

SN74LXC1T14 デュアル電源、反転トランスレータ、シュミットトリガ入力付き

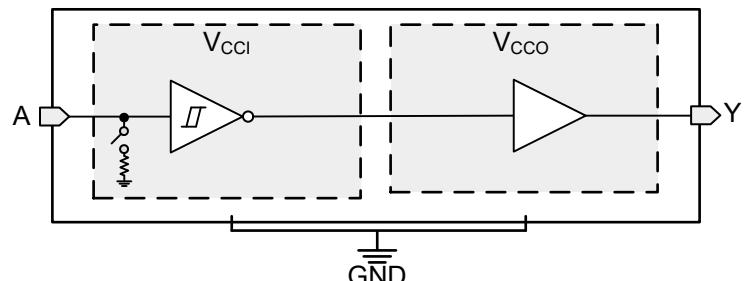
1 特長

- 完全に構成可能なデュアル・レール設計により、各ポートは 1.1V～5.5V で動作可能
- 堅牢でグリッチの発生しない電源シーケンシング
- 3.3V～5.0V で最高 420Mbps をサポート
- シュミット・トリガ入力により低速またはノイズの多い入力に対応
- ダイナミック・プルダウン抵抗を内蔵した入力により、外付け部品数を削減可能
- 高い駆動能力 (5V で最大 32mA)
- 低い消費電力
 - 最大 3µA (25°C)
 - 最大 6µA (-40°C～125°C)
- V_{CC} 絶縁および V_{CC} 切断 (I_{off-float}) 機能
 - どちらかの V_{CC} 電源が 100mV 未満になった場合または切断された場合、すべての I/O がプルダウンされた後に高インピーダンス状態に移行
- 過電圧許容入力は、電源電圧にかかわらず最高 5.5V までの電圧に対応。
- I_{off} により部分的パワーダウン・モードでの動作をサポート
- 動作温度範囲: -40°C～+125°C
- JESD 78、Class II 準拠で 100mA 超のラッチアップ性能
- JESD 22 を上回る ESD 保護
 - 人体モデル 4000V
 - デバイス帶電モデル 1000V

2 アプリケーション

- 低速またはノイズの多い入力信号の除去
- インジケータ LED またはブザーの駆動
- メカニカル・スイッチのデバウンス
- 汎用 I/O (GPIO) レベル・シフト

3 概要


SN74LXC1T14 は、シュミット・トリガ入を持つシングル・ビット、デュアル電源の反転電圧レベル変換デバイスです。入力ピン A は V_{CCI} ロジック・レベルを基準としており、出力ピン Y は V_{CCO} ロジック・レベルを基準としています。入力ピン A は 1.1V～5.5V の範囲の電圧に対応し、V_{CCI} または GND に直接接続できます。制御ロジックの動作の概要については、「[デバイスの機能モード](#)」を参照してください。

このデバイスは、I_{off} を使用する部分的パワーダウン・アプリケーション用に完全に動作が規定されており、確実に消費電力を低減します。I_{off} 回路は、デバイスの電源がオフになったとき、出力をディセーブルにします。これによってデバイスへの電流の逆流を阻止し、デバイスを損傷から保護します。

製品情報 (1)

部品番号	パッケージ	本体サイズ (公称)
SN74LXC1T14	SC70 (5) (DCK)	2.00mm × 1.25mm

(1) 利用可能なすべてのパッケージについては、このデータシートの末尾にある注文情報を参照してください。

簡略ブロック図

英語版の TI 製品についての情報を翻訳したこの資料は、製品の概要を確認する目的で便宜的に提供しているものです。該当する正式な英語版の最新情報は、必ず最新版の英語版をご参照ください。

Table of Contents

1 特長	1	8.3 Feature Description	12
2 アプリケーション	1	8.4 Device Functional Modes	15
3 概要	1	9 Application and Implementation	16
4 Revision History	2	9.1 Application Information	16
5 Pin Configuration and Functions	3	9.2 Typical Application	16
6 Specifications	4	10 Power Supply Recommendations	17
6.1 Absolute Maximum Ratings	4	11 Layout	17
6.2 ESD Ratings	4	11.1 Layout Guidelines	17
6.3 Recommended Operating Conditions	5	11.2 Layout Example	17
6.4 Thermal Information	5	12 Device and Documentation Support	18
6.5 Electrical Characteristics	6	12.1 Device Support	18
6.6 Switching Characteristics: Tpd	8	12.2 Documentation Support	18
6.7 Switching Characteristics: T _{MAX}	9	12.3 Receiving Notification of Documentation Updates	18
6.8 Typical Characteristics	10	12.4 サポート・リソース	18
7 Parameter Measurement Information	11	12.5 Trademarks	18
7.1 Load Circuit and Voltage Waveforms	11	12.6 Electrostatic Discharge Caution	18
8 Detailed Description	12	12.7 Glossary	18
8.1 Overview	12	13 Mechanical, Packaging, and Orderable	
8.2 Functional Block Diagram	12	Information	18

4 Revision History

DATE	REVISION	NOTES
May 2022	*	Initial Release

5 Pin Configuration and Functions

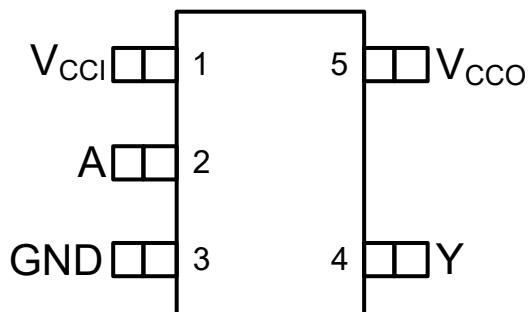


図 5-1. DCK Package Preview, 5-Pin SC70 (Top View)

表 5-1. Pin Functions

PIN		TYPE ⁽¹⁾	DESCRIPTION
NAME	DCK		
V _{CCI}	1	—	Input supply voltage. 1.1 V ≤ V _{CCI} ≤ 5.5 V.
A	2	I	Input A. Referenced to V _{CCI}
GND	3	—	Ground.
Y	4	O	Output Y. Referenced to V _{CCO} .
V _{CCO}	5	—	Output supply voltage. 1.1 V ≤ V _{CCO} ≤ 5.5 V.

(1) I = input, O = output

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V _{CCI}	Input supply voltage A		-0.5	6.5	V
V _{CC0}	Output supply voltage Y		-0.5	6.5	V
V _I	Input Voltage ⁽²⁾		-0.5	6.5	V
V _O	Voltage applied to any output in the high-impedance or power-off state ⁽²⁾		-0.5	6.5	V
V _O	Voltage applied to any output in the high or low state ^{(2) (3)}		-0.5 V _{CCB} + 0.5		V
I _{IK}	Input clamp current	V _I < 0	-50		mA
I _{OK}	Output clamp current	V _O < 0	-50		mA
I _O	Continuous output current		-50	50	mA
	Continuous current through V _{CC} or GND		-200	200	mA
T _j	Junction Temperature			150	°C
T _{stg}	Storage temperature		-65	150	°C

- (1) Operation outside the *Absolute Maximum Ratings* may cause permanent device damage. *Absolute Maximum Ratings* do not imply functional operation of the device at these or any other conditions beyond those listed under *Recommended Operating Conditions*. If used outside the *Recommended Operating Conditions*, but within the *Absolute Maximum Ratings*, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.
- (2) The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- (3) The output positive-voltage rating may be exceeded up to 6.5 V maximum if the output current rating is observed.

6.2 ESD Ratings

			VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±4000	V
		Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±1000	

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted) [\(1\)](#) [\(2\)](#) [\(3\)](#)

			MIN	MAX	UNIT
V_{CCI}	Input supply voltage		1.1	5.5	V
V_{CCO}	Output Supply voltage		1.1	5.5	V
I_{OH}	High-level output current	$V_{CCO} = 1.1\text{ V}$		-0.1	mA
		$V_{CCO} = 1.4\text{ V}$		-4	
		$V_{CCO} = 1.65\text{ V}$		-8	
		$V_{CCO} = 2.3\text{ V}$		-12	
		$V_{CCO} = 3\text{ V}$		-24	
		$V_{CCO} = 4.5\text{ V}$		-32	
I_{OL}	Low-level output current	$V_{CCO} = 1.1\text{ V}$		0.1	mA
		$V_{CCO} = 1.4\text{ V}$		4	
		$V_{CCO} = 1.65\text{ V}$		8	
		$V_{CCO} = 2.3\text{ V}$		12	
		$V_{CCO} = 3\text{ V}$		24	
		$V_{CCO} = 4.5\text{ V}$		32	
V_I	Input voltage (3)		0	5.5	V
V_O	Output voltage	Active State	0	V_{CCO}	V
		Tri-State	0	5.5	
T_A	Operating free-air temperature		-40	125	°C

(1) V_{CCI} is the V_{CC} associated with the input port.

(2) V_{CCO} is the V_{CC} associated with the output port.

(3) Input of this device has a weak pulldown to ensure the line is not floating when undefined external to the device. The input leakage from these weak pulldowns is defined by the I_I specification indicated under [Electrical Characteristics](#).

6.4 Thermal Information

THERMAL METRIC (1)		SN74LXC1T14	UNIT
		DCK (SC70)	
		5 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	222.9	°C/W
$R_{\theta JC(\text{top})}$	Junction-to-case (top) thermal resistance	132.9	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	109.5	°C/W
Y_{JT}	Junction-to-top characterization parameter	48.4	°C/W
Y_{JB}	Junction-to-board characterization parameter	108.9	°C/W
$R_{\theta JC(\text{bottom})}$	Junction-to-case (bottom) thermal resistance	N/A	°C/W

(1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC Package Thermal Metrics](#) application report.

6.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)^{(1) (2)}

PARAMETER	TEST CONDITIONS	V _{CC1}	V _{CC0}	Operating free-air temperature (T _A)						UNIT	
				25°C			-40°C to 85°C				
				MIN	TYP	MAX	MIN	TYP	MAX		
V _{T+}	Positive-going input-threshold voltage	Data Input (Referenced to V _{CC1})	1.1 V	1.1 V			0.44	0.88	0.44	0.88	V
			1.4 V	1.4 V			0.60	0.98	0.60	0.98	
			1.65 V	1.65 V			0.76	1.13	0.76	1.13	
			2.3 V	2.3 V			1.08	1.56	1.08	1.56	
			3 V	3 V			1.48	1.92	1.48	1.92	
			4.5 V	4.5 V			2.19	2.74	2.19	2.74	
			5.5 V	5.5 V			2.65	3.33	2.65	3.33	
V _{T-}	Negative-going input-threshold voltage	Data Input (Referenced to V _{CC1})	1.1 V	1.1 V			0.17	0.48	0.17	0.48	V
			1.4 V	1.4 V			0.28	0.59	0.28	0.59	
			1.65 V	1.65 V			0.35	0.69	0.35	0.69	
			2.3 V	2.3 V			0.56	0.97	0.56	0.97	
			3 V	3 V			0.89	1.5	0.89	1.5	
			4.5 V	4.5 V			1.51	1.97	1.51	1.97	
			5.5 V	5.5 V			1.88	2.4	1.88	2.4	
ΔV _T	Input-threshold hysteresis (V _{T+} – V _{T-})	Data Inputs (Ax, Bx) (Referenced to V _{CC1})	1.1 V	1.1 V			0.2	0.4	0.2	0.4	V
			1.4 V	1.4 V			0.25	0.5	0.25	0.5	
			1.65 V	1.65 V			0.3	0.55	0.3	0.55	
			2.3 V	2.3 V			0.38	0.65	0.38	0.65	
			3 V	3 V			0.46	0.72	0.46	0.72	
			4.5 V	4.5 V			0.58	0.93	0.58	0.93	
			5.5 V	5.5 V			0.69	1.06	0.69	1.06	
V _{OH}	High-level output voltage ⁽³⁾	I _{OH} = -100 μA	1.1 V – 5.5 V	1.1 V – 5.5 V			V _{CC0} – 0.1	V _{CC0} – 0.1			V
		I _{OH} = -4 mA	1.4 V	1.4 V			1	1			
		I _{OH} = -8 mA	1.65 V	1.65 V			1.2	1.2			
		I _{OH} = -12 mA	2.3 V	2.3 V			1.9	1.9			
		I _{OH} = -24 mA	3 V	3 V			2.4	2.4			
		I _{OH} = -32 mA	4.5 V	4.5 V			3.8	3.8			
V _{OL}	Low-level output voltage ⁽⁴⁾	I _{OL} = 100 μA	1.1 V – 5.5 V	1.1 V – 5.5 V			0.1	0.1			V
		I _{OL} = 4 mA	1.4 V	1.4 V			0.3	0.3			
		I _{OL} = 8 mA	1.65 V	1.65 V			0.45	0.45			
		I _{OL} = 12 mA	2.3 V	2.3 V			0.3	0.3			
		I _{OL} = 24 mA	3 V	3 V			0.55	0.55			
		I _{OL} = 32 mA	4.5 V	4.5 V			0.55	0.55			
I _I	Input leakage current	Data Input ⁽⁵⁾ V _I = V _{CC1} or GND	1.1 V – 5.5 V	1.1 V – 5.5 V	-0.3	1	-1	1	-2	2	μA
I _{off}	Partial power down current	Inputs V _I or V _O = 0 V – 5.5 V	0 V	0 V – 5.5 V	-1	1	-2	2	-2.5	2.5	μA
			0 V – 5.5 V	0 V	-1	1	-2	2	-2.5	2.5	μA
I _{off-float}	Floating supply Partial power down current	Inputs V _I or V _O = GND	Floating ⁽⁶⁾	0 V – 5.5 V	-1.5	1.5	-2	2	-2.5	2.5	μA
			0 V – 5.5 V	Floating ⁽⁶⁾	-1.5	1.5	-2	2	-2.5	2.5	μA

6.5 Electrical Characteristics (continued)

over operating free-air temperature range (unless otherwise noted)^{(1) (2)}

PARAMETER	TEST CONDITIONS	V _{CCI}	V _{CCO}	Operating free-air temperature (T _A)						UNIT	
				25°C			-40°C to 85°C				
				MIN	TYP	MAX	MIN	TYP	MAX		
I _{CCI}	V _{CCI} supply current	V _I = V _{CCI} or GND I _O = 0	1.1 V – 5.5 V	1.1 V – 5.5 V			2		3	6	μA
			0 V	5.5 V		-0.2		-0.5		-1	
			5.5 V	0 V			1		2	4	
	V _{CCO} supply current	V _I = GND I _O = 0	5.5 V	Floating ⁽⁶⁾			2		3	6	
			1.1 V – 5.5 V	1.1 V – 5.5 V			2		3	6	
			0 V	5.5 V			1		2	4	
I _{CCO}		V _I = GND I _O = 0	5.5 V	0 V	-0.2		-0.5		-1		μA
I _{CCI} + I _{CCO}	Combined supply current	V _I = V _{CCI} or GND I _O = 0	1.1 V – 5.5 V	1.1 V – 5.5 V			3		4	6	μA
ΔI _{CCI}	Additional input supply current	V _I = V _{CCI} – 0.6 V	3.0 V – 5.5 V	3.0 V – 5.5 V					50	75	μA
C _i	Input Capacitance	V _I = 3.3 V or GND	3.3 V	3.3 V		5			10		pF
C _o	Output Capacitance	V _{CCO} = 0 V V _O = 1.65 V DC +1 MHz -16 dBm sine wave	3.3 V	3.3 V		5			10		pF

(1) V_{CCI} is the V_{CC} associated with the input port.

(2) V_{CCO} is the V_{CC} associated with the output port.

(3) Tested at V_I = V_{T+(MAX)}

(4) Tested at V_I = V_{T-(MIN)}

(5) For I/O ports, the parameter I_I includes the I_{OZ} current.

(6) Floating is defined as a node that is both not actively driven by an external device and has leakage not exceeding 10 nA.

6.6 Switching Characteristics: t_{pd}

Over operating free-air temperature range (T_A). See [Figure 7-1](#) and [Table 7-1](#) for test circuit and loading. See [Figure 7-2](#) and [Figure 7-3](#) for measurement waveforms.

PARAMETER	FROM	TO	Output Supply Voltage (V_{CCO})	Input Supply Voltage (V_{CCI})												UNIT			
				1.2 ± 0.1 V			1.5 ± 0.1 V			1.8 ± 0.15 V			2.5 ± 0.2 V			3.3 ± 0.3 V			
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
t_{pd} Propagation delay	A	Y	1.2 ± 0.1 V	10	83	10	70	10	66	9	59	9	58	9	54	ns			
			1.5 ± 0.1 V	9	36	8	28	7	26	7	22	7	21	7	20				
			1.8 ± 0.15 V	8	32	7	23	6	21	6	18	6	17	6	16				
			2.5 ± 0.2 V	7	29	6	18	5	15	5	13	4	12	4	11				
			3.3 ± 0.3 V	7	29	6	16	4	13	4	11	3	10	3	9				
			5.0 ± 0.5 V	7	28	5	15	4	12	3	10	2	9	2	8				

6.7 Switching Characteristics: T_{MAX}

over operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	V_{CCI}	V_{CCO}	Operating free-air temperature (T_A)			UNIT	
				-40°C to 125°C				
				MIN	TYP	MAX		
T_{MAX} - Maximum Data Rate	50% Duty Cycle Input One channel switching 20% of pulse > 0.7* V_{CCO} 20% of pulse < 0.3* V_{CCO}	Up Translation	3.0 V – 3.6 V	4.5 V – 5.5 V	200	420	Mbps	
			2.25 V – 2.75 V	4.5 V – 5.5 V	150	300		
			1.65 V – 1.95 V	4.5 V – 5.5 V	100	200		
			1.1 V – 1.3 V	4.5 V – 5.5 V	20	40		
			1.65 V – 1.95 V	3.0 V – 3.6 V	100	210		
			1.1 V – 1.3 V	3.0 V – 3.6 V	10	20		
			1.1 V – 1.3 V	1.65 V – 1.95 V	5	10		
		Down Translation	4.5 V – 5.5 V	3.0 V – 3.6 V	100	210		
			4.5 V – 5.5 V	2.25 V – 2.75 V	75	140		
			4.5 V – 5.5 V	1.65 V – 1.95 V	50	75		
			4.5 V – 5.5 V	1.1 V – 1.3 V	15	30		
			3.0 V – 3.6 V	1.65 V – 1.95 V	40	75		
			3.0 V – 3.6 V	1.1 V – 1.3 V	10	20		
			1.65 V – 1.95 V	1.1 V – 1.3 V	5	10		

6.8 Typical Characteristics

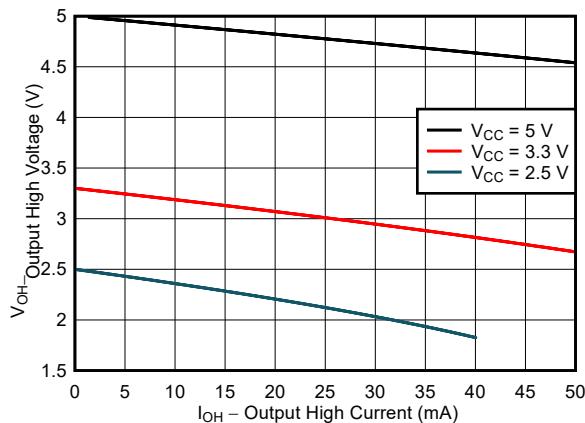


图 6-1. Typical ($T_A=25^\circ\text{C}$) Output High Voltage (V_{OH}) vs Source Current (I_{OH})

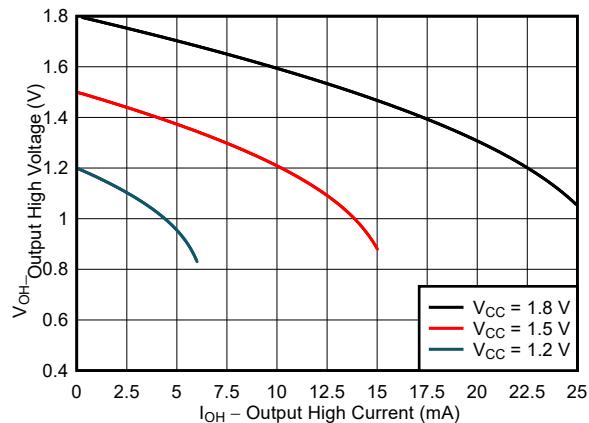


图 6-2. Typical ($T_A=25^\circ\text{C}$) Output High Voltage (V_{OH}) vs Source Current (I_{OH})

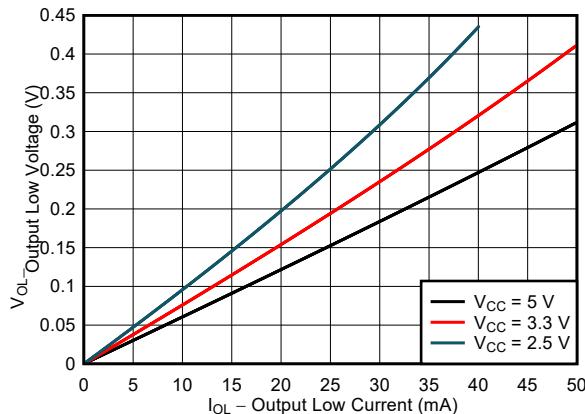


图 6-3. Typical ($T_A=25^\circ\text{C}$) Output Low Voltage (V_{OL}) vs Sink Current (I_{OL})

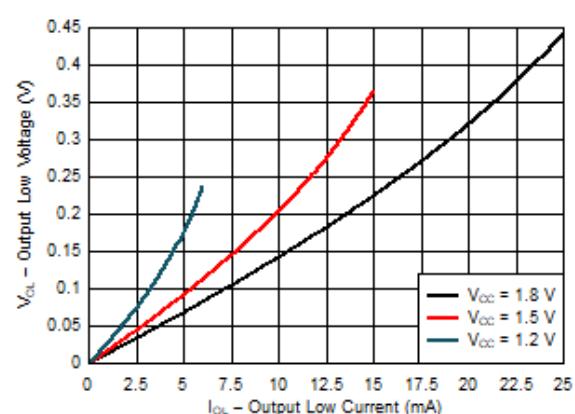


图 6-4. Typical ($T_A=25^\circ\text{C}$) Output Low Voltage (V_{OL}) vs Sink Current (I_{OL})

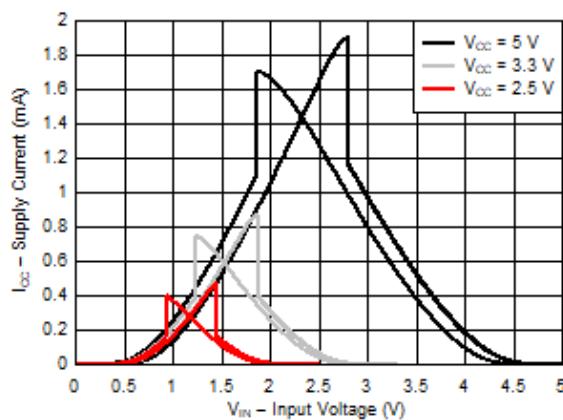
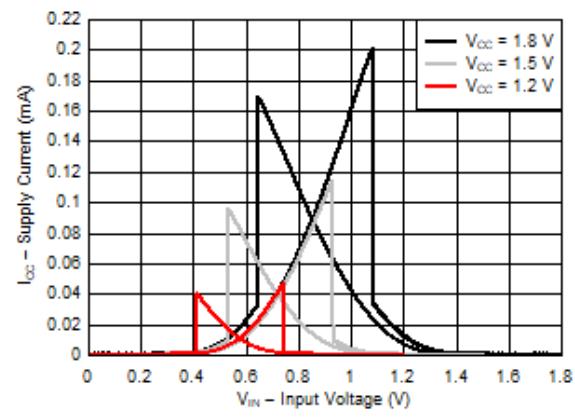
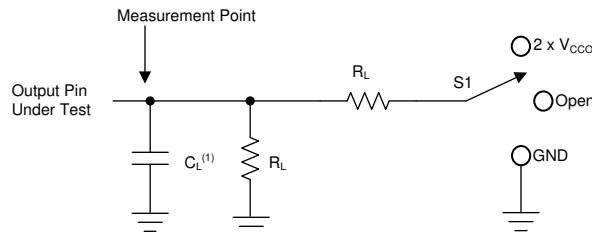


图 6-5. Typical ($T_A=25^\circ\text{C}$) Supply Current (I_{cc}) vs Input Voltage (V_{IN})



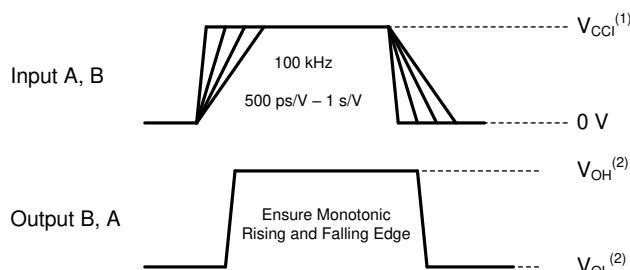
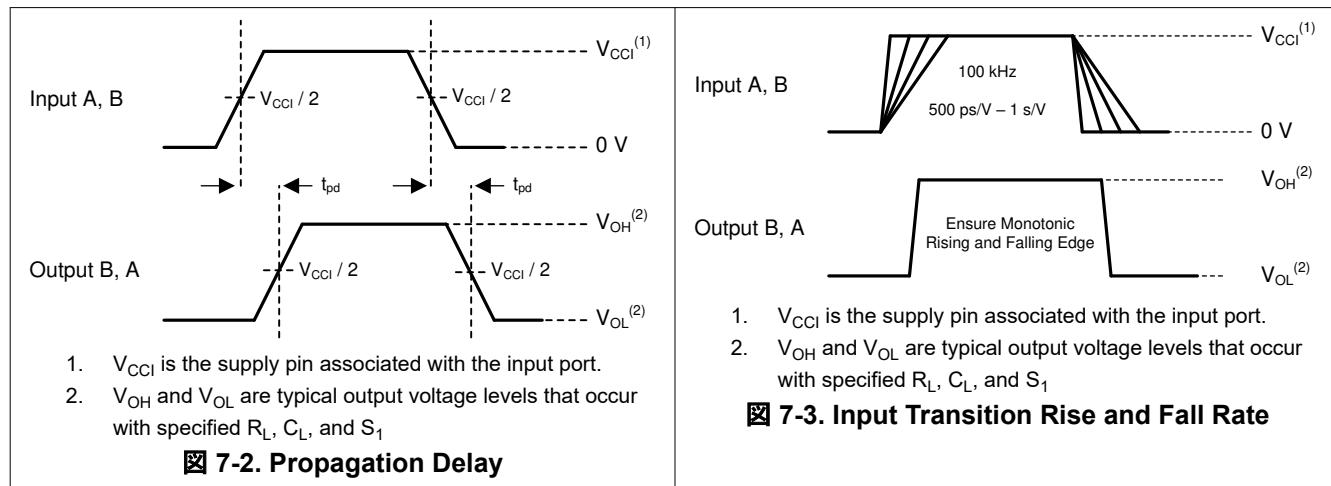

图 6-6. Typical ($T_A=25^\circ\text{C}$) Supply Current (I_{cc}) vs Input Voltage (V_{IN})

7 Parameter Measurement Information

7.1 Load Circuit and Voltage Waveforms

Unless otherwise noted, all input pulses are supplied by generators having the following characteristics:

- $f = 1$ MHz
- $Z_O = 50 \Omega$
- $\Delta t/\Delta V \leq 1$ ns/V

1. C_L includes probe and jig capacitance.

図 7-1. Load Circuit

表 7-1. Load Circuit Conditions

Parameter	V_{CCO}	R_L	C_L	S_1	V_{TP}
t_{pd} Propagation (delay) time	1.1 V – 5.5 V	2 k Ω	15 pF	Open	N/A

8 Detailed Description

8.1 Overview

The SN74LXC1T14 is a single bit translating transceiver that uses two individually configurable power-supply rails. The device is operational with both V_{CCI} and V_{CCO} supplies as low as 1.1 V and as high as 5.5 V. The A input is designed to track V_{CCI} , and the Y output is designed to track V_{CCO} .

The SN74LXC1T14 device is designed for asynchronous communication between devices, and transmits data from A to Y. The input circuitry on the A pin is always active and must have a logic HIGH or LOW level applied to prevent excess I_{CC} and I_{CCZ} .

This device is fully specified for partial-power-down applications using the I_{off} current. The I_{off} protection circuitry ensures that no excessive current is drawn from or sourced into an input or output while the device is powered down.

The V_{CC} isolation or V_{CC} disconnect feature ensures that if either V_{CC} is less than 100 mV or disconnected with the complementary supply within recommended operating conditions, the input is weakly pulled-down and then set to the high-impedance state by disabling their outputs while the supply current is maintained. The I_{off} -float circuitry ensures that no excess current is drawn from or sourced into an input, or output while the supply is floating.

Glitch-free power supply sequencing allows either supply rail to be powered on or off in any order while providing robust power sequencing performance.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 CMOS Schmitt-Trigger Inputs with Integrated Pulldowns

Standard CMOS inputs are high impedance and are typically modeled as a resistor in parallel with the input capacitance given in the [Electrical Characteristics](#). The worst case resistance is calculated with the maximum input voltage, given in the [Absolute Maximum Ratings](#), and the maximum input leakage current, given in the [Electrical Characteristics](#), using ohm's law ($R = V / I$).

The Schmitt-trigger input architecture provides hysteresis as defined by ΔV_T in the [Electrical Characteristics](#), which makes this device extremely tolerant to slow or noisy inputs. Driving the inputs slowly will increase dynamic current consumption of the device. For additional information regarding Schmitt-trigger inputs, see [Understanding Schmitt Triggers](#).

8.3.1.1 Input with Integrated Dynamic Pull-Down Resistors

Input circuitry is always active even when the device is disabled. It is recommended to keep a valid voltage level at the input to avoid high current consumption. To help avoid a floating input during disabling, this device has 100-k Ω typical integrated weak dynamic pull-down at the input. When the device is disabled, the dynamic pull-downs are activated for only a short period of time to help drive and keep the floating input low before the device output becomes high impedance. If the input lines will be floated after the device is disabled, it is recommended to keep them at a valid input voltage level using external pull-downs. This feature is ideal for loads of 30 pF or less. If greater capacitive loading is present then external pull-downs are recommended. If an external pull-up is required, it should be no larger than 15 k Ω to avoid contention with the 100 k Ω internal pull-down.

8.3.2 Balanced High-Drive CMOS Push-Pull Outputs

A balanced output allows the device to sink and source similar currents. The high drive capability of this device creates fast edges into light loads so routing and load conditions should be considered to prevent ringing. Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without being damaged. The electrical and thermal limits defined in the *Absolute Maximum Ratings* must be followed at all times.

8.3.3 Partial Power Down (I_{off})

The inputs and outputs for this device enter a high-impedance state when the device is powered down, inhibiting current backflow into the device. The maximum leakage into or out of any input or output pin on the device is specified by I_{off} in the *Electrical Characteristics*.

8.3.4 V_{CC} Isolation and V_{CC} Disconnect (I_{off(float)})

This device has an [Input with Integrated Dynamic Pull-Down Resistors](#). The input will get pulled down and then enter a high-impedance state when either supply is < 100 mV or left floating (disconnected), while the other supply is still connected to the device. It is recommended to not drive the input for this device, but to keep it at a logic low state prior to floating (disconnecting) either supply.

The maximum supply current is specified by I_{CCx}, while V_{CCx} is floating, in the [Electrical Characteristics](#). The maximum leakage into or out of any input or output pin on the device is specified by I_{off(float)} in the [Electrical Characteristics](#).

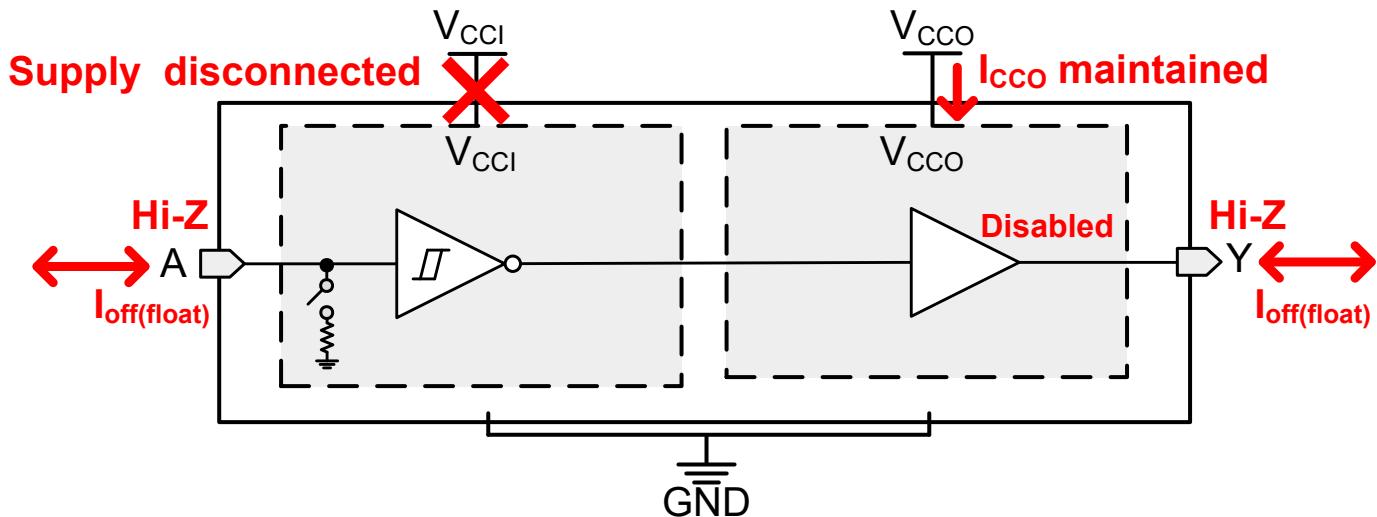
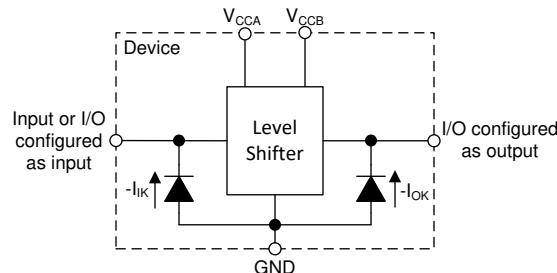


图 8-1. V_{CC} Disconnect Feature

8.3.5 Over-Voltage Tolerant Inputs

Input signals to this device can be driven above the supply voltage so long as they remain below the maximum input voltage value specified in the [Recommended Operating Conditions](#).

8.3.6 Glitch-Free Power Supply Sequencing


Either supply rail may be powered on or off in any order without producing a glitch on the output (that is, where the output erroneously transitions to V_{CC} when it should be held low or vice versa). Glitches of this nature can be misinterpreted by a peripheral as a valid data bit, which could trigger a false device reset of the peripheral, a false device configuration of the peripheral, or even a false data initialization by the peripheral.

8.3.7 Negative Clamping Diodes

The inputs and outputs to this device have negative clamping diodes as depicted in [图 8-2](#).

CAUTION

Voltages beyond the values specified in the *Absolute Maximum Ratings* table can cause damage to the device. The input negative-voltage and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

图 8-2. Electrical Placement of Clamping Diodes for Each Input and Output

8.3.8 Fully Configurable Dual-Rail Design

Both the V_{CCI} and V_{CCO} pins can be supplied at any voltage from 1.1 V to 5.5 V, making the device suitable for translating between any of the voltage nodes (1.2 V, 1.5 V, 1.8 V, 3.3 V, and 5.0 V).

8.3.9 Supports High-Speed Translation

The SN74LXC1T14 device can support high data-rate applications. The translated signal data rate can be up to 420 Mbps when the signal is translated from 3.3 V to 5.0 V.

8.4 Device Functional Modes

表 8-1. Function Table

Input A	Output Y
H	L
L	H

9 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

The SN74LXC1T14 device can be used in level-translation applications for interfacing devices or systems operating at different interface voltages with one another. The SN74LXC1T14 device is ideal for use in applications where a push-pull driver is connected to the input. The maximum data rate can be up to 420 Mbps when the device translates a signal from 3.3 V to 5.0 V.

9.2 Typical Application

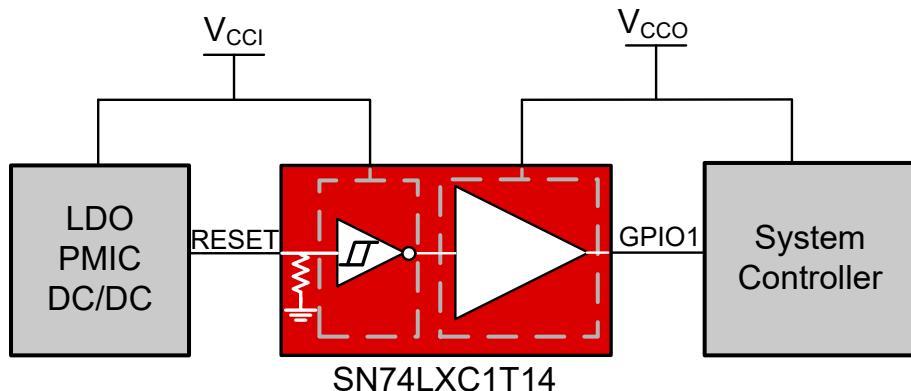


图 9-1. LED Driver Application

9.2.1 Design Requirements

For this design example, use the parameters listed in 表 9-1.

表 9-1. Design Parameters

DESIGN PARAMETERS	EXAMPLE VALUES
Input voltage range	1.1 V to 5.5 V
Output voltage range	1.1 V to 5.5 V

9.2.2 Detailed Design Procedure

To begin the design process, determine the following:

- Input voltage range
 - Use the supply voltage of the device that is driving the SN74LXC1T14 device to determine the input voltage range. For a valid logic-high, the value must exceed the positive-going input-threshold voltage (V_{t+}) of the input port. For a valid logic low the value must be less than the negative-going input-threshold voltage (V_{t-}) of the input port.
- Output voltage range
 - Use the supply voltage of the device that the SN74LXC1T14 device is driving to determine the output voltage range.

10 Power Supply Recommendations

Always apply a ground reference to the GND pins first. This device is designed for glitch free power sequencing without any supply sequencing requirements such as ramp order or ramp rate.

This device was designed with various power supply sequencing methods in mind to help prevent unintended triggering of downstream devices, as described in [Glitch-Free Power Supply Sequencing](#).

11 Layout

11.1 Layout Guidelines

To ensure reliability of the device, following common printed-circuit board layout guidelines are recommended:

- Use bypass capacitors on the power supply pins and place them as close to the device as possible. A 0.1 μ F capacitor is recommended, but transient performance can be improved by having both 1 μ F and 0.1 μ F capacitors in parallel as bypass capacitors.
- The high drive capability of this device creates fast edges into light loads so routing and load conditions should be considered to prevent ringing.

11.2 Layout Example

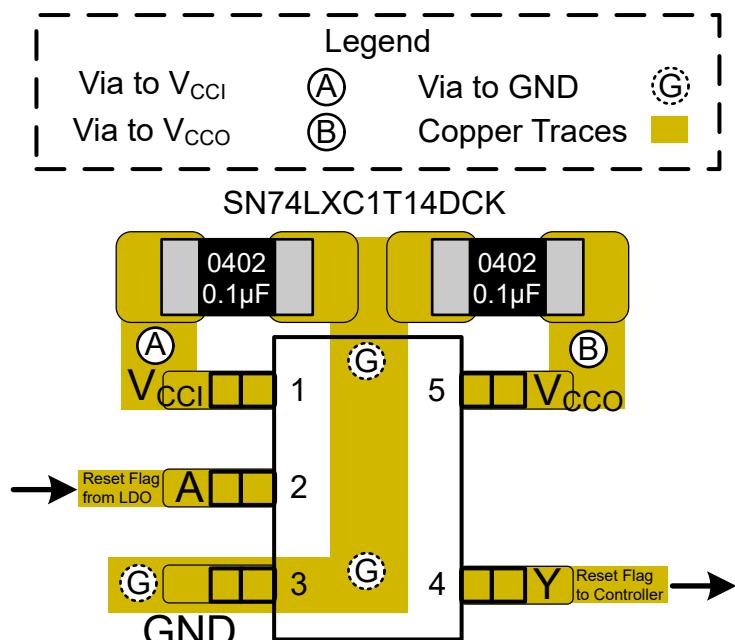


图 11-1. Layout Example – SN74LXC1T14

12 Device and Documentation Support

12.1 Device Support

12.1.1 Regulatory Requirements

No statutory or regulatory requirements apply to this device.

There are no special characteristics for this product.

12.2 Documentation Support

12.2.1 Related Documentation

For related documentation, see the following:

- Texas Instruments, [Understanding Schmitt Triggers applicatin report](#)

12.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on [ti.com](#). Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.4 サポート・リソース

[TI E2E™ サポート・フォーラム](#)は、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するものではなく、必ずしも TI の見解を反映したものではありません。TI の使用条件を参照してください。

12.5 Trademarks

TI E2E™ is a trademark of Texas Instruments.

すべての商標は、それぞれの所有者に帰属します。

12.6 Electrostatic Discharge Caution

 This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.7 Glossary

[TI Glossary](#) This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
SN74LXC1T14DCKR	Active	Production	SC70 (DCK) 5	3000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	2NOT
SN74LXC1T14DCKR.A	Active	Production	SC70 (DCK) 5	3000 LARGE T&R	Yes	SN	Level-1-260C-UNLIM	-40 to 125	2NOT

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

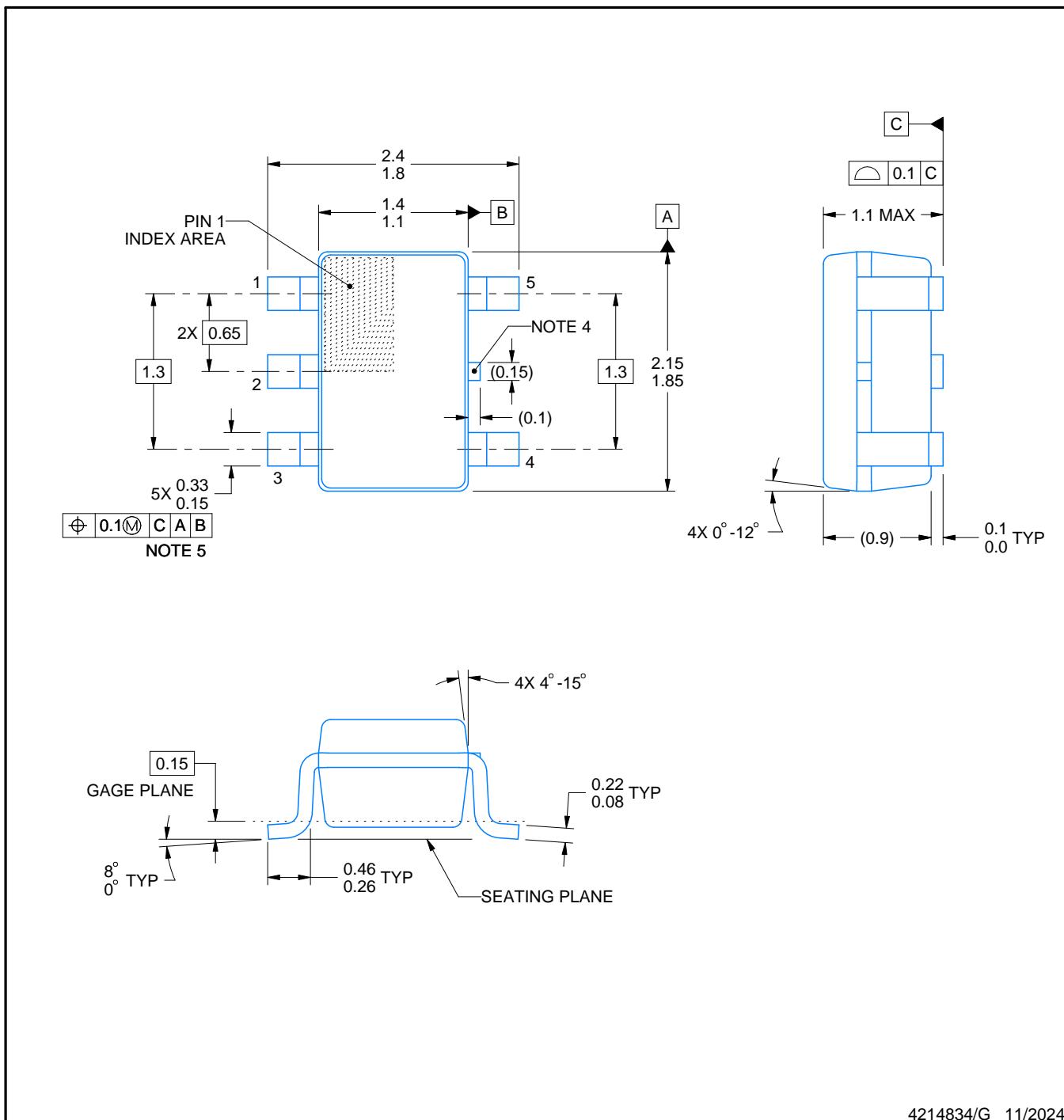
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74LXC1T14 :

- Automotive : [SN74LXC1T14-Q1](#)

NOTE: Qualified Version Definitions:

- Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects


PACKAGE OUTLINE

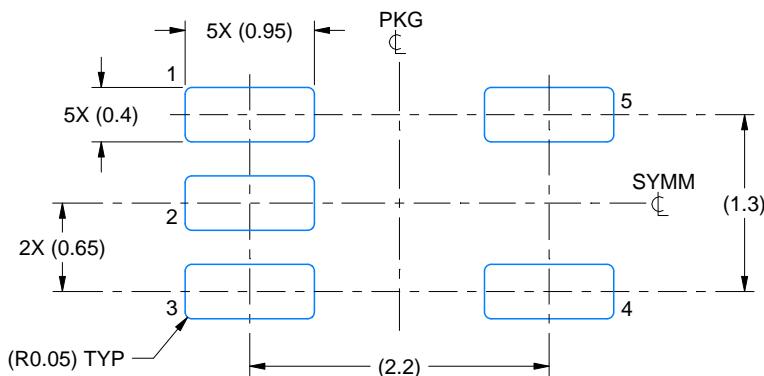
DCK0005A

SOT - 1.1 max height

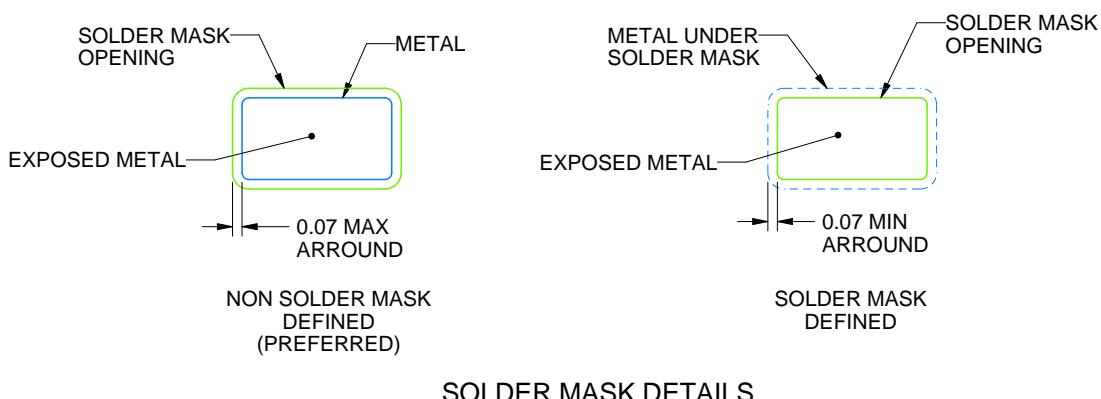
SMALL OUTLINE TRANSISTOR

4214834/G 11/2024

NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Reference JEDEC MO-203.
4. Support pin may differ or may not be present.
5. Lead width does not comply with JEDEC.
6. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25mm per side.

EXAMPLE BOARD LAYOUT


DCK0005A

SOT - 1.1 max height

SMALL OUTLINE TRANSISTOR

LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE:18X

4214834/G 11/2024

NOTES: (continued)

7. Publication IPC-7351 may have alternate designs.
8. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

DCK0005A

SOT - 1.1 max height

SMALL OUTLINE TRANSISTOR

SOLDER PASTE EXAMPLE
BASED ON 0.125 THICK STENCIL
SCALE:18X

4214834/G 11/2024

NOTES: (continued)

9. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
10. Board assembly site may have different recommendations for stencil design.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の默示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または默示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したもので、(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TI の製品は、[TI の販売条件](#)、[TI の総合的な品質ガイドライン](#)、[ti.com](#) または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TI はそれらに異議を唱え、拒否します。

Copyright © 2025, Texas Instruments Incorporated

最終更新日：2025 年 10 月