

TPS548D21 1.5V~16V V_{IN} 、4.5V~22V V_{DD} 、40A SWIFT™ 同期整流降圧型コンバータAVSOおよび完全差動感知

1 特長

- 変換入力電圧範囲(PV_{IN}): 1.5V~16V
 - 入力バイアス電圧(V_{DD})範囲: 4.5V~22V
 - 出力電圧範囲: 0.6V~5.5V
 - 2.9mΩおよび1.2mΩのパワーMOSFETを内蔵し、40Aの連続出力電流に対応
 - 基準電圧はVSELピンを使用して0.6V~1.2Vに50mV刻みで設定可能
 - 精度±0.5%の0.9V_{REF}: 接合部温度 -40°C ~ +125°C
 - 真の差動リモート・センス・アンプ
 - D-CAP3™制御ループ
 - REFIN_TRKピンによるアナログAVS最適化
 - 4つの周波数を設定可能なアダプティブ・オンタイム制御: 425kHz、650kHz、875kHz、1.05MHz
 - R_{ILIM} とOCクランプによる、温度補償付きのプログラマブル可能な電流制限
 - ヒカッピングまたはラッチオフのOVP/UVPを選択可能
 - 高精度ENヒステリシスによるVDD UVLOの外部からの調整
 - プリバイアス・スタートアップのサポート
 - すべての動作時にFCCMモード
 - フォルト保護およびPGOOD機能を完備
 - WEBENCH® Power Designerにより、TPS548D21を使用するカスタム設計を作成

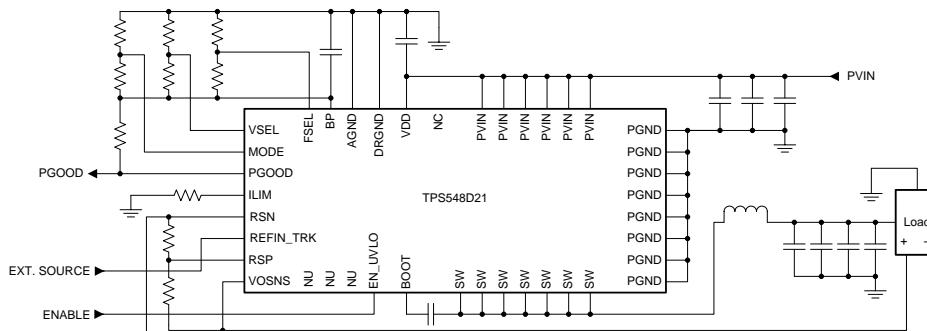
2 アプリケーション

- ・ エンタープライズ・ストレージ、SSD、NAS
 - ・ ワイヤレスおよび有線の通信インフラストラクチャ
 - ・ 産業用PC、オートメーション、ATE、PLC、ビデオ監視
 - ・ エンタープライズ・サーバー、スイッチ、ルータ
 - ・ ASIC、SoC、FPGA、DSPコア、I/Oレール

3 概要

TPS548D21デバイスは、小型のシングル降圧型コンバータで、アダプティブ・オンタイム、D-CAP3モード制御を使用しています。高精度、高効率、高速な過渡応答、使いやすさ、外付け部品数の少なさ、容積の削減が要求される電源システム用に設計されています。

このデバイスには、完全な差動感知の、ハイサイド・オン抵抗が $2.9\text{m}\Omega$ 、ローサイド・オン抵抗が $1.2\text{m}\Omega$ であるTIの統合FETが搭載されています。また、0.5%、0.9Vの高精度の基準電圧が搭載されており、-40°C～+125°Cまでの周囲温度に対応しています。競争力の高い特長として、外付け部品数が非常に少ないこと、正確な負荷レギュレーションおよびライン・レギュレーション、FCCMモードでの動作、内部的なソフトスタート制御が挙げられます。


TPS548D21デバイスは、7mm×5mmの40ピンLQFN-CLIP (RVF)パッケージで供給されます(RoHS指令対象外)。

製品情報(1)

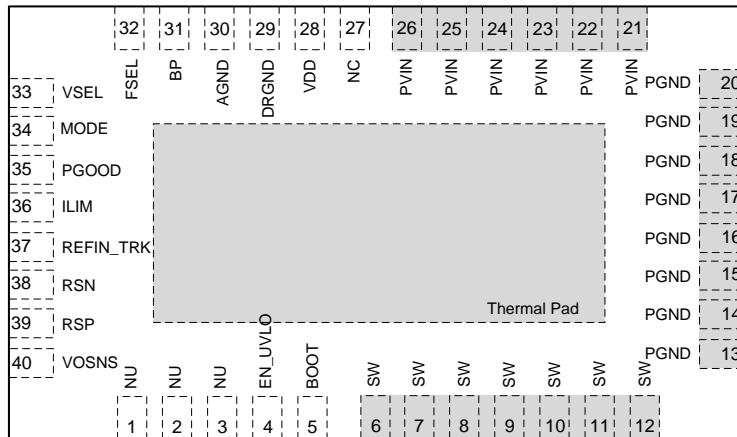
型番	パッケージ	本体サイズ(公称)
TPS548D21	LQFN-CLIP (40)	7.00mm×5.00mm

(1) 利用可能なすべてのパッケージについては、このデータシートの末尾にある注文情報を参照してください。

アプリケーション概略図

目次

1	特長	1	7.5	Programming.....	15
2	アプリケーション	1	8	Applications and Implementation	22
3	概要	1	8.1	Application Information.....	22
4	改訂履歴.....	2	8.2	Typical Applications	23
5	Pin Configuration and Functions	3	9	Power Supply Recommendations	33
6	Specifications	4	10	Layout	33
6.1	Absolute Maximum Ratings	4	10.1	Layout Guidelines	33
6.2	ESD Ratings.....	4	10.2	Layout Example	34
6.3	Recommended Operating Conditions	4	11	デバイスおよびドキュメントのサポート	37
6.4	Thermal Information	5	11.1	デバイス・サポート	37
6.5	Electrical Characteristics.....	5	11.2	WEBENCH®ツールによるカスタム設計.....	37
6.6	Typical Characteristics	9	11.3	ドキュメントの更新通知を受け取る方法.....	37
7	Detailed Description	11	11.4	コミュニティ・リソース	37
7.1	Overview	11	11.5	商標	37
7.2	Functional Block Diagram	11	11.6	静電気放電に関する注意事項	37
7.3	Feature Description.....	12	11.7	Glossary	38
7.4	Device Functional Modes.....	15	12	メカニカル、パッケージ、および注文情報	38


4 改訂履歴

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

2016年7月発行のものから更新	Page
• パッケージ名を正しい「LQFN-CLIP」に 変更	1
• WEBENCHへのリンクを追加	1
• Added MIN and MAX values for VDD UVLO rising threshold	5
• Added MIN and MAX for all Soft Start settings and table notes 3 and 4 in <i>Electrical Characteristics</i>	7
• Added last sentence of <i>Overview</i> to replace incomplete phrase from previous paragraph	11
• Changed $V_{OUT} = 5$ V to $V_{OUT} = 5.5$ V for <i>Figure 12</i>	12
• Added <i>Application Workaround to Support 4-ms and 8-ms SS Settings</i> subsection	18
• Added <i>Figure 15</i> and <i>Figure 16</i>	18
• Deleted "programmable" between "8 ms" and "delay"	21
• Added new sentence before last sentence of <i>Application Information</i>	22
• Changed "286 μ F" to "28.6 μ F"	27
• Changed "150 ns" to "300 ns" in definition of $t_{OFF(min)}$, <i>Equation 9</i>	28
• Changed "963 μ F" to "969 μ F"	28

5 Pin Configuration and Functions

RVF Package
40-Pin LQFN-CLIP With Thermal Pad
Top View

Pin Functions

PIN		I/O/P ⁽¹⁾	DESCRIPTION
NAME	NO.		
AGND	30	G	Ground pin for internal analog circuits.
BOOT	5	P	Supply rail for high-side gate driver (boot terminal). Connect boot capacitor from this pin to SW node. Internally connected to BP via bootstrap PMOS switch.
BP	31	O	LDO output
DRGND	29	P	Internal gate driver return.
EN_UVLO	4	I	Enable pin that can turn on the DC/DC switching converter. Use also to program the required PVIN UVLO when PVIN and VDD are connected together.
FSEL	32	I	Program switching frequency, internal ramp amplitude and FCCM mode.
ILIM	36	I/O	Program overcurrent limit by connecting a resistor to ground.
MODE	34	I	Mode selection pin. Select the control mode (DCAP3 or DCAP), internal VREF operation, and soft-start timing selection.
NC	27		No connect.
NU	1, 2, 3	O	Not used pins.
PGND	13, 14, 15, 16, 17, 18, 19, 20	P	Power ground of internal FETs.
PGOOD	35	O	Open drain power good status signal.
PVIN	21, 22, 23, 24, 25, 26	P	Power supply input for integrated power MOSFET pair.
RSN	38	I	Inverting input of the differential remote sense amplifier.
RSP	39	I	Non-inverting input of the differential remote sense amplifier.
REFIN_TRK	37	I	System reference voltage that can be overridden by the external voltage source for tracking and sequencing application.
SW	6, 7, 8, 9, 10, 11, 12	I/O	Output switching terminal of power converter. Connect the pins to the output inductor.
VDD	28	P	Controller power supply input.
VOSNS	40	I	Output voltage monitor input pin.
VSEL	33	I	Program the initial start-up and or reference voltage without feedback resistor dividers (from 0.6 V to 1.2 V in 50-mV increments).

(1) I = input, O = output, G = GND

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ⁽¹⁾⁽²⁾

		MIN	MAX	UNIT
Input voltage	PVIN	-0.3	25	V
	VDD	-0.3	25	
	BOOT	-0.3	34	
	BOOT to SW	DC	-0.3	
		< 10 ns	-0.3	
	NU	-0.3	6	
	EN_UVLO, VOSNS, MODE, FSEL, ILIM	-0.3	7.7	
	RSP, REFIN_TRK, VSEL	-0.3	3.6	
	RSN	-0.3	0.3	
	PGND, AGND, DRGND	-0.3	0.3	
	SW	DC	-0.3	
		< 10 ns	-5	
Output voltage	PGOOD, BP	-0.3	7.7	V
Junction temperature, T_J		-55	150	°C
Storage temperature, T_{stg}		-55	150	°C

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to the network ground terminal unless otherwise noted.

6.2 ESD Ratings

		VALUE	UNIT
$V_{(ESD)}$	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	± 2000
		Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	± 500

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
Input voltage	PVIN	1.5	16	V
	VDD	4.5	22	
	BOOT	-0.1	24.5	
	BOOT to SW	DC	-0.1	
		< 10 ns	-0.1	
	NU	-0.1	5.5	
	EN_UVLO, VOSNS, MODE, FSEL, ILIM	-0.1	5.5	
	RSP, REFIN_TRK, VSEL	-0.1	3.3	
	RSN	-0.1	0.1	
	PGND, AGND, DRGND	-0.1	0.1	
	SW	DC	-0.1	
		< 10 ns	-5	
Output voltage	PGOOD, BP	-0.1	7	V
Junction temperature, T_J		-40	125	°C

6.4 Thermal Information

THERMAL METRIC ⁽¹⁾	TPS548D21	UNIT
	RVF (LQFN-CLIP)	
	(40 PINS)	
R _{θJA}	Junction-to-ambient thermal resistance	28.5 °C/W
R _{θJC(top)}	Junction-to-case (top) thermal resistance	18.3 °C/W
R _{θJB}	Junction-to-board thermal resistance	3.6 °C/W
Ψ _{JT}	Junction-to-top characterization parameter	0.96 °C/W
Ψ _{JB}	Junction-to-board characterization parameter	3.6 °C/W
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	0.6 °C/W

(1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC Package Thermal Metrics](#) application report.

6.5 Electrical Characteristics

over operating free-air temperature range, V_{VDD} = 12 V, V_{EN_UVLO} = 5 V (unless otherwise noted)

PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
MOSFET ON-RESISTANCE (R_{DS(on)})					
R _{DS(on)}	High-side FET (V _{BOOT} – V _{SW}) = 5 V, I _D = 25 A, T _J = 25°C		2.9		mΩ
	Low-side FET V _{VDD} = 5 V, I _D = 25 A, T _J = 25°C		1.2		mΩ
INPUT SUPPLY AND CURRENT					
V _{VDD}	VDD supply voltage	Nominal VDD voltage range	4.5	22	V
I _{VDD}	VDD bias current	No load, power conversion enabled (no switching), T _A = 25°C,		2	mA
I _{VDDSTBY}	VDD standby current	No load, power conversion disabled, T _A = 25°C		700	μA
UNDERVOLTAGE LOCKOUT					
V _{VDD_UVLO}	VDD UVLO rising threshold		4.23	4.25	4.34
V _{VDD_UVLO(HYS)}	VDD UVLO hysteresis			0.2	V
V _{EN_ON_TH}	EN_UVLO on threshold		1.45	1.6	1.75
V _{EN_HYS}	EN_UVLO hysteresis		270	300	340
I _{EN_LKG}	EN_UVLO input leakage current	V _{EN_UVLO} = 5 V	-1	0	1
INTERNAL REFERENCE VOLTAGE AND EXTERNAL REFIN TRACKING RANGE					
V _{INTREF}	Internal REF voltage			900.4	mV
V _{INTREFTOL}	Internal REF voltage tolerance	-40°C ≤ T _J ≤ 125°C		-0.5%	0.5%
V _{INTREF}	Internal REF voltage range		0.6	1.2	V
V _{TRKIN_CM}	External REFIN voltage range		0	1.25	V
V _{TRKIN_MAG}	External REFIN margin range		0.5	1.25	V
V _{SEQIN_CM}	REFIN_TRK voltage range		0	3.3	V
OUTPUT VOLTAGE					
V _{IOS_LPCMP}	Loop comparator input offset voltage ⁽¹⁾		-2.5	2.5	mV
I _{RSP}	RSP input current	V _{RSP} = 600 mV	-1	1	μA
I _{VO(dis)}	VO discharge current	V _{VO} = 0.5 V, power conversion disabled	8	12	mA
DIFFERENTIAL REMOTE SENSE AMPLIFIER					
f _{UGBW}	Unity gain bandwidth ⁽¹⁾		5	7	MHz
A ₀	Open loop gain ⁽¹⁾		75		dB
SR	Slew rate ⁽¹⁾			±4.7	V/μsec
V _{IRNG}	Input range ⁽¹⁾		-0.2	1.8	V
V _{OFFSET}	Input offset voltage ⁽¹⁾		-3.5	3.5	mV
INTERNAL BOOT STRAP SWITCH					
V _F	Forward voltage	V _{BP-BOOT} , I _F = 10 mA, T _A = 25°C	0.1	0.2	V
I _{BOOT}	VBST leakage current	V _{BOOT} = 30 V, V _{SW} = 25 V, T _A = 25°C	0.01	1.5	μA

(1) Specified by design. Not production tested.

Electrical Characteristics (continued)

over operating free-air temperature range, $V_{VDD} = 12$ V, $V_{EN_UVLO} = 5$ V (unless otherwise noted)

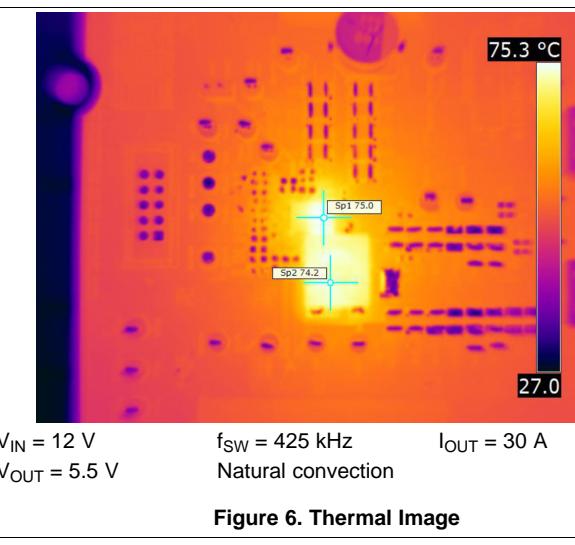
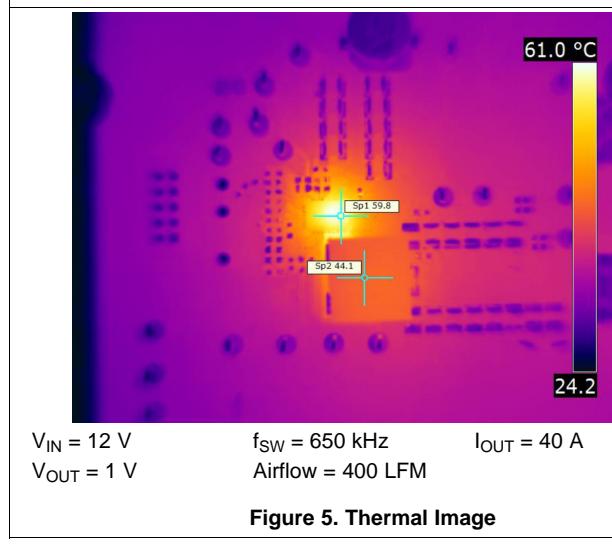
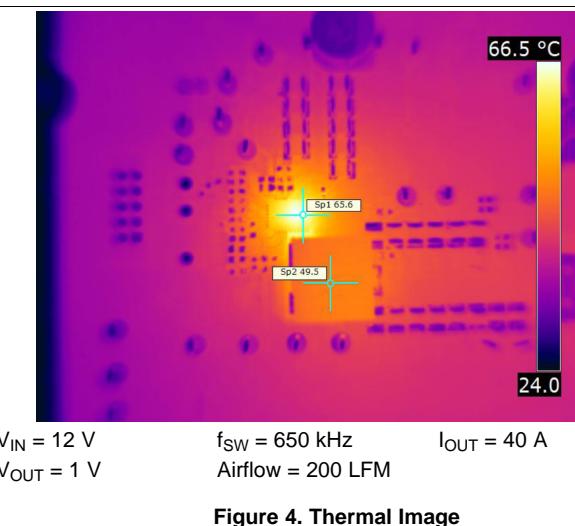
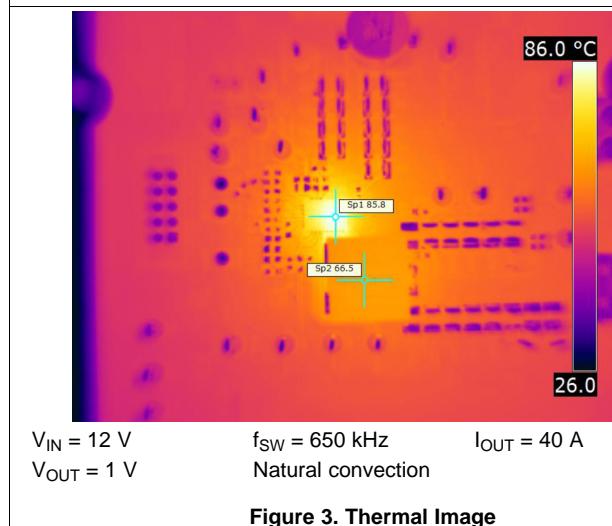
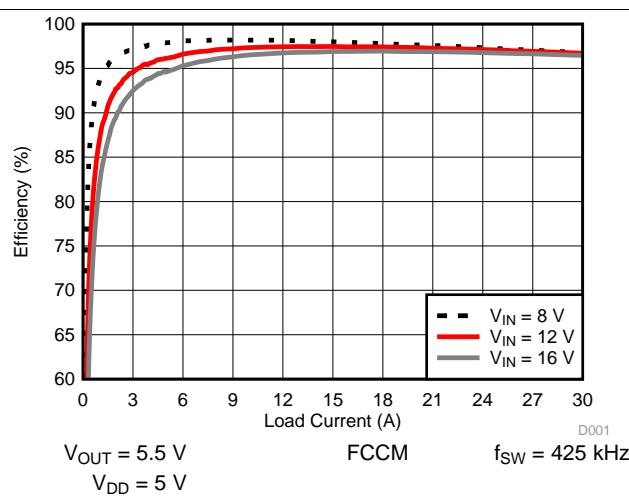
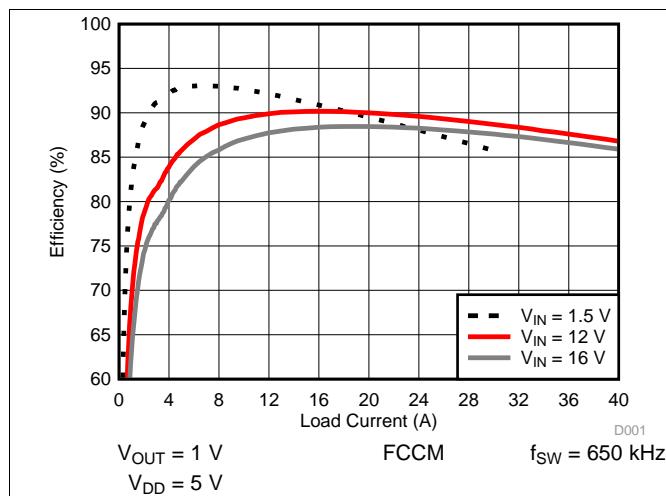
PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
SWITCHING FREQUENCY					
f_{SW}	$V_{IN} = 12$ V, $V_{VO} = 1$ V, $T_A = 25^\circ\text{C}$	380	425	475	kHz
		585	650	740	
		790	875	995	
		950	1050	1250	
$t_{ON(\min)}$	Minimum on time ⁽¹⁾		60		ns
$t_{OFF(\min)}$	Minimum off time ⁽¹⁾	DRVH falling to rising		300	ns
MODE, VSEL, FSEL DETECTION					
V_{DETECT_TH}	MODE, VSEL, and FSEL detection voltage $V_{BP} = 2.93$ V, $R_{HIGH} = 100$ k Ω	Open	V_{BP}		V
		$R_{LOW} = 187$ k Ω	1.9091		
		$R_{LOW} = 165$ k Ω	1.8243		
		$R_{LOW} = 147$ k Ω	1.7438		
		$R_{LOW} = 133$ k Ω	1.6725		
		$R_{LOW} = 121$ k Ω	1.6042		
		$R_{LOW} = 110$ k Ω	1.5348		
		$R_{LOW} = 100$ k Ω	1.465		
		$R_{LOW} = 90.9$ k Ω	1.3952		
		$R_{LOW} = 82.5$ k Ω	1.3245		
		$R_{LOW} = 75$ k Ω	1.2557		
		$R_{LOW} = 68.1$ k Ω	1.187		
		$R_{LOW} = 60.4$ k Ω	1.1033		
		$R_{LOW} = 53.6$ k Ω	1.0224		
		$R_{LOW} = 47.5$ k Ω	0.9436		
		$R_{LOW} = 42.2$ k Ω	0.8695		
		$R_{LOW} = 37.4$ k Ω	0.7975		
		$R_{LOW} = 33.2$ k Ω	0.7303		
		$R_{LOW} = 29.4$ k Ω	0.6657		
		$R_{LOW} = 25.5$ k Ω	0.5953		
		$R_{LOW} = 22.1$ k Ω	0.5303		
		$R_{LOW} = 19.1$ k Ω	0.4699		
		$R_{LOW} = 16.5$ k Ω	0.415		
		$R_{LOW} = 14.3$ k Ω	0.3666		
		$R_{LOW} = 12.1$ k Ω	0.3163		
		$R_{LOW} = 10$ k Ω	0.2664		
		$R_{LOW} = 7.87$ k Ω	0.2138		
		$R_{LOW} = 6.19$ k Ω	0.1708		
		$R_{LOW} = 4.64$ k Ω	0.1299		
		$R_{LOW} = 3.16$ k Ω	0.0898		
		$R_{LOW} = 1.78$ k Ω	0.0512		
		$R_{LOW} = 0$ Ω	GND		

(2) Correlated with close loop EVM measurement at load current of 30 A.

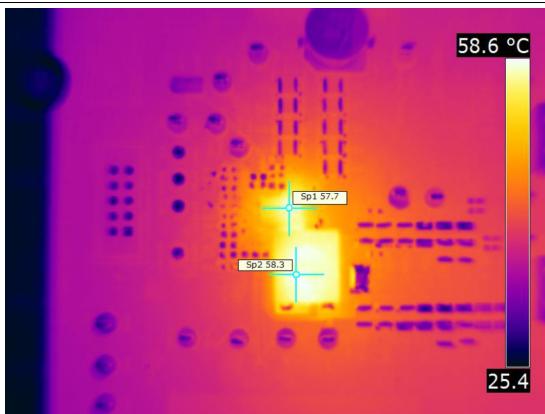
Electrical Characteristics (continued)

over operating free-air temperature range, $V_{VDD} = 12$ V, $V_{EN_UVLO} = 5$ V (unless otherwise noted)

PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
SOFT START					
t_{ss} Soft-start time	V_{OUT} rising from 0 V to 95% of final set point, $R_{MODE_HIGH} = 100$ k Ω	$R_{MODE_LOW} = 60.4$ k Ω	7	8 ⁽³⁾	10
		$R_{MODE_LOW} = 53.6$ k Ω	3.6	4 ⁽⁴⁾	5.2
		$R_{MODE_LOW} = 47.5$ k Ω	1.6	2	2.8
		$R_{MODE_LOW} = 42.2$ k Ω	0.8	1	1.6
POWER-ON DELAY					
t_{PODLY}	Power-on delay time			256	μ s
PGOOD COMPARATOR					
V_{PGTH}	PGOOD in from higher	105	108	111	$\%V_{REF}$
		105	108	111	$\%V_{REFIN_TRK}$
		89	92	95	$\%V_{REF}$
		89	92	95	$\%V_{REFIN_TRK}$
	PGOOD out to higher	120			$\%V_{REF}$
		120			$\%V_{REFIN_TRK}$
		68			$\%V_{REF}$
		68			$\%V_{REFIN_TRK}$
I_{PG}	PGOOD sink current	$V_{PGOOD} = 0.5$ V			
I_{PGLK}	PGOOD leakage current	$V_{PGOOD} = 5$ V			
t_{PGDLY}	PGOOD delay time	Delay for PGOOD going in			
		Delay for PGOOD coming out			
CURRENT DETECTION					
V_{ILM}	V_{ILIM} voltage range	On-resistance ($R_{DS(on)}$) sensing	0.1	1.2	V
I_{OCL_VA}	Valley current limit threshold	$R_{LIM} = 130$ k Ω	40		A
		OC tolerance	$\pm 10\%$ ⁽⁵⁾		
		$R_{LIM} = 97.6$ k Ω	30		A
		OC tolerance	$\pm 15\%$ ⁽⁵⁾		
		$R_{LIM} = 64.9$ k Ω	20		A
		OC tolerance	$\pm 20\%$		
$I_{OCL_VA_N}$	Negative valley current limit threshold	$R_{LIM} = 130$ k Ω	-40		A
		$R_{LIM} = 97.6$ k Ω	-30		
		$R_{LIM} = 64.9$ k Ω	-20		
I_{CLMP_LO}	Clamp current at V_{LIM} clamp at lowest	$V_{ILIM_CLMP} = 0.1$ V, $T_A = 25^\circ\text{C}$			
I_{CLMP_HI}	Clamp current at V_{LIM} clamp at highest	$V_{ILIM_CLMP} = 1.2$ V, $T_A = 25^\circ\text{C}$			
V_{ZC}	Zero cross detection offset			0	mV

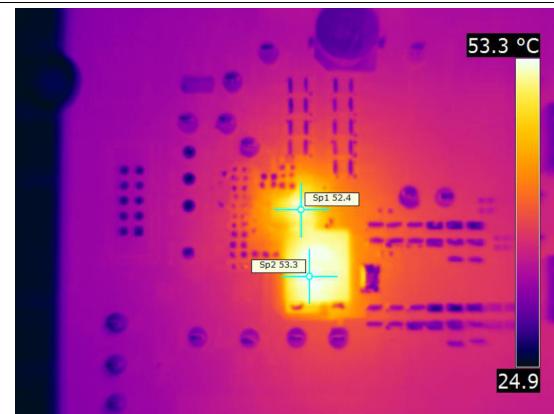






- (3) In order to use the 8-ms SS setting, follow the steps outlined in *Application Workaround to Support 4-ms and 8-ms SS Settings*.
(4) In order to use the 4-ms SS setting, follow the steps outlined in *Application Workaround to Support 4-ms and 8-ms SS Settings*.
(5) Calculated from 20-A test data. Not production tested.

Electrical Characteristics (continued)


over operating free-air temperature range, $V_{VDD} = 12\text{ V}$, $V_{EN_UVLO} = 5\text{ V}$ (unless otherwise noted)

PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
PROTECTIONS AND OOB					
V_{BPUVLO}	BP UVLO threshold voltage	Wake-up	3.32		V
		Shutdown	3.11		
V_{OVP}	OVP threshold voltage	OVP detect voltage	117%	120%	123%
			117%	120%	123%
$V_{OV_MAX_DEF}$	Default OVMAX threshold voltage	Default OV_MAX detect threshold voltage		1.50	V
t_{OVPDLY}	OVP response time	100-mV over drive		1	μs
V_{UVP}	UVP threshold voltage	UVP detect voltage	65%	68%	71%
			65%	68%	71%
t_{UVPDLY}	UVP delay filter delay time			1	ms
V_{OOB}	OOB threshold voltage		8%		V _{REF}
			8%		V _{REFIN_TRK}
t_{HICDLY}	Hiccup blanking time	$t_{SS} = 1\text{ ms}$		16	ms
		$t_{SS} = 2\text{ ms}$		24	ms
		$t_{SS} = 4\text{ ms}$		38	ms
		$t_{SS} = 8\text{ ms}$		67	ms
BP VOLTAGE					
V_{BP}	BP LDO output voltage	$V_{IN} = 12\text{ V}$, $0\text{ A} \leq I_{LOAD} \leq 10\text{ mA}$		5.07	V
V_{BPDO}	BP LDO dropout voltage	$V_{IN} = 4.5\text{ V}$, $I_{LOAD} = 30\text{ mA}$, $T_A = 25^\circ\text{C}$		365	mV
I_{BPMAX}	BP LDO overcurrent limit	$V_{IN} = 12\text{ V}$, $T_A = 25^\circ\text{C}$		100	mA
THERMAL SHUTDOWN					
T_{SDN}	Built-In thermal shutdown threshold ⁽¹⁾	Shutdown temperature	155	165	$^\circ\text{C}$
		Hysteresis		30	

6.6 Typical Characteristics



Typical Characteristics (continued)

$V_{IN} = 12\text{ V}$ $f_{SW} = 425\text{ kHz}$ $I_{OUT} = 30\text{ A}$
 $V_{OUT} = 5.5\text{ V}$ Airflow = 200 LFM

Figure 7. Thermal Image


$V_{IN} = 12\text{ V}$ $f_{SW} = 425\text{ kHz}$ $I_{OUT} = 30\text{ A}$
 $V_{OUT} = 5.5\text{ V}$ Airflow = 400 LFM

Figure 8. Thermal Image

$V_{OUT} = 1\text{ V}$ $V_{IN} = 12\text{ V}$
 I_{OUT} from 8 A to 32 A $2.5\text{ A}/\mu\text{s}$

Figure 9. Transient Response Peak-to-Peak

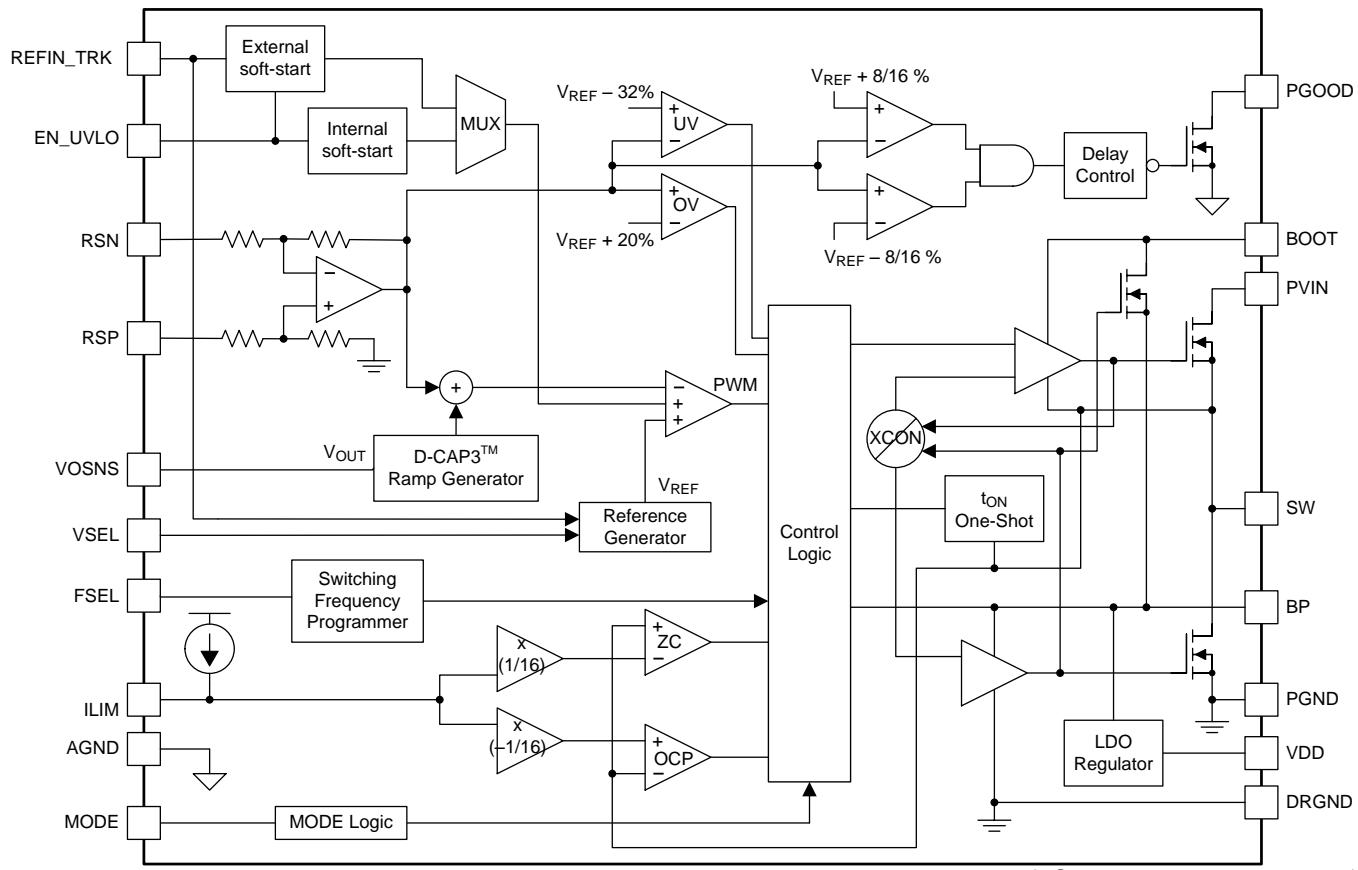
$V_{OUT} = 5.5\text{ V}$ $V_{IN} = 12\text{ V}$
 I_{OUT} from 6 A to 24 A $2.5\text{ A}/\mu\text{s}$

Figure 10. Transient Response Peak-to-Peak

7 Detailed Description

7.1 Overview

TPS548D21 device is a high-efficiency, single channel, FET-integrated, synchronous buck converter. It is suitable for point-of-load applications with 40 A or lower output current in storage, telecom, and similar digital applications. The device features proprietary D-CAP3 mode control combined with adaptive on-time architecture. This combination is ideal for building modern high/low duty ratio, ultra-fast load step response DC-DC converters.


TPS548D21 device has integrated MOSFETs rated at 40-A TDC.

The converter input voltage range is from 1.5 V up to 16 V, and the VDD input voltage range is from 4.5 V to 22 V. The output voltage ranges from 0.6 V to 5.5 V.

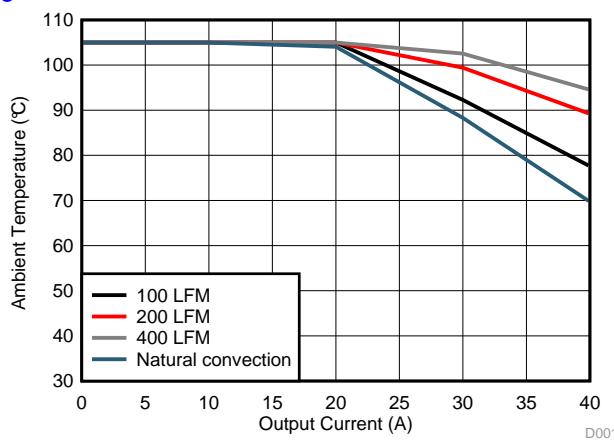
Stable operation with all ceramic output capacitors is supported, since the D-CAP3 mode uses emulated current information to control the modulation. An advantage of this control scheme is that it does not require phase compensation network outside which makes it easy to use and also enables low external component count. Adaptive on-time control tracks the preset switching frequency over a wide range of input and output voltage while increasing switching frequency as needed during load-step transient.

The default preset switching frequency for this device is 650 kHz. Switching frequency is also programmable from 4 preset values via resistor setting by FSEL pin.

7.2 Functional Block Diagram

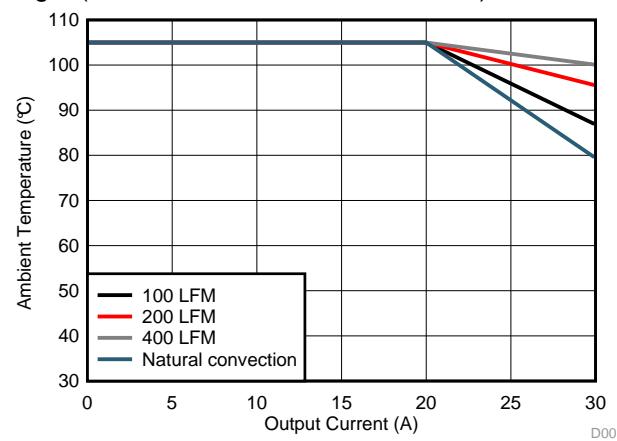
7.3 Feature Description

7.3.1 40-A FET


The TPS548D21 device is a high-performance, integrated FET converter supporting current rating up to 40 A thermally. It integrates two N-channel NexFET™ power MOSFETs, enabling high power density and small PCB layout area. The drain-to-source breakdown voltage for these FETs is 25 V DC and 27 V transient for 10 ns. Avalanche breakdown occurs if the absolute maximum voltage rating exceeds 27 V. In order to limit the switch node ringing of the device, it is recommended to add a R-C snubber from the SW node to the PGND pins. Refer to the [Layout Guidelines](#) section for the detailed recommendations.

7.3.2 On-Resistance

The typical on-resistance ($R_{DS(on)}$) for the high-side MOSFET is 2.9 mΩ and typical on-resistance for the low-side MOSFET is 1.2 mΩ with a nominal gate voltage (V_{GS}) of 5 V.


7.3.3 Package Size, Efficiency and Thermal Performance

The TPS548D21 device is available in a 7 mm × 5 mm, LQFN-CLIP package with 40 power and I/O pins. It employs TI proprietary MCM packaging technology with thermal pad. With a properly designed system layout, applications achieve optimized safe operating area (SOA) performance. The curves shown in [Figure 11](#) and [Figure 12](#) are based on the orderable evaluation module design. (See [SLUUBG3](#) to order the EVM).

$V_{IN} = 12 \text{ V}$ $V_{OUT} = 1 \text{ V}$ $f_{SW} = 650 \text{ kHz}$

Figure 11. Safe Operating Area

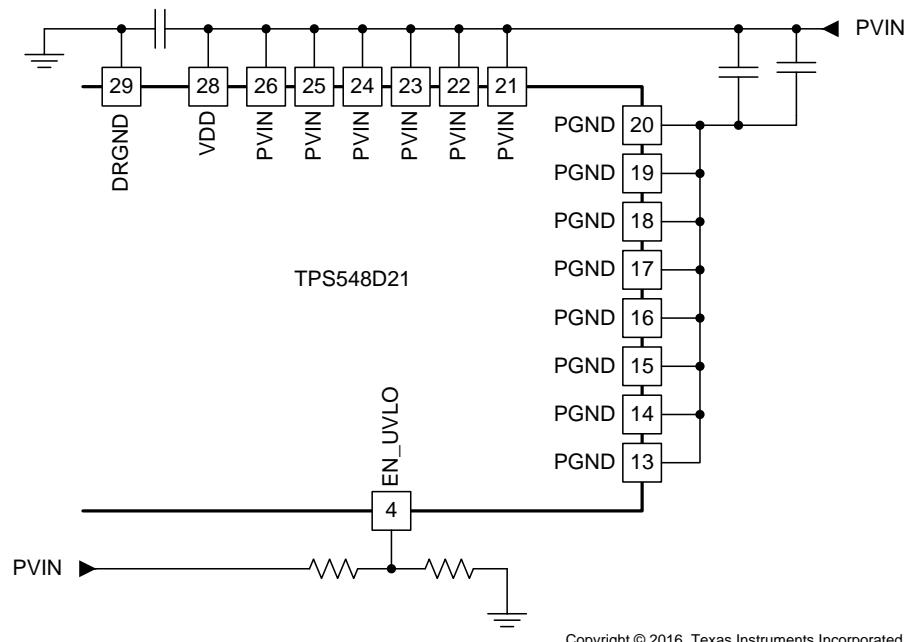
$V_{IN} = 12 \text{ V}$ $V_{OUT} = 5.5 \text{ V}$ $f_{SW} = 425 \text{ kHz}$

Figure 12. Safe Operating Area

7.3.4 Soft-Start Operation

In the TPS548D21 device the soft-start time controls the inrush current required to charge the output capacitor bank during startup. The device offers selectable soft-start options of 1 ms, 2 ms, 4 ms and 8 ms. When the device is enabled (either by EN or VDD UVLO), the reference voltage ramps from 0 V to the final level defined by VSEL pin strap configuration, in a given soft-start time. The TPS548D21 device supports several soft-start times between 1msec and 8msec selected by MODE pin configuration. Refer to MODE definition table for details.

7.3.5 V_{DD} Supply Undervoltage Lockout (UVLO) Protection


The TPS548D21 device provides fixed VDD undervoltage lockout threshold and hysteresis. The typical VDD turn-on threshold is 4.25 V and hysteresis is 0.2 V. The VDD UVLO can be used in conjunction with the EN_UVLO signal to provide proper power sequence to the converter design. UVLO is a non-latched protection.

7.3.6 EN_UVLO Pin Functionality

The EN_UVLO pin drives an input buffer with accurate threshold and can be used to program the exact required turn-on and turn-off thresholds for switcher enable, VDD UVLO or VIN UVLO (if VIN and VDD are tied together). If desired, an external resistor divider can be used to set and program the turn-on threshold for VDD or VIN UVLO.

Feature Description (continued)

Figure 13 shows how to program the input voltage UVLO using the EN_UVLO pin.

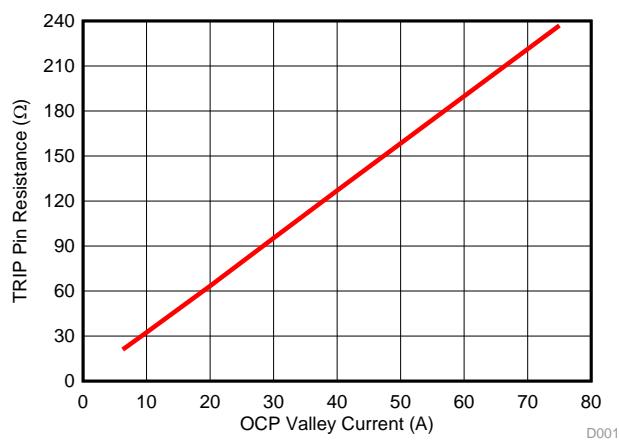


Figure 13. Programming the UVLO Voltage

7.3.7 Fault Protections

This section describes positive and negative overcurrent limits, overvoltage protections, undervoltage protections and over temperature protections.

7.3.7.1 Current Limit (ILIM) Functionality

Figure 14. Current Limit Resistance vs OCP Valley Overcurrent Limit

The ILIM pin sets the OCP level. Connect the ILIM pin to GND through the voltage setting resistor, R_{ILIM} . In order to provide both good accuracy and cost effective solution, TPS548D21 device supports temperature compensated internal MOSFET $R_{DS(on)}$ sensing.

Also, the TPS548D21 device performs both positive and negative inductor current limiting with the same magnitudes. The positive current limit normally protects the inductor from saturation that causes damage to the high-side FET and low-side FET. The negative current limit protects the low-side FET during OVP discharge.

Feature Description (continued)

The voltage between GND pin and SW pin during the OFF time monitors the inductor current. The current limit has 3000 ppm/°C temperature slope to compensate the temperature dependency of the on-resistance ($R_{DS(on)}$). The GND pin is used as the positive current sensing node.

TPS548D21 device uses cycle-by-cycle over-current limiting control. The inductor current is monitored during the OFF state and the controller maintains the OFF state during the period that the inductor current is larger than the overcurrent ILIM level. V_{ILIM} sets the valley level of the inductor current.

7.3.7.2 VDD Undervoltage Lockout (UVLO)

The TPS548D21 device has an UVLO protection function for the VDD supply input. The on-threshold voltage is 4.25 V with 200 mV of hysteresis. During a UVLO condition, the device is disabled regardless of the EN_UVLO pin voltage. The supply voltage (V_{VDD}) must be above the on-threshold to begin the pin strap detection.

7.3.7.3 Overvoltage Protection (OVP) and Undervoltage Protection (UVP)

The device monitors a feedback voltage to detect overvoltage and undervoltage. When the feedback voltage becomes lower than 68% of the target voltage, the UVP comparator output goes high and an internal UVP delay counter begins counting. After 1 ms, the device latches OFF both high-side and low-side MOSFETs drivers. The UVP function enables after soft-start is complete.

When the feedback voltage becomes higher than 120% of the target voltage, the OVP comparator output goes high and the circuit latches OFF the high-side MOSFET driver and turns on the low-side MOSFET until reaching a negative current limit. Upon reaching the negative current limit, the low-side FET is turned off and the high-side FET is turned on again for a minimum on-time. The TPS548D21 device operates in this cycle until the output voltage is pulled down under the UVP threshold voltage for 1 ms. After the 1-ms UVP delay time, the high-side FET is latched off and low-side FET is latched on. The fault is cleared with a reset of VDD or by retoggling the EN pin.

During the AVSO operation with the MODE[3] = '1' and MODE[2] = 2 = "don't care", the device is programmed to regulate to the externally applied reference voltage source and use the internal soft-start ramp. The above descriptions of the OVP and UVP functionality apply based on the external applied reference voltage. With the MODE[3] = '0' and MODE[2] = '1', the device is programmed to regulate to the internal reference voltage and use the externally applied soft-start ramp voltage. The above descriptions of the OVP and UVP functionality apply based on the internal reference voltage."

Table 1. Overvoltage Protection Details

REFERENCE VOLTAGE (V_{REF})	SOFT-START RAMP	STARTUP OVP THRESHOLD	OPERATING OVP THRESHOLD	OVP DELAY 100 mV OD (μs)	OVP RESET
Internal	Internal	$1.2 \times$ Internal V_{REF}	$1.2 \times$ Internal V_{REF}	1	UVP
Internal	External	$1.2 \times$ Internal V_{REF}	$1.2 \times$ Internal V_{REF}	1	UVP and VSEL <0>
External	Internal	Fixed 1.5 V during initial startup	$1.2 \times$ Final external reference	1	UVP and VSEL <0>

7.3.7.4 Overtemperature Protection

TPS548D21 device has overtemperature protection (OTP) by monitoring the die temperature. If the temperature exceeds the threshold value (default value 165°C), TPS548D21 device is shut off. When the temperature falls about 25°C below the threshold value, the device turns on again. The OTP is a non-latch protection.

7.4 Device Functional Modes

7.4.1 DCAP3 Control Topology

The TPS548D21 employs an artificial ramp generator that stabilizes the loop. The ramp amplitude is automatically adjusted as a function of selected switching frequency (f_{SW}). The ramp amplitude is a function of duty cycle (V_{OUT} -to- V_{IN} ratio). Consequently, two additional pin-strap bits (FSEL[2:1]) are provided for fine tuning the internal ramp amplitude. The device uses an improved DCAP3 control loop architecture that incorporates a steady-state error integrator. The slow integrator improves the output voltage DC accuracy greatly and presents minimal impact to small signal transient response. To further enhance the small signal stability of the control loop, the device uses a modified ramp generator that supports a wider range of output LC stage.

7.4.2 DCAP Control Topology

For advanced users of this device, the internal DCAP3 ramp can be disabled using the MODE[4] pin strap bit. This situation requires an external RCC network to ensure control loop stability. Place this RCC network across the output inductor. Use a range between 10 mV and 15 mV of injected RSP pin ripple. If no feedback resistor divider network is used, insert a 10-kΩ resistor between the VOUT pin and the RSP pin.

7.5 Programming

7.5.1 AVSO

See [Programmable Analog Configurations](#)

7.5.2 Programmable Pin-Strap Settings

FSEL, VSEL and MODE. Description: a 1% or better 100-kΩ resistor is needed from BP to each of the three pins. The bottom resistor from each pin to ground (see [Table 2](#)) in conjunction with the top resistor defines each pin strap selection. The pin detection checks for external resistor divider ratio during initial power up (VDD is brought down below approximately 3 V) when BP LDO output is at approximately 2.9 V.

7.5.2.1 Frequency Selection (FSEL) Pin

The TPS548D21 device allows users to select the switching frequency, light load and internal ramp amplitude by using FSEL pin. [Table 2](#) lists the divider resistor values for the selection. The 1% tolerance resistors with typical temperature coefficient of $\pm 100\text{ppm}/^\circ\text{C}$ are recommended. Higher performance resistors can be used if tighter noise margin is required for more reliable frequency selection detection.

FSEL pin strap configuration programs the switching frequency, internal ramp compensation and light load conduction mode.

Programming (continued)

Table 2. FSEL Pin Strap Configurations

FSEL[4]	FSEL[3]	FSEL[2]	FSEL[1]	FSEL[0]	R _{FSEL} (kΩ) ⁽¹⁾
FSEL[1:0]		RCSP_FSEL[1:0]		CM	
11: 1.05 MHz	11: R × 3			1: FCCM	Open
	10: R × 2			1: FCCM	165
	01: R × 1			1: FCCM	133
	00: R/2			1: FCCM	110
10: 875 kHz	11: R × 3			1: FCCM	90.9
	10: R × 2			1: FCCM	75
	01: R × 1			1: FCCM	60.4
	00: R/2			1: FCCM	47.5
01: 650 kHz	11: R × 3			1: FCCM	37.4
	10: R × 2			1: FCCM	29.4
	01: R × 1			1: FCCM	22.1
	00: R/2			1: FCCM	16.5
00: 425 kHz	11: R × 3			1: FCCM	12.1
	10: R × 2			1: FCCM	7.87
	01: R × 1			1: FCCM	4.64
	00: R/2			1: FCCM	1.78

(1) 1% or better and connect to ground

7.5.2.2 VSEL Pin

VSEL pin strap configuration is used to program initial boot voltage value, hiccup mode and latch off mode. The initial boot voltage is used to program the main loop voltage reference point. VSEL voltage settings provide TI designated discrete internal reference voltages. **Table 3** lists internal reference voltage selections.

Table 3. Internal Reference Voltage Selections

VSEL[4]	VSEL[3]	VSEL[2]	VSEL[1]	VSEL[0]	R_{VSEL} (k Ω) ⁽¹⁾
1111: 0.975 V				1: Latch-Off	Open
				0: Hiccup	187
1110: 1.1992 V				1: Latch-Off	165
				0: Hiccup	147
1101: 1.1504 V				1: Latch-Off	133
				0: Hiccup	121
1100: 1.0996 V				1: Latch-Off	110
				0: Hiccup	100
1011: 1.0508 V				1: Latch-Off	90.9
				0: Hiccup	82.5
1010: 1.0000 V				1: Latch-Off	75
				0: Hiccup	68.1
1001: 0.9492 V				1: Latch-Off	60.4
				0: Hiccup	53.6
1000: 0.9023 V				1: Latch-Off	47.5
				0: Hiccup	42.2
0111: 0.9004 V				1: Latch-Off	37.4
				0: Hiccup	33.2
0110: 0.8496 V				1: Latch-Off	29.4
				0: Hiccup	25.5
0101: 0.8008 V				1: Latch-Off	22.1
				0: Hiccup	19.1
0100: 0.7500 V				1: Latch-Off	16.5
				0: Hiccup	14.3
0011: 0.6992 V				1: Latch-Off	12.1
				0: Hiccup	10
0010: 0.6504 V				1: Latch-Off	7.87
				0: Hiccup	6.19
0001: 0.5996 V				1: Latch-Off	4.64
				0: Hiccup	3.16
0000: 0.975 V				1: Latch-Off	1.78
				0: Hiccup	0

(1) 1% or better and connect to ground

7.5.2.3 DCAP3 Control and Mode Selection

The MODE pinstrap configuration programs the control topology REFIN_TRK pin functionality, and internal soft start timing selections. The TPS548D21 device supports both DCAP3 and DCAP operation.

- MODE[4] selection bit is used to set the control topology. If MODE[4] bit is “0”, it selects DCAP operation. If MODE[4] bit is “1”, it selects DCAP3 operation.
- MODE[3] and MODE[2] selection bits are used to set the REFIN_TRK pin functionality.
- MODE[1] and MODE[0] selection bits are used to set the internal soft start timing.

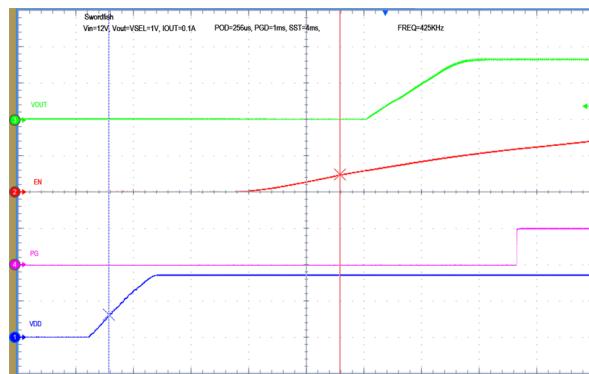
Table 4. MODE Pin Selection

MODE[4]	MODE[3]	MODE[2]	MODE[1]	MODE[0]	R _{MODE} (kΩ) ⁽¹⁾
1: DCAP3	1: External Reference	0: Internal SS	11: 8 ms ⁽²⁾	133	
			10: 4 ms ⁽²⁾	121	
			01: 2 ms	110	
			00: 1 ms	100	
	0: Internal Reference	1: External SS	11: 8 ms	90.9	
			10: 4 ms	82.5	
			01: 2 ms	75	
			00: 1 ms	68.1	
	0: DCAP	0: Internal SS	11: 8 ms ⁽²⁾	60.4	
			10: 4 ms ⁽²⁾	53.6	
			01: 2 ms	47.5	
			00: 1 ms	42.2	
		1: External Reference	11: 8 ms ⁽²⁾	22.1	
			10: 4 ms ⁽²⁾	19.1	
			01: 2 ms	16.5	
			00: 1 ms	14.3	
		0: Internal Reference	11: 8 ms	12.1	
			10: 4 ms	10	
			01: 2 ms	7.87	
			00: 1 ms	6.19	
		1: External SS	11: 8 ms	4.64	
			10: 4 ms	3.16	
			01: 2 ms	1.78	
			00: 1 ms	0	

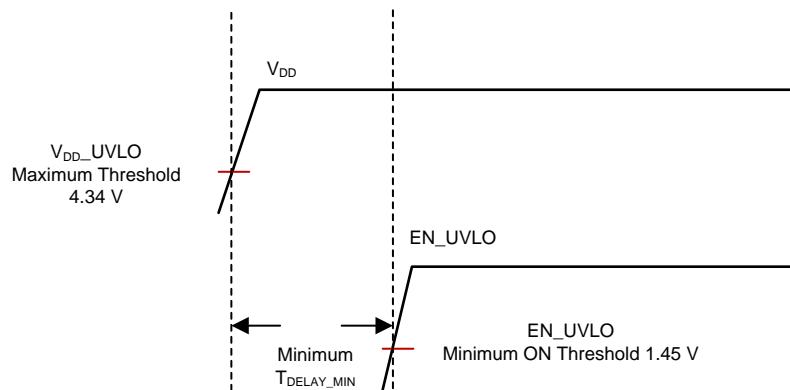
(1) 1% or better and connect to ground

(2) See [Application Workaround to Support 4-ms and 8-ms SS Settings](#).

7.5.2.4 Application Workaround to Support 4-ms and 8-ms SS Settings


In order to properly design for 4-ms and 8-ms SS settings, additional application consideration is needed. The recommended application workaround to support the 4-ms and 8-ms soft-start settings is to ensure sufficient time delay between the VDD and EN_UVLO signals. The minimum delay between the rising maximum VDD_UVLO level and the minimum turnon threshold of EN_UVLO is at least T_{DELAY_MIN}.

$$T_{DELAY_MIN} = K \times V_{REF}$$


where

- K = 9 ms/V for SS setting of 4 ms
- K = 18 ms/V for SS setting of 8 ms
- V_{REF} is the internal reference voltage programmed by VSEL pin strap (1)

For example, if SS setting is 4 ms and V_{REF} = 1 V, program the minimum delay at least 9 ms; if SS setting is 8 ms, the minimum delay should be programmed at least 18 ms. See [Figure 15](#) and [Figure 16](#) for detailed timing requirement.

Figure 15. Proper Sequencing of V_{DD} and EN_UVLO to Support the Use of 4-ms SS Setting

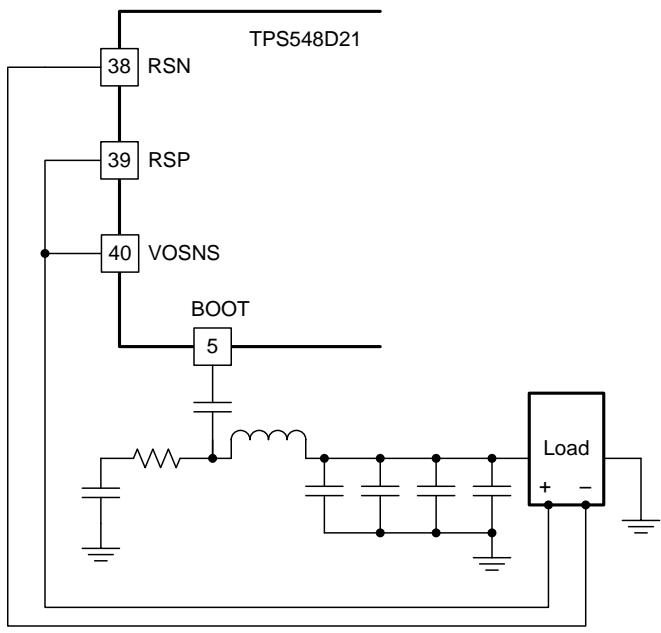
Figure 16. Minimum Delay Between V_{DD} and EN_UVLO to Support the Use of 4-ms and 8-ms SS settings

The workaround/consideration described previously is not required for SS settings of 1 ms and 2 ms.

7.5.3 Programmable Analog Configurations

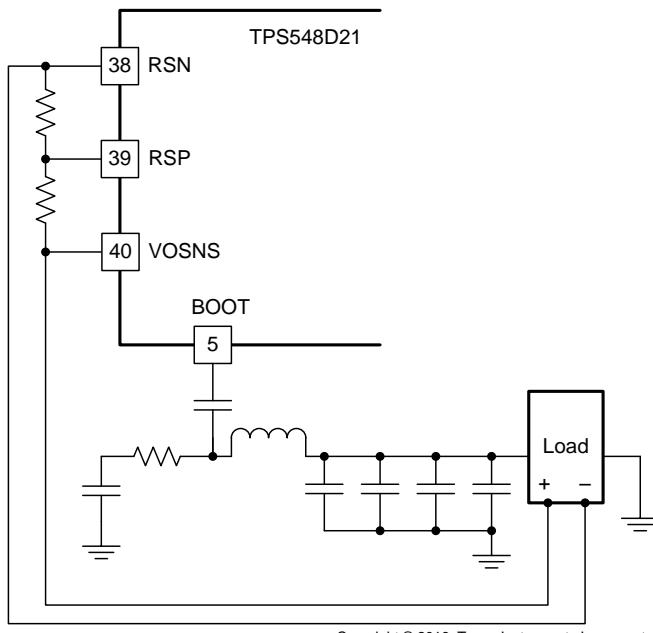
REFIN_TRK functionality:

- REFIN_TRK functionality is configured by MODE[3] and MODE[2] pin strap bits. See table for detailed information regarding MODE bits.
- If MODE[3] = '0' and MODE[2] = '0', the device is programmed to regulate to the internal reference voltage and use the internal soft start ramp. Therefore, one should not apply any external voltage source on the REFIN_TRK pin.
- In MODE[3] = '0' and MODE[2] = '1', the device is programmed to regulate to the internal reference voltage and use the externally applied soft start ramp voltage. Therefore, one must apply a voltage ramp that meets the following requirements:
 1. Must start from 0V.
 2. The external applied ramp must begin to ramp up after the POD is complete.
 3. Controlled rise time of at least 1 ms minimum duration.
 4. The magnitude of the ramp voltage has to be at least 300 mV above the pre-selected internal reference voltage as determined by the VSEL pin strap setting.
 5. It is expected for the externally applied ramp voltage to rise to at least 1 V above the internal reference voltage after it crosses over the threshold mentioned in #3.
- If MODE[3] = '1' and MODE[2] = 2 = "don't care", the device is programmed to regulate to the externally applied reference voltage source and use the internal soft start ramp. Therefore, one must supply a voltage source on the REFIN_TRK pin that is between 0.5 V and 1.25 V. In addition, the output impedance of the external voltage source must be much less than 100 kΩ. If the external voltage source must transition up and down between any two voltage levels, the slew rate must be no more than 1 mV/μs. If the external voltage source is between 0 V and 0.5 V, the control loop would remain functional but the regulation accuracy is not specified. The external voltage source is not allowed to drive the REFIN_TRK pin above 1.25 V in order to prevent the overvoltage fault event from happening at 1.5 V.


7.5.3.1 RSP/RSN Remote Sensing Functionality

RSP and RSN pins are used for remote sensing purpose. In the case where feedback resistors are required for output voltage programming, the RSP pin should be connected to the mid-point of the resistor divider and the RSN pin should always be connected to the load return. In the case where feedback resistors are not required as when the VSEL programs the output voltage set point, the RSP pin should be connected to the positive sensing point of the load and the RSN pin should always be connected to the load return.

RSP and RSN pins are extremely high-impedance input terminals of the true differential remote sense amplifier. The feedback resistor divider should use resistor values much less than 100 kΩ.


7.5.3.1.1 Output Differential Remote Sensing Amplifier

The examples in this section show simplified remote sensing circuitry where each example uses an internal reference of 1.0 V. [Figure 17](#) shows remote sensing without feedback resistors, with an output voltage set point of 1 V. [Figure 18](#) shows remote sensing using feedback resistors, with an output voltage set point of 5 V.

Copyright © 2016, Texas Instruments Incorporated

Figure 17. Remote Sensing Without Feedback Resistors

Copyright © 2016, Texas Instruments Incorporated

Figure 18. Remote Sensing With Feedback Resistors

7.5.3.2 Power Good (PGOOD Pin) Functionality

The TPS548D21 device has power-good output that registers high when switcher output is within the target. The power-good function is activated after soft-start has finished. When the soft-start ramp reaches 300 mV above the internal reference voltage, SSend signal goes high to enable the PGOOD detection function. If the output voltage becomes within $\pm 8\%$ of the target value, internal comparators detect power-good state and the power good signal becomes high after an 8 ms delay. If the output voltage goes outside of $\pm 16\%$ of the target value, the power good signal becomes low after two microsecond (2- μ s) internal delay. The open-drain power-good output must be pulled up externally. The internal N-channel MOSFET does not pull down until the VDD supply is above 1.2 V.

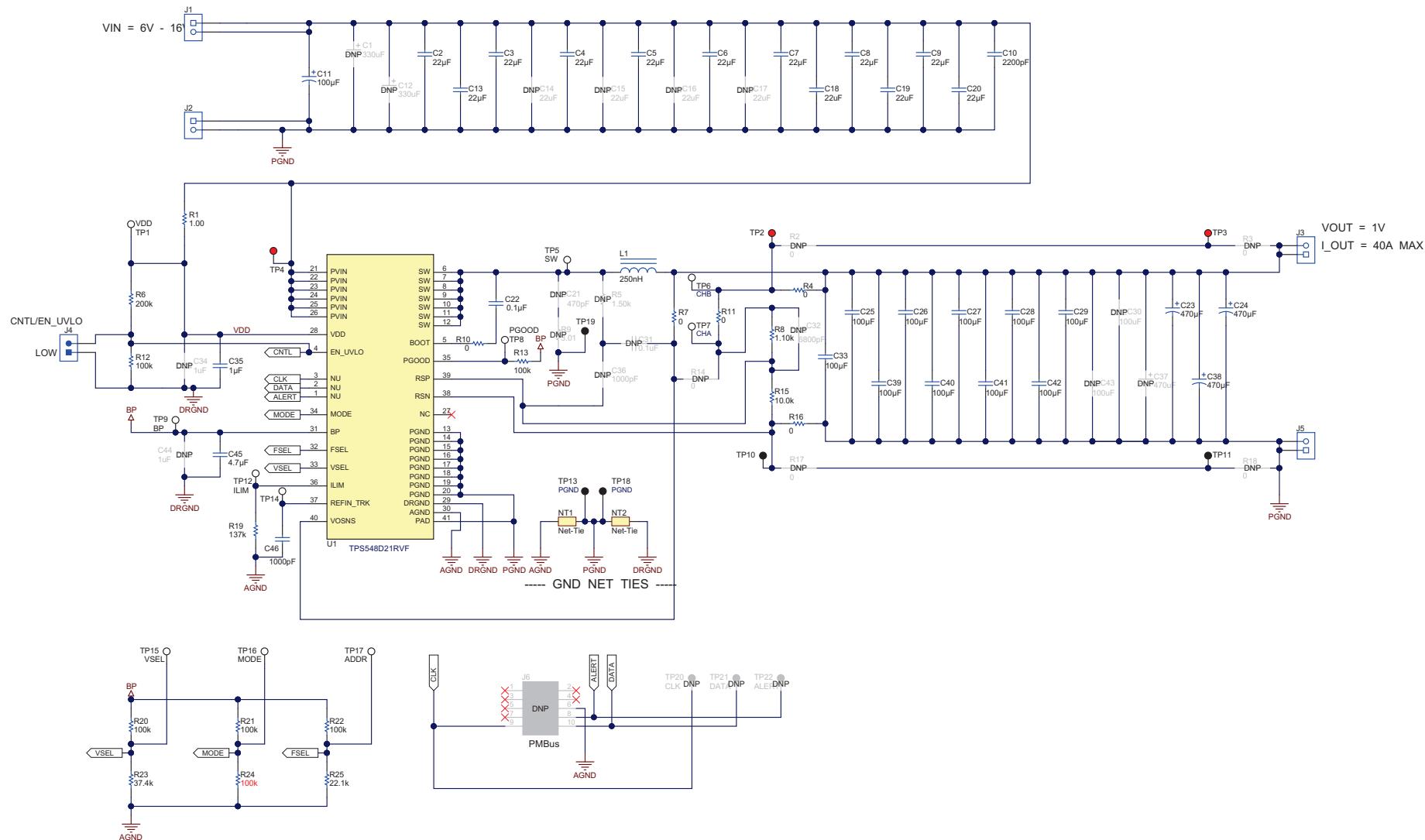
During the AVSO operation with the MODE[3] = '1' and MODE[2] = 2 = "don't care", the device is programmed to regulate to the externally applied reference voltage source and use the internal soft start ramp. All of the above descriptions of the PGOOD functionality apply except the SSend signal goes high to enable the PGOOD detection function when the external applied voltage source rise to 425 mV threshold.

In MODE[3] = '0' and MODE[2] = '0', the device is programmed to regulate to the internal reference voltage and use the internal soft start ramp. All of the above descriptions of PGOOD functionality apply.

In MODE[3] = '0' and MODE[2] = '1', the device is programmed to regulate to the internal reference voltage and use the externally applied soft start ramp voltage. All of the above descriptions of PGOOD functionality apply.

8 Applications and Implementation

NOTE


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The TPS548D21 device is a highly-integrated synchronous step-down DC-DC converters. These devices are used to convert a higher DC input voltage to a lower DC output voltage, with a maximum output current of 40 A. One of the key features for the TPS548D21 device is the ability to allow user to control the reference voltage with the external source on the REFIN_TRK pin when the external tracking option is chosen by the pin strap resistor value set by the MODE pin. The TPS548D21 device starts tracking from 0 V. The TPS548D21 operates in FCRM in all operation. Note: If DCM at start-up is needed, please use the TPS549D22 device. Use the following design procedure to select key component values for this family of devices.

8.2 Typical Applications

8.2.1 TPS548D21 1.5-V to 16-V Input, 1-V Output, 40-A Converter

Copyright © 2016, Texas Instruments Incorporated

Figure 19. Typical Application Schematic

8.2.2 Design Requirements

For this design example, use the input parameters shown in [Table 5](#).

Table 5. Design Example Specifications

PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
V_{IN}	Input voltage	5	12	16	V
$V_{IN(\text{ripple})}$	Input ripple voltage	$I_{OUT} = 40 \text{ A}$		0.4	V
V_{OUT}	Output voltage		1		V
	Line regulation	$5 \text{ V} \leq V_{IN} \leq 16 \text{ V}$		0.5%	
	Load regulation	$0 \text{ V} \leq I_{OUT} \leq 40 \text{ A}$		0.5%	
V_{PP}	Output ripple voltage	$I_{OUT} = 40 \text{ A}$	20		mV
V_{OVER}	Transient response overshoot	$I_{STEP} = 24 \text{ A}$	90		mV
V_{UNDER}	Transient response undershoot	$I_{STEP} = 24 \text{ A}$	90		mV
I_{OUT}	Output current	$5 \text{ V} \leq V_{IN} \leq 16 \text{ V}$		40	A
t_{ss}	Soft-start time	$V_{IN} = 12 \text{ V}$	1		ms
I_{oc}	Overcurrent trip point ⁽¹⁾		46		A
η	Peak Efficiency	$I_{OUT} = 20 \text{ A}, V_{IN} = 12 \text{ V}, V_{DD} = 5 \text{ V}$	90%		
f_{sw}	Switching frequency		650		kHz

(1) DC overcurrent level

8.2.3 Design Procedure

8.2.3.1 Custom Design With WEBENCH® Tools

[Click here](#) to create a custom design using the TPS548D21 device with the WEBENCH® Power Designer.

1. Start by entering the input voltage (V_{IN}), output voltage (V_{OUT}), and output current (I_{OUT}) requirements.
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
3. Compare the generated design with other possible solutions from Texas Instruments.

The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability.

In most cases, these actions are available:

- Run electrical simulations to see important waveforms and circuit performance
- Run thermal simulations to understand board thermal performance
- Export customized schematic and layout into popular CAD formats
- Print PDF reports for the design, and share the design with colleagues

Get more information about WEBENCH tools at www.ti.com/WEBENCH.

8.2.3.2 Switching Frequency Selection

Select a switching frequency for the regulator. There is a trade off between higher and lower switching frequencies. Higher switching frequencies may produce smaller a solution size using lower valued inductors and smaller output capacitors compared to a power supply that switches at a lower frequency. However, the higher switching frequency causes extra switching losses, which decrease efficiency and impact thermal performance. In this design, a moderate switching frequency of 650 kHz achieves both a small solution size and a high-efficiency operation with the frequency selected.

Select one of four switching frequencies and FSEL resistor values from [Table 6](#). The recommended high-side R_{FSEL} value is 100 k Ω (1%). Choose a low-side resistor value from [Table 6](#) based on the choice of switching frequency. For each switching frequency selection, there are multiple values of $R_{FSEL(LS)}$ to choose from. In order to select the correct value, additional considerations (internal ramp compensation and light load operation) other than switching frequency need to be included.

Table 6. FSEL Pin Selection

SWITCHING FREQUENCY f_{SW} (kHz)	FSEL VOLTAGE V_{FSEL} (V)		HIGH-SIDE RESISTOR $R_{FSEL(HS)}$ (k Ω) 1% or better	LOW-SIDE RESISTOR $R_{FSEL(LS)}$ (k Ω) 1% or better
	MAXIMUM	MINIMUM		
1050	2.93	1.465	100	Open
				187
				165
				147
				133
				121
				110
				100
875	1.396	0.869	100	90.9
				82.5
				75
				68.1
				60.4
				53.6
				47.5
				42.2
650	0.798	0.366	100	37.4
				33.2
				29.4
				25.5
				22.1
				19.1
				16.5
				14.3
425	0.317	0	100	12.1
				10
				7.87
				6.19
				4.64
				3.16
				1.78
				0

There is some limited freedom to choose FSEL resistors that have other than the recommended values. The criteria is to ensure that for particular selection of switching frequency, the FSEL voltage is within the maximum and minimum FSEL voltage levels listed in [Table 6](#). Use [Equation 2](#) to calculate the FSEL voltage. Select FSEL resistors that include tolerances of 1% or better.

$$V_{FSEL} = V_{BP(det)} \times \frac{R_{FSEL(LS)}}{R_{FSEL(HS)} + R_{FSEL(LS)}}$$

where

- $V_{BP(det)}$ is the voltage used by the device to program the level of valid FSEL pin voltage during initial device start-up (2.9 V typ) (2)

In addition to serving the frequency select purpose, the FSEL pin can also be used to program internal ramp compensation (DCAP3) and light-load conduction mode. When DCAP3 mode is selected (see section 8.2.3.9), internal ramp compensation is used for stabilizing the converter design. The internal ramp compensation is a function of the switching frequency (f_{SW}) and the duty cycle range (the output voltage-to-input voltage ratio). [Table 7](#) summarizes the ramp choices using these functions.

Table 7. Switching Frequency Selection

SWITCHING FREQUENCY SETTING (f _{SW}) (kHz)	RAMP SELECT OPTION	TIME CONSTANT t (μs)	V _{OUT} RANGE (FIXED V _{IN} = 12 V)		DUTY CYCLE RANGE (V _{OUT} /V _{IN}) (%)	
			MIN	MAX	MIN	MAX
425	R/2	9	0.6	0.9	5	7.5
	R × 1	16.8	0.9	1.5	7.5	12.5
	R × 2	32.3	1.5	2.5	12.5	21
	R × 3	55.6	2.5	5.5	>21	
650	R/2	7	0.6	0.9	5	7.5
	R × 1	13.5	0.9	1.5	7.5	12.5
	R × 2	25.9	1.5	2.5	12.5	21
	R × 3	44.5	2.5	5.5	>21	
875	R/2	5.6	0.6	0.9	5	7.5
	R × 1	10.4	0.9	1.5	7.5	12.5
	R × 2	20	1.5	2.5	12.5	21
	R × 3	34.4	2.5	5.5	>21	
1050	R/2	3.8	0.6	0.9	5	7.5
	R × 1	7.1	0.9	1.5	7.5	12.5
	R × 2	13.6	1.5	2.5	12.5	21
	R × 3	23.3	2.5	5.5	>21	

The FSEL pin programs the light-load selection. TPS548D21 device supports FCCM operations. For better load regulation from no load to full load, it is recommended to program the device to operate in FCCM mode.

R_{FSEL(LS)} can be determined after determining the switching frequency, ramp and light-load operation. Table 2 lists the full range of choices.

8.2.3.3 Inductor Selection

To calculate the value of the output inductor, use Equation 3. The coefficient K_{IND} represents the amount of inductor ripple current relative to the maximum output current. The output capacitor filters the inductor ripple current. Therefore, choosing a high inductor ripple current impacts the selection of the output capacitor since the output capacitor must have a ripple current rating equal to or greater than the inductor ripple current. In general, maintain a K_{IND} coefficient between 0 and 15 for balanced performance. Using this target ripple current, the required inductor size can be calculated as shown in Equation 3

$$L_1 = \frac{V_{OUT}}{(V_{IN(max)} \times f_{SW})} \times \frac{V_{IN} - V_{OUT}}{(I_{OUT(max)} \times K_{IND})} = \frac{1 \text{ V} \times (16 \text{ V} - 1 \text{ V})}{(16 \text{ V} \times 650 \text{ kHz} \times 40 \text{ A} \times 0.15)} = 0.24 \mu\text{H} \quad (3)$$

Selecting a K_{IND} of 0.15, the target inductance L₁ = 250 nH. Using the next standard value, the 250 nH is chosen in this application for its high current rating, low DCR, and small size. The inductor ripple current, RMS current, and peak current can be calculated using Equation 4, Equation 5 and Equation 6. These values should be used to select an inductor with approximately the target inductance value, and current ratings that allow normal operation with some margin.

$$I_{RIPPLE} = \frac{V_{OUT}}{(V_{IN(max)} \times f_{SW})} \times \frac{V_{IN(max)} - V_{OUT}}{L_1} = \frac{1 \text{ V} \times (16 \text{ V} - 1 \text{ V})}{16 \text{ V} \times 650 \text{ kHz} \times 250 \text{ nH}} = 5.64 \text{ A} \quad (4)$$

$$I_{L(rms)} = \sqrt{(I_{OUT})^2 + \frac{1}{12} \times (I_{RIPPLE})^2} = 40 \text{ A} \quad (5)$$

$$I_{L(peak)} = (I_{OUT}) + \frac{1}{2} \times (I_{RIPPLE}) = 43 \text{ A} \quad (6)$$

The Wurth ferrite 744309025 inductor is rated for 50 A_{RMS} current, and 48-A saturation. Using this inductor, the ripple current I_{RIPPLE} = 5.64 A, the RMS inductor current I_{L(rms)} = 40 A, and peak inductor current I_{L(peak)} = 43 A.

8.2.3.4 Output Capacitor Selection

There are three primary considerations for selecting the value of the output capacitor. The output capacitor affects three criteria:

- Stability
- Regulator response to a change in load current or load transient
- Output voltage ripple

These three considerations are important when designing regulators that must operate where the electrical conditions are unpredictable. The output capacitance needs to be selected based on the most stringent of these three criteria.

8.2.3.4.1 Minimum Output Capacitance to Ensure Stability

To prevent sub-harmonic multiple pulsing behavior, TPS548D21 application designs must strictly follow the small signal stability considerations described in [Equation 7](#).

$$C_{OUT(min)} > \frac{t_{ON}}{2} \times \frac{8\tau}{L_{OUT}} \times \frac{V_{REF}}{V_{OUT}}$$

where

- $C_{OUT(min)}$ is the minimum output capacitance needed to meet the stability requirement of the design
- t_{ON} is the on-time information based on the switching frequency and duty cycle (in this design, 133 ns)
- τ is the ramp compensation time constant of the design based on the switching frequency and duty cycle, (in this design, 13.45 μ s, refer to [Table 7](#))
- L_{OUT} is the output inductance (in the design, 0.25 μ H)
- V_{REF} is the user-selected reference voltage level (in this design, 1 V)
- V_{OUT} is the output voltage (in this design, 1 V)

(7)

The minimum output capacitance calculated from [Equation 7](#) is 28.6 μ F. The stability is ensured when the amount of the output capacitance is 28.6 μ F or greater. And when all MLCCs (multi-layer ceramic capacitors) are used, both DC and AC derating effects must be considered to ensure that the minimum output capacitance requirement is met with sufficient margin.

8.2.3.4.2 Response to a Load Transient

The output capacitance must supply the load with the required current when current is not immediately provided by the regulator. When the output capacitor supplies load current, the impedance of the capacitor greatly affects the magnitude of voltage deviation (such as undershoot and overshoot) during the transient.

Use [Equation 8](#) and [Equation 9](#) to estimate the amount of capacitance needed for a given dynamic load step and release.

NOTE

There are other factors that can impact the amount of output capacitance for a specific design, such as ripple and stability.

$$C_{OUT(min_under)} = \frac{L_{OUT} \times (\Delta I_{LOAD(max)})^2 \times \left(\frac{V_{OUT} \times t_{SW}}{V_{IN(min)}} + t_{OFF(min)} \right)}{2 \times \Delta V_{LOAD(insert)} \times \left(\left(\frac{V_{IN(min)} - V_{OUT}}{V_{IN(min)}} \right) \times t_{SW} - t_{OFF(min)} \right) \times V_{OUT}}$$

$$C_{OUT(min_over)} = \frac{L_{OUT} \times (\Delta I_{LOAD(max)})^2}{2 \times \Delta V_{LOAD(release)} \times V_{OUT}}$$

where

- $C_{OUT(min_under)}$ is the minimum output capacitance to meet the undershoot requirement
 - $C_{OUT(min_over)}$ is the minimum output capacitance to meet the overshoot requirement
 - L is the output inductance value (0.25 μ H)
 - $\Delta I_{LOAD(max)}$ is the maximum transient step (24 A)
 - V_{OUT} is the output voltage value (1 V)
 - t_{SW} is the switching period (1.538 μ s)
 - $V_{IN(min)}$ is the minimum input voltage for the design (10.8 V)
 - $t_{OFF(min)}$ is the minimum off time of the device (300 ns)
 - $\Delta V_{LOAD(insert)}$ is the undershoot requirement (30 mV)
 - $\Delta V_{LOAD(release)}$ is the overshoot requirement (30 mV)
- (9)

Most of the above parameters can be found in [Table 5](#).

The minimum output capacitance to meet the undershoot requirement is 969 μ F. The minimum output capacitance to meet the overshoot requirement is 2400 μ F. This example uses a combination of POSCAP and MLCC capacitors to meet the overshoot requirement.

- POSCAP bank #1: 4 \times 470 μ F, 2.5 V, 6 m Ω per capacitor
- MLCC bank #2: 10 \times 100 μ F, 2.5 V, 1 m Ω per capacitor with DC+AC derating factor of 60%

Recalculating the worst-case overshoot using the described capacitor bank design, the overshoot is 29 mV, which meets the 30 mV overshoot specification requirement.

8.2.3.4.3 Output Voltage Ripple

The output voltage ripple is another important design consideration. [Equation 10](#) calculates the minimum output capacitance required to meet the output voltage ripple specification. This criterion is the requirement when the impedance of the output capacitance is dominated by ESR.

$$C_{OUT(min)\text{RIPPLE}} = \frac{I_{RIPPLE}}{8 \times f_{SW} \times V_{OUT(ripple)}} = 108 \mu F$$
(10)

In this case, the maximum output voltage ripple is 10 mV. For this requirement, the minimum capacitance for ripple requirement yields 108 μ F. Because this capacitance value is significantly lower compared to that of transient requirement, determine the capacitance bank from step 8.2.3.3.2. Because the output capacitor bank consists of both POSCAP and MLCC type capacitors, it is important to consider the ripple effect at the switching frequency due to effective ESR. Use [Equation 11](#) to determine the maximum ESR of the output capacitor bank for the switching frequency.

$$ESR_{MAX} = \frac{V_{OUT(ripple)} - \frac{I_{RIPPLE}}{8 \times f_{SW} \times C_{OUT}}}{I_{RIPPLE}} = 1.7 m\Omega$$
(11)

Estimate the effective ESR at the switching frequency by obtaining the impedance vs. frequency characteristics of the output capacitors. The parallel impedance of capacitor bank #1 and capacitor bank #2 at the switching frequency of the design example is estimated to be 1.2 m Ω , which is less than that of the maximum ESR value. Therefore, the output voltage ripple requirement (7 mV) can be met. For detailed calculation on the effective ESR please contact the factory to obtain a user-friendly Excel based design tool.

8.2.3.5 Input Capacitor Selection

The TPS548D21 devices require a high-quality, ceramic, type X5R or X7R, input decoupling capacitor with a value of at least 1 μF of effective capacitance on the VDD pin, relative to AGND. The power stage input decoupling capacitance (effective capacitance at the PVIN and PGND pins) must be sufficient to supply the high switching currents demanded when the high-side MOSFET switches on, while providing minimal input voltage ripple as a result. This effective capacitance includes any DC bias effects. The voltage rating of the input capacitor must be greater than the maximum input voltage. The capacitor must also have a ripple current rating greater than the maximum input current ripple to the device during full load. The input ripple current can be calculated using [Equation 12](#).

$$I_{CIN(\text{rms})} = I_{OUT(\text{max})} \times \sqrt{\frac{V_{OUT}}{V_{IN(\text{min})}} \times \frac{(V_{IN(\text{min})} - V_{OUT})}{V_{IN(\text{min})}}} = 16 \text{ Arms} \quad (12)$$

The minimum input capacitance and ESR values for a given input voltage ripple specification, $V_{IN(\text{ripple})}$, are shown in [Equation 13](#) and [Equation 14](#). The input ripple is composed of a capacitive portion, $V_{\text{RIPPLE(cap)}}$, and a resistive portion, $V_{\text{RIPPLE(esr)}}$.

$$C_{IN(\text{min})} = \frac{I_{OUT(\text{max})} \times V_{OUT}}{V_{\text{RIPPLE(cap)}} \times V_{IN(\text{max})} \times f_{SW}} = 38.5 \mu\text{F} \quad (13)$$

$$ESR_{CIN(\text{max})} = \frac{V_{\text{RIPPLE(esr)}}}{I_{OUT(\text{max})} + \left(\frac{I_{\text{RIPPLE}}}{2}\right)} = 7 \text{ m}\Omega \quad (14)$$

The value of a ceramic capacitor varies significantly over temperature and the amount of DC bias applied to the capacitor. The capacitance variations due to temperature can be minimized by selecting a dielectric material that is stable over temperature. X5R and X7R ceramic dielectrics are usually selected for power regulator capacitors because they have a high capacitance to volume ratio and are fairly stable over temperature. The input capacitor must also be selected with the DC bias taken into account. For this example design, a ceramic capacitor with at least a 25-V voltage rating is required to support the maximum input voltage. For this design, allow 0.1-V input ripple for $V_{\text{RIPPLE(cap)}}$, and 0.3-V input ripple for $V_{\text{RIPPLE(esr)}}$. Using [Equation 13](#) and [Equation 14](#), the minimum input capacitance for this design is 38.5 μF , and the maximum ESR is 9.4 $\text{m}\Omega$. For this example, four 22- μF , 25-V ceramic capacitors and one additional 100- μF , 25-V low-ESR polymer capacitors in parallel were selected for the power stage.

8.2.3.6 Bootstrap Capacitor Selection

A ceramic capacitor with a value of 0.1 μF must be connected between the BOOT and SW pins for proper operation. It is recommended to use a ceramic capacitor with X5R or better grade dielectric. Use a capacitor with a voltage rating of 25 V or higher.

8.2.3.7 BP Pin

Bypass the BP pin to DRGND with 4.7- μF of capacitance. In order for the regulator to function properly, it is important that these capacitors be localized to the TPS548D21, with low-impedance return paths. See [Layout Guidelines](#) section for more information.

8.2.3.8 R-C Snubber and VIN Pin High-Frequency Bypass

Though it is possible to operate the TPS548D21 within absolute maximum ratings without ringing reduction techniques, some designs may require external components to further reduce ringing levels. This example uses two approaches: a high frequency power stage bypass capacitor on the VIN pins, and an R-C snubber between the SW area and GND.

The high-frequency VIN bypass capacitor is a lossless ringing reduction technique which helps minimizes the outboard parasitic inductances in the power stage, which store energy during the low-side MOSFET on-time, and discharge once the high-side MOSFET is turned on. For this example two one 2.2-nF, 25-V, 0603-sized high-frequency capacitors are used. The placement of these capacitors is critical to its effectiveness. Its ideal placement is shown in [Figure 19](#).

Additionally, an R-C snubber circuit is added to this example. To balance efficiency and spike levels, a 1-nF capacitor and a 1- Ω resistor are chosen. In this example a 0805-sized resistor is chosen, which is rated for 0.125 W, nearly twice the estimated power dissipation. See [SLUP100](#) for more information about snubber circuits.

8.2.3.9 Optimize Reference Voltage (VSEL)

Optimize the reference voltage by choosing a value for R_{VSEL} . The TPS548D21 device is designed with a wide range of precision reference voltage support from 0.6 V to 1.2 V with an available step change of 50 mV. Program these reference voltages using the VSEL pin strap configurations. Please refer to [Table 3](#) for internal reference voltage selections. In addition to providing initial boot voltage value, use the VSEL pin to program hiccup and latch-off mode.

There are two ways to program the output voltage set point. If the output voltage set point is one of the 16 available reference and boot voltage options, no feedback resistors are required for output voltage programming. In the case where feedback resistors are not needed, connect the RSP pin to the positive sensing point of the load. Always connect the RSN pin to the load return sensing point.

In this design example, since the output voltage set point is 1V, selecting $R_{VSEL(LS)}$ of either 75 k Ω (latch off) or 68.1 k Ω (hiccup) as shown in [Figure 17](#). If the output voltage set point is NOT one of the 16 available reference or boot voltage options, feedback resistors are required for output voltage programming. Connect the RSP pin to the mid-point of the resistor divider. Always connect the RSN pin to the load return sensing point as shown in [Figure 17](#) and [Figure 18](#).

The general guideline to select boot and internal reference voltage is to select the reference voltage closest to the output voltage set point. In addition, because the RSP and RSN pins are extremely high-impedance input terminals of the true differential remote sense amplifier, use a feedback resistor divider with values much less than 100 k Ω .

8.2.3.10 MODE Pin Selection

MODE pin strap configuration is used to program control internal/external reference, and internal/external soft start timing selections. TPS548D21 supports both DCAP3 and DCAP operation. For general POL applications, it is strongly recommended to configure the control topology to be DCAP3 due to its simple to use and no external compensation features. In the rare instance where DCAP is needed, an RCC network across the output inductor is needed to generate sufficient ripple voltage on the RSP pin. In this design example, $R_{MODE(LS)}$ of 42.2 k Ω is selected for DCAP3 and soft start time of 1 ms.

8.2.3.11 Overcurrent Limit Design.

The TPS548D21 device uses the ILIM pin to set the OCP level. Connect the ILIM pin to GND through the voltage setting resistor, R_{ILIM} . In order to provide both good accuracy and cost effective solution, this device supports temperature compensated MOSFET on-resistance ($R_{DS(on)}$) sensing. Also, this device performs both positive and negative inductor current limiting with the same magnitudes. Positive current limit is normally used to protect the inductor from saturation therefore causing damage to the high-side and low-side FETs. Negative current limit is used to protect the low-side FET during OVP discharge.

The inductor current is monitored by the voltage between PGND pin and SW pin during the OFF time. The ILIM pin has 3000 ppm/ $^{\circ}$ C temperature slope to compensate the temperature dependency of the on-resistance. The PGND pin is used as the positive current sensing node.

TPS548D21 has cycle-by-cycle overcurrent limiting control. The inductor current is monitored during the OFF state and the controller maintains the OFF state during the period that the inductor current is larger than the overcurrent ILIM level. The voltage on the ILIM pin (V_{ILIM}) sets the valley level of the inductor current. The range of value of the R_{ILIM} resistor is between 21 k Ω and 237 k Ω . The range of valley OCL is between 6.25 A and 75 A (typical). If the R_{ILIM} resistance is outside of the recommended range, OCL accuracy and function cannot be ensured. (see [Table 8](#))

Table 8. Closed Loop EVM Measurement of OCP Settings

R_{ILIM} (k Ω)	OVERCURRENT PROTECTION VALLEY (A)		
	MIN	NOM	MAX
237	—	75	—
127	36	40	44
95.3	27	30	33
63.4	18	20	22
32.4	9	10	11
21	—	6.25	—

Use [Equation 15](#) to relate the valley OCL to the R_{ILIM} resistance.

$$OCL_{VALLEY} = 0.3178 \times R_{ILIM} - 0.3046$$

where

- R_{ILIM} is in k Ω
 - OCL_{VALLEY} is in A
- (15)

In this design example, the desired valley OCL is 43 A, the calculated R_{ILIM} is 137 k Ω . Use [Equation 16](#) to calculate the DC OCL to be 46 A.

$$OCL_{DC} = OCL_{VALLEY} + 0.5 \times I_{RIPPLE}$$

where

- R_{ILIM} is in k Ω
 - OCL_{DC} is in A
- (16)

In an overcurrent condition, the current to the load exceeds the inductor current and the output voltage falls. When the output voltage crosses the under-voltage fault threshold for at least 1 msec, the behavior of the device depends on the VSEL pin strap setting. If hiccup mode is selected, the device will restart after 16-ms delay (1-ms soft-start option). If the overcurrent condition persists, the OC hiccup behavior repeats. During latch-off mode operation the device shuts down until the EN pin is toggled or VDD pin is power cycled.

8.2.4 Application Curves

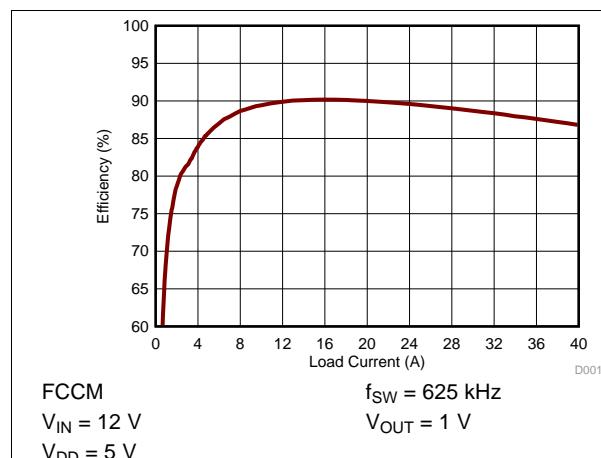


Figure 20. Efficiency vs. Load Current



Figure 21. Transient Response Peak-to-Peak

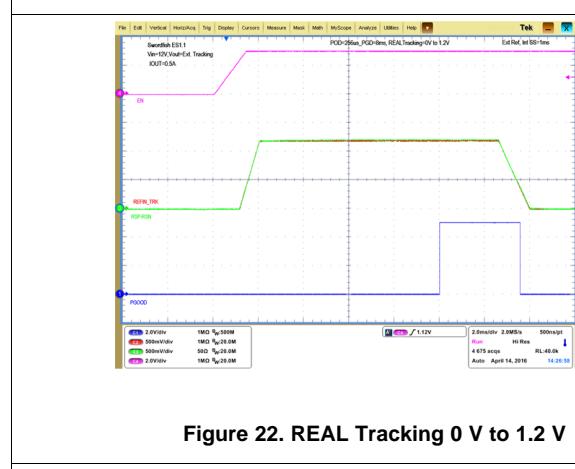


Figure 22. REAL Tracking 0 V to 1.2 V

Figure 23. Sequencing From 0 V to 3.3 V

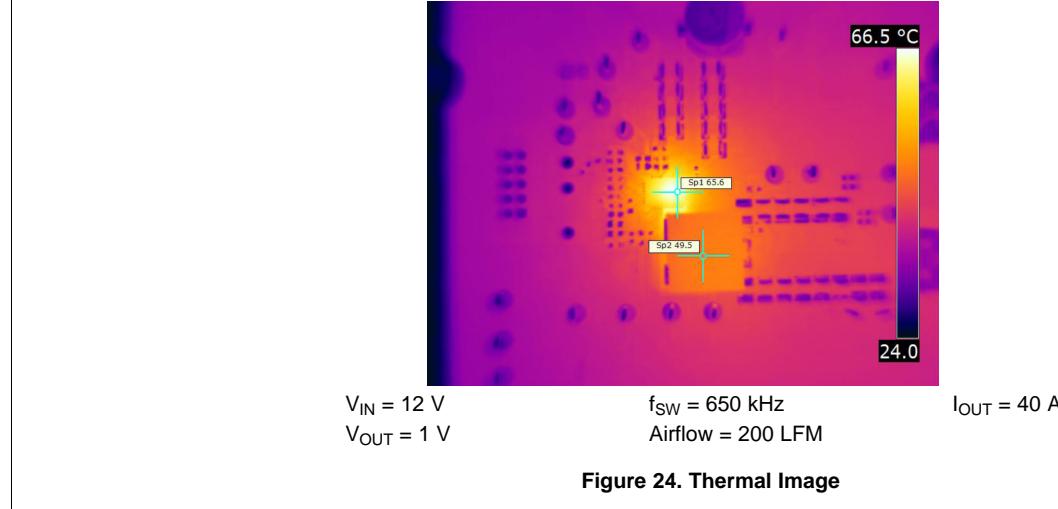


Figure 24. Thermal Image

9 Power Supply Recommendations

This device is designed to operate from an input voltage supply between 1.5 V and 16 V. Ensure the supply is well regulated. Proper bypassing of input supplies and internal regulators is also critical for noise performance, as is the quality of the PCB layout and grounding scheme. See the recommendations in the [Layout](#) section.

10 Layout

10.1 Layout Guidelines

Consider these layout guidelines before starting a layout work using TPS548D21.

- It is absolutely critical that all GND pins, including AGND (pin 30), DRGND (pin 29), and PGND (pins 13, 14, 15, 16, 17, 18, 19, and 20) are connected directly to the thermal pad underneath the device via traces or plane.
- Include as many thermal vias as possible to support a 40-A thermal operation. For example, a total of 35 thermal vias are used (outer diameter of 20 mil) in the TPS548D21EVM-784 available for purchase at ti.com. ([SLUUBG3](#))
- Place the power components (including input/output capacitors, output inductor and TPS548D21device) on one side of the PCB (solder side). Insert at least two inner layers (or planes) connected to the power ground, in order to shield and isolate the small signal traces from noisy power lines.
- Place the VIN pin decoupling capacitors as close as possible to the PVIN and PGND pins to minimize the input AC current loop. Place a high-frequency decoupling capacitor (with a value between 1 nF and 0.1 μ F) as close to the PVIN pin and PGND pin as the spacing rule allows. This placement helps suppress the switch node ringing.
- Place VDD and BP decoupling capacitors as close to the device pins as possible. Do not use PVIN plane connection for the VDD pin. Separate the VDD signal from the PVIN signal by using separate trace connections. Provide GND vias for each decoupling capacitor and make the loop as small as possible.
- Ensure that the PCB trace defined as switch node (which connects the SW pins and up-stream of the output inductor) are as short and wide as possible. In the TPS548D21EVM-784 EVM design, the SW trace width is 200 mil. Use a separate via or trace to connect SW node to snubber and bootstrap capacitor. Do not combine these connections.
- Place all sensitive analog traces and components (including VOSNS, RSP, RSN, ILIM, MODE, VSEL and FSEL) far away from any high voltage switch node (itself and others), such as SW and BOOT to avoid noise coupling. In addition, place MODE, VSEL and FSEL programming resistors near the device pins.
- The RSP and RSN pins operate as inputs to a differential remote sense amplifier that operates with very high impedance. It is essential to route the RSP and RSN pins as a pair of diff-traces in Kelvin-sense fashion. Route them directly to either the load sense points (+ and -) or the output bulk capacitors. The internal circuit uses the VOSNS pin for on-time adjustment. It is critical to tie the VOSNS pin directly tied to VOUT (load sense point) for accurate output voltage result.

10.2 Layout Example

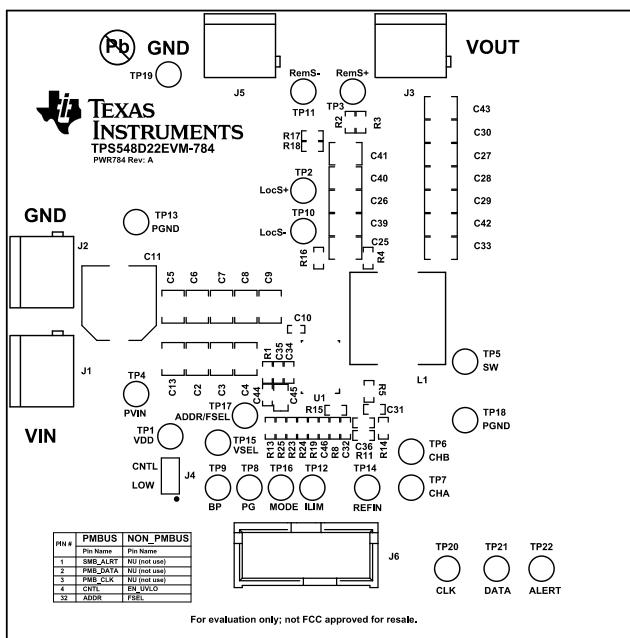


图 25. EVM Top View

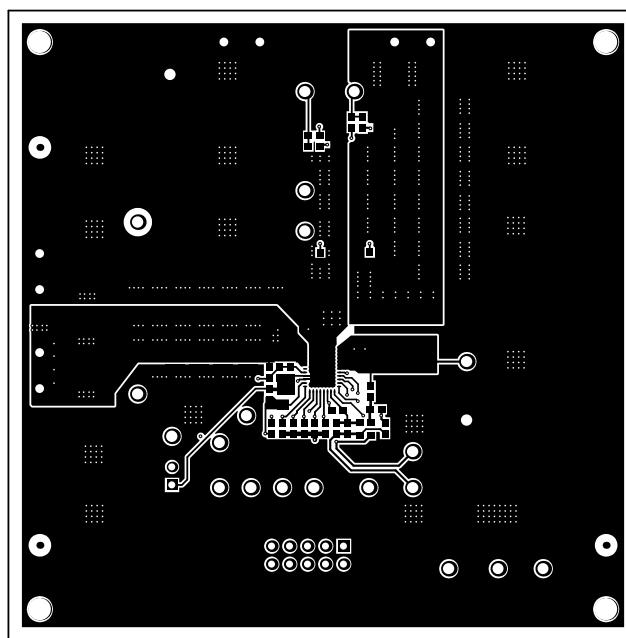


图 26. EVM Top Layer

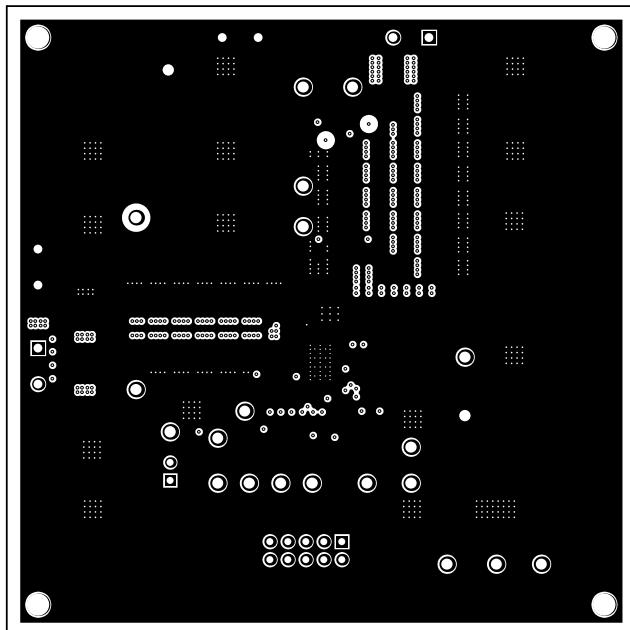


图 27. EVM Inner Layer 1

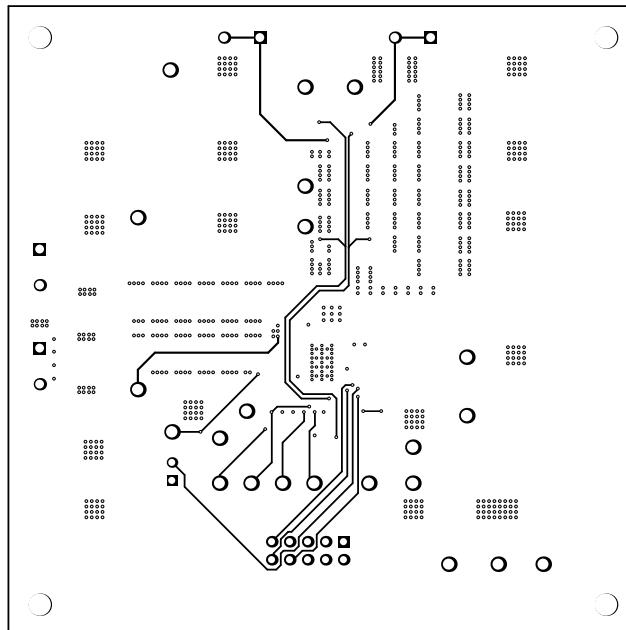


图 28. EVM Inner Layer 2

Layout Example (continued)

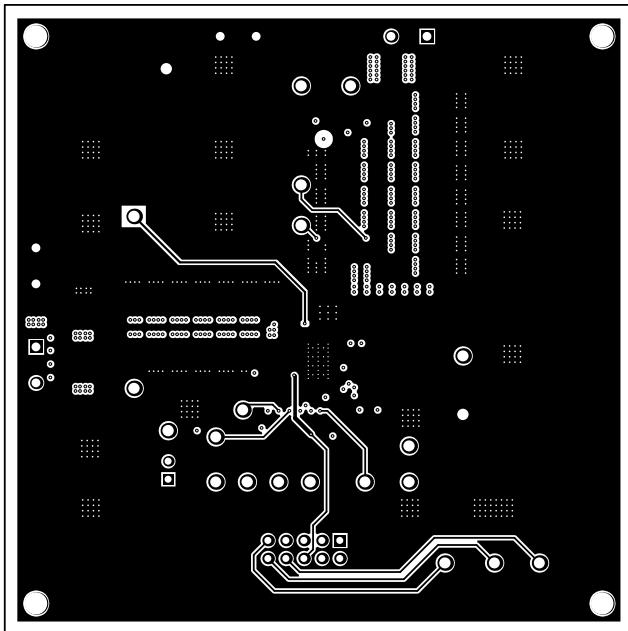


图 29. EVM Inner Layer 3

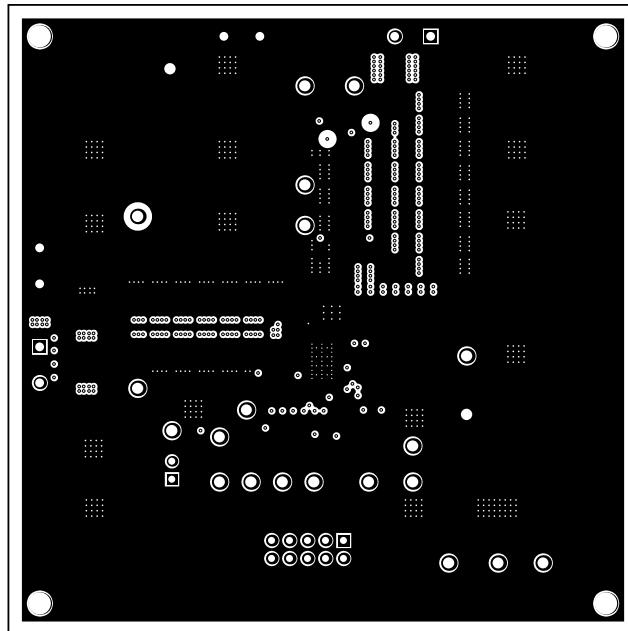


图 30. EVM Inner Layer 4

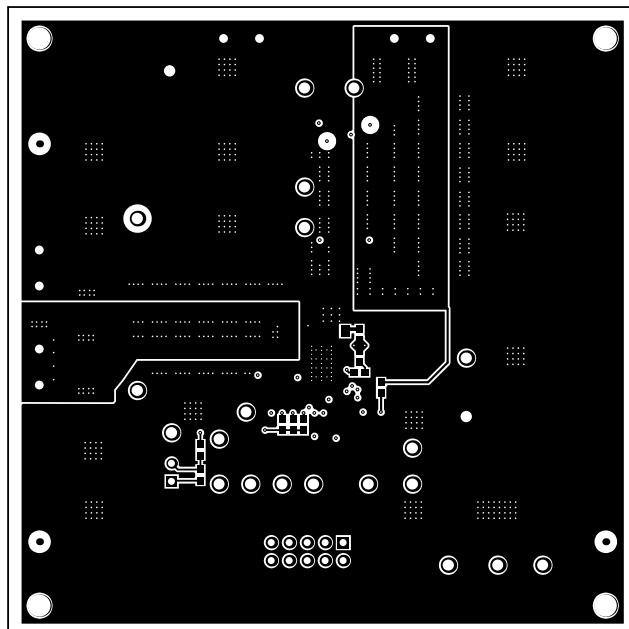


图 31. EVM Bottom Layer

Layout Example (continued)

10.2.1 Mounting and Thermal Profile Recommendation

Proper mounting technique adequately covers the exposed thermal tab with solder. Excessive heat during the reflow process can affect electrical performance. [图 32](#) shows the recommended reflow oven thermal profile. Proper post-assembly cleaning is also critical to device performance. See the Application Report, *QFN/SON PCB Attachment*, ([SLUA271](#)) for more information.

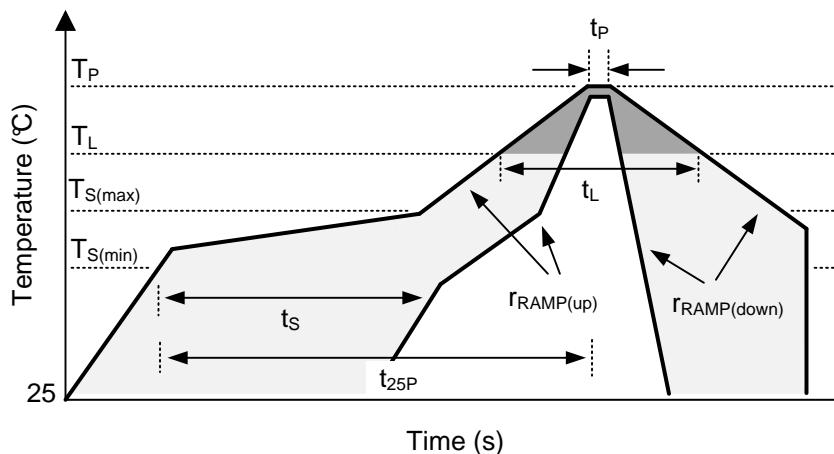


图 32. Recommended Reflow Oven Thermal Profile

表 9. Recommended Thermal Profile Parameters

PARAMETER	MIN	TYP	MAX	UNIT
RAMP UP AND RAMP DOWN				
$r_{RAMP(up)}$	3			°C/s
$r_{RAMP(down)}$	6			°C/s
PRE-HEAT				
T_S	150		200	°C
t_S	60		180	s
REFLOW				
T_L	217			°C
T_P	260			°C
t_L	60		150	s
t_P	20		40	s
t_{25P}			480	s

11 デバイスおよびドキュメントのサポート

11.1 デバイス・サポート

11.1.1 デベロッパー・ネットワークの製品に関する免責事項

デベロッパー・ネットワークの製品またはサービスに関するTIの出版物は、単独またはTIの製品、サービスと一緒に提供される場合に関係なく、デベロッパー・ネットワークの製品またはサービスの適合性に関する是認、デベロッパー・ネットワークの製品またはサービスの是認の表明を意味するものではありません。

11.2 WEBENCH®ツールによるカスタム設計

ここをクリックすると、WEBENCH® Power Designerにより、TPS548D21デバイスを使用するカスタム設計を作成できます。

1. 最初に、入力電圧(V_{IN})、出力電圧(V_{OUT})、出力電流(I_{OUT})の要件を入力します。
2. オプティマイザのダイヤルを使用して、効率、占有面積、コストなどの主要なパラメータについて設計を最適化します。
3. 生成された設計を、テキサス・インスツルメンツが提供する他のソリューションと比較します。

WEBENCH Power Designerでは、カスタマイズされた回路図と部品リストを、リアルタイムの価格と部品の在庫情報と併せて参照できます。

ほとんどの場合、次の操作を実行可能です。

- 電気的なシミュレーションを実行し、重要な波形と回路の性能を確認する。
- 熱シミュレーションを実行し、基板の熱特性を把握する。
- カスタマイズされた回路図やレイアウトを、一般的なCADフォーマットでエクスポートする。
- 設計のレポートをPDFで印刷し、同僚と設計を共有する。

WEBENCHツールの詳細は、www.ti.com/WEBENCHでご覧になります。

11.3 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、ti.comのデバイス製品フォルダを開いてください。右上の隅にある「通知を受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。

11.4 コミュニティ・リソース

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

TI E2E™オンライン・コミュニティ TIのE2E (*Engineer-to-Engineer*) コミュニティ。エンジニア間の共同作業を促進するために開設されたものです。e2e.ti.comでは、他のエンジニアに質問し、知識を共有し、アイディアを検討して、問題解決に役立てることができます。

設計サポート TIの設計サポート 役に立つE2Eフォーラムや、設計サポート・ツールをすばやく見つけることができます。技術サポート用の連絡先情報も参照できます。

11.5 商標

D-CAP3, NexFET, E2E are trademarks of Texas Instruments.

WEBENCH is a registered trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.6 静電気放電に関する注意事項

これらのデバイスは、限定的なESD(静電破壊)保護機能を内蔵しています。保存時または取り扱い時は、MOSゲートに対する静電破壊を防止するために、リード線同士をショートさせておくか、デバイスを導電フォームに入れる必要があります。

11.7 Glossary

[SLYZ022](#) — *TI Glossary*.

This glossary lists and explains terms, acronyms, and definitions.

12 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、そのデバイスについて利用可能な最新のデータです。このデータは予告なく変更されることがあり、ドキュメントが改訂される場合もあります。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
TPS548D21RVFR	Active	Production	LQFN-CLIP (RVF) 40	2500 LARGE T&R	ROHS Exempt	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	TPS548D21
TPS548D21RVFT	Active	Production	LQFN-CLIP (RVF) 40	250 SMALL T&R	ROHS Exempt	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	TPS548D21
TPS548D21RVFTG4	Active	Production	LQFN-CLIP (RVF) 40	250 SMALL T&R	ROHS Exempt	NIPDAU	Level-2-260C-1 YEAR	-40 to 125	TPS548D21

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

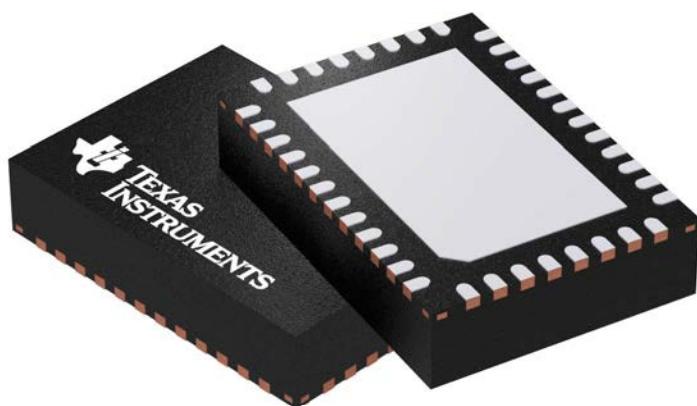
⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

GENERIC PACKAGE VIEW

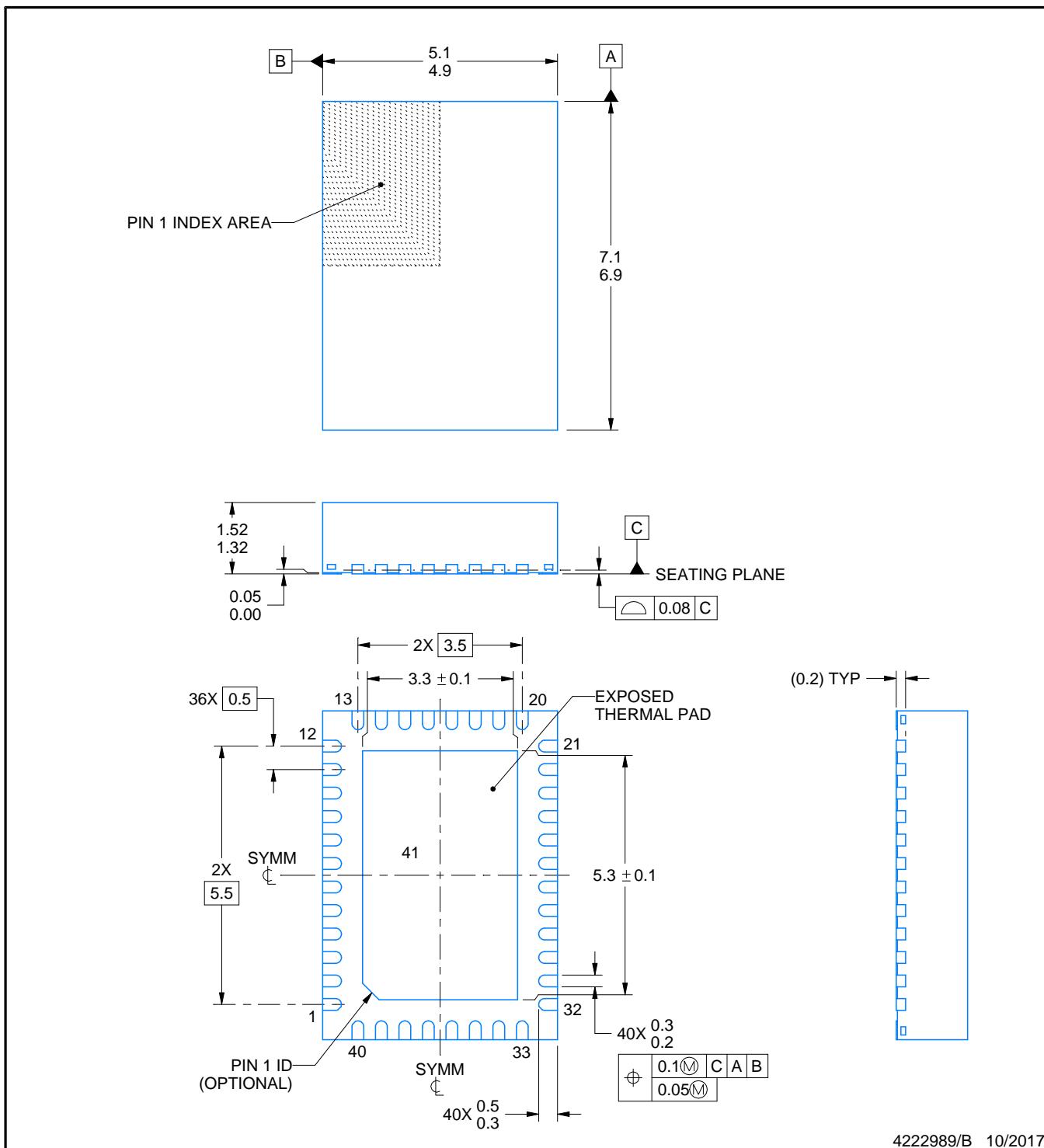
RVF 40

LQFN-CLIP - 1.52 mm max height


PLASTIC QUAD FLATPACK - NO LEAD

Images above are just a representation of the package family, actual package may vary.
Refer to the product data sheet for package details.

4211383/D


RVF0040A

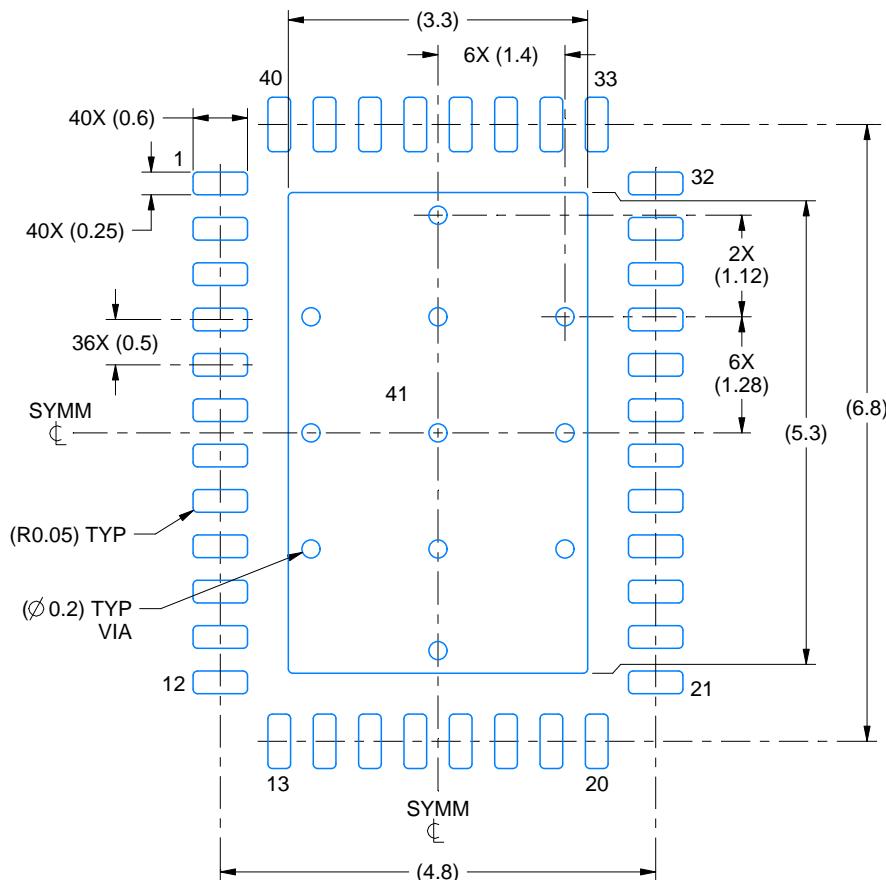
PACKAGE OUTLINE

LQFN-CLIP - 1.52 mm max height

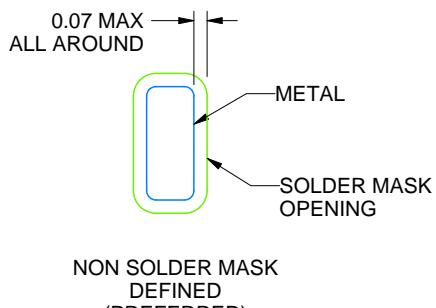
PLASTIC QUAD FLATPACK - NO LEAD

4222989/B 10/2017

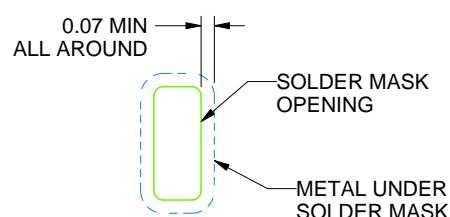
NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.
4. Reference JEDEC registration MO-220.

EXAMPLE BOARD LAYOUT


RVF0040A

LQFN-CLIP - 1.52 mm max height


PLASTIC QUAD FLATPACK - NO LEAD

LAND PATTERN EXAMPLE

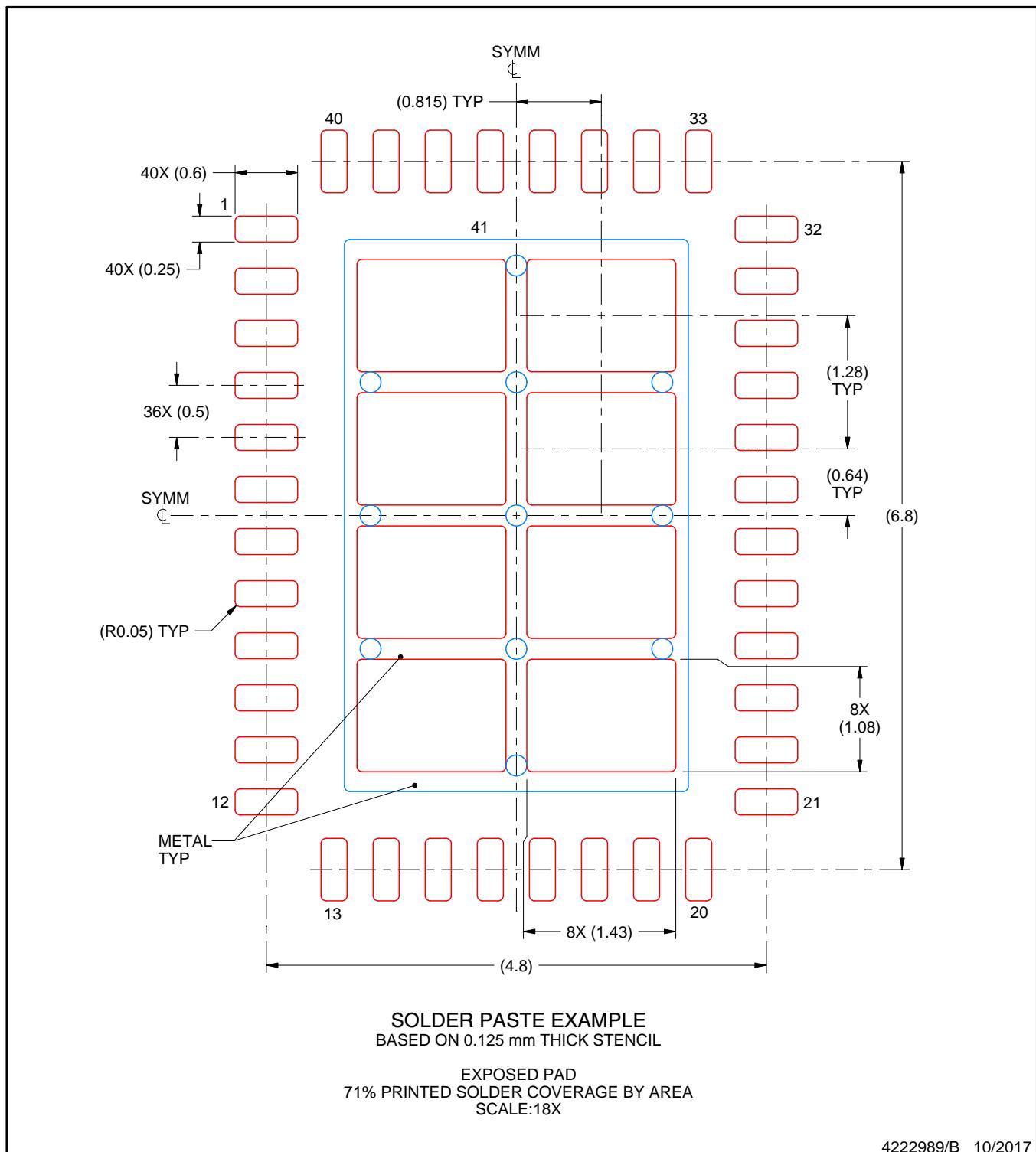
NON SOLDER MASK
DEFINED
(PREFERRED)

SOLDER MASK DEFINED

SOLDER MASK DETAILS

4222989/B 10/2017

NOTES: (continued)


5. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

EXAMPLE STENCIL DESIGN

RVF0040A

LQFN-CLIP - 1.52 mm max height

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の默示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または默示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したもので、(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TI の製品は、[TI の販売条件](#)、[TI の総合的な品質ガイドライン](#)、[ti.com](#) または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TI はそれらに異議を唱え、拒否します。

Copyright © 2026, Texas Instruments Incorporated

最終更新日：2025 年 10 月