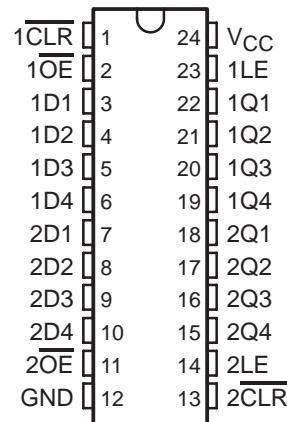


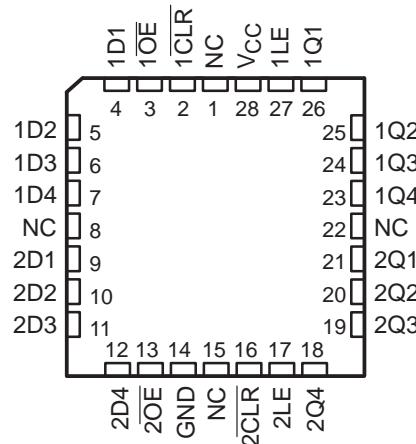
SN54ALS873B, SN54AS873A, SN74ALS873B, SN74AS873A DUAL 4-BIT D-TYPE LATCHES WITH 3-STATE OUTPUTS

SDAS036D – APRIL 1982 – REVISED AUGUST 1995

- 3-State Buffer-Type Outputs Drive Bus Lines Directly
- Bus-Structured Pinout
- Package Options Include Plastic Small-Outline (DW) Packages, Ceramic Chip Carriers (FK), and Plastic (NT) and Ceramic (JT) DIPs


description

These dual 4-bit latches feature 3-state outputs designed specifically for bus driving. These devices are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.


The dual 4-bit latches are transparent D-type latches. While the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs in true form, according to the function table. When LE is low, the outputs are latched. When the clear (CLR) input goes low, the Q outputs go low independently of LE. The outputs are in the high-impedance state when the output-enable (\overline{OE}) input is at a high logic level.

The SN54ALS873B and SN54AS873A are characterized for operation over the full military temperature range of -55°C to 125°C . The SN74ALS873B and SN74AS873A are characterized for operation from 0°C to 70°C .

SN54ALS873B, SN54AS873A . . . JT PACKAGE
SN74ALS873B, SN74AS873A . . . DW OR NT PACKAGE
(TOP VIEW)

SN54ALS873B, SN54AS873A . . . FK PACKAGE
(TOP VIEW)

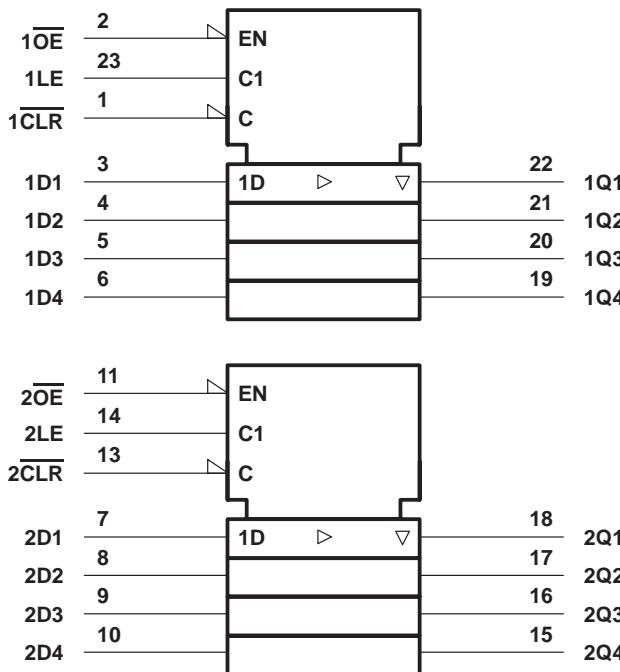
NC – No internal connection

FUNCTION TABLE
(each latch)

INPUTS				OUTPUT Q
\overline{OE}	\overline{CLR}	LE	D	Q
L	L	X	X	L
L	H	H	H	H
L	H	H	L	L
L	H	L	X	Q_0
H	X	X	X	Z

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

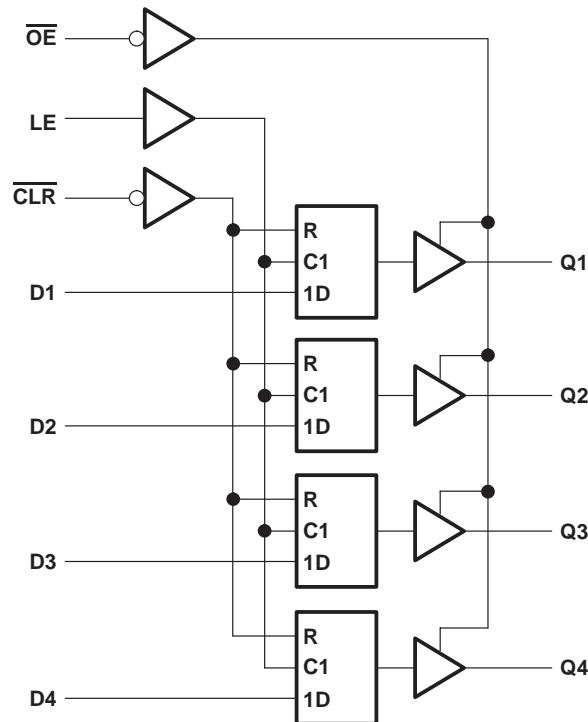
Copyright © 1995, Texas Instruments Incorporated


POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77251-1443

SN54ALS873B, SN54AS873A, SN74ALS873B, SN74AS873A
DUAL 4-BIT D-TYPE LATCHES
WITH 3-STATE OUTPUTS

SDAS036D - APRIL 1982 - REVISED AUGUST 1995


logic symbol†

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for the DW, JT, and NT packages.

logic diagram (each quad latch, positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage, V_{CC}	7 V
Input voltage, V_I	7 V
Voltage applied to a disabled 3-state output	5.5 V
Operating free-air temperature range, T_A : SN54ALS873B	-55°C to 125°C
SN74ALS873B	0°C to 70°C
Storage temperature range	-65°C to 150°C

‡ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

		SN54ALS873B			SN74ALS873B			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
V_{IH}	High-level input voltage	2			2			V
V_{IL}	Low-level input voltage			0.7			0.8	V
I_{OH}	High-level output current			-1			-2.6	mA
I_{OL}	Low-level output current			12			24	mA
T_A	Operating free-air temperature	-55		125	0		70	°C

SN54ALS873B, SN54AS873A, SN74ALS873B, SN74AS873A
DUAL 4-BIT D-TYPE LATCHES
WITH 3-STATE OUTPUTS

SDAS036D - APRIL 1982 - REVISED AUGUST 1995

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	SN54ALS873B			SN74ALS873B			UNIT
		MIN	TYP†	MAX	MIN	TYP†	MAX	
V_{IK}	$V_{CC} = 4.5 \text{ V}$, $I_I = -18 \text{ mA}$			-1.2			-1.2	V
V_{OH}	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$, $I_{OH} = -0.4 \text{ mA}$ $V_{CC} = 4.5 \text{ V}$	$V_{CC} - 2$			$V_{CC} - 2$			V
		$I_{OH} = -1 \text{ mA}$	2.4	3.3				
		$I_{OH} = -2.6 \text{ mA}$			2.4	3.2		
V_{OL}	$V_{CC} = 4.5 \text{ V}$	$I_{OL} = 12 \text{ mA}$	0.25	0.4	0.25	0.4		V
		$I_{OL} = 24 \text{ mA}$			0.35	0.5		
I_{OZH}	$V_{CC} = 5.5 \text{ V}$, $V_O = 2.7 \text{ V}$			20			20	μA
I_{OZL}	$V_{CC} = 5.5 \text{ V}$, $V_O = 0.4 \text{ V}$			-20			-20	μA
I_I	$V_{CC} = 5.5 \text{ V}$, $V_I = 7 \text{ V}$			0.1			0.1	mA
I_{IH}	$V_{CC} = 5.5 \text{ V}$, $V_I = 2.7 \text{ V}$			20			20	μA
I_{IL}	$V_{CC} = 5.5 \text{ V}$, $V_I = 0.4 \text{ V}$			-0.2			-0.2	mA
I_O^\ddagger	$V_{CC} = 5.5 \text{ V}$, $V_O = 2.25 \text{ V}$	-20	-112	-30	-112			mA
I_{CC}	$V_{CC} = 5.5 \text{ V}$	Outputs high	11	21	11	21		mA
		Outputs low	16	29	16	29		
		Outputs disabled	20	31	20	31		

† All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$.

‡ The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS} .

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

		SN54ALS873B		SN74ALS873B		UNIT
		MIN	MAX	MIN	MAX	
t_w	Pulse duration	CLR low	15	15		ns
		LE high	10	10		
t_{su}	Setup time, data before LE↓		10	10		ns
t_h	Hold time, data after LE↓		7	7		ns

SN54ALS873B, SN54AS873A, SN74ALS873B, SN74AS873A DUAL 4-BIT D-TYPE LATCHES WITH 3-STATE OUTPUTS

SDAS036D – APRIL 1982 – REVISED AUGUST 1995

switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 4.5\text{ V to }5.5\text{ V}$, $C_L = 50\text{ pF}$, $R1 = 500\text{ }\Omega$, $R2 = 500\text{ }\Omega$, $T_A = \text{MIN to MAX}^\dagger$				UNIT	
			SN54ALS873B		SN74ALS873B			
			MIN	MAX	MIN	MAX		
t_{PLH}	D	Q	2	23	2	14	ns	
t_{PHL}			2	17	2	14		
t_{PLH}	LE	Q	8	31	8	22	ns	
t_{PHL}			8	26	8	21		
t_{PHL}	CLR	Q	6	27	6	20	ns	
t_{PZH}	\overline{OE}	Q	4	24	4	18	ns	
t_{PZL}			4	23	4	18		
t_{PHZ}	\overline{OE}	Q	2	12	2	10	ns	
t_{PLZ}			2	30	2	15		

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

		SN54AS873A			SN74AS873A			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
V _{CC}	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
V _{IH}	High-level input voltage		2		2			V
V _{IL}	Low-level input voltage			0.8			0.8	V
I _{OH}	High-level output current			-12			-15	mA
I _{OL}	Low-level output current			32			48	mA
T _A	Operating free-air temperature	-55		125	0		70	°C

SN54ALS873B, SN54AS873A, SN74ALS873B, SN74AS873A
DUAL 4-BIT D-TYPE LATCHES
WITH 3-STATE OUTPUTS

SDAS036D - APRIL 1982 - REVISED AUGUST 1995

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	SN54AS873A			SN74AS873A			UNIT
		MIN	TYP†	MAX	MIN	TYP†	MAX	
V_{IK}	$V_{CC} = 4.5 \text{ V}$, $I_I = -18 \text{ mA}$			-1.2			-1.2	V
V_{OH}	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$, $I_{OH} = -2 \text{ mA}$ $V_{CC} = 4.5 \text{ V}$	$V_{CC} - 2$			$V_{CC} - 2$			V
		$I_{OH} = -12 \text{ mA}$	2.4	3.2				
		$I_{OH} = -15 \text{ mA}$			2.4	3.3		
V_{OL}	$V_{CC} = 4.5 \text{ V}$	$I_{OL} = 32 \text{ mA}$	0.25	0.5				V
		$I_{OL} = 48 \text{ mA}$			0.35	0.5		
I_{OZH}	$V_{CC} = 5.5 \text{ V}$, $V_O = 2.7 \text{ V}$			50			50	μA
I_{OZL}	$V_{CC} = 5.5 \text{ V}$, $V_O = 0.4 \text{ V}$			-50			-50	μA
I_I	$V_{CC} = 5.5 \text{ V}$, $V_I = 7 \text{ V}$			0.1			0.1	mA
I_{IH}	$V_{CC} = 5.5 \text{ V}$, $V_I = 2.7 \text{ V}$			20			20	μA
I_{IL}	$V_{CC} = 5.5 \text{ V}$, $V_I = 0.4 \text{ V}$			-0.5			-0.5	mA
I_O^{\ddagger}	$V_{CC} = 5.5 \text{ V}$, $V_O = 2.25 \text{ V}$	-30	-112	-30	-112			mA
I_{CC}	$V_{CC} = 5.5 \text{ V}$	Outputs high	68	110	68	110		mA
		Outputs low	67	109	67	109		
		Outputs disabled	80	129	80	129		

† All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^\circ\text{C}$.

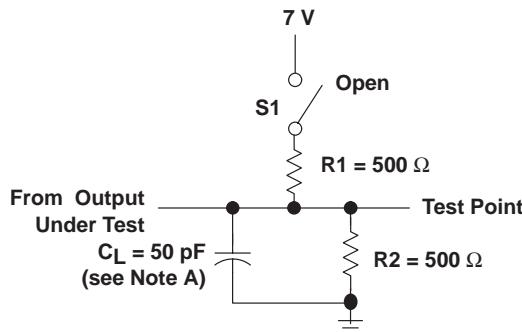
‡ The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS} .

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

		SN54AS873A		SN74AS873A		UNIT
		MIN	MAX	MIN	MAX	
t_w^*	Pulse duration	CLR low	5	5		ns
		LE high	6	5		
t_{su}^*	Setup time, data before LE↓		2	2		ns
t_h^*	Hold time, data after LE↓		4.5	4.5		ns

* On products compliant to MIL-STD-883, Class B, this parameter is based on characterization data but is not production tested.

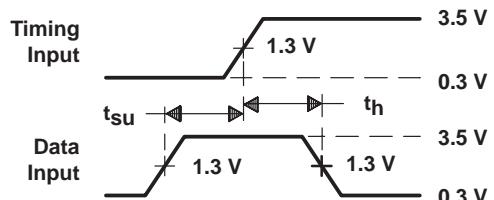
SN54ALS873B, SN54AS873A, SN74ALS873B, SN74AS873A
DUAL 4-BIT D-TYPE LATCHES
WITH 3-STATE OUTPUTS

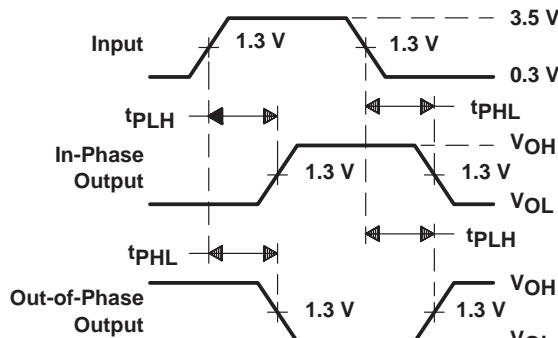

SDAS036D – APRIL 1982 – REVISED AUGUST 1995

switching characteristics (see Figure 1)

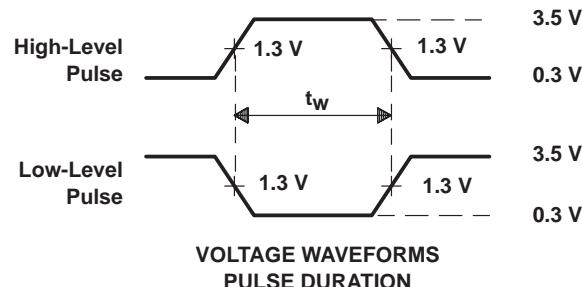
PARAMETER	FROM (INPUT)	TO (OUTPUT)	$V_{CC} = 4.5\text{ V to }5.5\text{ V}$, $C_L = 50\text{ pF}$, $R1 = 500\text{ }\Omega$, $R2 = 500\text{ }\Omega$, $T_A = \text{MIN to MAX}^\dagger$				UNIT	
			SN54AS873A		SN74AS873A			
			MIN	MAX	MIN	MAX		
t_{PLH}	D	Q	3	12.5	3	9.5	ns	
t_{PHL}			3	8.5	3	7.5		
t_{PLH}	LE	Q	6	15.5	6	13	ns	
t_{PHL}			4	9	4	7.5		
t_{PHL}	CLR	Q	3	10.5	3	9	ns	
t_{PZH}	\overline{OE}	Q	2	8	2	6.5	ns	
t_{PZL}			4	11	4	10.5		
t_{PHZ}	\overline{OE}	Q	2	8	2	7.5	ns	
t_{PLZ}			2	8.5	2	7.5		

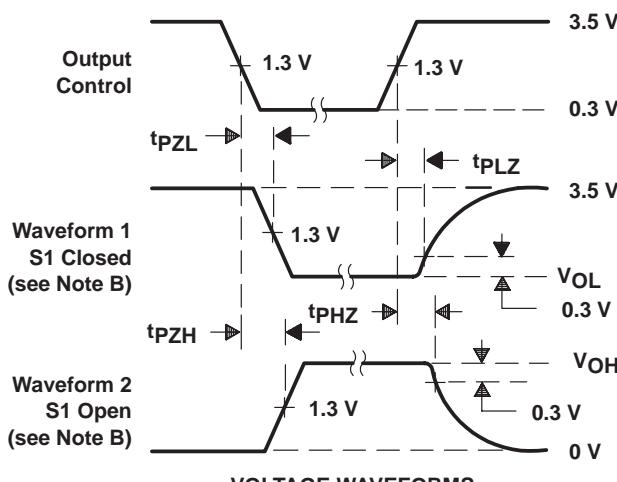
† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.


PARAMETER MEASUREMENT INFORMATION


SWITCH POSITION TABLE

TEST	S1
tPLH	Open
tPHL	Open
tPZH	Open
tPZL	Closed
tPHZ	Open
tPLZ	Closed


LOAD CIRCUIT FOR 3-STATE OUTPUTS


VOLTAGE WAVEFORMS
 SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
 PROPAGATION DELAY TIMES

VOLTAGE WAVEFORMS
 PULSE DURATION

VOLTAGE WAVEFORMS
 ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

- NOTES: A. C_L includes probe and jig capacitance.
 B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_r \leq 2$ ns, $t_f \leq 2$ ns.
 D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
84032013A	Active	Production	LCCC (FK) 28	42 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	84032013A SNJ54ALS 873BFK
8403201LA	Active	Production	CDIP (JT) 24	15 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	8403201LA SNJ54ALS873BJT
SN74ALS873BDW	Obsolete	Production	SOIC (DW) 24	-	-	Call TI	Call TI	0 to 70	ALS873B
SN74ALS873BDWR	Active	Production	SOIC (DW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS873B
SN74ALS873BDWR.A	Active	Production	SOIC (DW) 24	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS873B
SNJ54ALS873BFK	Active	Production	LCCC (FK) 28	42 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	84032013A SNJ54ALS 873BFK
SNJ54ALS873BFK.A	Active	Production	LCCC (FK) 28	42 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	84032013A SNJ54ALS 873BFK
SNJ54ALS873BJT	Active	Production	CDIP (JT) 24	15 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	8403201LA SNJ54ALS873BJT
SNJ54ALS873BJT.A	Active	Production	CDIP (JT) 24	15 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	8403201LA SNJ54ALS873BJT

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

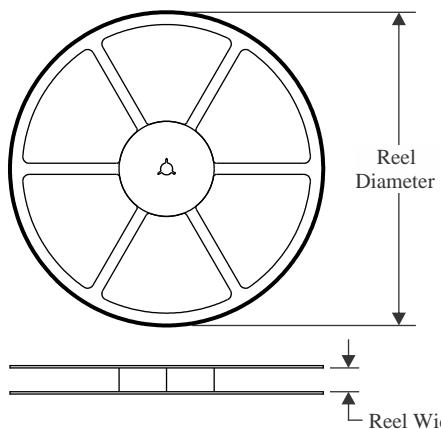
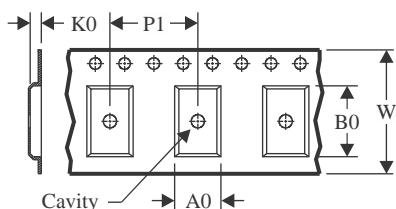
⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

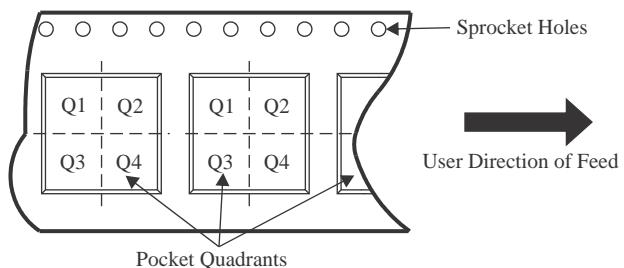
(6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

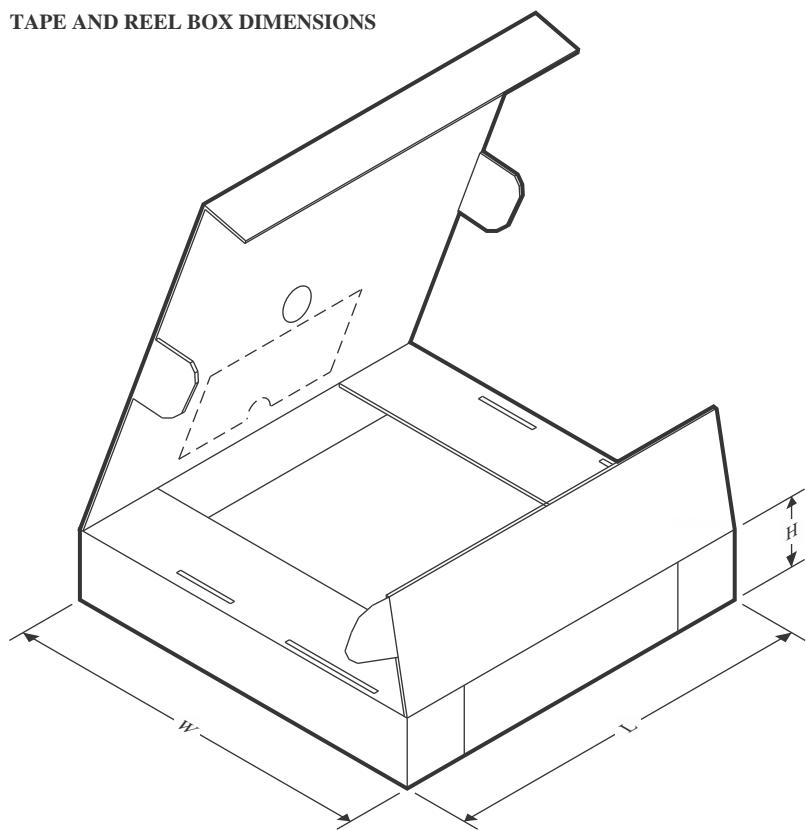


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54ALS873B, SN74ALS873B :


- Catalog : [SN74ALS873B](#)
- Military : [SN54ALS873B](#)

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product
- Military - QML certified for Military and Defense Applications


TAPE AND REEL INFORMATION
REEL DIMENSIONS

TAPE DIMENSIONS

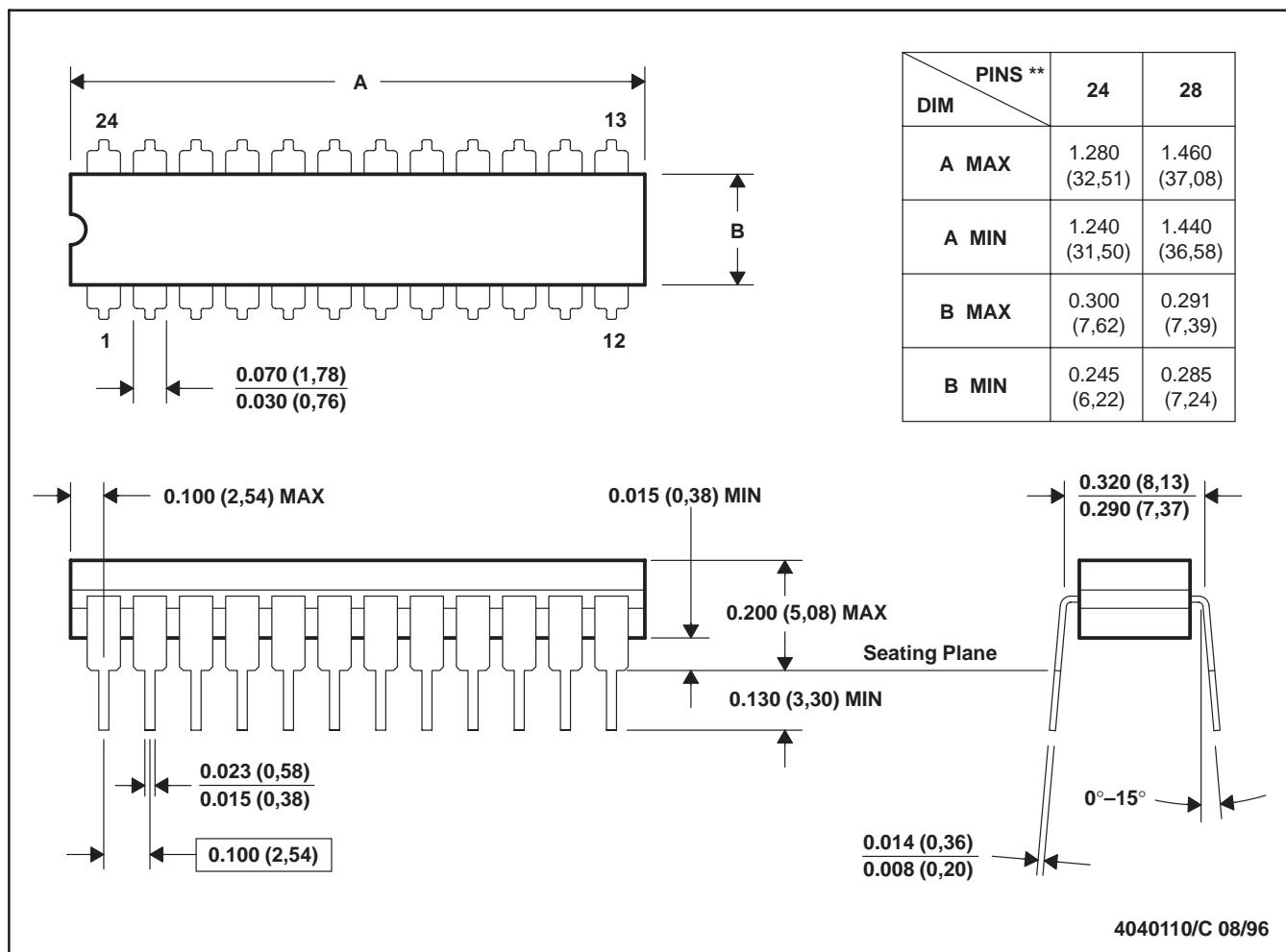
A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ALS873BDWR	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1

TAPE AND REEL BOX DIMENSIONS

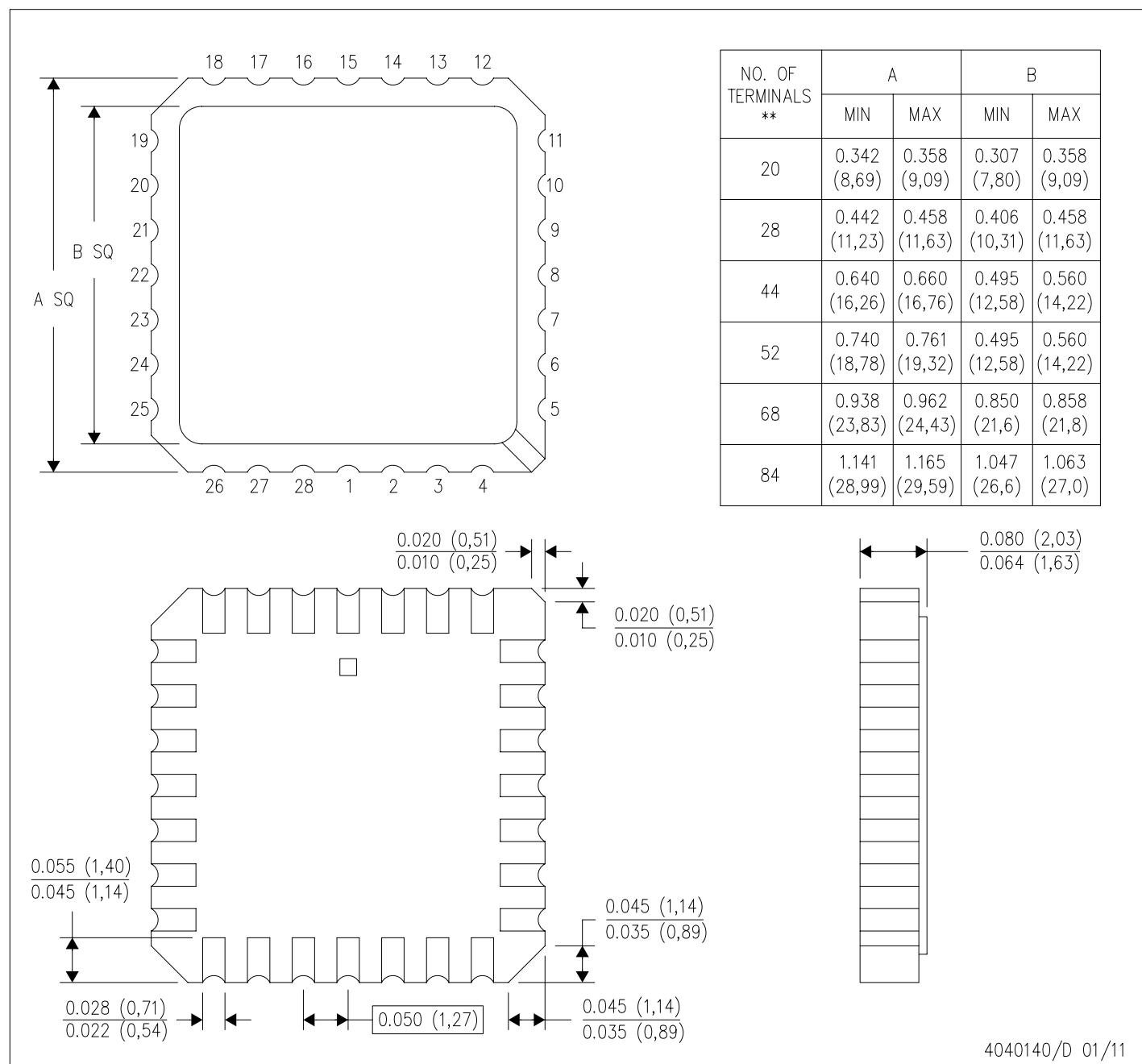

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74ALS873BDWR	SOIC	DW	24	2000	350.0	350.0	43.0

JT (R-GDIP-T**)

24 LEADS SHOWN

CERAMIC DUAL-IN-LINE

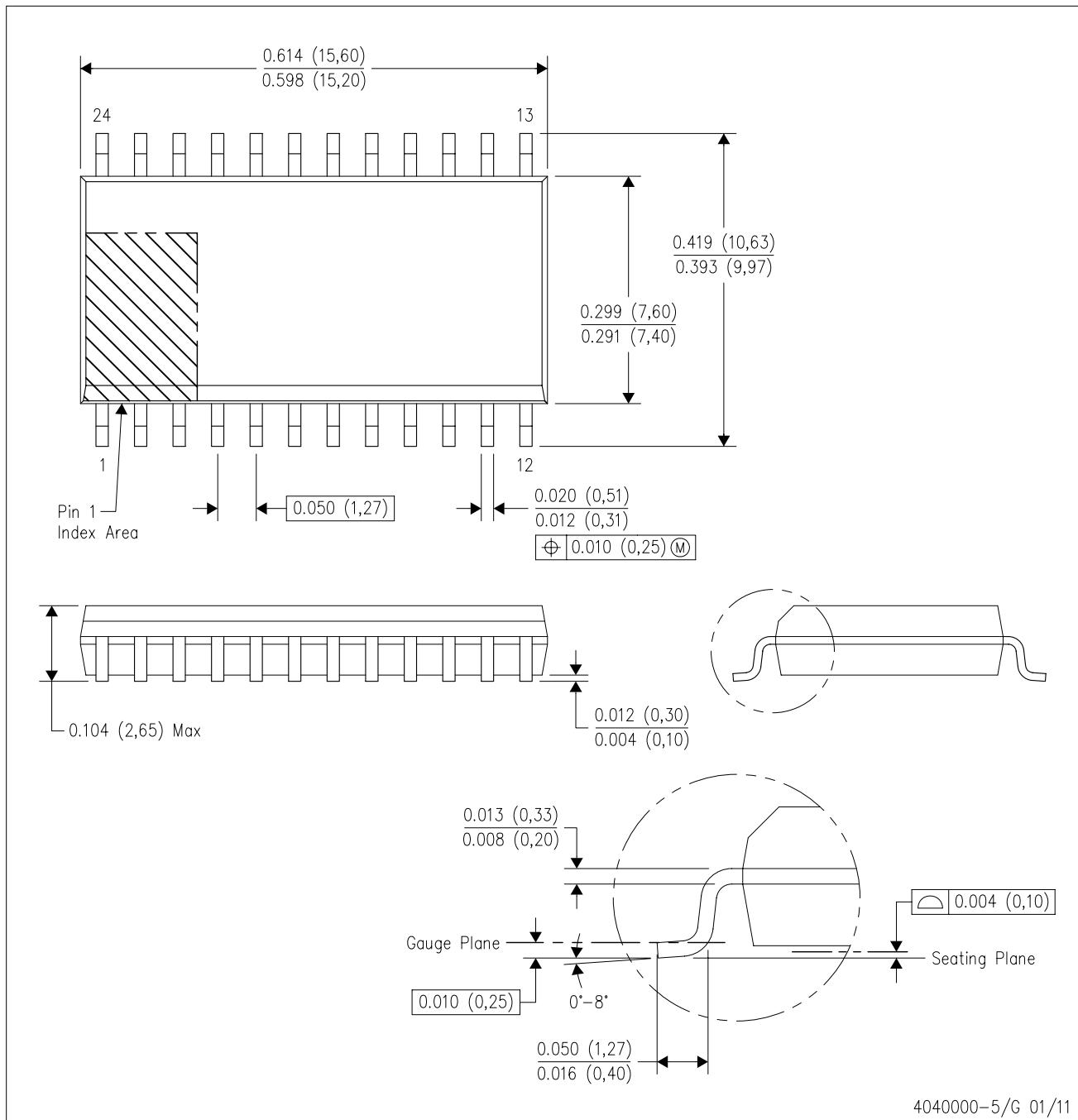


- NOTES: A. All linear dimensions are in inches (millimeters).
 B. This drawing is subject to change without notice.
 C. This package can be hermetically sealed with a ceramic lid using glass frit.
 D. Index point is provided on cap for terminal identification.
 E. Falls within MIL STD 1835 GDIP3-T24, GDIP4-T28, and JEDEC MO-058 AA, MO-058 AB

FK (S-CQCC-N**)

28 TERMINAL SHOWN

LEADLESS CERAMIC CHIP CARRIER



- NOTES: A. All linear dimensions are in inches (millimeters).
 B. This drawing is subject to change without notice.
 C. This package can be hermetically sealed with a metal lid.
 D. Falls within JEDEC MS-004

4040140/D 01/11

DW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

- NOTES:
- All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.
 - This drawing is subject to change without notice.
 - Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0.15).
 - Falls within JEDEC MS-013 variation AD.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025