

TPS61289 23V_{LOW}、25V_{HIGH}、20A 双方向昇降圧コンバータ

1 特長

- V_{LOW} の電圧範囲: 0.5V ~ 23V
 - 最小 V_{LOW} 電圧は、V_{LOW}/V_{HIGH} 比と周波数によって決まります。
- V_{HIGH} の電圧範囲: 4.5V ~ 25V
- ピンで選択可能な双方向昇降圧モード
- 昇降圧強制 PWM モード動作
- 高効率性と電力供給能力
 - プログラム可能な電流制限: 5A ~ 20A
 - 8.5mΩ のハイサイド MOSFET を内蔵
- スイッチング周波数
 - V_{LOW} > 1.7V の場合、F_{SW} は 250kHz
 - V_{LOW} < 1.5V の場合、F_{SW} は 100kHz まで減少
 - V_{LOW} < 0.5V の場合、F_{SW} は 50kHz まで減少
 - 200mV のヒステリシスにより周波数ジッタを防止
- 外部クロックへの同期機能
- 豊富な保護
 - 27V での V_{HIGH} の過電圧保護
 - 3.1V での V_{HIGH} の低電圧保護
 - 2.15V での V_{CC} の低電圧保護
 - 高精度 EN/UVLO スレッショルド
 - サイクル単位の過電流保護
 - サーマル・シャットダウン
- 2.5mm × 3.0mm VQFN 14 HotRod™ Lite パッケージ

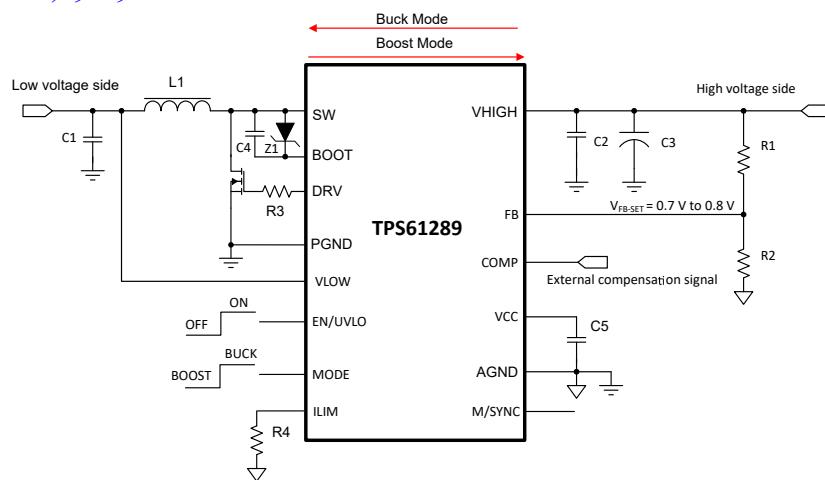
2 アプリケーション

- バッテリ・テスト・システム (BTS)
- スーパー・キャパシタまたはバッテリ・バックアップ電力コンバータ
- USB Type-C® パワー デリバリ

3 概要

TPS61289 は、ハイサイド同期整流 MOSFET を内蔵し、外付けローサイド MOSFET を使用する双方向昇降圧同期コンバータです。TPS61289 は、MODE ピンを使用して、降圧または昇圧コンバータとして構成することができます。TPS61289 は 20A のスイッチング電流をサポートでき、V_{HIGH} 電圧は最大 25V をサポートします。最小 V_{LOW} 電圧は、V_{LOW}/V_{HIGH} 比と周波数によって決まります。たとえば、V_{LOW} 電圧は、V_{HIGH} = 15V の条件下 0.5V までサポートできます。このデバイスは、大電力の双方向変換用として、バランスの優れた効率、熱拡散、ソリューション サイズを実現します。

TPS61289 は、調整可能なスイッチング電流制限機能を備えています。さらに、このデバイスには V_{HIGH} の過電圧および低電圧保護、サイクル単位の過電流保護、サーマル・シャットダウン保護の機能が搭載されています。


TPS61289 は、最小限の外付けコンポーネントの 2.5mm × 3.0mm VQFN HotRod™ Lite パッケージで、非常に小さなソリューション サイズを実現します。

パッケージ情報

部品番号	パッケージ ⁽¹⁾	パッケージ サイズ ⁽²⁾
TPS61289	VQFN (14)	2.5mm×3.0mm

(1) 詳細については、[セクション 10](#) を参照してください。

(2) パッケージ サイズ (長さ × 幅) は公称値であり、該当する場合はピンも含まれます。

代表的なアプリケーション回路

このリソースの元の言語は英語です。翻訳は概要を便宜的に提供するもので、自動化ツール（機械翻訳）を使用していることがあり、TI では翻訳の正確性および妥当性につきましては一切保証いたしません。実際の設計などの前には、ti.com で必ず最新の英語版をご参照くださいますようお願いいたします。

Table of Contents

1 特長.....	1	7 Application and Implementation.....	12
2 アプリケーション.....	1	7.1 Application Information.....	12
3 概要.....	1	7.2 Typical Application.....	12
4 Pin Configuration and Functions.....	3	7.3 Power Supply Recommendations.....	17
5 Specifications.....	4	7.4 Layout.....	17
5.1 Absolute Maximum Ratings.....	4	8 Device and Documentation Support.....	19
5.2 ESD Ratings.....	4	8.1 Documentation Support.....	19
5.3 Recommended Operating Conditions.....	4	8.2 Receiving Notification of Documentation Updates.....	19
5.4 Thermal Information.....	4	8.3 サポート・リソース.....	19
5.5 Electrical Characteristics.....	5	8.4 Trademarks.....	19
5.6 Typical Characteristics.....	7	8.5 静電気放電に関する注意事項.....	19
6 Detailed Description.....	8	8.6 用語集.....	19
6.1 Overview.....	8	9 Revision History.....	19
6.2 Functional Block Diagram.....	8	10 Mechanical, Packaging, and Orderable	
6.3 Feature Description.....	9	Information.....	20

4 Pin Configuration and Functions

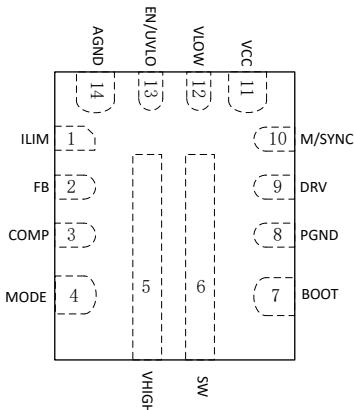


図 4-1. 14-Pin RZP VQFN Package (Top View)

表 4-1. Pin Functions

PIN		TYPE ⁽¹⁾	DESCRIPTION
NAME	NUMBER		
ILIM	1	I	Programmable switching peak/valley current limit. An external resistor must be connected between this pin and the AGND pin.
FB	2	I	For bidirectional operation, connect to the center tap of a resistor divider to make the $V_{FB} = 0.7V$ to $0.8V$.
COMP	3	I	External loop compensation signal input pin.
MODE	4	I	Mode selection pin, this pin must not be floating. MODE = logic high, buck mode. MODE = logic low, boost mode.
VHIGH	5	P	High voltage side pin.
SW	6	P	The switching node pin. This pin is connected to the drain of the external low-side MOSFET and the source of the internal high-side MOSFET.
BOOT	7	O	Power supply for the high-side MOSFET gate driver. A ceramic capacitor of $0.1\mu F$ to $1.0\mu F$ and a 5.6V Zener diode must be connected between this pin and the SW pin.
PGND	8	G	Power ground of external low side MOSFET. Source of external low side MOSFET must be connected to this pin.
DRV	9	O	Gate driver output for external low-side MOSFET.
M/SYNC	10	I	When the M/SYNC pin is short to ground or floating, the device works with internal configured switching frequency. When a valid clock signal is applied to this pin, the switching frequency of the device is forced to the external clock.
VCC	11	O	Output of the internal regulator. A ceramic capacitor of more than $1.0\mu F$ is required between this pin and AGND.
VLOW	12	P	Low voltage side pin.
EN/UVLO	13	I	Enable logic input and programmable input voltage undervoltage lockout (UVLO) input. Logic high level enables the device. Logic low level disables the device and puts the device into shutdown mode. The converter start-up and shutdown levels can be programmed by connecting this pin to the supply voltage through a resistor divider. This pin must not be left floating and must be terminated.
AGND	14	G	Analog signal ground.

(1) I = Input, O = Output, G = Ground, P = Power.

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
Voltage	VLOW, EN/UVLO	-0.3	30	V
Voltage	SW, VHIGH	-0.3	32	V
Voltage	BOOT	SW-0.3	SW+6	V
Voltage	M/SYNC, MODE, VCC, COMP, FB, DRV, ILIM	-0.3	7	V
T _J	Operating Junction Temperature	-40	150	°C
T _{stg}	Storage temperature	-65	150	°C

(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

5.2 ESD Ratings

			VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±2000	V
		Charged device model (CDM), per JEDEC specification JS-002, all pins ⁽²⁾	±500	

(1) HBM: JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process

(2) CDM: JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process

5.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
V _{LOW}	V _{LOW} voltage range			23	V
V _{HIGH}	V _{VHIGH} voltage range		4.5	25	V
L	Effective inductance range		3.3		µH
T _J	Operating junction temperature	-40		125	°C

5.4 Thermal Information

THERMAL METRIC ⁽¹⁾		TPS61289	UNIT
		RZP (VQFN) - 14 PINS	
		Standard	
R _{θJA}	Junction-to-ambient thermal resistance	64.5	°C/W
R _{θJC(top)}	Junction-to-case (top) thermal resistance	41.2	°C/W
R _{θJB}	Junction-to-board thermal resistance	18.8	°C/W
Ψ _{JT}	Junction-to-top characterization parameter	1.4	°C/W
Ψ _{JB}	Junction-to-board characterization parameter	18.4	°C/W
R _{θJC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	°C/W

(1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC Package Thermal Metrics](#) application note.

5.5 Electrical Characteristics

$T_J = -40^\circ\text{C}$ to 125°C , $V_{\text{LOW}} = 3.6\text{V}$ and $V_{\text{HIGH}} = 18\text{V}$. Typical values are at $T_J = 25^\circ\text{C}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER SUPPLY						
V_{LOW}	V_{LOW} voltage range				23	V
V_{HIGH}	V_{HIGH} voltage range		4.5		25	V
$V_{\text{HIGH_UVLO}}$	Under voltage lockout threshold	$V_{\text{HIGH_UVLO}}$ rising	3.2	3.4	3.6	V
$V_{\text{HIGH_UVLO}}$	Under voltage lockout threshold	$V_{\text{HIGH_UVLO}}$ falling	2.9	3.1	3.3	V
V_{CC}	Internal regulator output	$I_{\text{VCC}} = 15\text{mA}$		5.1		V
$V_{\text{CC_UVLO}}$	VCC UVLO threshold	VCC rising		2.3		V
$V_{\text{CC_UVLO}}$	VCC UVLO threshold	VCC falling		2.15		V
$V_{\text{CC_HYS}}$	VCC UVLO hysteresis	VCC hysteresis		0.15		V
$I_{\text{SD_VLOW}}$	Shutdown current into VLOW pin	IC disabled, $V_{\text{LOW}} = \text{SW} = 2.3\text{V}$ to 23V , T_J up to 85°C	1.5	6		μA
$I_{\text{SD_SW}}$	Shutdown current into SW pin	IC disabled, $V_{\text{LOW}} = \text{SW} = 2.3\text{V}$ to 23V , T_J up to 85°C	0.2	4		μA
$I_{\text{FB_LKG}}$	Leakage current into FB pin				50	nA
LOGIC INTERFACE						
$V_{\text{EN_H}}$	EN high-level voltage threshold	$V_{\text{CC}} = 5.0\text{V}$			1.15	V
$V_{\text{EN_L}}$	EN low-level voltage threshold	$V_{\text{CC}} = 5.0\text{V}$	0.4			V
$V_{\text{EN/UVLO_RISE}}$	UVLO rising threshold at the EN/UVLO	$V_{\text{CC}} = 5.0\text{V}$	1.20	1.23	1.27	V
$I_{\text{EN/UVLO}}$	Sourcing current at the EN/UVLO pin	$V_{\text{EN/UVLO}} = 1.3\text{V}$	4.4	5	5.6	μA
$V_{\text{MODE_H}}$	MODE high-level voltage threshold	$V_{\text{CC}} = 5.0\text{V}$			1.2	V
$V_{\text{MODE_L}}$	MODE low-level voltage threshold	$V_{\text{CC}} = 5.0\text{V}$	0.4			V
OUTPUT						
V_{REF}	Reference voltage at the FB pin	PWM mode	0.985	1	1.015	V
$V_{\text{HIGH_OVP}}$	V_{HIGH} overvoltage protection threshold	V_{HIGH} OVP rising	26	27	28	V
$V_{\text{HIGH_OVP_HY}}$	V_{HIGH} OVP protection hysteresis			1		V
POWER SWITCH						
$R_{\text{DS(on)}}$	High-side MOSFET on resistance	$V_{\text{CC}} = 5.0\text{V}$	8.5			$\text{m}\Omega$
F_{sw}	F_{sw} when $V_{\text{LOW}} > 1.7\text{V}$	$V_{\text{LOW}} = 3.6\text{V}$	250			kHz
	F_{sw} when $0.5\text{V} < V_{\text{LOW}} < 1.5\text{V}$	$V_{\text{LOW}} = 1.2\text{V}$	100			kHz
	F_{sw} when $V_{\text{LOW}} < 0.5\text{V}$	$V_{\text{LOW}} = 0.3\text{V}$	50			kHz
$t_{\text{OFF_min}}$	Minimum off time in boost mode		90	130		ns
$t_{\text{ON_min}}$	Minimum on time in buck mode		90	130		ns
t_{DLH}	LS-GATE off to HS-GATE on deadtime		35			ns
t_{DHL}	HS-GATE off to LS-GATE on deadtime		25			ns
I_{LIM}	High clamp valley current limit(boost mode)	$R_{\text{ILIM}} = 20\text{k}\Omega$	17	20	23	A
	Low clamp valley current limit(boost mode)			-3.3		A
	High clamp peak current limit(buck mode)	$R_{\text{ILIM}} = 20\text{k}\Omega$	17	20	23	A
	Low clamp peak current limit(buck mode)			-1.5		A

$T_J = -40^\circ\text{C}$ to 125°C , $V_{\text{LOW}} = 3.6\text{V}$ and $V_{\text{HIGH}} = 18\text{V}$. Typical values are at $T_J = 25^\circ\text{C}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
SOFT START						
t_{SS}	Soft start time of internal reference		8			ms
ERROR AMPLIFIER						
I_{SINK}	COMP pin sink current	$V_{\text{FB}} = V_{\text{REF}} + 400\text{mV}$, $V_{\text{COMP}} = 1.5\text{V}$	20			μA
I_{SOURCE}	COMP pin source current	$V_{\text{FB}} = V_{\text{REF}} - 400\text{mV}$, $V_{\text{COMP}} = 1.5\text{V}$	20			μA
V_{COMPH}	High clamp voltage at the COMP pin	$R_{\text{ILIM}} = 20\text{k}\Omega$, PWM mode	1.6			V
V_{COMPL}	Low clamp voltage at the COMP pin		0.6			V
G_{EA}	Error amplifier transconductance	$V_{\text{CC}} = 5.0\text{V}$	180			$\mu\text{A/V}$
SYNCHRONOUS CLOCK						
R_{SYNC}	Internal pull down resistor from SYNC pin		800			$\text{k}\Omega$
$V_{\text{M/SYNC_H}}$	M/SYNC high-level voltage threshold			1.2		V
$V_{\text{M/SYNC_L}}$	M/SYNC low-level voltage threshold		0.4			V
$T_{\text{SYNC_MIN}}$	Minimum sync clock pulse width		50			ns
PROTECTION						
T_{SD}	Thermal shutdown	Junction temperature rising	160			$^\circ\text{C}$
$T_{\text{SD_HYS}}$	Thermal shutdown hysteresis		20			$^\circ\text{C}$

5.6 Typical Characteristics

$T_A = 25^\circ\text{C}$, efficiency data based on EVM, unless otherwise noted.

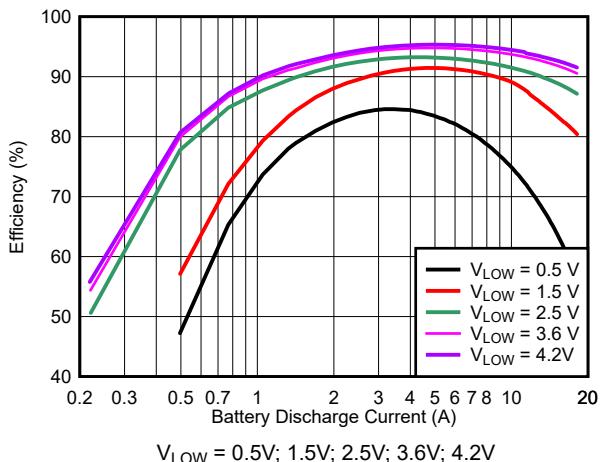


図 5-1. Efficiency $V_{\text{HIGH}} = 15\text{ V}$ Boost Mode

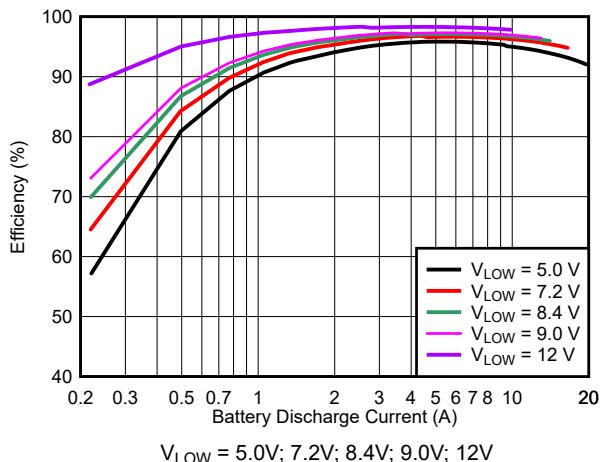


図 5-2. Efficiency $V_{\text{HIGH}} = 15\text{ V}$ Boost Mode

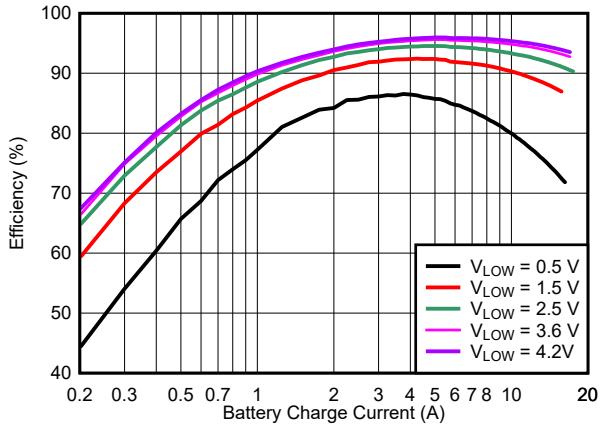


図 5-3. Efficiency $V_{\text{HIGH}} = 15\text{ V}$ Buck Mode

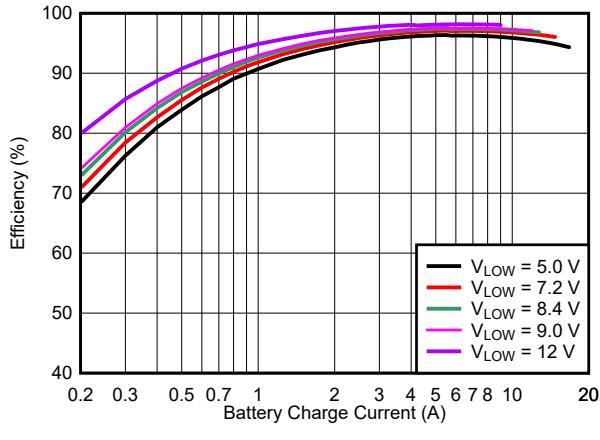


図 5-4. Efficiency $V_{\text{HIGH}} = 15\text{ V}$ Buck Mode

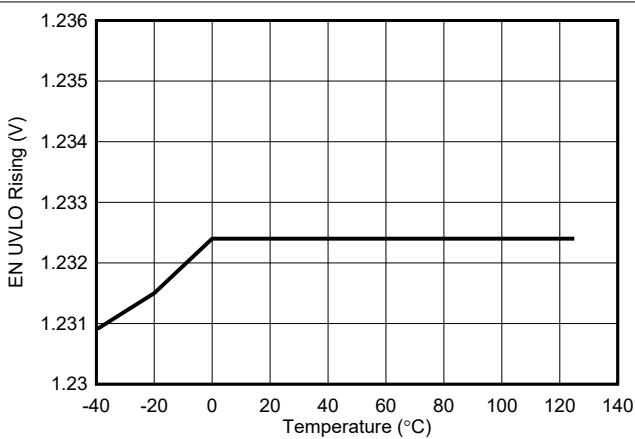


図 5-5. EN/UVLO Rising Voltage vs Temperature

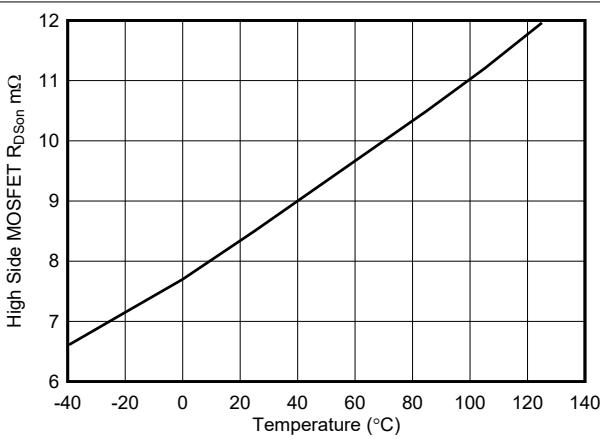
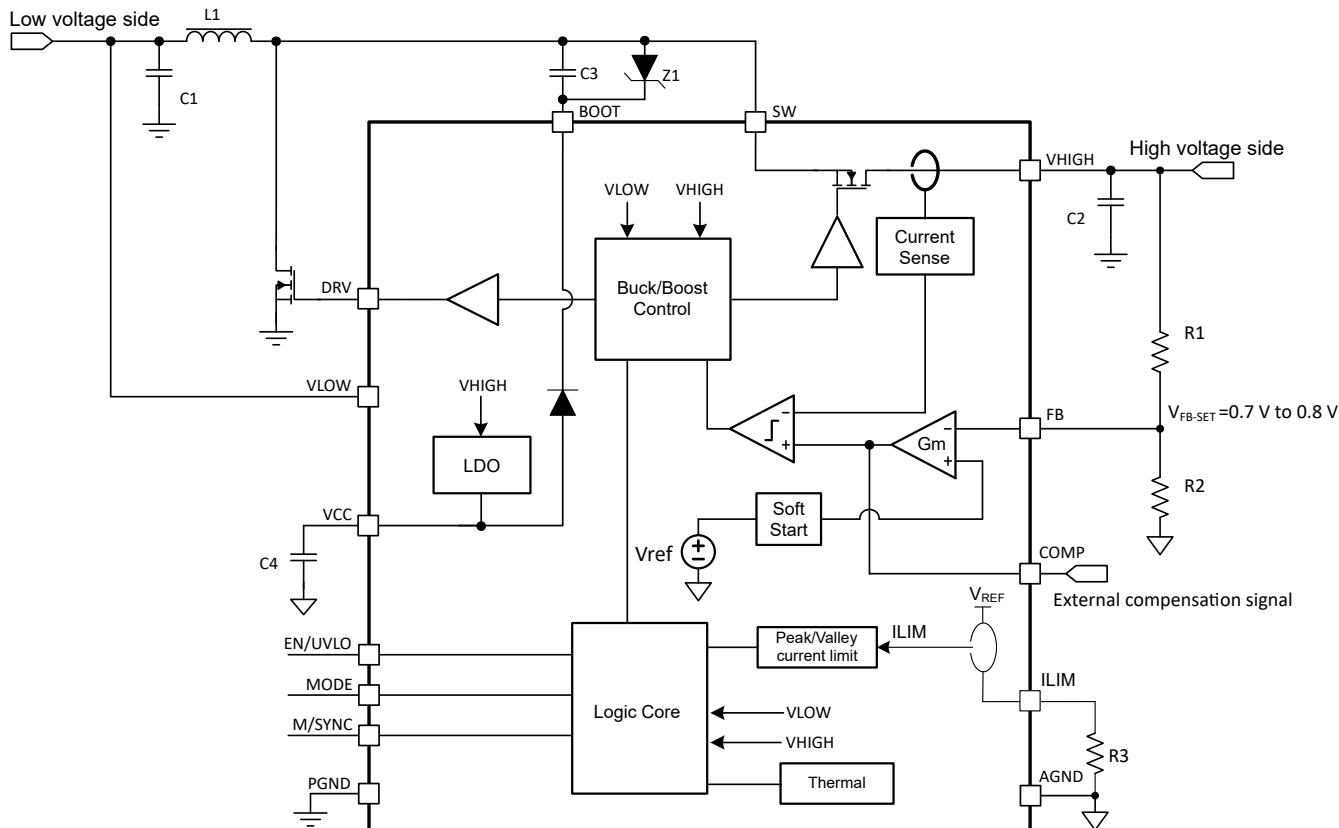


図 5-6. R_{DSON} vs Temperature

6 Detailed Description


6.1 Overview

The TPS61289 is a bidirectional buck/boost synchronous converter that integrates the high-side synchronous rectifier MOSFET and uses an external low side MOSFET. The low-side gate driver of the TPS61289 has a 1.5A sourcing current and 2A sinking current capability. The TPS61289 can be configured as a buck or boost converter using the MODE pin. The TPS61289 can support 20A switching current and the VHIGH voltage supports up to 25V. The minimum VLOW voltage is determined by the VLOW/VHIGH ratio and frequency, for example, the VLOW voltage can support as low as 0.5V at the VHIGH = 15V condition. The device provides an excellent balance of efficiency, thermal dissipation and solution size for high power bidirectional conversion.

In boost converter mode, the TPS61289 uses an adaptive constant on time valley current control scheme. In buck converter mode, the TPS61289 uses an adaptive constant off time peak current control scheme. In buck or boost operation, the device operates in force PWM mode. The quasi-constant switching frequency is 250kHz when the VLOW pin voltage is greater than 1.7V. To extend the VLOW/VHIGH ratio, when the VLOW pin voltage is less than 1.5V, the frequency drops to 100kHz and the frequency is further reduced to 50kHz when the VLOW pin voltage is less than 0.5V. A hysteresis of 200mV prevents frequency jitter in the presence of VLOW pin voltage noise.

The TPS61289 offers adjustable switching current limit function. In addition, the device provides VHIGH overvoltage protection, cycle-by-cycle overcurrent protection, and thermal shutdown protection. The TPS61289 offers a very small solution size with 2.5mm x 3.0mm VQFN HotRod™ Lite package with minimal external components.

6.2 Functional Block Diagram

6.3 Feature Description

6.3.1 Bidirectional Operation Configuration

When operating in bidirectional mode, the FB pin must be connected to the center tap of a resistor divider to make the $V_{FB} = 0.7V$ to $0.8V$ and the COMP pin is connected to an external compensation control signal to implement CC/CV control. To prevent the reverse current from the VHIGH side to the VLOW side, the device will not switch if the COMP pin voltage is below $0.65V$. The MODE pin can be used to select the buck or boost mode, the VLOW must be connected to a sink/source power equipment, for example a Li-ion battery. The internal LDO of the TPS61289 is always powered by the VHIGH pin. A valid voltage above V_{HIGH_UVLO} must be applied to the VHIGH pin before the TPS61289 is enabled. Enable the TPS61289 after setting the VHIGH, FB, COMP, VLOW, and Mode pins.

6.3.2 VCC Power Supply

The internal LDO of the TPS61289 is always powered by VHIGH and outputs a regulated voltage of $5.1V$ with $15mA$ output current capability. A ceramic capacitor must be connected between the VCC pin and the GND pin to stabilize the VCC voltage and also to decouple the noise on the VCC pin. The value of this ceramic capacitor must be greater than $1\mu F$. A ceramic capacitor with an X7R or X5R grade dielectric and a voltage rating higher than $10V$ is recommended.

6.3.3 VHIGH and VCC Undervoltage Lockout (UVLO)

The TPS61289 has both V_{HIGH_UVLO} and V_{CC_UVLO} functions. These lockout functions disable the device from switching when the falling voltage at the VHIGH pin triggers the falling threshold of V_{HIGH_UVLO} , which is typically $3.1V$. These functions also disable the device when the falling voltage at the VCC pin triggers the threshold of V_{CC_UVLO} , which is typically $2.3V$. The device can operate when the rising voltage at the VHIGH and VCC pins exceeds the rising thresholds of V_{HIGH_UVLO} and V_{CC_UVLO} .

6.3.4 Enable and Programmable EN/UVLO

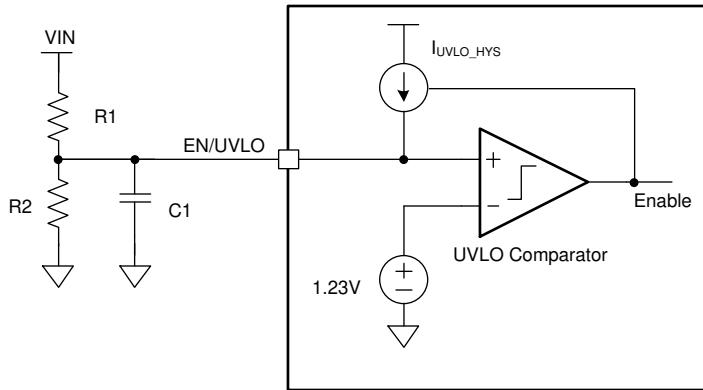
The TPS61289 has a dual function enable and undervoltage lockout (UVLO) circuit. When the voltage at the VHIGH pin and VCC pin is above the rising threshold of UVLO and the EN/UVLO pin is pulled above $1.15V$ but below the enable EN/UVLO threshold of $1.23V$, the TPS61289 is enabled but still in standby mode.

The EN/UVLO pin has an accurate UVLO voltage threshold to support programmable input undervoltage lockout with hysteresis. When the EN/UVLO pin voltage is greater than the UVLO threshold of $1.23V$, the TPS61289 is enabled for switching operation. A hysteresis current, I_{UVLO_HYS} , is sourced out of the EN/UVLO pin to provide a hysteresis that prevents on or off chatter in the presence of noise with a slowly changing input voltage. The input voltage can be the voltage of the VLOW or VHIGH pin.

By using resistor divider as shown in [図 6-1](#), the turn-on threshold is calculated using [式 1](#).

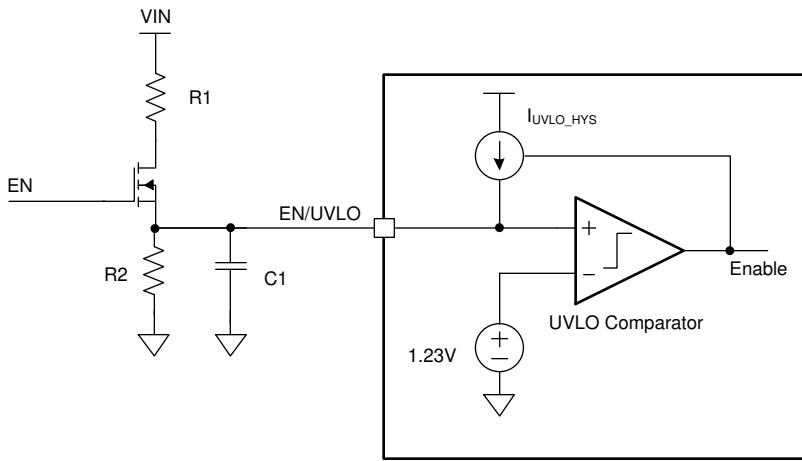
$$V_{IN(UVLO_ON)} = V_{UVLO} \times \left(1 + \frac{R1}{R2}\right) \quad (1)$$

where


- V_{UVLO} is the UVLO threshold of $1.23V$ at the EN/UVLO pin.
- V_{IN} can be the voltage of VLOW or VHIGH pin.

The hysteresis between the UVLO turn-on threshold and turn-off threshold is set by the upper resistor in the EN/UVLO resistor divider and is given by [式 2](#).

$$\Delta V_{IN(UVLO)} = I_{UVLO_HYS} \times R1 \quad (2)$$


where

- I_{UVLO_HYS} is the sourcing current from the EN/UVLO pin when the voltage at the EN/UVLO pin is above V_{UVLO} .

図 6-1. Programmable UVLO With Resistor Divider at the EN/UVLO Pin

By using an NMOSFET together with a resistor divider the user can implement both logic enable and programmable UVLO as shown in [図 6-2](#). The EN logic high level must be greater than the enable threshold plus the V_{th} of the NMOSFET Q1. The Q1 also eliminates the leakage current from VIN to ground through the UVLO resistor divider during shutdown mode.

図 6-2. Logic Enable and Programmable UVLO

6.3.5 Switching Frequency

The TPS61289 operates at a quasi-constant frequency pulse width modulation (PWM) mode. Based on the ratio of the VLOW voltage to the VHIGH voltage, a circuit predicts the required on or off time of the switching cycle.

When the VLOW pin voltage is higher than 1.7V, the TPS61289 operates at 250kHz switching frequency. When VLOW voltage falls below 1.5V, the frequency changes from 250kHz to 100kHz, when VLOW voltage rises above 1.7V, the frequency changes from 100kHz to 250kHz. When the VLOW voltage falls below 0.5V, the frequency changes from 100kHz to 50kHz, when the VLOW voltage rises above 0.7V, the frequency changes from 50kHz to 100kHz to improve the efficiency and extend the buck/boost ratio. The 200mV hysteresis prevents frequency jitter in the presence of VLOW pin voltage noise.

6.3.6 Programmable Switching Peak and Valley Current Limit

The TPS61289 has an internal cycle-by-cycle current limit to prevent the inadvertent application of a large switching current.

In boost mode, the TPS61289 adopts a cycle-by-cycle valley current limit method. Current limit detection occurs during the off-time by sensing of the voltage drop across the integrated high-side MOSFET. The high-side MOSFET is turned off immediately as soon as the switch valley current triggers the limit threshold. The switch valley current limit can be set by a resistor from the ILIM pin to ground. The relationship between the valley current limit and the resistor is shown in [式 3](#).

$$I_{\text{Valley}}(\text{A}) = \frac{400\text{k}}{R_{\text{LIM}}(\text{k})} \quad (3)$$

where

- R_{LIM} is the resistance between the ILIM pin and the AGND pin.
- I_{Valley} is the switch valley current limit.

For instance, the valley current limit in boost mode is 20A if the R_{LIM} is 20k Ω . ILIM pin can not be left floating or connected to VCC.

In buck mode, the TPS61289 adopts a cycle-by-cycle peak current limit method. Current limit detection occurs during the on-time by sensing of the voltage drop across the integrated high-side MOSFET. The high-side MOSFET is turned off immediately as soon as the switch peak current triggers the limit threshold. The switch peak current limit can be set by a resistor from the ILIM pin to ground. The relationship between the peak current limit and the resistor is shown in [式 4](#).

$$I_{\text{Peak}}(\text{A}) = \frac{400\text{k}}{R_{\text{LIM}}(\text{k})} \quad (4)$$

where

- R_{LIM} is the resistance between the ILIM pin and the AGND pin.
- I_{Peak} is the switch peak current limit.

For instance, the peak current limit in buck mode is 20A if the R_{LIM} is 20k Ω . ILIM pin can not be left floating or connected to VCC.

6.3.7 External Clock Synchronization

The TPS61289 can synchronize to an external clock signal applied to the M/SYNC pin for noise-sensitive or multiphase applications. When an external clock signal is applied to the M/SYNC pin, the device switching frequency is forced to the external clock. The external clock frequency must be within $\pm 20\%$ of 250kHz. The external clock on the M/SYNC pin must have a low-level voltage less than 0.4V and a high-level voltage greater than 1.2V. A valid synchronous clock signal must be greater than 50ns wide and have a minimum of 4 consecutive clocks prior to synchronization.

6.3.8 VHIGH Overvoltage Protection

The TPS61289 has a VHIGH overvoltage protection to protect the device in case that the external feedback resistor divider is wrongly populated. When the VHIGH voltage is above 27V typically, the device stops switching. Once the VHIGH voltage falls 1V below the OVP threshold, the device resumes operating again.

6.3.9 Thermal Shutdown

The thermal shutdown is implemented to prevent damage from excessive heat and power dissipation. Typically, the thermal shutdown occurs when junction temperatures exceeding 160°C (typical). If the thermal shutdown is triggered, the device stops switching and recovers when the junction temperature drops below 140°C (typical).

7 Application and Implementation

注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

7.1 Application Information

The TPS61289 is a bidirectional buck/boost synchronous converter that integrates the high side synchronous rectifier MOSFET and uses an external low side MOSFET. The TPS61289 can be configured as a buck or boost converter using the MODE pin. The TPS61289 can support 20A switching current and the VHIGH voltage supports up to 25V. The minimum VLOW voltage is determined by the VLOW/VHIGH ratio and frequency, for example, the VLOW voltage can support as low as 0.5V at the VHIGH = 15V condition.

The TPS61289 operates in buck mode when current is required to flow from the high voltage side to the low voltage side. Alternatively in boost mode when current is required to flow from the low voltage side to the high voltage side. This makes the TPS61289 applicable for high-current battery test systems that require battery charging and discharging under current and voltage loop control signals. And the use of rechargeable batteries in testing systems is becoming increasingly extensive. To initialize the rechargeable batteries, multiple charge and discharge cycles are required. In this process, the current and voltage of the battery must be accurately controlled. This design does not fully consider the accuracy requirements and focuses only on displaying the charge and discharge functions.

7.2 Typical Application

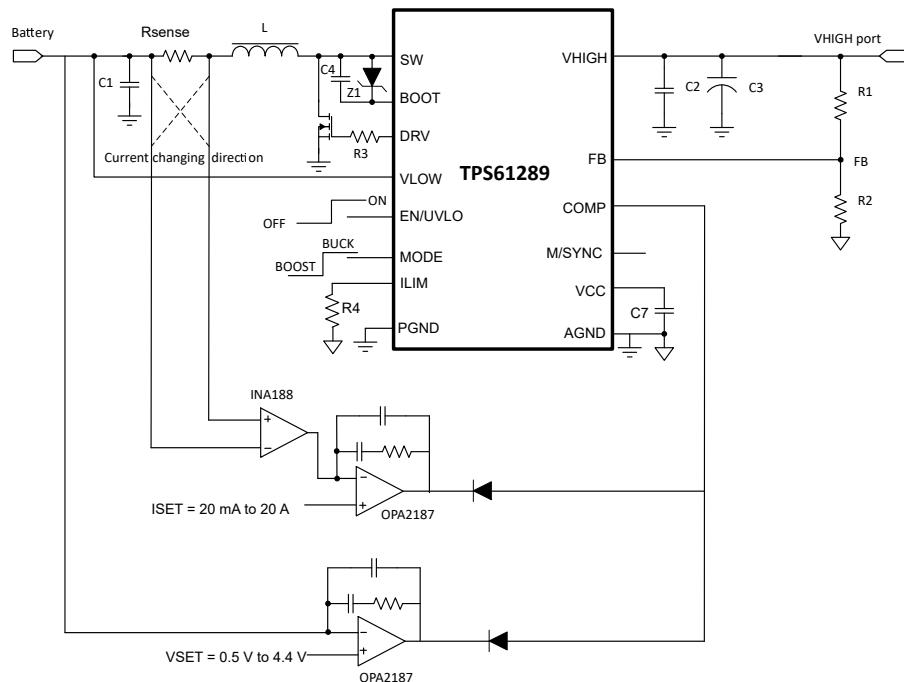


図 7-1. TPS61289 Battery Test System Simplified Schematic

7.2.1 Design Requirements

表 7-1. Design Parameters

DESIGN PARAMETERS	EXAMPLE VALUES
VLOW voltage range	0.5V to 4.4V
VHIGH voltage	15V
Max charge current	15A
Max discharge current	15A

7.2.2 Detailed Design Procedure

7.2.2.1 Bootstrap Capacitor Selection

The bootstrap capacitor between the BOOT and SW pin supplies the gate current to charge the high-side FET device gate during the turn on of each cycle. The gate current also supplies charge for the bootstrap capacitor. The recommended value of the bootstrap capacitor is 0.1 μ F to 1.0 μ F. C_{BOOT} must be a good quality, low-ESR ceramic capacitor located at the pins of the device to minimize potentially damaging voltage transients caused by trace inductance.

7.2.2.2 Inductor Selection

Since the selection of the inductor affects the steady state of the power supply operation, transient behavior, loop stability, and buck/boost converter efficiency, the inductor is the most important component in switching power regulator design. The three most important specifications to the performance of the inductor are the inductance value, DC resistance, and saturation current.

The TPS61289 is designed to work with inductor values between 2.2 μ H and 10 μ H. A 2.2 μ H inductor is typically available in a smaller or lower-profile package, while a 10 μ H inductor produces lower inductor current ripple.

Inductor values can have $\pm 20\%$ or even $\pm 30\%$ tolerance with no current bias. When the inductor current approaches saturation level, the inductance can decrease 20% to 35% from the value at 0A current, depending on how the inductor vendor defines saturation. When selecting an inductor, verify that the rated current of the inductor, especially the saturation current, is larger than the peak current during the operation.

Follow [式 5](#) to [式 7](#) to calculate the peak current of the inductor. To calculate the current in the worst case, use the minimum input voltage, maximum output voltage, and maximum load current of the application. To leave enough design margin, TI recommends using the minimum switching frequency, the inductor value with -30% tolerance, and a low-power conversion efficiency for the calculation.

Calculate the inductor DC current as in 式 5.

$$I_{DC} = \frac{V_{OUT} \times I_{OUT}}{V_{IN} \times \eta} \quad (5)$$

where

- V_{OUT} is the voltage of VHIGH in boost mode or VLOW in buck mode.
- I_{OUT} is the output current of the converter.
- V_{IN} is the voltage of VHIGH in buck mode or VLOW in boost mode.
- η is the power conversion efficiency.

Calculate the inductor current peak-to-peak ripple as in 式 6.

$$I_{PP} = \frac{1}{L \times \left(\frac{1}{V_{OUT} \times V_{IN}} + \frac{1}{V_{IN}} \right) \times f_{SW}} \quad (6)$$

where

- I_{PP} is the inductor peak-to-peak ripple.
- L is the inductor value.
- f_{SW} is the switching frequency.
- V_{OUT} is the voltage of VHIGH in boost mode or VLOW in buck mode.
- V_{IN} is the voltage of VHIGH in buck mode or VLOW in boost mode.

Therefore, the peak current, I_{Lpeak} , seen by the inductor is calculated with 式 7.

$$I_{Lpeak} = I_{DC} + \frac{I_{PP}}{2} \quad (7)$$

Set the current limit of the TPS61289 higher than the peak current, I_{Lpeak} . Then select the inductor with saturation current higher than the setting current limit.

Buck or boost converter efficiency is dependent on the resistance of the current path, the switching loss associated with the switching MOSFETs, and the core loss of the inductor. The TPS61289 has optimized the internal low side switch resistance. However, the overall efficiency is affected significantly by the DC resistance (DCR) of the inductor, equivalent series resistance (ESR) at the switching frequency, and the core loss. Core loss is related to the core material and different inductors have different core loss. For a certain inductor, larger current ripple generates higher DCR and ESR conduction losses and higher core loss. Usually, a data sheet of an inductor does not provide the ESR and core loss information. If needed, consult the inductor vendor for detailed information. Generally, TI recommends an inductor with lower DCR and ESR. However, there is a tradeoff among the inductance of the inductor, DCR and ESR resistance, and the footprint. Furthermore, shielded inductors typically have higher DCR than unshielded inductors. 表 7-2 lists recommended inductors for the TPS61289. Verify whether the recommended inductor can support the user target application with the previous calculations and bench evaluation.

表 7-2. Recommended Inductors

PART NUMBER	L (μH)	DCR MAX (mΩ)	SATURATION CURRENT(A)	SIZE (L × W × H mm)	VENDOR
XGL1060-332ME	3.3	5.7	26.0	10.0 x 11.3 x 6.0	Coilcraft
XAL1060-222ME	2.2	4.95	32.0	10.0 x 11.3 x 6.0	Coilcraft
CMLE105T-2R2MS-99	2.2	4.5	26.0	10.3 x 11.5 x 4.8	Cyntec

7.2.2.3 MOSFET Selection

The external power MOSFETs must be selected with a VDS rating that can withstand the maximum VHIGH voltage plus transient spikes (ringing). Once the voltage rating is determined, select the MOSFETs by making tradeoffs between MOSFET $R_{DS(ON)}$ and total gate charge (Q_g) to balance conduction and switching losses. Be aware of the deadtime limitation, verify that the low-side and high-side MOSFET are not turned on simultaneously. Be careful when adding series gate resistors, as this can decrease the effective deadtime. The MOSFET gate driver current of the device is supplied from VCC. The maximum gate charge is limited by the 15mA VCC sourcing current limit. A leadless package is preferred for this high switching-frequency designs.

7.2.2.4 VLOW/VHIGH Output Capacitor Selection

For small output voltage ripple, TI recommends a low-ESR output capacitor like a ceramic capacitor. Higher capacitor values or parallel with aluminum electrolytic capacitors can be used to improve the load transient response. Take care when evaluating the derating of the capacitor under DC bias. The bias can significantly reduce capacitance. Ceramic capacitors can lose most of their capacitance at rated voltage. Therefore, leave margin on the voltage rating to provide adequate effective capacitance. From the required output voltage ripple, use the following equations to calculate the minimum required effective capacitance C_{OUT} .

$$V_{\text{ripple_dis}} = \frac{(V_{\text{OUT}} - V_{\text{IN_MIN}}) \times I_{\text{OUT}}}{V_{\text{OUT}} \times f_{\text{SW}} \times C_{\text{OUT}}} \quad (8)$$

$$V_{\text{ripple_ESR}} = I_{\text{Lpeak}} \times R_{C_{\text{ESR}}} \quad (9)$$

where

- $V_{\text{ripple_dis}}$ is output voltage ripple caused by charging and discharging of the output capacitor.
- $V_{\text{ripple_ESR}}$ is output voltage ripple caused by ESR of the output capacitor.
- $V_{\text{IN_MIN}}$ is the minimum input voltage.
- V_{OUT} is the output voltage.
- I_{OUT} is the output current.
- I_{Lpeak} is the peak current of the inductor.
- f_{SW} is the converter switching frequency.
- $R_{C_{\text{ESR}}}$ is the ESR of the output capacitors.

注

DC bias effect: High-capacitance ceramic capacitors have a DC bias effect, which has a strong influence on the final effective capacitance. Therefore, the right capacitor value must be chosen carefully. The differences between the rated capacitor value and the effective capacitance result from package size and voltage rating in combination with material. A 10V rated 0805 capacitor with 10 μ F can have an effective capacitance of less than 5 μ F at an output voltage of 5V.

7.2.3 Application Curves

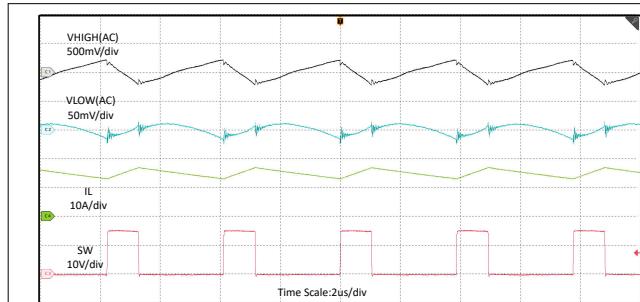


图 7-2. Switching Waveforms in Buck Mode

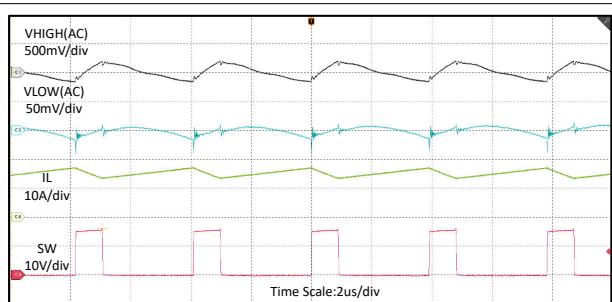


图 7-3. Switching Waveforms in Boost Mode

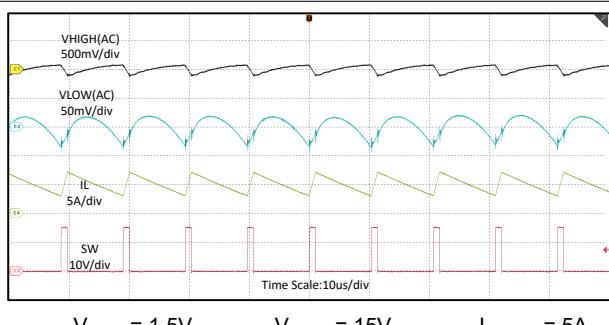


图 7-4. Switching Waveforms in Buck Mode

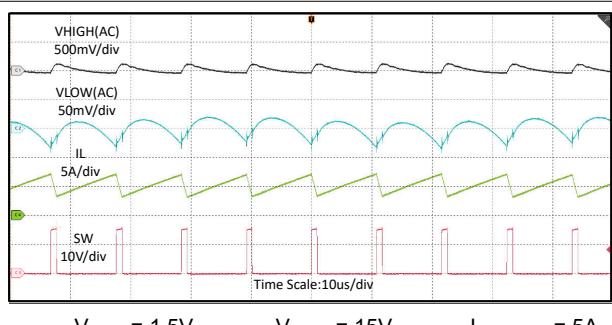


图 7-5. Switching Waveforms in Boost Mode

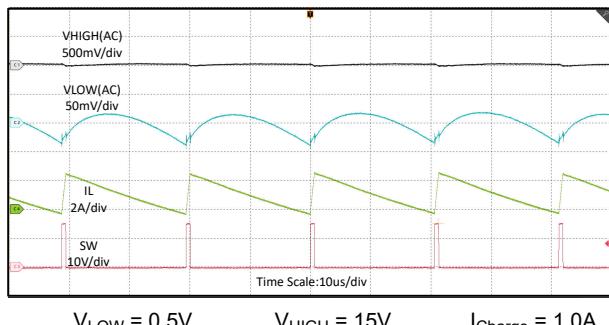


图 7-6. Switching Waveforms in Buck Mode

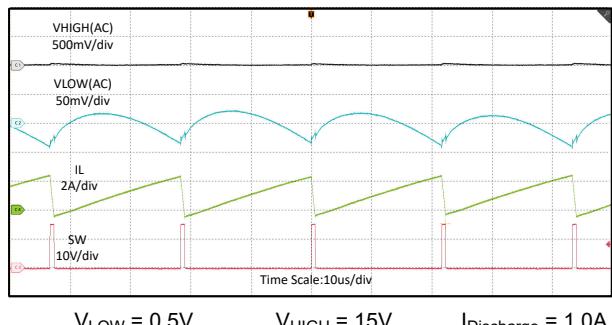


图 7-7. Switching Waveforms in Boost Mode

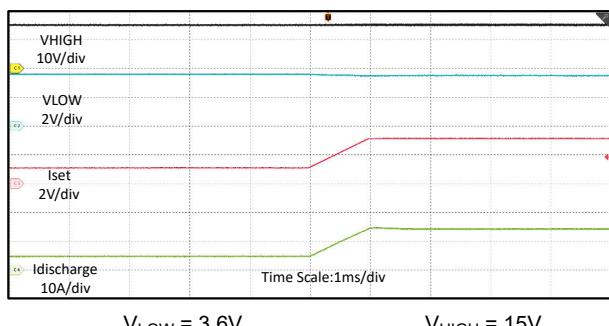


图 7-8. Discharge current Transient (5A to 15A)

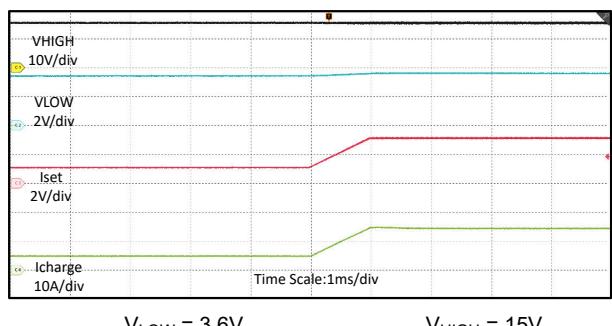
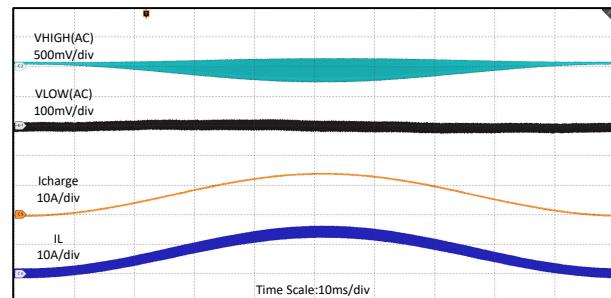
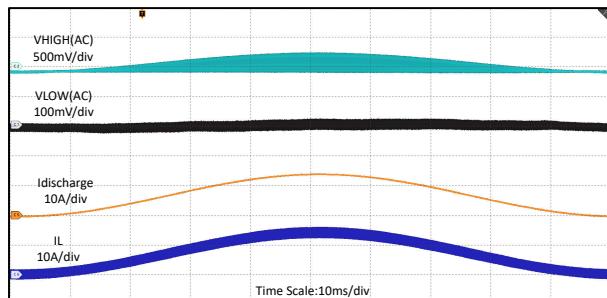




图 7-9. Charge current Transient (5A to 15A)

図 7-10. Buck Load Sweep (I_{Charge} = 0A to 15A)

図 7-11. Boost Load Sweep ($I_{Discharge}$ = 0A to 15A)

7.3 Power Supply Recommendations

The VLOW and VHIGH power supply must be well regulated. If the power supply is located more than a few inches from the converter, additional bulk capacitance can be required in addition to the ceramic bypass capacitors. A typical choice is an electrolytic or tantalum capacitor with a value of $47\mu F$.

7.4 Layout

7.4.1 Layout Guidelines

For all switching power supplies, especially those running at high switching frequency and high currents, layout is an important design step. If layout is not carefully done, the regulator can suffer from instability and noise problems. To maximize efficiency, switch rise and fall times are very fast. To prevent radiation of high-frequency noise (for example, EMI), proper layout of the high-frequency switching path is essential. Minimize the length and area of all traces connected to the SW pin, and always use a ground plane under the switching regulator to minimize interplane coupling.

The most critical current path for this bidirectional buck/boost converter is from the external low side MOSFET to the integrated high side MOSFET, then to the VHIGH side capacitors, and back to the source of the external low side MOSFET. This current path contains nanosecond rise and fall times and must be kept as short as possible to reduce the parasitic inductance. Therefore, the VHIGH side output capacitors must be close not only to the VHIGH pin, but also to the source pin of the external low side MOSFET to reduce the spike at the SW pin and the VHIGH pin.

The PGND plane and the AGND plane are connected at the terminal of the VCC capacitor. Thus the noise caused by the MOSFET driver and parasitic inductance does not interfere with the AGND and internal control circuit.

The layout must also be designed with consideration of the thermal as this is a high power density device. The VLOW, SW and VHIGH that improves the thermal capabilities of the package must be soldered with the large polygon. Using thermal vias underneath the nets can improve thermal performance.

7.4.2 Layout Example

The bottom layer is a large ground plane GND.

VLOW- plane ,VHIGH- plane and PGND nets are all connected to the ground plane by vias on top layer .

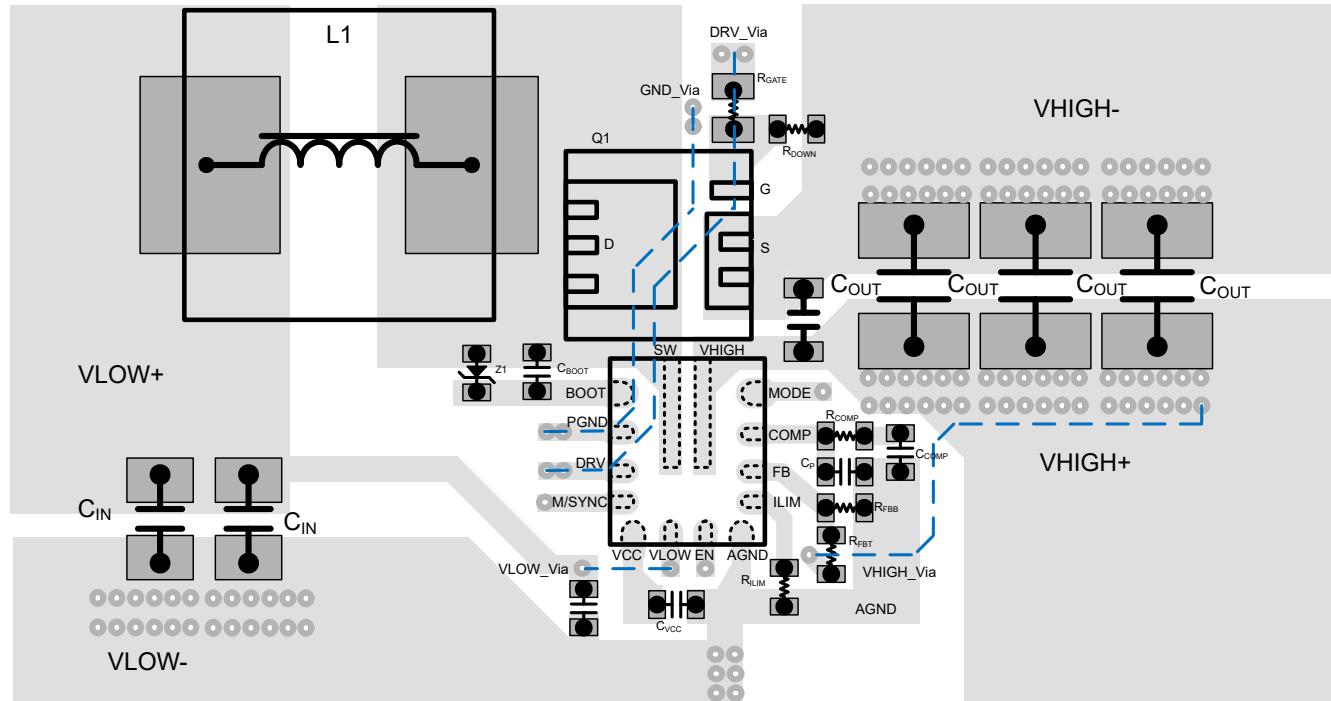


图 7-12. Layout Example

7.4.2.1 Thermal Considerations

The maximum IC junction temperature must be restricted to 125°C under normal operating conditions. Calculate the maximum allowable dissipation, $P_{D(\max)}$, and keep the actual power dissipation less than or equal to $P_{D(\max)}$. The maximum-power-dissipation limit is determined using 式 10.

$$P_{D(\max)} = \frac{125 - T_A}{R_{\theta JA}} \quad (10)$$

where

- T_A is the maximum ambient temperature for the application.
- $R_{\theta JA}$ is the junction-to-ambient thermal resistance given in the *Thermal Information* table.

The TPS61289 is in a thermally-enhanced VQFN package. The real junction-to-ambient thermal resistance of the package greatly depends on the PCB type, layout, and thermal pad connection. Using thick PCB copper and soldering the thermal pad to a large ground plate enhance the thermal performance. Increasing the number of vias that connect the ground plate on both the top and bottom layers around the IC, without solder mask, can also enhance the thermal capability.

8 Device and Documentation Support

8.1 Documentation Support

8.1.1 Related Documentation

8.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.3 サポート・リソース

テキサス・インスツルメンツ E2E™ サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。

リンクされているコンテンツは、各寄稿者により「現状のまま」提供されるものです。これらはテキサス・インスツルメンツの仕様を構成するものではなく、必ずしもテキサス・インスツルメンツの見解を反映したものではありません。テキサス・インスツルメンツの [使用条件](#) を参照してください。

8.4 Trademarks

HotRod™ and テキサス・インスツルメンツ E2E™ are trademarks of Texas Instruments.

USB Type-C® is a registered trademark of USB Implementers Forum.

すべての商標は、それぞれの所有者に帰属します。

8.5 静電気放電に関する注意事項

この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことをお勧めします。正しい取り扱いおよび設置手順に従わない場合、デバイスを破損するおそれがあります。

ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。

8.6 用語集

テキサス・インスツルメンツ用語集

この用語集には、用語や略語の一覧および定義が記載されています。

9 Revision History

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

Changes from Revision * (December 2023) to Revision A (January 2024)

Page

• デバイスステータスを「事前情報」から「量産データ」に変更.....	1
-------------------------------------	---

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

重要なお知らせと免責事項

テキサス・インスツルメンツは、技術データと信頼性データ（データシートを含みます）、設計リソース（リファレンス デザインを含みます）、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の默示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または默示的にかかわらず拒否します。

これらのリソースは、テキサス・インスツルメンツ製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した テキサス・インスツルメンツ製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている テキサス・インスツルメンツ製品を使用するアプリケーションの開発の目的でのみ、テキサス・インスツルメンツはその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。テキサス・インスツルメンツや第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、テキサス・インスツルメンツおよびその代理人を完全に補償するものとし、テキサス・インスツルメンツは一切の責任を拒否します。

テキサス・インスツルメンツの製品は、[テキサス・インスツルメンツの販売条件](#)、または [ti.com](#) やかかる テキサス・インスツルメンツ製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。テキサス・インスツルメンツがこれらのリソースを提供することは、適用されるテキサス・インスツルメンツの保証または他の保証の放棄の拡大や変更を意味するものではありません。

お客様がいかなる追加条項または代替条項を提案した場合でも、テキサス・インスツルメンツはそれらに異議を唱え、拒否します。

郵送先住所: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright © 2024, Texas Instruments Incorporated

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
TPS61289RZPR	Active	Production	VQFN-HR (RZP) 14	3000 LARGE T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 125	S61289
TPS61289RZPR.A	Active	Production	VQFN-HR (RZP) 14	3000 LARGE T&R	Yes	SN	Level-2-260C-1 YEAR	-40 to 125	S61289

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

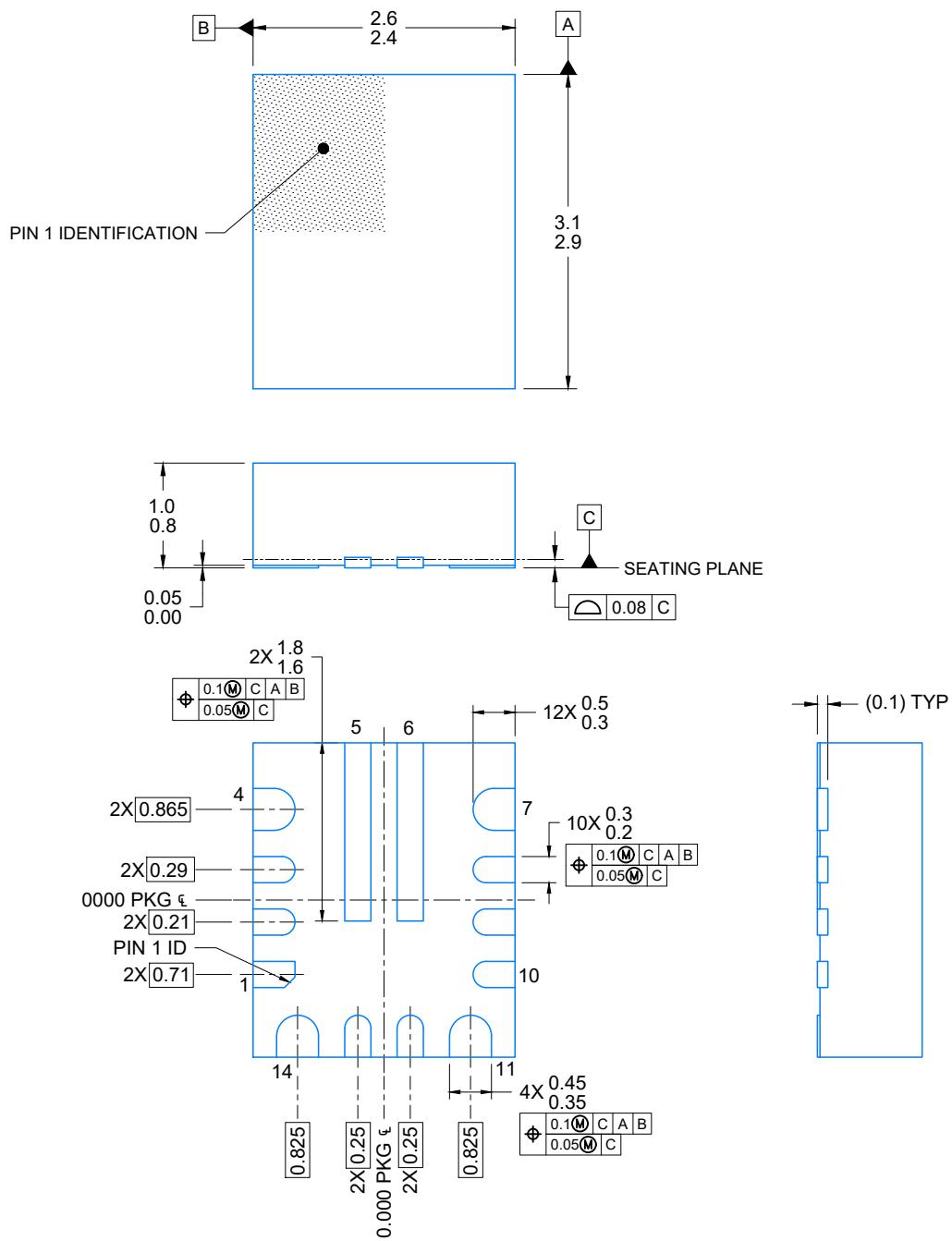
⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

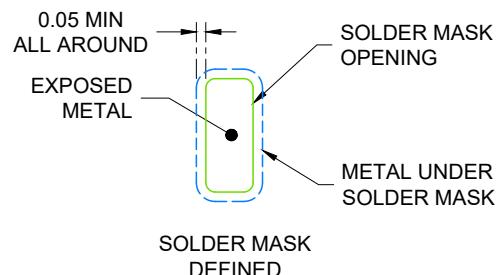
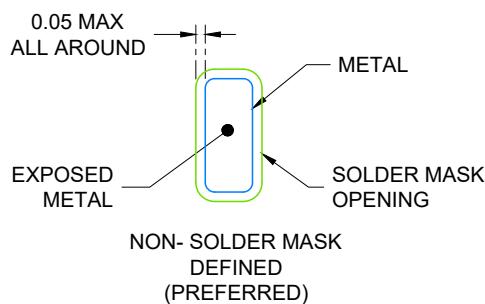
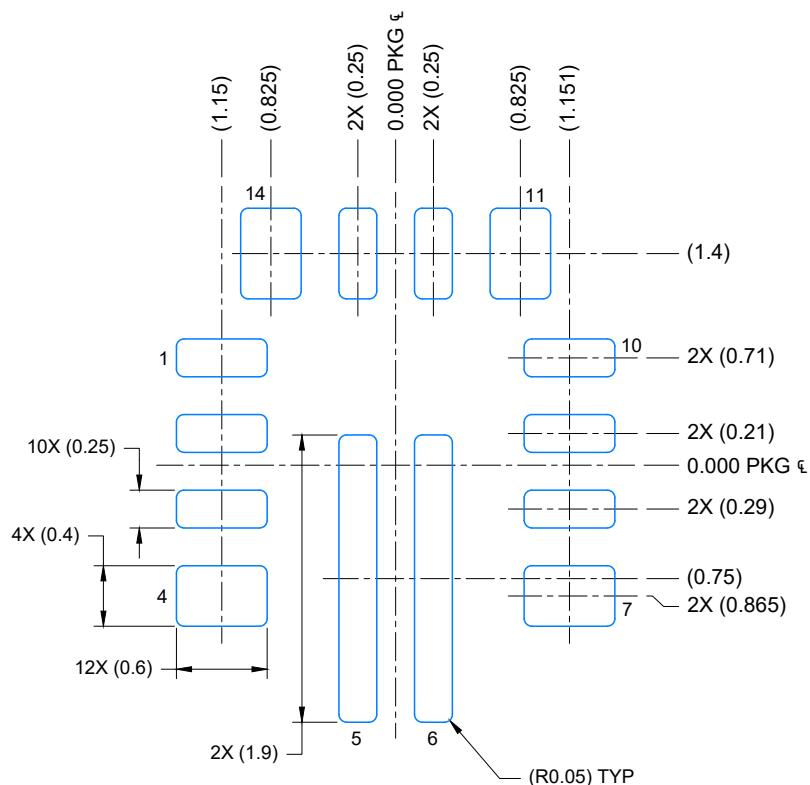
PACKAGE OUTLINE

VQFN-HR - 1 mm max height

PLASTIC QUAD FLATPACK-NO LEAD

RZP0014A

4228448/A 02/2022




NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.

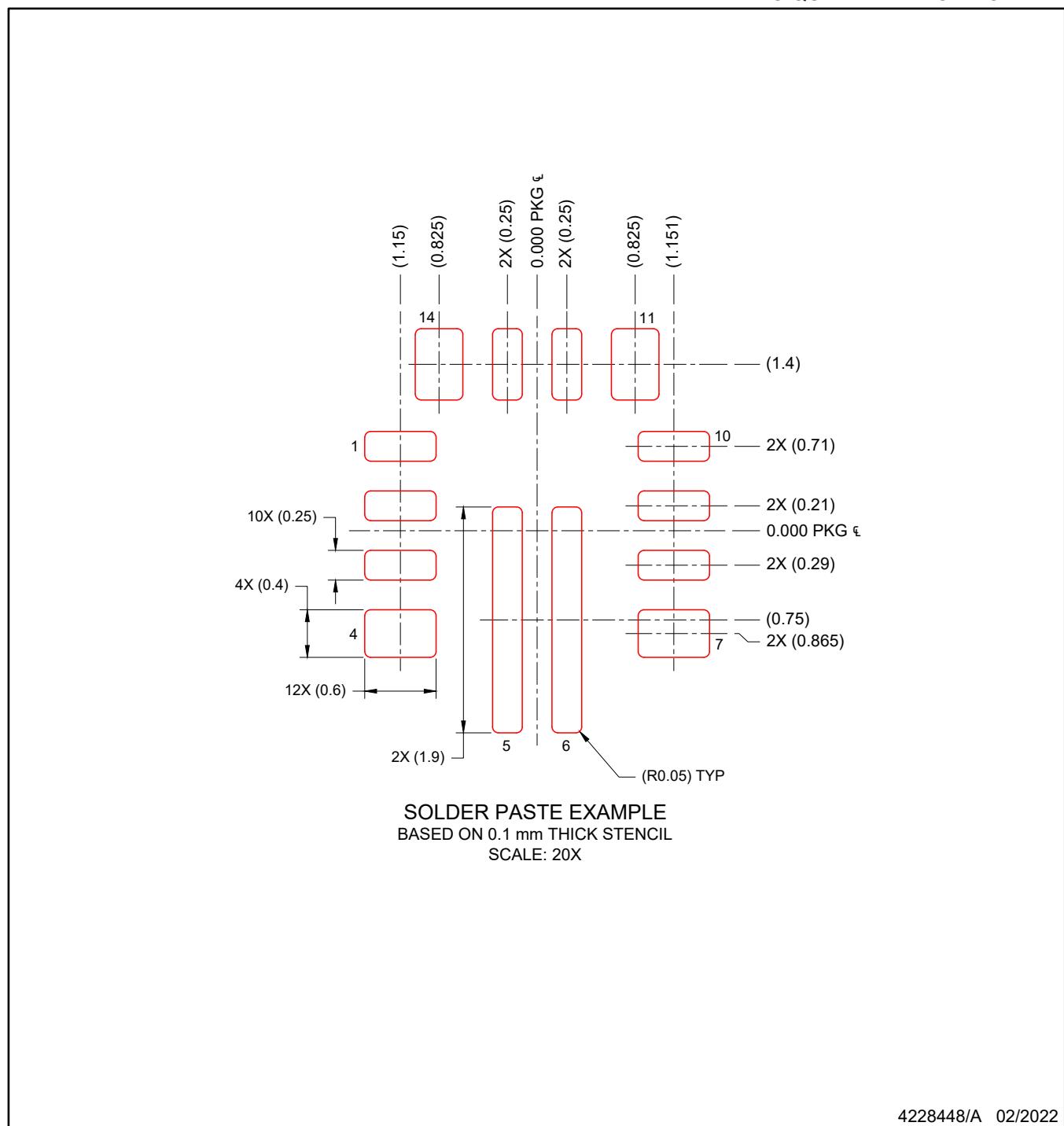
EXAMPLE BOARD LAYOUT

VQFN-HR - 1 mm max height

PLASTIC QUAD FLATPACK-NO LEAD

SOLDER MASK DETAILS
NOT TO SCALE

4228448/A 02/2022


NOTES: (continued)

3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

VQFN-HR - 1 mm max height

PLASTIC QUAD FLATPACK-NO LEAD

4228448/A 02/2022

NOTES: (continued)

5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の默示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または默示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したもので、(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TI の製品は、[TI の販売条件](#)、[TI の総合的な品質ガイドライン](#)、[ti.com](#) または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TI はそれらに異議を唱え、拒否します。

Copyright © 2025, Texas Instruments Incorporated

最終更新日：2025 年 10 月