB} (Figure 16) to establish a precision system UVLO level for the converter. System UVLO can be used for supplies operating from utility power as well as battery power. It can be used for sequencing, ensuring reliable operation, or supply protection, such as a battery discharge level. An external logic signal can also be used to drive EN input for system sequencing and protection.

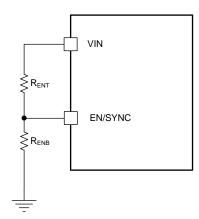


Figure 16. System UVLO by Enable Divider

The EN/SYNC pin also can be used to synchronize the internal oscillator to an external clock. The internal oscillator can be synchronized by AC coupling a positive edge into the EN/SYNC pin. The AC coupled peak-to-peak voltage at the EN/SYNC pin must exceed the SYNC amplitude threshold of 2.8 V (typical) to trip the internal synchronization pulse detector, and the minimum SYNC clock ON- and OFF-times must be longer than 100 ns (typical). A 3.3-V or a higher amplitude pulse signal coupled through a 1-nF capacitor C_{SYNC} is a good starting point. Keeping R_{ENT} // R_{ENB} (R_{ENT} parallel with R_{ENB}) in the 100-k Ω range is a good choice. R_{ENT} is required for this synchronization circuit, but R_{ENB} can be left unmounted if system UVLO is not needed. LMR23615-Q1 switching action can be synchronized to an external clock from 200 kHz to 2.2 MHz. Figure 18 and Figure 19 show the device synchronized to an external system clock.

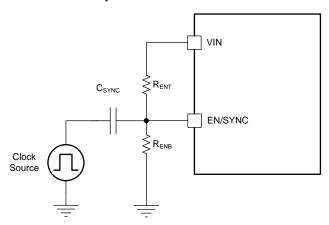
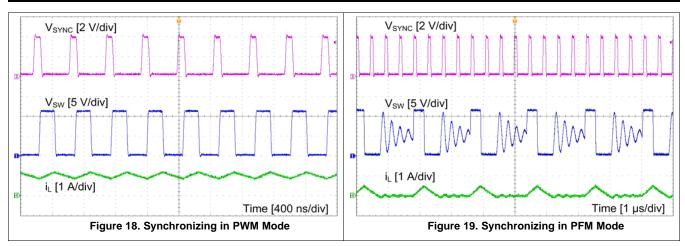



Figure 17. Synchronize to External Clock

JAJSEW0-MARCH 2018 www.ti.com

7.3.5 VCC, UVLO

The LMR23615-Q1 integrates an internal LDO to generate V_{CC} for control circuitry and MOSFET drivers. The nominal voltage for V_{CC} is 4.1 V. The VCC pin is the output of an LDO and must be properly bypassed. Place high-quality ceramic capacitor with a value of 2.2 µF to 10 µF, 16 V or higher rated voltage as close as possible to VCC and grounded to the exposed PAD and ground pins. The VCC output pin must not be loaded or shorted to ground during operation. Shorting VCC to ground during operation may cause damage to the LMR23615-Q1.

VCC UVLO prevents the LMR23615-Q1 from operating until the V_{CC} voltage exceeds 3.3 V (typical). The VCC UVLO threshold has 400 mV (typical) of hysteresis to prevent undesired shutdown due to temporary V_{IN} drops.

7.3.6 Minimum ON-time, Minimum OFF-time and Frequency Foldback at Dropout Conditions

Minimum ON-time, T_{ON MIN}, is the smallest duration of time that the HS switch can be on. T_{ON MIN} is typically 60 ns in the LMR23615-Q1. Minimum OFF-time, T_{OFF_MIN} , is the smallest duration that the HS switch can be off. T_{OFF_MIN} is typically 100 ns in the LMR23615-Q1. In CCM operation, T_{ON_MIN} and T_{OFF_MIN} limit the voltage conversion range given a selected switching frequency.

The minimum duty cycle allowed is:

$$D_{MIN} = T_{ON\ MIN} \times f_{SW} \tag{3}$$

And the maximum duty cycle allowed is:

$$D_{MAX} = 1 - T_{OFF MIN} \times f_{SW}$$
 (4)

Given fixed T_{ON MIN} and T_{OFF MIN}, the higher the switching frequency the narrower the range of the allowed duty cycle. In the LMR23615-Q1, a frequency foldback scheme is employed to extend the maximum duty cycle when T_{OFF MIN} is reached. The switching frequency decreases once longer duty cycle is needed under low V_{IN} conditions. Wide range of frequency foldback allows the LMR23615-Q1 output voltage stay in regulation with a much lower supply voltage V_{IN}. This leads to a lower effective drop-out voltage.

Given an output voltage, the choice of the switching frequency affects the allowed input voltage range, solution size and efficiency. The maximum operation supply voltage can be found by:

$$V_{IN_MAX} = \frac{V_{OUT}}{\left(f_{SW} \times T_{ON_MIN}\right)}$$
(5)

At lower supply voltage, the switching frequency decreases once Toff MIN is tripped. The minimum VIN without frequency foldback can be approximated by:

$$V_{IN_MIN} = \frac{V_{OUT}}{\left(1 - f_{SW} \times T_{OFF_MIN}\right)}$$
(6)

Taking considerations of power losses in the system with heavy load operation, $V_{\text{IN_MAX}}$ is higher than the result calculated in Equation 5. With frequency foldback, V_{IN MIN} is lowered by decreased f_{SW}.

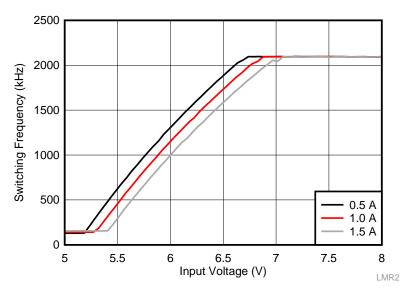


Figure 20. Frequency Foldback at Dropout (V_{OUT} = 5 V, f_{SW} = 2100 kHz)

7.3.7 Internal Compensation and CFF

The LMR23615-Q1 is internally compensated as shown in *Functional Block Diagram*. The internal compensation is designed such that the loop response is stable over the entire operating frequency and output voltage range. Depending on the output voltage, the compensation loop phase margin can be low with all ceramic capacitors. An external feed-forward capacitor C_{FF} is recommended to be placed in parallel with the top resistor divider R_{FBT} for optimum transient performance.

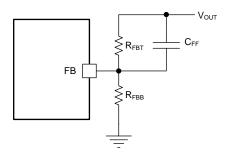


Figure 21. Feedforward Capacitor for Loop Compensation

The feed-forward capacitor C_{FF} in parallel with R_{FBT} places an additional zero before the cross over frequency of the control loop to boost phase margin. The zero frequency can be found by

$$f_{Z_{-CFF}} = \frac{1}{\left(2\pi \times C_{FF} \times R_{FBT}\right)}$$
(7)

An additional pole is also introduced with C_{FF} at the frequency of

$$f_{P_{-CFF}} = \frac{1}{\left(2\pi \times C_{FF} \times R_{FBT} // R_{FBB}\right)}$$
(8)

The zero f_{Z_CFF} adds phase boost at the crossover frequency and improves transient response. The pole f_{P-CFF} helps maintaining proper gain margin at frequency beyond the crossover. Table 2 lists the combination of C_{OUT} , C_{FF} and R_{FBT} for typical applications, designs with similar C_{OUT} but R_{FBT} other than recommended value, please adjust C_{FF} such that $(C_{FF} \times R_{FBT})$ is unchanged and adjust R_{FBB} such that (R_{FBT} / R_{FBB}) is unchanged.

JAJSEW0-MARCH 2018

Designs with different combinations of output capacitors need different C_{FF}. Different types of capacitors have different equivalent series resistance (ESR). Ceramic capacitors have the smallest ESR and need the most CFF. Electrolytic capacitors have much larger ESR, and the ESR zero frequency would be low enough to boost the phase up around the crossover frequency. Designs using mostly electrolytic capacitors at the output may not

$$f_{Z_ESR} = \frac{1}{(2\pi \times C_{OUT} \times ESR)}$$
(9)

The C_{FF} creates a time constant with R_{FBT} that couples in the attenuate output voltage ripple to the FB node. If the C_{FF} value is too large, it can couple too much ripple to the FB and affect V_{OUT} regulation. Therefore, calculate C_{FF} base on output capacitors used in the system. At cold temperatures, the value of C_{FF} might change based on the tolerance of the chosen component. This may reduce its impedance and ease noise coupling on the FB node. To avoid this, more capacitance can be added to the output or the value of CFF can be reduced.

7.3.8 Bootstrap Voltage (BOOT)

The LMR23615-Q1 provides an integrated bootstrap voltage regulator. A small capacitor between the BOOT and SW pins provides the gate-drive voltage for the high-side MOSFET. The BOOT capacitor is refreshed when the high-side MOSFET is off and the low-side switch conducts. The recommended value of the BOOT capacitor is 0.1 μF. For stable performance, TI recommends a ceramic capacitor with an X7R or X5R grade dielectric with a voltage rating of 16 V or higher over temperature and voltage.

7.3.9 Overcurrent and Short-Circuit Protection

The LMR23615-Q1 is protected from overcurrent conditions by cycle-by-cycle current limit on both the peak and valley of the inductor current. Hiccup mode is activated if a fault condition persists to prevent overheating.

High-side MOSFET over-current protection is implemented by the nature of the peak-current-mode control. The HS switch current is sensed when the HS is turned on after a set blanking time. The HS switch current is compared to the output of the error amplifier (EA) minus slope compensation every switching cycle. See Functional Block Diagram for more details. The peak current of HS switch is limited by a clamped maximum peak current threshold I_{HS LIMIT}, which is constant. Thus, the peak current limit of the high-side switch is not affected by the slope compensation and remains constant over the full duty cycle range.

The current going through LS MOSFET is also sensed and monitored. When the LS switch turns on, the inductor current begins to ramp down. The LS switch is not turned OFF at the end of a switching cycle if its current is above the LS current limit I_{LS LIMIT}. The LS switch is kept ON so that inductor current keeps ramping down, until the inductor current ramps below the LS current limit I_{LS_LIMIT}. The LS switch is then turned OFF, and the HS switch is turned on after a dead time. This is somewhat different than the more typical peak-current limit and results in Equation 10 for the maximum load current.

$$I_{OUT_MAX} = I_{LS_LIMIT} + \frac{\left(V_{IN} - V_{OUT}\right)}{2 \times f_{SW} \times L} \times \frac{V_{OUT}}{V_{IN}}$$
(10)

If the current of the LS switch is higher than the LS current limit for 64 consecutive cycles, hiccup currentprotection mode is activated. In hiccup mode the regulator is shut down and kept off for 5 ms typically before the LMR23615-Q1 tries to start again. If overcurrent or short-circuit fault condition still exists, hiccup repeats until the fault condition is removed. Hiccup mode reduces power dissipation under severe overcurrent conditions, prevents overheating and potential damage to the device.

7.3.10 Thermal Shutdown

The LMR23615-Q1 provides an internal thermal shutdown to protect the device when the junction temperature exceeds 170°C (typical). The device is turned off when thermal shutdown activates. Once the die temperature falls below 155°C (typical), the device reinitiates the power up sequence controlled by the internal soft-start circuitry.

7.4 Device Functional Modes

7.4.1 Shutdown Mode

The EN pin provides electrical ON and OFF control for the LMR23615-Q1. When V_{EN} is below 1 V (typical), the device is in shutdown mode. The LMR23615-Q1 also employs VIN and VCC UVLO protection. If V_{IN} or V_{CC} voltage is below their respective UVLO level, the regulator is turned off.

7.4.2 Active Mode

The LMR23615-Q1 is in active mode when V_{EN} is above the precision enable threshold, V_{IN} and V_{CC} are above their respective UVLO level. The simplest way to enable the LMR23615-Q1 is to connect the EN/SYNC pin to VIN pin. This allows self startup when the input voltage is in the operating range: 4 V to 36 V. See *VCC*, *UVLO* and *EN/SYNC* for details on setting these operating levels.

In active mode, depending on the load current, the LMR236215-Q1 is in one of three modes:

- 1. Continuous conduction mode (CCM) with fixed switching frequency when load current is above half of the peak-to-peak inductor current ripple.
- 2. Discontinuous conduction mode (DCM) with fixed switching frequency when load current is lower than half of the peak-to-peak inductor current ripple in CCM operation (only for PFM option).
- 3. Pulse frequency modulation mode (PFM) when switching frequency is decreased at very light load (only for PFM option).

7.4.3 CCM Mode

CCM operation is employed in the LMR23615-Q1 when the load current is higher than half of the peak-to-peak inductor current. In CCM operation, the frequency of operation is fixed, output voltage ripple is at a minimum in this mode, and the maximum output current of 1.5 A can be supplied by the LMR23615-Q1.

7.4.4 Light Load Operation

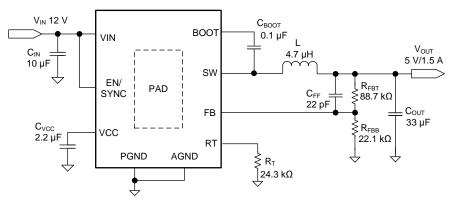
When the load current is lower than half of the peak-to-peak inductor current in CCM, the LMR23615-Q1 operates in DCM, also known as diode emulation mode (DEM). In DCM, the LS switch is turned off when the inductor current drops to I_{L_ZC} (-40 mA typical). Both switching losses and conduction losses are reduced in DCM, compared to forced PWM operation at light load.

At even lighter current loads, PFM is activated to maintain high efficiency operation. When either the minimum HS switch ON-time (t_{ON_MIN}) or the minimum peak inductor current I_{PEAK_MIN} (300 mA typical) is reached, the switching frequency decreases to maintain regulation. In PFM, switching frequency is decreased by the control loop when load current reduces to maintain output voltage regulation. Switching loss is further reduced in PFM operation due to less frequent switching actions. The external clock synchronizing is not valid when LMR23615-Q1 enters into PFM mode.

JAJSEW0-MARCH 2018

Application and Implementation

NOTE


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The LMR23615-Q1 is a step-down DC-to-DC regulator. It is typically used to convert a higher DC voltage to a lower DC voltage with a maximum output current of 1.5 A. The following design procedure can be used to select components for the LMR23615-Q1. Alternately, the WEBENCH software may be used to generate complete designs. When generating a design, the WEBENCH software utilizes iterative design procedure and accesses comprehensive databases of components. See Custom Design With WEBENCH® Tools and ti.com for more details.

8.2 Typical Applications

The LMR23615-Q1 only requires a few external components to convert from a wide voltage range supply to a fixed output voltage. Figure 22 shows a basic schematic.

Copyright © 2017, Texas Instruments Incorporated

Figure 22. Application Circuit

The external components have to fulfill the needs of the application, but also the stability criteria of the device's control loop. Table 2 can be used to simplify the output filter component selection.

STRUMENTS

Typical Applications (continued)

Table 2. L, C_{OUT}, and C_{FF} Typical Values

f _{SW} (kHz)	V _{OUT} (V)	L (μH) ⁽¹⁾	C _{OUT} (μF) ⁽²⁾	C _{FF} (pF) ⁽³⁾	$R_{FBT}(k\Omega)^{(4)(5)}$
	3.3	22	200	220	51
200	5	33	150	120	88.7
200	12	56	68	See note ⁽³⁾	243
	24	56	33	See note ⁽³⁾	510
	3.3	10	120	100	51
400	5	15	90	68	88.7
400	12	33	47	See note ⁽³⁾	243
	24	33	22	See note (3)	510
	3.3	4.7	68	47	51
1000	5	5.6	47	22	88.7
	12	10	33	See note ⁽³⁾	243
2200	3.3	2.2	33	22	51
2200	5	3.3	22	15	88.7

Inductance value is calculated based on V_{IN} = 36 V.

8.2.1 Design Requirements

Detailed design procedure is described based on a design example. For this design example, use the parameters listed in Table 3 as the input parameters.

Table 3. Design Example Parameters

DESIGN PARAMETER	EXAMPLE VALUE				
Input voltage, V _{IN}	12 V typical, range from 8 V to 28 V				
Output voltage, V _{OUT}	5 V				
Maximum output current I _{O_MAX}	1.5 A				
Transient response 0.2 A to 2.5 A	5%				
Output voltage ripple	50 mV				
Input voltage ripple	400 mV				
Switching frequency f _{SW}	1600 kHz				

 ⁽²⁾ All the C_{OUT} values are after derating. Add more when using ceramic capacitors.
 (3) High ESR C_{OUT} will give enough phase boost and C_{FF} not needed.
 (4) R_{FBT} = 0 Ω for V_{OUT} = 1 V. R_{FBB} = 22.1 kΩ for all other V_{OUT} setting.

For designs with R_{FBT} other than recommended value, adjust C_{FF} such that $(C_{FF} \times R_{FBT})$ is unchanged and adjust R_{FBB} such that (R_{FBT} / R_{FBB}) is unchanged.

8.2.2 Detailed Design Procedure

8.2.2.1 Custom Design With WEBENCH® Tools

Click here to create a custom design using the LMR23615-Q1 device with the WEBENCH® Power Designer.

- 1. Start by entering the input voltage (V_{IN}), output voltage (V_{OUT}), and output current (I_{OUT}) requirements.
- 2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
- 3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.

In most cases, these actions are available:

- Run electrical simulations to see important waveforms and circuit performance
- · Run thermal simulations to understand board thermal performance
- Export customized schematic and layout into popular CAD formats
- Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at www.ti.com/WEBENCH.

8.2.2.2 Output Voltage Setpoint

The output voltage of LMR23615-Q1 is externally adjustable using a resistor divider network. The divider network is comprised of top feedback resistor R_{FBT} and bottom feedback resistor R_{FBB} . Equation 11 is used to determine the output voltage:

$$R_{FBT} = \frac{V_{OUT} - V_{REF}}{V_{REF}} \times R_{FBB}$$
(11)

Choose the value of R_{FBB} to be 22.1 k Ω . With the desired output voltage set to 5 V and the V_{REF} = 1 V, the R_{FBB} value can then be calculated using Equation 11. The formula yields to a value 88.7 k Ω .

8.2.2.3 Switching Frequency

The switching frequency can be adjusted by RT resistance from RT pin to ground. Use Equation 1 to calculate the required value of R_T . The device can also be synchronized to an external clock for a desired frequency, please refer to EN/SYNC for more details.

For 1600 kHz frequency, the calculated R_T is 24.5 k Ω , and standard value 24.3 k Ω is selected to set the frequency approximate to 1600 kHz.

8.2.2.4 Inductor Selection

The most critical parameters for the inductor are the inductance, saturation current and the rated current. The inductance is based on the desired peak-to-peak ripple current Δi_L . Since the ripple current increases with the input voltage, the maximum input voltage is always used to calculate the minimum inductance L_{MIN} . Use Equation 13 to calculate the minimum value of the output inductor. K_{IND} is a coefficient that represents the amount of inductor ripple current relative to the maximum output current of the device. A reasonable value of K_{IND} should be 20% to 40%. During an instantaneous short-current or overcurrent operation event, the RMS and peak inductor current can be high. The inductor current rating must be higher than the current limit of the device.

$$\Delta i_{L} = \frac{V_{OUT} \times \left(V_{IN_MAX} - V_{OUT}\right)}{V_{IN_MAX} \times L \times f_{SW}}$$
(12)

$$L_{MIN} = \frac{V_{IN_MAX} - V_{OUT}}{I_{OUT} \times K_{IND}} \times \frac{V_{OUT}}{V_{IN_MAX} \times f_{SW}}$$
(13)

JAJSEW0 – MARCH 2018 www.ti.com

In general, it is preferable to choose lower inductance in switching power supplies, because it usually corresponds to faster transient response, smaller DCR, and reduced size for more compact designs. But too low of an inductance can generate too large of an inductor current ripple such that overcurrent protection at the full load could be falsely triggered. It also generates more conduction loss and inductor core loss. Larger inductor current ripple also implies larger output voltage ripple with same output capacitors. With peak current mode control, it is not recommended to have too small of an inductor current ripple. A larger peak current ripple improves the comparator signal to noise ratio.

For this design example, choose $K_{IND} = 0.4$, the minimum inductor value is calculated to be 1.9 μ H. Choose the nearest standard 2.2- μ H ferrite inductor with a capability of 3.5-A RMS current, and 6-A saturation current.

8.2.2.5 Output Capacitor Selection

Choose the output capacitor(s), C_{OUT} , with care because output capacitance directly affects the steady-state output-voltage ripple, loop stability, and the voltage over/undershoot during load current transients.

The output ripple is essentially composed of two parts. One is caused by the inductor current ripple going through the ESR of the output capacitors:

$$\Delta V_{OUT_ESR} = \Delta i_L \times ESR = K_{IND} \times I_{OUT} \times ESR$$
(14)

The other is caused by the inductor current ripple charging and discharging the output capacitors:

$$\Delta V_{OUT_C} = \frac{\Delta i_L}{(8 \times f_{SW} \times C_{OUT})} = \frac{K_{IND} \times I_{OUT}}{(8 \times f_{SW} \times C_{OUT})}$$
(15)

The two components in the voltage ripple are not in phase, so the actual peak-to-peak ripple is smaller than the sum of two peaks.

Output capacitance is usually limited by transient performance specifications if the system requires tight voltage regulation with presence of large current steps and fast slew rate. When a fast large-load increase uccurs, output capacitors provide the required charge before the inductor current can slew up to the appropriate level. The regulator control loop usually needs six or more clock cycles to respond to the output voltage droop. The output capacitance must be large enough to supply the current difference for six clock cycles to maintain the output voltage within the specified range. Equation 16 shows the minimum output capacitance needed for specified output undershoot. When a sudden large load decrease happens, the output capacitors absorb energy stored in the inductor resulting in an output voltage overshoot. Equation 17 calculates the minimum capacitance required to keep the voltage overshoot within a specified range.

$$C_{OUT} > \frac{4 \times (I_{OH} - I_{OL})}{f_{SW} \times V_{US}}$$

$$C_{OUT} > \frac{I_{OH}^2 - I_{OL}^2}{(V_{OUT} + V_{OS})^2 - V_{OUT}^2}$$
(16)

where

- K_{IND} = Ripple ratio of the inductor ripple current ($\Delta i_L / I_{OUT}$)
- I_{OL} = Low level output current during load transient
- I_{OH} = High level output current during load transient
- V_{US} = Target output voltage undershoot

•
$$V_{OS}$$
 = Target output voltage overshoot (17)

For this design example, the target output ripple is 50 mV. Presuppose $\Delta V_{OUT_ESR} = \Delta V_{OUT_C} = 50$ mV, and chose $K_{IND} = 0.4$. Equation 14 yields ESR no larger than 83.3 m Ω and Equation 15 yields C_{OUT} no smaller than 0.9 μ F. For the target over/undershoot range of this design, $V_{US} = V_{OS} = 5\% \times V_{OUT} = 250$ mV. The C_{OUT} can be calculated to be no smaller than 14 μ F and 4.1 μ F by Equation 16 and Equation 17, respectively. Consider of derating, one 33- μ F, 16 V ceramic capacitor with 5 m Ω ESR is used.

8.2.2.6 Feed-Forward Capacitor

The LMR23615-Q1 is internally compensated. Depending on the V_{OUT} and frequency f_{SW} , if the output capacitor C_{OUT} is dominated by low ESR (ceramic types) capacitors, it could result in low phase margin. To improve the phase boost an external feed-forward capacitor C_{FF} can be added in parallel with R_{FBT} . Choose C_{FF} so that phase margin is boosted at the crossover frequency without C_{FF} . A simple estimation for the crossover frequency (f_X) without C_{FF} is shown in Equation 18, assuming C_{OUT} has very small ESR, and C_{OUT} value is after derating.

$$f_{X} = \frac{8.32}{V_{OUT} \times C_{OUT}}$$
(18)

Equation 19 for C_{FF} was tested:

$$C_{FF} = \frac{1}{4\pi \times f_X \times R_{FBT}} \tag{19}$$

For designs with higher ESR, C_{FF} is not needed when C_{OUT} has very high ESR; reduce C_{FF} calculated from Equation 19 with medium ESR. Table 2 can be used as a quick starting point.

For the application in this design example, a 18-pF, 50-V COG capacitor is selected.

8.2.2.7 Input Capacitor Selection

The LMR23615-Q1 device requires high-frequency input decoupling capacitor(s) and a bulk input capacitor, depending on the application. The typical recommended value for the high frequency decoupling capacitor is 4.7 μ F to 10 μ F. TI recommends a high-quality ceramic capacitor type X5R or X7R with sufficiency voltage rating is recommended. To compensate the derating of ceramic capacitors, a voltage rating of twice the maximum input voltage. Additionally, some bulk capacitance can be required, especially if the LMR23615-Q1 circuit is not located within approximately 5 cm from the input voltage source. This capacitor is used to provide damping to the voltage spike due to the lead inductance of the cable or the trace. For this design, two 4.7- μ F, 50-V, X7R ceramic capacitors are used. For high-frequency filtering place a 0.1- μ F capacitor as close as possible to the device pins.

8.2.2.8 Bootstrap Capacitor Selection

Every LMR23615-Q1 design requires a bootstrap capacitor (C_{BOOT}). The recommended capacitor is 0.1 μ F and rated 16 V or higher. The bootstrap capacitor is located between the SW pin and the BOOT pin. The bootstrap capacitor must be a high-quality ceramic type with an X7R or X5R grade dielectric for temperature stability.

8.2.2.9 VCC Capacitor Selection

The VCC pin is the output of an internal LDO for LMR23615-Q1. To insure stability of the device, place a minimum of 2.2-μF, 16-V, X7R capacitor from VCC pin to ground.

8.2.2.10 Undervoltage Lockout Setpoint

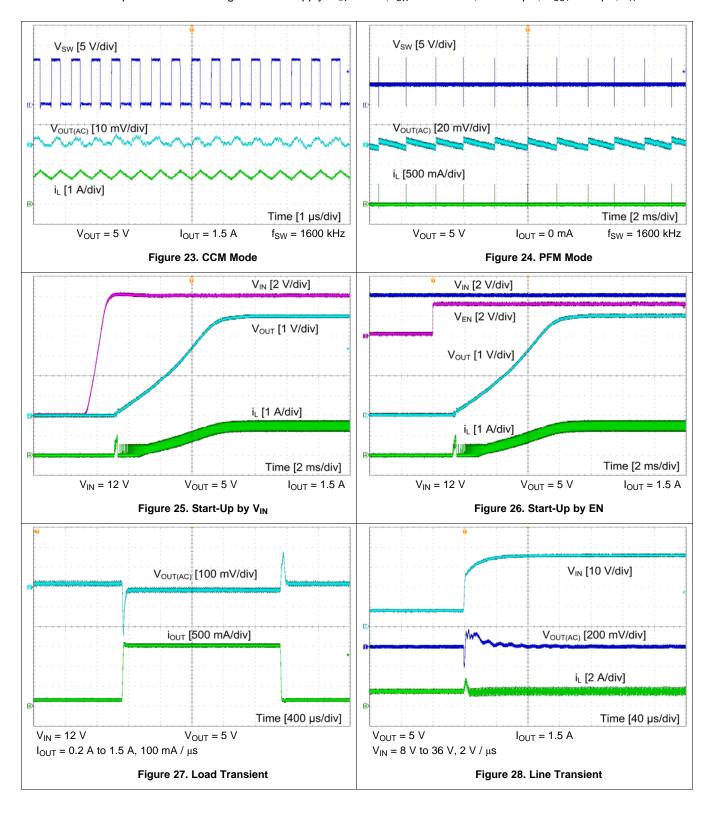
The system UVLO is adjusted using the external voltage divider network of R_{ENT} and R_{ENB} . The UVLO has two thresholds, one for power up when the input voltage is rising and one for power down or brownouts when the input voltage is falling. Use Equation 20 to determine the V_{IN} UVLO level.

$$V_{\text{IN_RISING}} = V_{\text{ENH}} \times \frac{R_{\text{ENT}} + R_{\text{ENB}}}{R_{\text{ENB}}}$$
(20)

The EN rising threshold (V_{ENH}) for LMR23615-Q1 is set to be 1.55 V (typical). Choose the value of R_{ENB} to be 287 k Ω to minimize input current from the supply. If the desired V_{IN} UVLO level is at 6 V, the value of R_{ENT} can be calculated using Equation 21:

$$R_{ENT} = \left(\frac{V_{IN_RISING}}{V_{ENH}} - 1\right) \times R_{ENB}$$
(21)

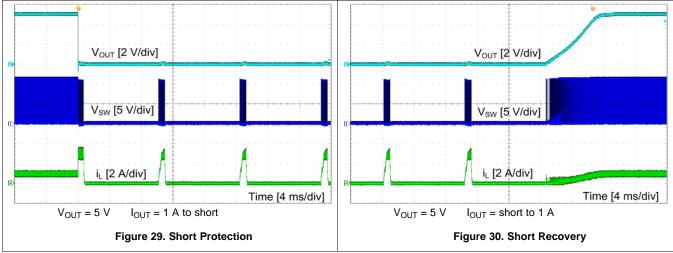
Equation 21 yields a value of 820 k Ω . The resulting falling UVLO threshold, equals 4.4 V, can be calculated by Equation 22, where EN hysteresis (V_{EN_HYS}) is 0.4 V (typical).


$$V_{\text{IN_FALLING}} = \left(V_{\text{ENH}} - V_{\text{EN_HYS}}\right) \times \frac{R_{\text{ENT}} + R_{\text{ENB}}}{R_{\text{ENB}}}$$
(22)

JAJSEW0 – MARCH 2018 www.ti.com

TEXAS INSTRUMENTS

8.2.3 Application Curves


Unless otherwise specified the following conditions apply: V_{IN} = 12 V, f_{SW} = 1600 kHz, L = 4.7 μ H, C_{OUT} = 47 μ F, T_A = 25°C.

www.ti.com JAJSEW0 – MARCH 2018

Unless otherwise specified the following conditions apply: V_{IN} = 12 V, f_{SW} = 1600 kHz, L = 4.7 μ H, C_{OUT} = 47 μ F, T_A = 25°C.

9 Power Supply Recommendations

The LMR23615-Q1 is designed to operate from an input voltage supply range between 4 V and 36 V. This input supply must be able to withstand the maximum input current and maintain a stable voltage. The resistance of the input supply rail must be low enough that an input current transient does not cause a high enough drop at the LMR23615-Q1 supply voltage that can cause a false UVLO fault triggering and system reset. If the input supply is located more than a few inches from the LMR23615-Q1, additional bulk capacitance may be required in addition to the ceramic input capacitors. The amount of bulk capacitance is not critical, but a 47- μ F or 100- μ F electrolytic capacitor is a typical choice.

10 Layout

10.1 Layout Guidelines

Layout is a critical portion of good power supply design. The following guidelines will help users design a PCB with the best power conversion performance, thermal performance, and minimized generation of unwanted EMI.

- 1. The input bypass capacitor C_{IN} must be placed as close as possible to the VIN and PGND pins. Grounding for both the input and output capacitors must consist of localized top side planes that connect to the PGND pin and PAD.
- 2. Place bypass capacitors for V_{CC} close to the VCC pin and ground the bypass capacitor to device ground.
- 3. Minimize trace length to the FB pin net. Both feedback resistors, locate R_{FBT} and R_{FBB} close to the FB pin. Place C_{FF} directly in parallel with R_{FBT}. If V_{OUT} accuracy at the load is important, make sure V_{OUT} sense is made at the load. Route V_{OUT} sense path away from noisy nodes and preferably through a layer on the other side of a shielded layer.
- 4. Use ground plane in one of the middle layers as noise shielding and heat dissipation path.
- 5. Have a single point ground connection to the plane. Route the ground connections for the feedback and enable components to the ground plane. This prevents any switched or load currents from flowing in the analog ground traces. If not properly handled, poor grounding can result in degraded load regulation or erratic output voltage ripple behavior.
- 6. Make V_{IN}, V_{OUT} and ground bus connections as wide as possible. This reduces any voltage drops on the input or output paths of the converter and maximizes efficiency.
- 7. Provide adequate device heat sinking. Use an array of heat-sinking vias to connect the exposed pad to the ground plane on the bottom PCB layer. If the PCB has multiple copper layers, these thermal vias can also be connected to inner layer heat-spreading ground planes. Ensure enough copper area is used for heat-sinking to keep the junction temperature below 125°C.

TEXAS INSTRUMENTS

Layout Guidelines (continued)

10.1.1 Compact Layout for EMI Reduction

Radiated EMI is generated by the high di/dt components in pulsing currents in switching converters. The larger area covered by the path of a pulsing current, the more EMI is generated. High-frequency ceramic bypass capacitors at the input side provide primary path for the high di/dt components of the pulsing current. Placing ceramic bypass capacitor(s) as close as possible to the VIN and PGND pins is the key to EMI reduction.

The SW pin connecting to the inductor must be as short as possible, and just wide enough to carry the load current without excessive heating. Use short, thick traces or copper pours (shapes) for high-current conduction path to minimize parasitic resistance. Place the output capacitors close to the V_{OUT} end of the inductor and closely grounded to PGND pin and exposed PAD.

Place the bypass capacitors on VCC as close as possible to the pin and closely grounded to PGND and the exposed PAD.

10.1.2 Ground Plane and Thermal Considerations

TI recommends using one of the middle layers as a solid ground plane. Ground plane provides shielding for sensitive circuits and traces. It also provides a quiet reference potential for the control circuitry. Connect the AGND and PGND pins to the ground plane using vias right next to the bypass capacitors. PGND pin is connected to the source of the internal LS switch. They should be connected directly to the grounds of the input and output capacitors. The PGND net contains noise at switching frequency and may bounce due to load variations. PGND trace, as well as VIN and SW traces, should be constrained to one side of the ground plane. The other side of the ground plane contains much less noise and must be used for sensitive routes.

TI recommends providing adequate device heat sinking by utilizing the PAD of the IC as the primary thermal path. Use a minimum 4 by 2 array of 12 mil thermal vias to connect the PAD to the system ground plane heat sink. The vias must be evenly distributed under the PAD. Use as much copper as possible, for system ground plane, on the top and bottom layers for the best heat dissipation. Use a four-layer board with the copper thickness for the four layers, starting from the top of, 2 oz / 1 oz / 2 oz. Four layer boards with enough copper thickness provides low current conduction impedance, proper shielding and lower thermal resistance.

The thermal characteristics of the LMR23615-Q1 are specified using the parameter $R_{\theta JA}$, which characterize the junction temperature of silicon to the ambient temperature in a specific system. Although the value of $R_{\theta JA}$ is dependent on many variables, it still can be used to approximate the operating junction temperature of the device. To obtain an estimate of the device junction temperature, one may use Equation 23:

$$T_J = P_D \times R_{\theta JA} + T_A$$

where

- T_J = junction temperature in °C
- $P_D = V_{IN} \times I_{IN} \times (1 \text{efficiency}) 1.1 \times I_{OUT}^2 \times DCR \text{ in Watt}$
- DCR = Inductor DC parasitic resistance in Ω
- R_{BJA} = Junction-to-ambient thermal resistance of the device in °C/W
- T_A = ambient temperature in °C

(23)

The maximum operating junction temperature of the LMR23615-Q1 is 125°C. $R_{\theta JA}$ is highly related to PCB size and layout, as well as environmental factors such as heat sinking and air flow.

10.1.3 Feedback Resistors

To reduce noise sensitivity of the output voltage feedback path, it is important to place the resistor divider and C_{FF} close to the FB pin, rather than close to the load. The FB pin is the input to the error amplifier, so it is a high impedance node and very sensitive to noise. Placing the resistor divider and C_{FF} closer to the FB pin reduces the trace length of FB signal and reduces noise coupling. The output node is a low impedance node, so the trace from V_{OUT} to the resistor divider can be long if short path is not available.

www.tij.co.jp

Layout Guidelines (continued)

If voltage accuracy at the load is important, make sure voltage sense is made at the load. Doing so will correct for voltage drops along the traces and provide the best output accuracy. The voltage sense trace from the load to the feedback resistor divider should be routed away from the SW node path and the inductor to avoid contaminating the feedback signal with switch noise, while also minimizing the trace length. This is most important when high value resistors are used to set the output voltage. It is recommended to route the voltage sense trace and place the resistor divider on a different layer than the inductor and SW node path, such that there is a ground plane in between the feedback trace and inductor/SW node polygon. This provides further shielding for the voltage feedback path from EMI noises.

10.2 Layout Example

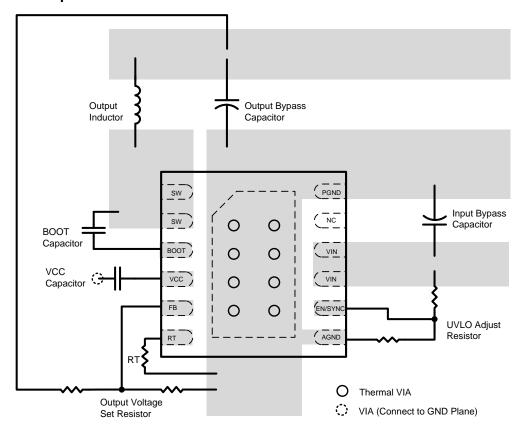


Figure 31. LMR23615-Q1 Layout

25

JAJSEW0-MARCH 2018 www.tij.co.jp

11 デバイスおよびドキュメントのサポート

11.1 デバイス・サポート

11.1.1 開発サポート

11.1.1.1 WEBENCH®ツールによるカスタム設計

ここをクリックすると、WEBENCH® Power Designerにより、LMR23615-Q1デバイスを使用するカスタム設計を作成できま す。

- 1. 最初に、入力電圧(V_{IN})、出力電圧(V_{OUT})、出力電流(I_{OUT})の要件を入力します。
- オプティマイザのダイヤルを使用して、効率、占有面積、コストなどの主要なパラメータについて設計を最適化します。
- 生成された設計を、テキサス・インスツルメンツが提供する他のソリューションと比較します。

WEBENCH Power Designerでは、カスタマイズされた回路図と部品リストを、リアルタイムの価格と部品の在庫情報と併せ て参照できます。

ほとんどの場合、次の操作を実行可能です。

- 電気的なシミュレーションを実行し、重要な波形と回路の性能を確認する。
- 熱シミュレーションを実行し、基板の熱特性を把握する。
- カスタマイズされた回路図やレイアウトを、一般的なCADフォーマットでエクスポートする。
- 設計のレポートをPDFで印刷し、同僚と設計を共有する。

WEBENCHツールの詳細は、www.ti.com/WEBENCHでご覧になれます。

11.2 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、ti.comのデバイス製品フォルダを開いてください。右上の隅にある「通 知を受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の 詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。

11.3 コミュニティ・リソース

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™オンライン・コミュニティ *TIのE2E(Engineer-to-Engineer)コミュニティ。*エンジニア間の共同作業を促進するために開設されたものです。e2e.ti.comでは、他のエンジニアに質問し、知識を共有 し、アイディアを検討して、問題解決に役立てることができます。

設計サポート *TIの設計サポート* 役に立つE2Eフォーラムや、設計サポート・ツールをすばやく見つけることが できます。技術サポート用の連絡先情報も参照できます。

11.4 商標

PowerPAD, E2E are trademarks of Texas Instruments.

WEBENCH, SIMPLE SWITCHER are registered trademarks of Texas Instruments.

All other trademarks are the property of their respective owners.

11.5 静電気放電に関する注意事項

これらのデバイスは、限定的なESD(静電破壊)保護機能を内 蔵しています。保存時または取り扱い時は、MOSゲートに対す る静電破壊を防 止するために、リード線同士をショートさせておくか、デバイスを導電フォームに入れる必要があります。

11.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

INSTRUMENTS

www.tij.co.jp

12 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、そのデバイスについて利用可能な最新のデータです。このデータは予告なく変更されることがあり、ドキュメントが改訂される場合もあります。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。

www.ti.com 10-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
LMR23615QDRRRQ1	Active	Production	WSON (DRR) 12	3000 LARGE T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 125	3615Q
LMR23615QDRRRQ1.A	Active	Production	WSON (DRR) 12	3000 LARGE T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 125	3615Q
LMR23615QDRRRQ1.B	Active	Production	WSON (DRR) 12	3000 LARGE T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 125	3615Q
LMR23615QDRRTQ1	Active	Production	WSON (DRR) 12	250 SMALL T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 125	3615Q
LMR23615QDRRTQ1.A	Active	Production	WSON (DRR) 12	250 SMALL T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 125	3615Q
LMR23615QDRRTQ1.B	Active	Production	WSON (DRR) 12	250 SMALL T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 125	3615Q

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

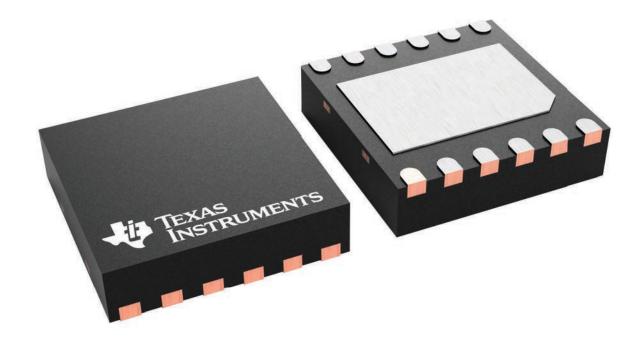
⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 10-Nov-2025

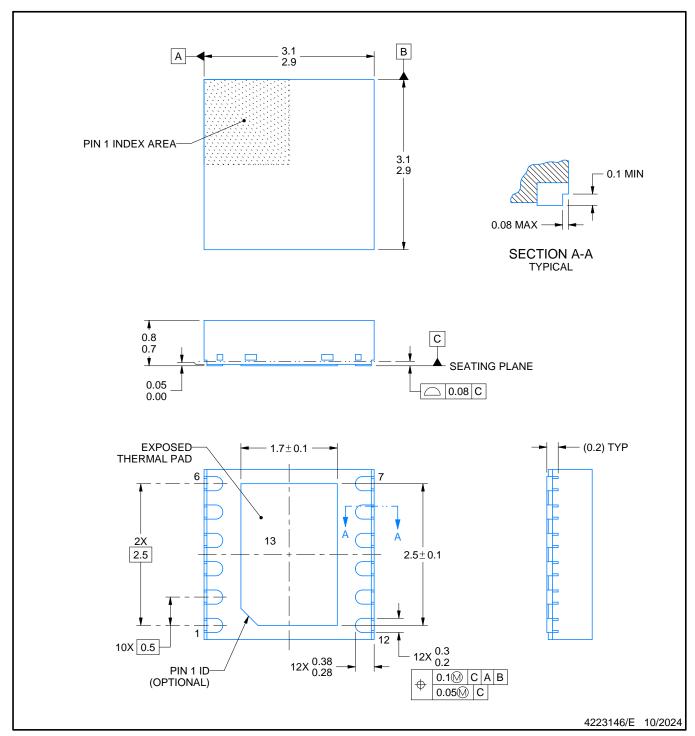
OTHER QUALIFIED VERSIONS OF LMR23615-Q1:


NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product

3 x 3, 0.5 mm pitch

PLASTIC SMALL OUTLINE - NO LEAD


This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

INSTRUMENTS www.ti.com

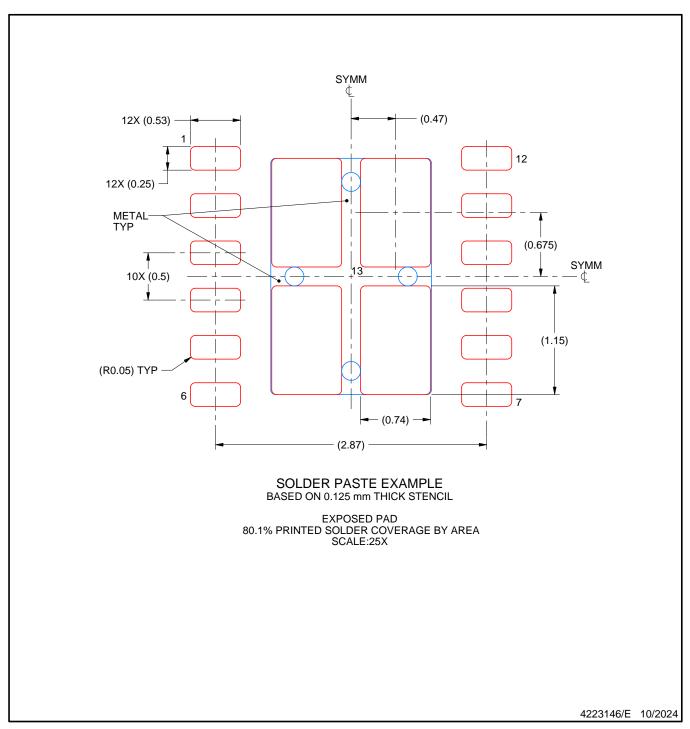
PLASTIC SMALL OUTLINE - NO LEAD


NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC SMALL OUTLINE - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TIの製品は、TIの販売条件、TIの総合的な品質ガイドライン、 ti.com または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TIはそれらに異議を唱え、拒否します。

Copyright © 2025, Texas Instruments Incorporated

最終更新日: 2025 年 10 月