

# TPS7A63-Q1、TPS7A6401-Q1

## 超低 $I_Q$ 、300mA、40V、低ドロップアウト・レギュレータ

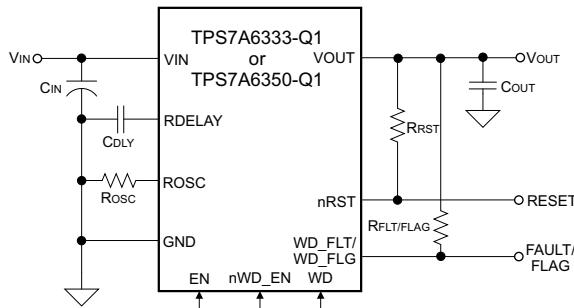
### 1 特長

- 車載アプリケーション用に AEC-Q100 認定取得済み
  - 温度グレード 1: -40°C~125°C,  $T_A$
  - 接合部温度: -40°C~150°C,  $T_J$
- 低いドロップアウト電圧:
  - $I_{OUT} = 150\text{mA}$  で 300mV
- 7V~40V の広い入力電圧範囲、最大 45V の過渡電圧に対応
- 最大出力電流 : 300mA
- 非常に低い静止電流
  - 軽負荷時に  $I_{QUIESCENT} = 35\mu\text{A}$  (標準値)
  - $EN = \text{LOW}$  のとき  $I_{SLEEP} < 2\mu\text{A}$
- 固定 (3.3V および 5V) および可変 (2.5V~7V) の出力電圧
- フォルト / フラグ付きのウォッチドッグを内蔵
- 低 ESR のセラミック出力コンデンサで安定動作
- パワーオン・リセット機能を搭載
  - 遅延をプログラム可能
  - オープン・ドレイン・リセット出力
- フォルト保護機能を搭載
  - 短絡保護と過電流保護
  - サーマル・シャットダウン
- 低入力電圧トラッキング
- 熱的に強化された 14 ピンの HTSSOP-PWP パッケージと 10 ピンの VSON-DRK パッケージ

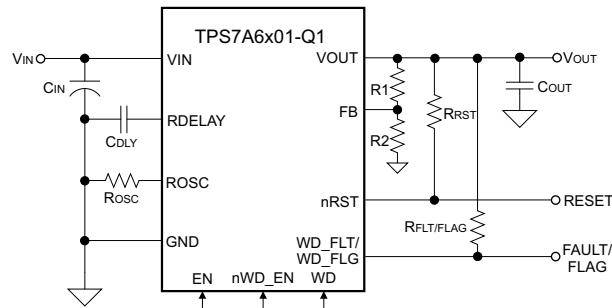
### 2 アプリケーション

- 車載用ヘッド・ユニット
- ヘッドライト
- DC/DC コンバータ
- 車載センター情報ディスプレイ

### 3 概要


TPS7A63-Q1 および TPS7A6401-Q1 は、低ドロップアウトのリニア電圧レギュレータのファミリーで、消費電力が低く、軽負荷アプリケーションで静止電流が 35 $\mu\text{A}$ 未満に設計されています。これらのデバイスは、低 ESR のセラミック出力コンデンサでも安定して動作するよう設計されており、プログラム可能なウインドウ・ウォッチドッグと過電流保護機能が搭載されています。設計者は、外付け抵抗を使用して出力電圧をプログラムできます。低電圧トラッキング機能により、小型の入力コンデンサを使用でき、コールド・クランク状況では多くの場合に昇圧コンバータが不要になります。パワー・オン・リセット遅延は固定(標準値 250 $\mu\text{s}$ )で、外付けコンデンサにより遅延をプログラムできます。これらの特長から、これらのデバイスは各種の車載アプリケーション用の電源に最適です。

#### 製品情報<sup>(1)</sup>


| 型番                          | パッケージ       | 本体サイズ(公称)     |
|-----------------------------|-------------|---------------|
| TPS7A63-Q1、<br>TPS7A6401-Q1 | HTSSOP (14) | 5.00mm×4.40mm |
| TPS7A63-Q1                  | VSON (10)   | 4.00mm×3.00mm |

(1) 利用可能なすべてのパッケージについては、このデータシートの末尾にある注文情報を参照してください。

#### 固定出力電圧オプション



#### 可変出力電圧オプション



## 目次

|          |                                              |           |            |                                             |           |
|----------|----------------------------------------------|-----------|------------|---------------------------------------------|-----------|
| <b>1</b> | <b>特長</b> .....                              | <b>1</b>  | <b>7.4</b> | <b>Device Functional Modes</b> .....        | <b>20</b> |
| <b>2</b> | <b>アプリケーション</b> .....                        | <b>1</b>  | <b>8</b>   | <b>Application and Implementation</b> ..... | <b>21</b> |
| <b>3</b> | <b>概要</b> .....                              | <b>1</b>  | <b>8.1</b> | <b>Application Information</b> .....        | <b>21</b> |
| <b>4</b> | <b>改訂履歴</b> .....                            | <b>2</b>  | <b>8.2</b> | <b>Typical Applications</b> .....           | <b>21</b> |
| <b>5</b> | <b>Pin Configuration and Functions</b> ..... | <b>4</b>  | <b>9</b>   | <b>Power Supply Recommendations</b> .....   | <b>24</b> |
| <b>6</b> | <b>Specifications</b> .....                  | <b>5</b>  | <b>10</b>  | <b>Layout</b> .....                         | <b>24</b> |
|          | 6.1 Absolute Maximum Ratings .....           | 5         | 10.1       | Layout Guidelines .....                     | 24        |
|          | 6.2 ESD Ratings .....                        | 5         | 10.2       | Layout Example .....                        | 27        |
|          | 6.3 Recommended Operating Conditions .....   | 5         | <b>11</b>  | デバイスおよびドキュメントのサポート .....                    | <b>28</b> |
|          | 6.4 Thermal Information .....                | 6         | 11.1       | 関連リンク .....                                 | 28        |
|          | 6.5 Electrical Characteristics .....         | 6         | 11.2       | ドキュメントの更新通知を受け取る方法 .....                    | 28        |
|          | 6.6 Typical Characteristics .....            | 8         | 11.3       | コミュニティ・リソース .....                           | 28        |
| <b>7</b> | <b>Detailed Description</b> .....            | <b>10</b> | 11.4       | 商標 .....                                    | 28        |
|          | 7.1 Overview .....                           | 10        | 11.5       | 静電気放電に関する注意事項 .....                         | 28        |
|          | 7.2 Functional Block Diagrams .....          | 10        | 11.6       | Glossary .....                              | 28        |
|          | 7.3 Feature Description .....                | 12        | <b>12</b>  | メカニカル、パッケージ、および注文情報 .....                   | <b>28</b> |

## 4 改訂履歴

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

### Revision F (June 2018) から Revision G に変更

|                                                                                         |   |
|-----------------------------------------------------------------------------------------|---|
| • AEC-Q100 の「特長」項目を新標準に合わせて 変更 .....                                                    | 1 |
| • ドキュメント全体で入力電圧範囲を 11V から 7V に 変更 .....                                                 | 1 |
| • 「アプリケーション」セクションを 変更 .....                                                             | 1 |
| • Added footnote to $V_{IN}$ row in <i>Recommended Operating Conditions</i> table ..... | 5 |
| • Added footnote to $V_{IN}$ row in <i>Electrical Characteristics</i> table .....       | 6 |

### Revision E (September 2015) から Revision F に変更

|                                                                                                                                                                                                                  |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| • デバイス名を TPS7A63-Q1 TPS7A6401-Q1 に 変更 .....                                                                                                                                                                      | 1  |
| • 4 番目の「特長」項目で 4V を 11V に 変更 .....                                                                                                                                                                               | 1  |
| • Changed $V_{IN}$ , $V_{EN}$ parameter row in <i>Recommended Operating Conditions</i> table: separated $V_{IN}$ and $V_{EN}$ into different rows, changed $V_{IN}$ minimum specification from 4 V to 11 V ..... | 5  |
| • Changed $V_{IN}$ minimum specification from $V_{OUT} + 0.3$ V to 11 V in <i>Electrical Characteristics</i> table .....                                                                                         | 6  |
| • Changed 4 V to 11 V in <i>Example values</i> column of <i>Input voltage range</i> row of <i>Design Parameters</i> table .....                                                                                  | 22 |
| • Changed 4 V to 11 V in <i>Example values</i> column of <i>Input voltage range</i> row of <i>Design Parameters</i> table .....                                                                                  | 23 |
| • Changed 4 V to 11 V in first sentence of <i>Power Supply Recommendations</i> section .....                                                                                                                     | 24 |

### Revision D (July 2012) から Revision E に変更

|                                                                                                                                                                                                                                                                                                                                                      |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| • Added <i>ESD Ratings</i> table, <i>Feature Description</i> section, <i>Device Functional Modes</i> , <i>Application and Implementation</i> section, <i>Power Supply Recommendations</i> section, <i>Layout</i> section, <i>Device and Documentation Support</i> section, and <i>Mechanical, Packaging, and Orderable Information</i> section ..... | 5 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|

### Revision C (April 2012) から Revision D に変更

|                                                           |   |
|-----------------------------------------------------------|---|
| • データシート全体で複数箇所の型番を訂正 .....                               | 1 |
| • 「特長」一覧の最初に新項目を追加 .....                                  | 1 |
| • Deleted the NO. column from the electrical tables ..... | 5 |

---

- Deleted two Typical Characteristics graphs ..... 8

---

| Revision B (December 2011) から Revision C に変更 | Page |
|----------------------------------------------|------|
|----------------------------------------------|------|

---

- Changed regulated output voltage (6.1), added text to the test conditions (10mA to 200mA,  $V_{IN} = V_{OUT} + 1V$  to 16V) ..... 6

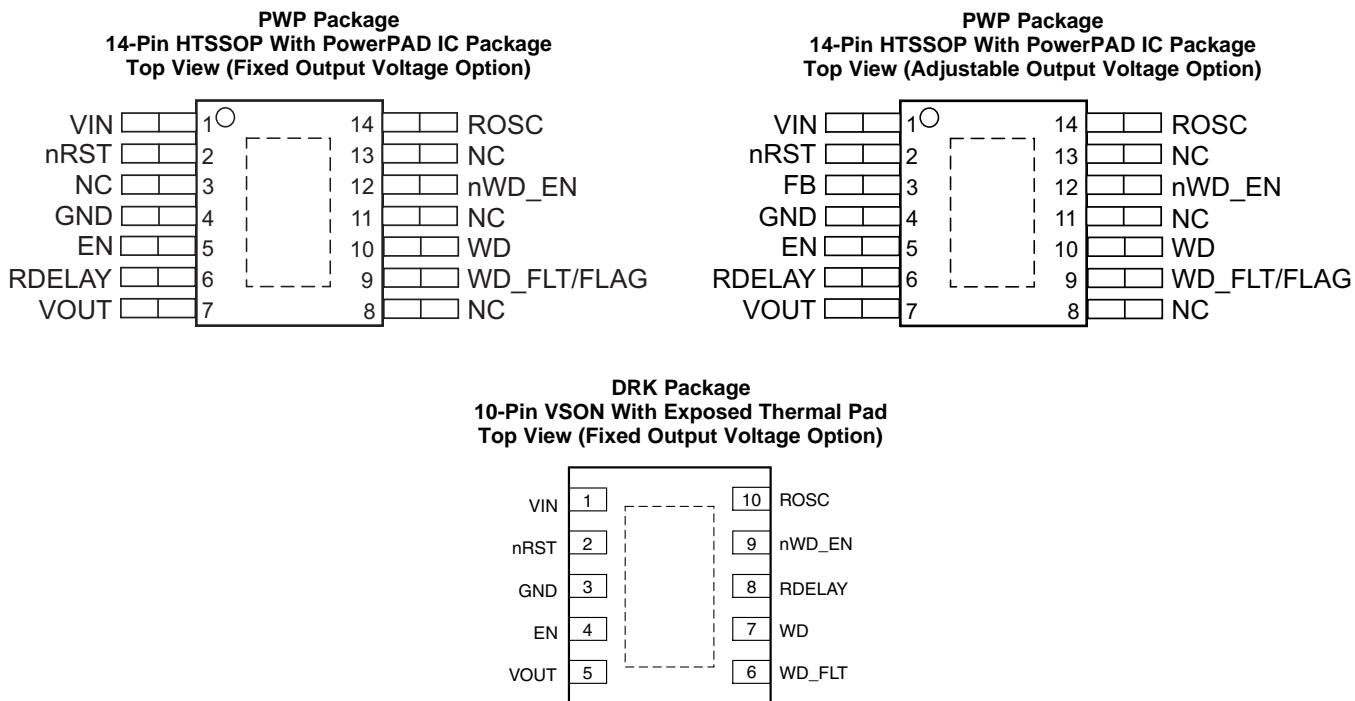
---

| Revision A (August 2011) から Revision B に変更 | Page |
|--------------------------------------------|------|
|--------------------------------------------|------|

---

- TPS7A64333-Q1 および TPSA6450-Q1 を削除 ..... 1

---


| 2011年6月発行のものから更新 | Page |
|------------------|------|
|------------------|------|

---

- Deleted the Ordering Information Table ..... 4
- Changed values for  $V_{IL}$  and  $V_{IH}$  in the Watchdog Enable Input (nWD\_EN pin) section ..... 7
- Changed values for  $V_{IL}$  and  $V_{IH}$  in the Watchdog Input Pulse (WD pin) section ..... 7

---

## 5 Pin Configuration and Functions



### Pin Functions

| PIN     |     |     | I/O | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------|-----|-----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NAME    | PWP | DRK |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| EN      | 5   | 4   | I   | Chip enable pin: This is a high-voltage-tolerant input pin with an internal pulldown. A high input to this pin activates the device and turns the regulator ON. Connect this input to the VIN terminal for self-bias applications. If this pin remains unconnected, the device stays disabled.                                                                                                                                                                  |
| FB      | 3   | —   | I   | Feedback pin (only applicable for TPS7A6x01-Q1): Sense voltage for error amplifier                                                                                                                                                                                                                                                                                                                                                                              |
| GND     | 4   | 3   | I/O | Ground pin: This is signal ground pin of the device.                                                                                                                                                                                                                                                                                                                                                                                                            |
| NC      | 3   | —   | —   | Not connected (only applicable for TPS7A6333-Q1 and TPS7A6350-Q1)                                                                                                                                                                                                                                                                                                                                                                                               |
| NC      | 8   | —   | —   | Not connected                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NC      | 11  | —   | —   | Not connected                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NC      | 13  | —   | —   | Not connected                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| nRST    | 2   | 2   | O   | Reset pin: This is an open-drain reset output pin with an external pullup resistor connected to the VOUT pin.                                                                                                                                                                                                                                                                                                                                                   |
| nWD_EN  | 12  | 9   | I   | Watchdog enable pin: A high input to this pin disables the watchdog, and vice versa. This is an active-low input pin with an internal pulldown. Leaving this pin unconnected and floating keeps the watchdog enabled. An external microcontroller can pull this pin high momentarily to disable and reinitialize the watchdog.                                                                                                                                  |
| RDELAY  | 6   | 8   | O   | Reset delay timer pin: This pin programs the reset delay timer using an external capacitor ( $C_{DLY}$ ) to ground.                                                                                                                                                                                                                                                                                                                                             |
| ROSC    | 14  | 10  | O   | ROscillator pin: This pin programs the internal oscillator frequency (and hence the duration of the watchdog window) by connecting an external resistor to ground.                                                                                                                                                                                                                                                                                              |
| WD      | 10  | 7   | I   | Watchdog service pin: This is an input pin to provide a service signal to the watchdog.                                                                                                                                                                                                                                                                                                                                                                         |
| WD_FLAG | 9   | 6   | O   | Watchdog flag pin (for TPS7A6401-Q1 only): This is an active-high latched fault (that is, flag) output pin with an external pullup resistor connected to VOUT pin.                                                                                                                                                                                                                                                                                              |
| WD_FLT  | 9   | 6   | O   | Watchdog fault pin (for TPS7A63-Q1 only): This is an active-low fault output pin with an external pullup resistor connected to the VOUT pin.                                                                                                                                                                                                                                                                                                                    |
| VIN     | 1   | 1   | I   | Input voltage pin: The unregulated input voltage is supplied to this pin. A bypass capacitor connected between the VIN pin and GND pin dampens line transients on the input.                                                                                                                                                                                                                                                                                    |
| VOUT    | 7   | 5   | O   | Regulated output voltage pin: This is a regulated voltage output ( $V_{OUT} = 3.3$ V or 5 V or a programmed value) pin with a limitation on maximum output current. For devices with adjustable output voltage (TPS7A6x01-Q1), connecting an external resistor network programs the output voltage. In order to achieve stable operation and prevent oscillation, connect an external output capacitor ( $C_{OUT}$ ) with low ESR between this pin and GND pin. |

## 6 Specifications

### 6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)<sup>(1)</sup>

| DESCRIPTION                          |                                                  | MIN | MAX | UNIT |
|--------------------------------------|--------------------------------------------------|-----|-----|------|
| $V_{IN}$ , $V_{EN}$                  | Unregulated inputs <sup>(2)(3)</sup>             |     | 45  | V    |
| $V_{OUT}$                            | Regulated output                                 |     | 7   | V    |
| FB                                   | Sense voltage for error amplifier <sup>(2)</sup> |     | 7   | V    |
| ROSC                                 | Constant-voltage reference <sup>(2)</sup>        |     | 7   | V    |
| nWD_EN,<br>WD,<br>WD_FLAG,<br>WD_FLT | Watchdog inputs and outputs <sup>(2)</sup>       |     | 7   | V    |
| nRST                                 | Open-drain reset output <sup>(2)</sup>           |     | 7   | V    |
| RDELAY                               | Reset delay timer output <sup>(2)</sup>          |     | 7   | V    |
| $T_A$                                | Operating ambient temperature                    |     | 125 | °C   |
| $T_{stg}$                            | Storage temperature                              | -65 | 150 | °C   |

(1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to GND.

(2) Absolute negative voltage on these pins not to go below -0.3 V.  
 (3) Absolute maximum voltage for duration less than 480 ms.

### 6.2 ESD Ratings

|             |                         |                                                         | VALUE | UNIT |
|-------------|-------------------------|---------------------------------------------------------|-------|------|
| $V_{(ESD)}$ | Electrostatic discharge | Human body model (HBM), per AEC Q100-002 <sup>(1)</sup> | ±4000 | V    |
|             |                         | Charged device model (CDM), per AEC Q100-011            | ±1500 |      |

(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

### 6.3 Recommended Operating Conditions

|                                                                                                 |                                      | MIN              | MAX  | UNIT |
|-------------------------------------------------------------------------------------------------|--------------------------------------|------------------|------|------|
| $V_{IN}$                                                                                        | Unregulated input voltage            | 7 <sup>(1)</sup> | 40   | V    |
| $V_{EN}$                                                                                        | Enable pin voltage                   | 4                | 40   | V    |
| nRST, RDELAY, nWD_EN, WD_FLT <sup>(2)</sup> ,<br>WD_FLAG <sup>(3)</sup> , WD, FB <sup>(4)</sup> | Low voltage input or output          | 0                | 5.25 | V    |
| $T_J$                                                                                           | Operating junction temperature range | -40              | 150  | °C   |

(1)  $V_{IN}$  can go down to 4 V for 130 ms or less and remain functional. If  $V_{IN}$  is less than 7 V for longer than 130 ms, then some devices can turn off until the input voltage rises above 7 V.  
 (2) Applicable for TPS7A63-Q1 only  
 (3) Applicable for TPS7A6401-Q1 only  
 (4) Applicable for TPS7A6301-Q1 and TPS7A6401-Q1 only

## 6.4 Thermal Information

| THERMAL METRIC <sup>(1)</sup> |                                              | TPS7A6401-Q1<br>TPS7A63-Q1 |            | UNIT |
|-------------------------------|----------------------------------------------|----------------------------|------------|------|
|                               |                                              | PWP (HTTSOP)               | DRK (VSON) |      |
|                               |                                              | 14 PINS                    | 10 PINS    |      |
| R <sub>θJA</sub>              | Junction-to-ambient thermal resistance       | 46                         | 36.5       | °C/W |
| R <sub>θJC(top)</sub>         | Junction-to-case (top) thermal resistance    | 32.6                       | 36.6       | °C/W |
| R <sub>θJB</sub>              | Junction-to-board thermal resistance         | 27.4                       | 11.6       | °C/W |
| Ψ <sub>JT</sub>               | Junction-to-top characterization parameter   | 1.2                        | 0.5        | °C/W |
| Ψ <sub>JB</sub>               | Junction-to-board characterization parameter | 27.2                       | 11.7       | °C/W |
| R <sub>θJC(bot)</sub>         | Junction-to-case (bottom) thermal resistance | 2.5                        | 3.8        | °C/W |

(1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC Package Thermal Metrics](#) application report.

## 6.5 Electrical Characteristics

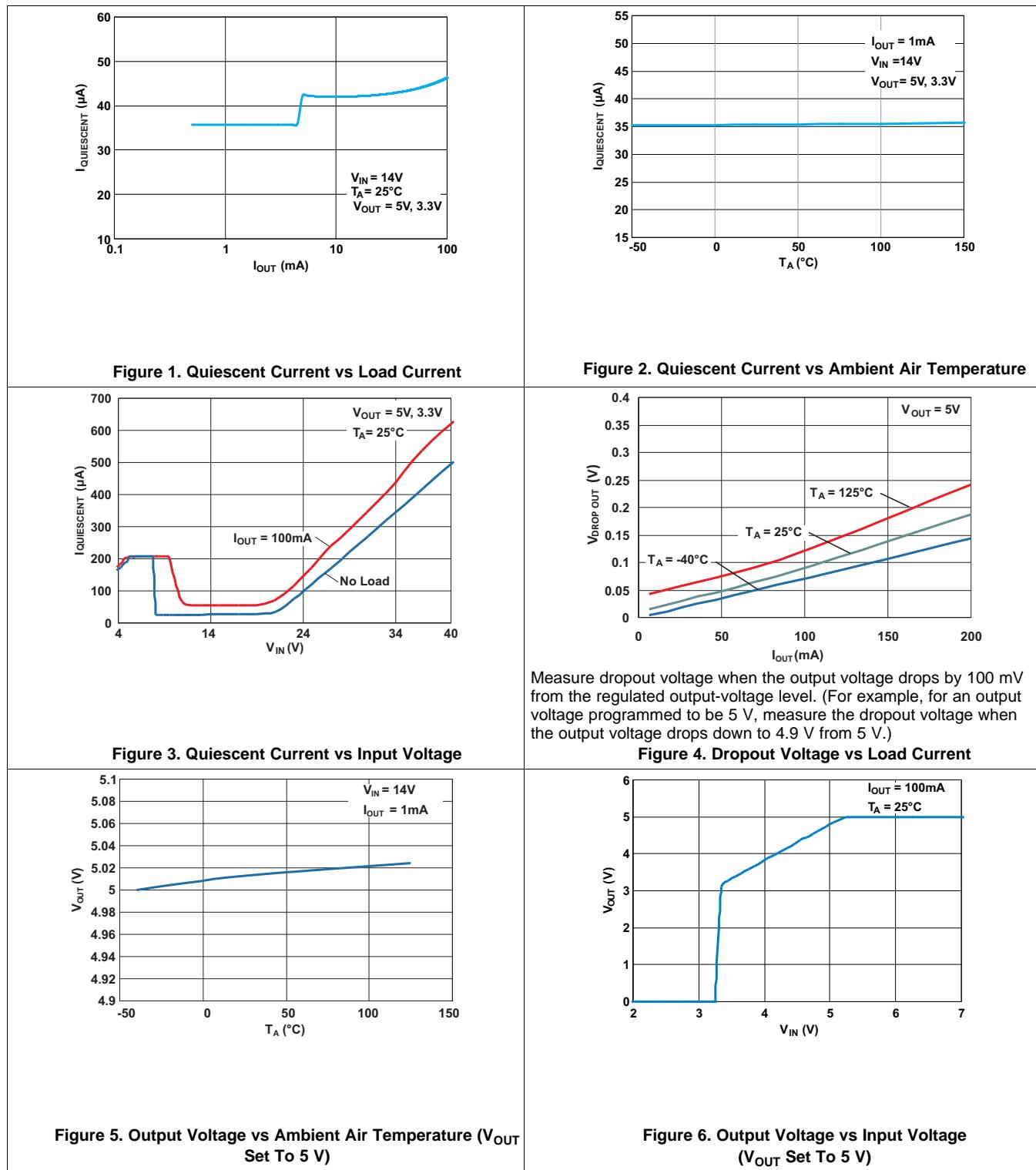
V<sub>IN</sub> = 14 V, T<sub>J</sub> = –40°C to 150°C (unless otherwise noted)

| PARAMETER                                  | TEST CONDITIONS                                       | MIN                                                                                                                                                   | TYP              | MAX  | UNIT |
|--------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------|------|
| <b>INPUT VOLTAGE (VIN PIN)</b>             |                                                       |                                                                                                                                                       |                  |      |      |
| V <sub>IN</sub>                            | Input voltage                                         | V <sub>OUT</sub> = 2.5 V to 7 V, I <sub>OUT</sub> = 1 mA                                                                                              | 7 <sup>(1)</sup> | 40   | V    |
| I <sub>QUIESCENT</sub>                     | Quiescent current                                     | V <sub>IN</sub> = 8.2 V to 18 V, V <sub>EN</sub> = 5 V, I <sub>OUT</sub> = 0.01 mA to 0.75 mA                                                         | 35               |      | µA   |
| I <sub>SLEEP</sub>                         | Sleep or shutdown current                             | V <sub>IN</sub> = 8.2 V to 18 V, V <sub>EN</sub> < 0.8 V, I <sub>OUT</sub> = 0 mA (no load), T <sub>A</sub> = 125°C                                   | 3                |      | µA   |
| V <sub>IN-UVLO</sub>                       | Undervoltage lockout voltage                          | Ramp V <sub>IN</sub> down until output is turned OFF                                                                                                  | 3.16             |      | V    |
| V <sub>IN(POWERUP)</sub>                   | Power-up voltage                                      | Ramp V <sub>IN</sub> up until output is turned ON                                                                                                     | 3.45             |      | V    |
| <b>DEVICE ENABLE INPUT (EN PIN)</b>        |                                                       |                                                                                                                                                       |                  |      |      |
| V <sub>IL</sub>                            | Logic-input low level                                 |                                                                                                                                                       | 0                | 0.8  | V    |
| V <sub>IH</sub>                            | Logic-input high level                                |                                                                                                                                                       | 2.5              | 40   | V    |
| <b>REGULATED OUTPUT VOLTAGE (VOUT PIN)</b> |                                                       |                                                                                                                                                       |                  |      |      |
| V <sub>OUT</sub>                           | Regulated output voltage                              | Fixed V <sub>OUT</sub> value (3.3 V, 5 V or a programmed value), I <sub>OUT</sub> = 10 mA to 200 mA, V <sub>IN</sub> = V <sub>OUT</sub> + 1 V to 16 V | –2%              | 2%   |      |
| ΔV <sub>LINE-REG</sub>                     | Line regulation                                       | V <sub>IN</sub> = 6 V to 28 V, I <sub>OUT</sub> = 10 mA, V <sub>OUT</sub> = 5 V                                                                       | 15               |      | mV   |
|                                            |                                                       | V <sub>IN</sub> = 6 V to 28 V, I <sub>OUT</sub> = 10 mA, V <sub>OUT</sub> = 3.3 V                                                                     | 20               |      |      |
| ΔV <sub>LOAD-REG</sub>                     | Load regulation                                       | I <sub>OUT</sub> = 10 mA to 200 mA, V <sub>IN</sub> = 14 V, V <sub>OUT</sub> = 5 V                                                                    | 25               |      | mV   |
|                                            |                                                       | I <sub>OUT</sub> = 10 mA to 200 mA, V <sub>IN</sub> = 14 V, V <sub>OUT</sub> = 3.3 V                                                                  | 35               |      |      |
| V <sub>DROPOUT</sub>                       | Dropout voltage (V <sub>IN</sub> – V <sub>OUT</sub> ) | I <sub>OUT</sub> = 200 mA                                                                                                                             | 500              |      | mV   |
|                                            |                                                       | I <sub>OUT</sub> = 150 mA                                                                                                                             | 300              |      |      |
| R <sub>SW</sub> <sup>(2)</sup>             | Switch resistance                                     | VIN to VOUT resistance                                                                                                                                | 2                |      | Ω    |
| I <sub>OUT</sub>                           | Output current                                        | V <sub>OUT</sub> in regulation                                                                                                                        | 0                | 200  | mA   |
|                                            |                                                       | [V <sub>OUT</sub> in regulation, V <sub>OUT</sub> = 3.3 V, V <sub>IN</sub> = 6 V] <sup>(3)</sup>                                                      | 0                | 300  |      |
| I <sub>CL</sub>                            | Output current limit                                  | V <sub>OUT</sub> = 0 V (VOUT pin is shorted to ground)                                                                                                | 350              | 1000 | mA   |
| PSRR <sup>(4)</sup>                        | Power-supply ripple rejection                         | V <sub>IN-RIPPLE</sub> = 0.5 Vpp, I <sub>OUT</sub> = 200 mA, frequency = 100 Hz, V <sub>OUT</sub> = 5 V and V <sub>OUT</sub> = 3.3 V                  | 60               |      | dB   |
|                                            |                                                       | V <sub>IN-RIPPLE</sub> = 0.5 Vpp, I <sub>OUT</sub> = 200 mA, frequency = 150 kHz, V <sub>OUT</sub> = 5 V and V <sub>OUT</sub> = 3.3 V                 | 30               |      |      |

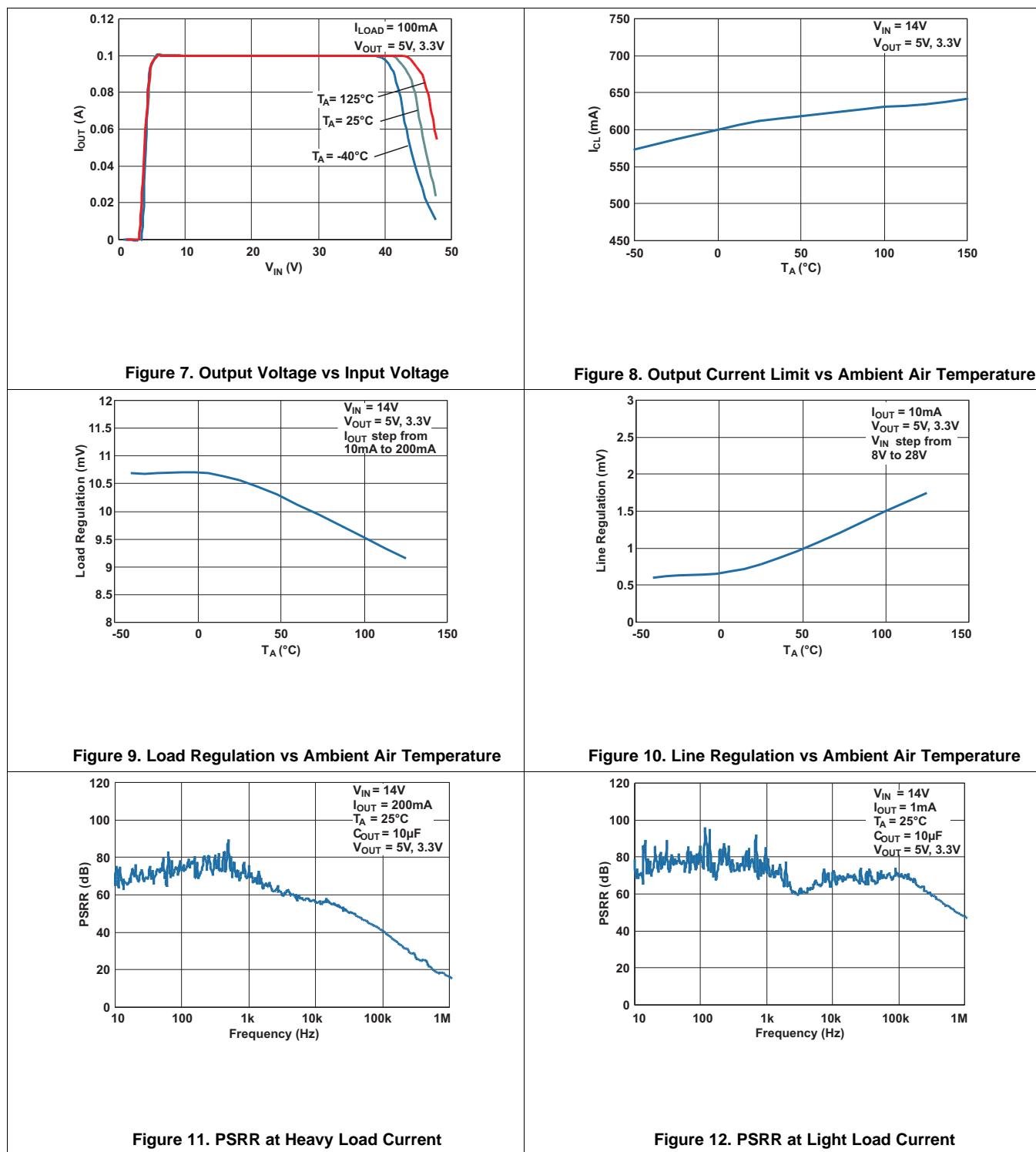
(1) V<sub>IN</sub> can go down to 4 V for 130 ms or less and remain functional. If V<sub>IN</sub> is less than 7 V for longer than 130 ms, then some devices can turn off until the input voltage rises above 7 V.

(2) This test is done with V<sub>OUT</sub> in regulation, measuring the V<sub>IN</sub> – V<sub>OUT</sub> parameter when V<sub>OUT</sub> drops by 100 mV from the programmed value (of V<sub>OUT</sub>) at specified loads.

(3) Design Information - not tested; specified by characterization.


(4) Specified by design - not tested.

## Electrical Characteristics (continued)


$V_{IN} = 14\text{ V}$ ,  $T_J = -40^\circ\text{C}$  to  $150^\circ\text{C}$  (unless otherwise noted)

| PARAMETER                                                  |                                                      | TEST CONDITIONS                                                               | MIN  | TYP  | MAX      | UNIT             |
|------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------|------|------|----------|------------------|
| <b>RESET (nRST PIN)</b>                                    |                                                      |                                                                               |      |      |          |                  |
| $V_{OL}$                                                   | Reset pulled low                                     | $I_{OL} = 5\text{ mA}$                                                        |      |      | 0.4      | V                |
| $I_{OH}$                                                   | Leakage current                                      | Reset pulled to $V_{OUT}$ through a $5\text{-k}\Omega$ resistor               |      |      | 1        | $\mu\text{A}$    |
| $V_{TH(POR)}$                                              | Power-on-reset threshold                             | $V_{OUT}$ powered up above internally set tolerance, $V_{OUT} = 5\text{ V}$   | 4.5  | 4.65 | 4.77     | V                |
|                                                            |                                                      | $V_{OUT}$ powered up above internally set tolerance, $V_{OUT} = 3.3\text{ V}$ |      |      | 3.07     |                  |
| $UV_{THRES}$                                               | Reset threshold                                      | $V_{OUT}$ falling below internally set tolerance, $V_{OUT} = 5\text{ V}$      | 4.5  | 4.65 | 4.77     | V                |
|                                                            |                                                      | $V_{OUT}$ falling below internally set tolerance, $V_{OUT} = 3.3\text{ V}$    |      |      | 3.07     |                  |
| $t_{POR}^{(3)}$                                            | Power-on-reset delay                                 | $C_{DLY} = 100\text{ pF}$                                                     |      |      | 300      | $\mu\text{s}$    |
|                                                            |                                                      | $C_{DLY} = 100\text{ nF}$                                                     |      |      | 300      | ms               |
| $t_{POR-PRESET}$                                           | Internally preset Power-on-reset delay               | $C_{DLY}$ not connected, $V_{OUT} = 5\text{ V}$ and $V_{OUT} = 3.3\text{ V}$  |      |      | 250      | $\mu\text{s}$    |
| $t_{DEGLITCH}$                                             | Reset deglitch time                                  |                                                                               |      |      | 5.5      | $\mu\text{s}$    |
| <b>RESET DELAY (RDELAY PIN)</b>                            |                                                      |                                                                               |      |      |          |                  |
| $V_{TH(RDELAY)}$                                           | Threshold to release nRST high                       | Voltage at RDELAY pin is ramped up                                            | 3    | 3.3  |          | V                |
| $I_{DLY}$                                                  | Delay capacitor charging current                     |                                                                               | 0.75 | 1    | 1.25     | $\mu\text{A}$    |
| $I_{OL}$                                                   | Delay capacitor discharging current                  | Voltage at RDELAY pin = 1 V                                                   | 5    |      |          | mA               |
| <b>CURRENT VOLTAGE REFERENCE (ROSC PIN)</b>                |                                                      |                                                                               |      |      |          |                  |
| $V_{ROSC}$                                                 | Voltage reference                                    |                                                                               | 0.95 | 1    | 1.05     | V                |
| <b>WATCHDOG FAULT / FLAG OUTPUT (WD_FLT / WD_FLAG Pin)</b> |                                                      |                                                                               |      |      |          |                  |
| $V_{OL}$                                                   | Logic output low level                               | $I_{OL} = 5\text{ mA}$                                                        |      |      | 0.4      | V                |
| $I_{OH}$                                                   | Leakage current                                      | WD_FLT/WD_FLAG pulled to $V_{OUT}$ through $5\text{-k}\Omega$ resistor        |      |      | 1        | $\mu\text{A}$    |
| <b>WATCHDOG ENABLE INPUT (nWD_EN PIN)</b>                  |                                                      |                                                                               |      |      |          |                  |
| $V_{IL}$                                                   | Logic input low level                                |                                                                               |      |      | 0.8      | V                |
| $V_{IH}$                                                   | Logic input high level                               | $3\text{ V} < V_{DD} < 5.25\text{ V}$                                         |      |      | 2.5      | V                |
| <b>WATCHDOG INPUT PULSE (WD PIN)</b>                       |                                                      |                                                                               |      |      |          |                  |
| $V_{IL}$                                                   | Logic input low level                                |                                                                               |      |      | 0.8      | V                |
| $V_{IH}$                                                   | Logic input high level                               | $3\text{ V} < V_{DD} < 5.25\text{ V}$                                         |      |      | 2.5      | V                |
| $t_{WD}$                                                   | Watchdog window duration                             | $R_{OSC} = 10\text{ k}\Omega \pm 1\%$                                         |      |      | 10       | ms               |
|                                                            |                                                      | $R_{OSC} = 20\text{k}\Omega \pm 1\%$                                          |      |      | 20       |                  |
| $t_{WD-tol}$                                               | Tolerance of watchdog period using external resistor | Excludes tolerance of $R_{OSC}$ (external resistor connected to ROSC pin)     |      |      | -10% 10% |                  |
| $t_{WD-DEFAULT}$                                           | Default watchdog period                              | External resistor not connected, ROSC pin is floating or open                 | 108  | 164  | 254      | ms               |
| $t_{WD-HOLD}$                                              | Minimum pulse width for resetting watch dog timer    |                                                                               |      |      | 1.65     | $\mu\text{s}$    |
| <b>OPERATING TEMPERATURE RANGE</b>                         |                                                      |                                                                               |      |      |          |                  |
| $T_J$                                                      | Operating junction temperature                       |                                                                               | -40  | 150  |          | $^\circ\text{C}$ |
| $T_{SHUTDOWN}$                                             | Thermal shutdown trip point                          |                                                                               |      |      | 165      | $^\circ\text{C}$ |
| $T_{HYST}$                                                 | Thermal shutdown hysteresis                          |                                                                               |      |      | 10       | $^\circ\text{C}$ |

## 6.6 Typical Characteristics

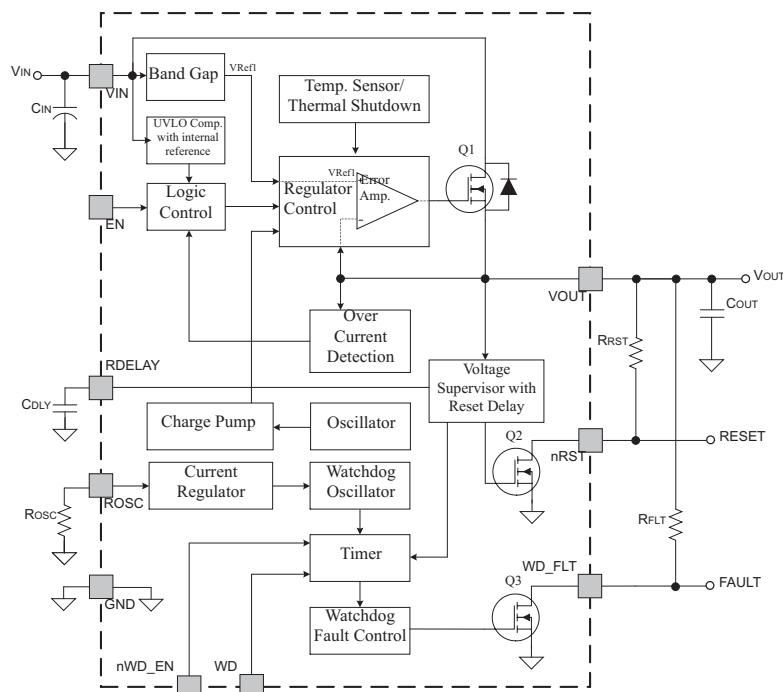


## Typical Characteristics (continued)



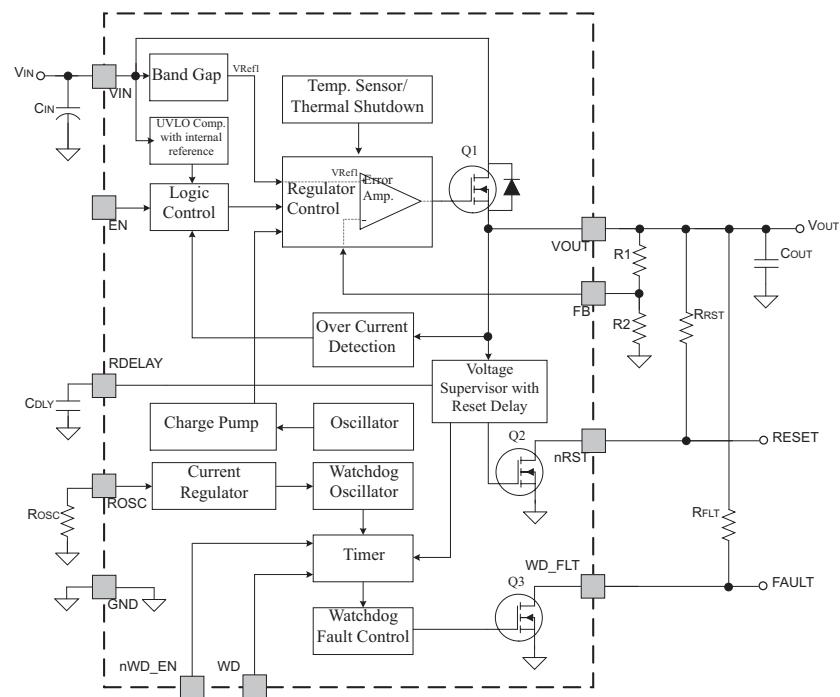
## 7 Detailed Description

### 7.1 Overview

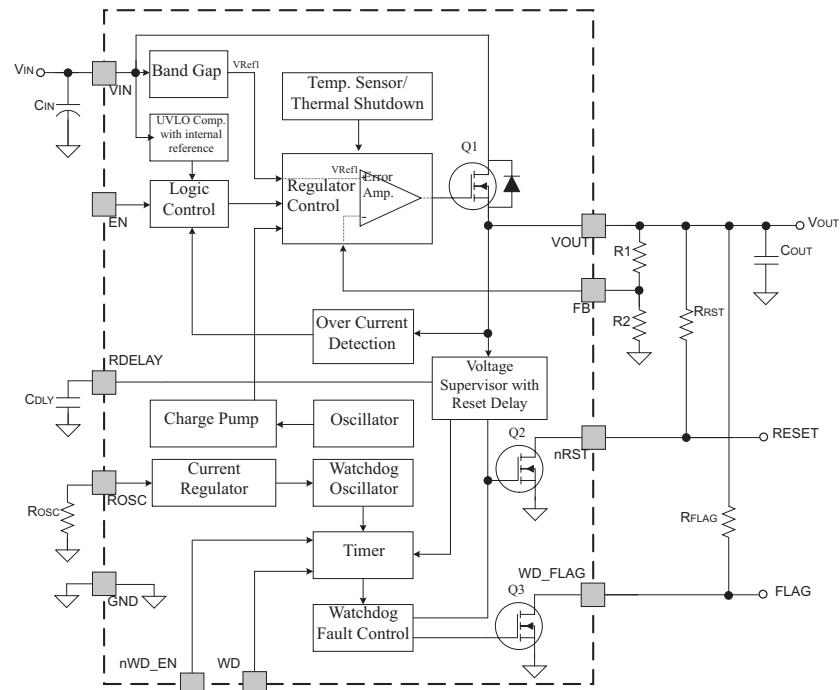

The TPS7A63-Q1 and TPS7A6401-Q1 are a family of monolithic low-dropout linear voltage regulators with integrated watchdog and reset functionality. These voltage regulators are designed for low power consumption and quiescent current less than 25  $\mu$ A in light-load applications. Because of a programmable reset delay (also called power-on-reset delay), these devices are well-suited in power supplies for microprocessors and microcontrollers.

These devices are available in two fixed and adjustable output-voltage versions as follows:

- Fault (WD\_FLT) output version: TPS7A63-Q1
- Flag (WD\_FLAG) output version: TPS7A6401-Q1


*Feature Description* describes the features of the TPS7A63-Q1 and TPS7A6401-Q1 voltage regulators in detail.

### 7.2 Functional Block Diagrams




**Figure 13. TPS7A6333-Q1 and TPS7A6350-Q1 (Fixed Output Voltage With Fault Output)**

## Functional Block Diagrams (continued)



**Figure 14. TPS7A6301 (Adjustable Output Voltage With Fault Output)**



**Figure 15. TPS7A6401-Q1 (Adjustable Output Voltage With Flag Output)**

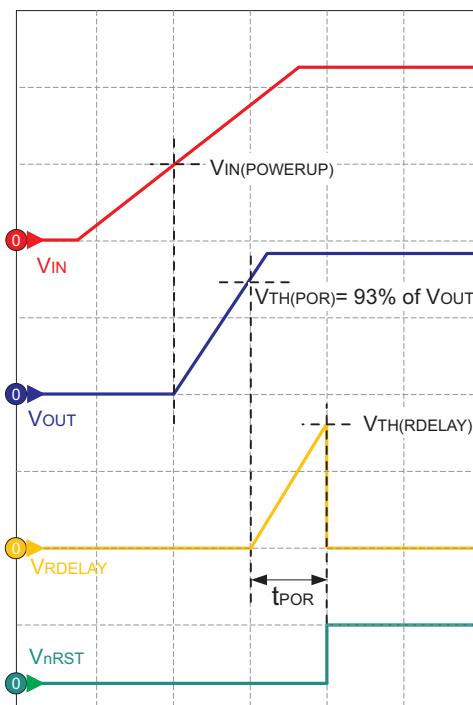
## 7.3 Feature Description

### 7.3.1 Power Up, Reset Delay, and Reset Output

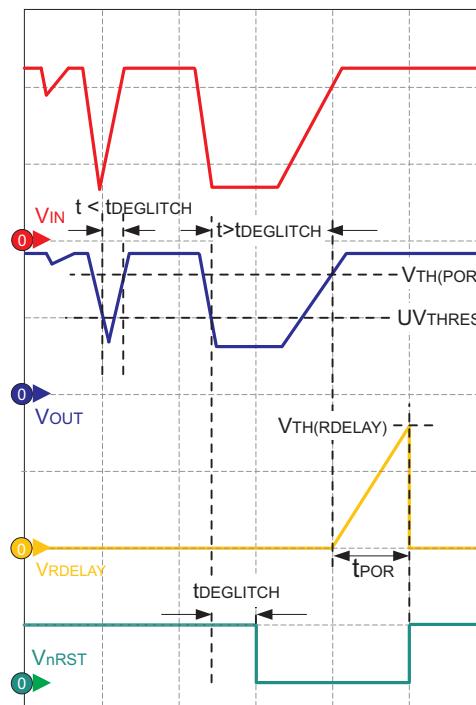
During power up, the regulator incorporates a protection scheme to limit the current through the pass element and output capacitor. When the input voltage exceeds a certain threshold ( $V_{IN(POWERUP)}$ ) level, the output voltage begins to ramp up as shown in [Figure 16](#).

When starting up, and also when the output recovers from a negative voltage spike due to a load step or a dip in the input voltage for a specified duration, the device implements reset delay to indicate that output voltage is stable and in regulation.

When the output voltage reaches the power-on-reset threshold ( $V_{TH(POR)}$ ) level, that is, 93% of regulated output voltage (3.3 V or 5 V, or a programmed value), a constant output current charges an external capacitor ( $C_{DLY}$ ) to an internal threshold ( $V_{TH(RDELAY)}$ ) voltage level. Then, nRST asserts high and  $C_{DLY}$  discharges through an internal load. This allows  $C_{DLY}$  to charge from approximately 0 V during the next power cycle.


Program the reset delay time by connecting an external capacitor ( $C_{DLY}$ , 100 pF to 100 nF) to the RDELAY pin. [Equation 1](#) gives the delay time:

$$t_{POR} = \frac{C_{DLY} \times 3}{1 \times 10^{-6}}$$


where

- $t_{POR}$  = reset delay time in seconds
- $C_{DLY}$  = reset delay capacitor value in farads

(1)



**Figure 16. Power Up and Conditions for Activation of Reset**



**Figure 17. Reset Delay and Deglitch Filter**

As [Figure 17](#) shows, if the regulated output voltage falls below 93% of the set level, nRST asserts low after a short de-glitch time of approximately 5.5  $\mu$ s (typical). In case of negative transients in the input voltage ( $V_{IN}$ ), the reset signal asserts low only if the output ( $V_{OUT}$ ) drops and stays below the reset threshold level ( $V_{TH(POR)}$ ) for more than the deglitch time ( $t_{DEGLITCH}$ ), as [Figure 17](#) and [Figure 20](#) illustrate. While nRST is low, if the input voltage returns to the nominal operating voltage, the normal power-up sequence ensues. nRST asserts high only if the output voltage exceeds the reset threshold voltage ( $V_{TH(POR)}$ ) and the reset delay time ( $t_{POR}$ ) has elapsed.

## Feature Description (continued)

### 7.3.2 Adjustable Output Voltage

Program the regulated output voltage ( $V_{OUT}$ ) by connecting external resistors to FB pin. Calculate the feedback resistor values using [Equation 2](#).

$$V_{OUT} = V_{REF} \left[ 1 + \frac{R1}{R2} \right]$$

where

- $V_{OUT}$  = desired output voltage
- $V_{REF}$  = reference voltage ( $V_{REF} = 1.23$  V, typically)
- $R1, R2$  = feedback resistors (see [Figure 15](#))

(2)

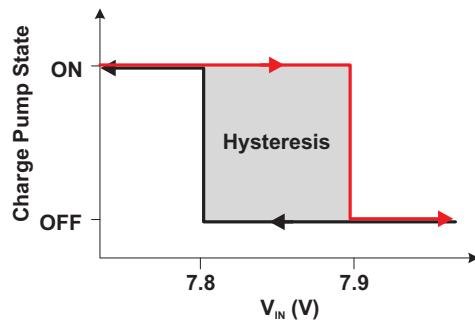
[Equation 3](#) gives the overall tolerance of the regulated output.

$$tol_{V_{OUT}} = tol_{V_{REF}} + \left[ \frac{R1}{R1 + R2} \right] [tol_{R1} + tol_{R2}]$$

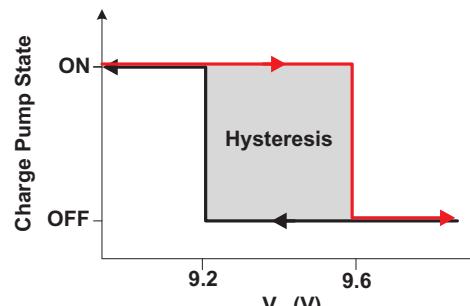
where

- $tol_{V_{OUT}}$  = tolerance of the output voltage
- $tol_{V_{REF}}$  = tolerance of the internal reference voltage ( $tol_{V_{REF}} = \pm 1.5\%$  typically)
- $tol_{R1}, tol_{R2}$  = tolerance of feedback resistors  $R1, R2$

(3)


For a tighter tolerance on  $V_{OUT}$ , select lower-value feedback resistors. TI recommends to select feedback resistors such that the sum of  $R1$  and  $R2$  is from 20 k $\Omega$  to 200 k $\Omega$ .

### 7.3.3 Chip Enable


These devices have a high-voltage-tolerant EN pin that an external microcontroller or a digital control circuit can use to enable and disable them. A high input to this pin activates the device and turns the regulator on. For self bias applications, connect this input to the VIN terminal. An internal pulldown resistor is connected to this pin, and therefore if this pin remains unconnected, the device stays disabled.

### 7.3.4 Charge Pump Operation

These devices have an internal charge pump which turns on or off depending on the input voltage and the output current. The charge pump switching circuitry must not cause conducted emissions to exceed required thresholds on the input voltage line. For a given output current, the charge pump stays on at lower input voltages and turns off at higher input voltages. The charge pump switching thresholds are hysteretic. [Figure 18](#) and [Figure 19](#) show typical switching thresholds for the charge pump at light ( $I_{OUT} <$  approximately 2 mA) and heavy ( $I_{OUT} >$  approximately 2 mA) loads, respectively.



**Figure 18. Charge Pump Operation at Light Loads**



**Figure 19. Charge Pump Operation at Heavy Loads**

### 7.3.5 Low-Power Mode

At light loads and high input voltages ( $V_{IN} >$  approximately 8 V, such that the charge pump is off), the device operates in low-power mode and the quiescent current consumption is reduced to 25  $\mu$ A (typical) as shown in Table 1.

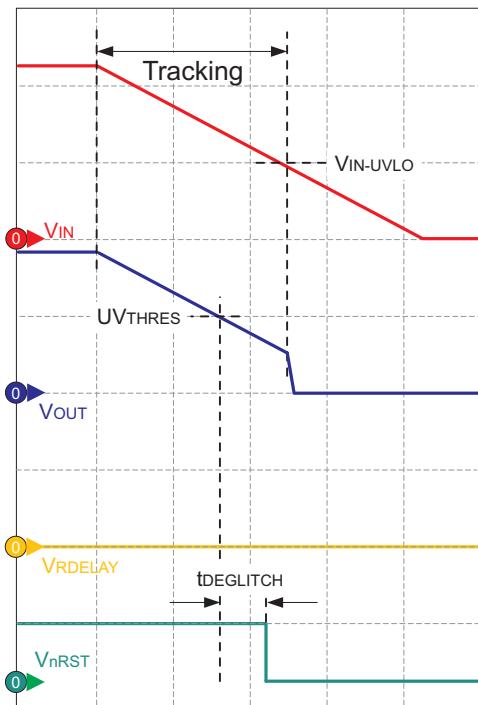
**Table 1. Typical Quiescent Current Consumption**

| $I_{OUT}$                                      | Charge Pump ON | Charge Pump OFF                |
|------------------------------------------------|----------------|--------------------------------|
| $I_{OUT} <$ approximately 2 mA<br>(Light load) | 250 $\mu$ A    | 35 $\mu$ A<br>(Low-power mode) |
| $I_{OUT} >$ approximately 2 mA<br>(Heavy load) | 280 $\mu$ A    | 70 $\mu$ A                     |

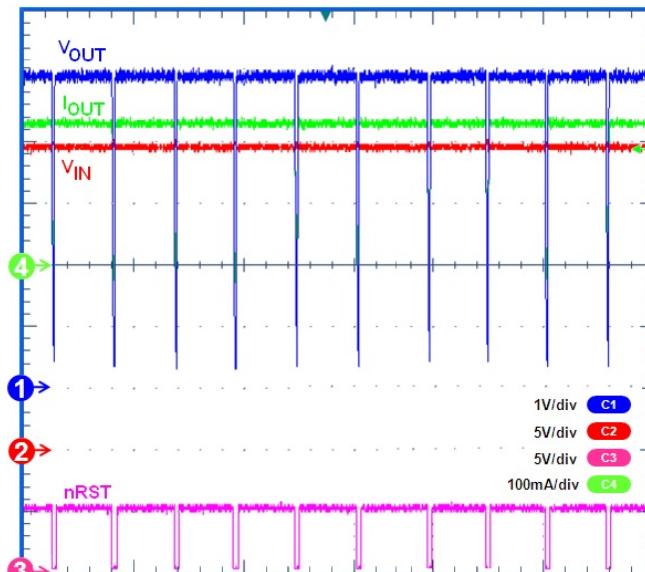
### 7.3.6 Undervoltage Shutdown

These devices have an integrated undervoltage lockout (UVLO) circuit to shut down the output if the input voltage ( $V_{IN}$ ) falls below an internally fixed UVLO threshold level ( $V_{IN-UVLO}$ ). This ensures that the regulator does not latch into an unknown state during low input voltage conditions. The regulator powers up when the input voltage exceeds the  $V_{IN(POWERUP)}$  level, as Figure 20 shows.

### 7.3.7 Low-Voltage Tracking


At low input voltages, the regulator drops out of regulation, and the output voltage tracks the input minus a voltage based on the load current ( $I_{OUT}$ ) and switch resistance ( $R_{SW}$ ), as Figure 20 shows. This feature allows for a smaller input capacitor and can possibly eliminate the need of using a boost convertor during cold crank conditions, as Figure 20 shows.

### 7.3.8 Integrated Fault Protection


These devices feature integrated fault protection to make them ideal for use in automotive applications. In order to remain in a safe area of operation during certain fault conditions, the devices use internal current-limit protection and current-limit foldback to limit the maximum output current. This protects them from excessive power dissipation. For example, during a short-circuit condition on the output, fault protection limits the current through the pass element to  $I_{CL}$  to protect the device from excessive power dissipation.

### 7.3.9 Thermal Shutdown

These devices incorporate a thermal shutdown (TSD) circuit as a protection from overheating. For continuous normal operation, the junction temperature should not exceed the TSD trip point. The junction temperature exceeding the TSD trip point causes the output to turn off. When the junction temperature falls below TSD trip point, the output turns on again, as Figure 21 shows.



**Figure 20. Low-Voltage Tracking and Undervoltage Lockout**



**Figure 21. Thermal Cycling Waveform for TPS7A6350-Q1 ( $V_{IN} = 24$  V,  $I_{OUT} = 200$  mA,  $V_{OUT} = 5$  V)**

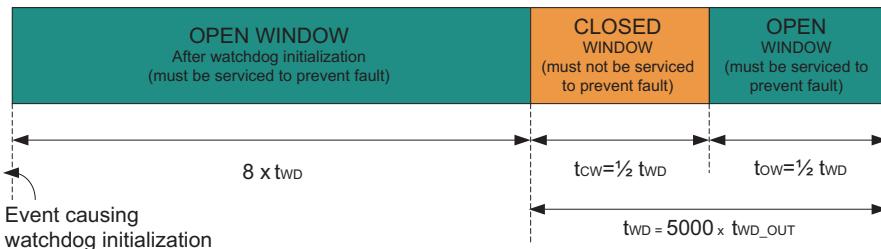
### 7.3.10 Integrated Window Watchdog

These devices have an integrated watchdog with fault (WD\_FLT) and flag (WD\_FLAG) output options. Both device options are available in fixed- and adjustable-output versions. The watchdog operation, service fault conditions, and difference between fault (TPS7A63-Q1) and flag (TPS7A6401-Q1) output versions are described as follows.

#### 7.3.10.1 Programmable-Window Watchdog

Program the duration of the watchdog window by connecting an external resistor ( $R_{OSC}$ ) to ground at the ROSC pin. The current through the resistor sets the clock frequency of the internal oscillator. The user can adjust the duration of the watchdog window (that is, the watchdog timer period) by changing the resistor value. The duration of the watchdog window and the duration of the fault output are multiples of the internal oscillator frequency and are given by the following equations:

$$t_{WD} = 10^{-6} \times R_{OSC} = 5000 \times 1 / f_{OSC} \quad (4)$$


$$t_{WD\_OUT} = 1 / f_{OSC} \quad (5)$$

$$t_{CW} = t_{OW} = 1 / 2 t_{WD}$$

where

- $t_{WD}$  = width of watchdog window
- $R_{OSC}$  = resistor connected at ROSC pin
- $t_{WD\_OUT}$  = duration of fault output
- $f_{OSC}$  = frequency of internal oscillator
- $t_{CW}$  = duration of closed window
- $t_{OW}$  = duration of open window

As shown in Figure 22, each watchdog window consists of an open window and a closed window, each having a width approximately 50% of the watchdog window. However, there is an exception to this; the first open window after watchdog initialization is eight times the duration of the watchdog window. All open windows except the one after watchdog initialization are one-half the width of the watchdog window. On initialization, the watchdog must receive service (by software, external microcontroller, and so forth) only during an open window. A watchdog serviced during a closed window, or not serviced during a open window, creates a watchdog fault condition.



**Figure 22. Watchdog Window Duration**

### 7.3.10.2 Watchdog Enable

An external microcontroller or a digital circuit can apply an appropriate signal to the nWD\_EN pin to enable or disable the watchdog. A low input to this pin turns the watchdog on. Because of an internal pulldown resistor connected to this pin, leaving the pin unconnected keeps the watchdog enabled.

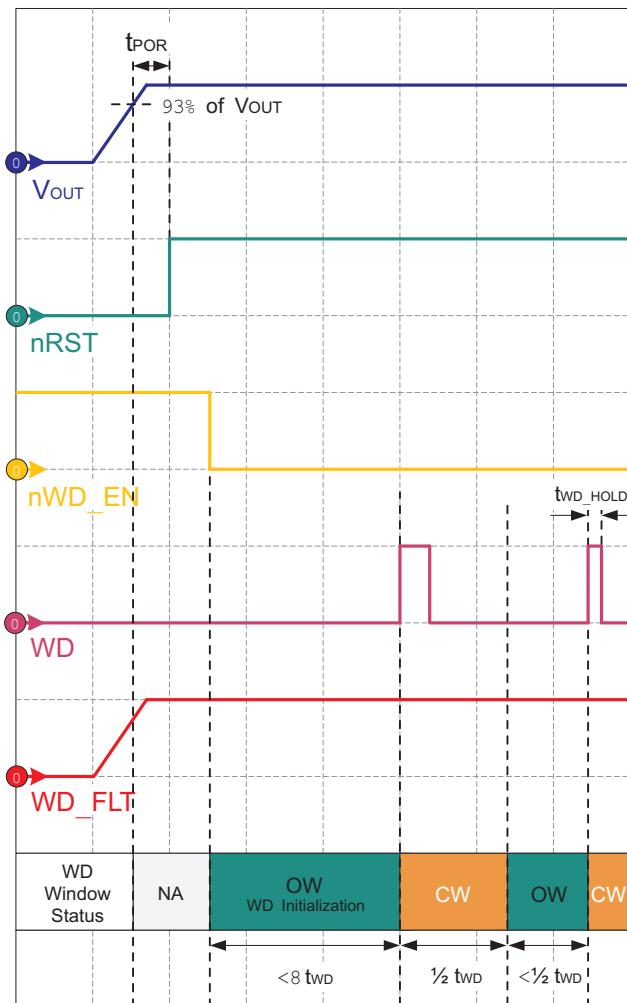
### 7.3.10.3 Watchdog Service Signal

In order for the watchdog service signal (WD) to service an open window correctly, the service signal must stay high for a duration of at least  $t_{WD\_HOLD}$ . The recommended value of  $t_{WD\_HOLD}$  is given by [Equation 7](#):

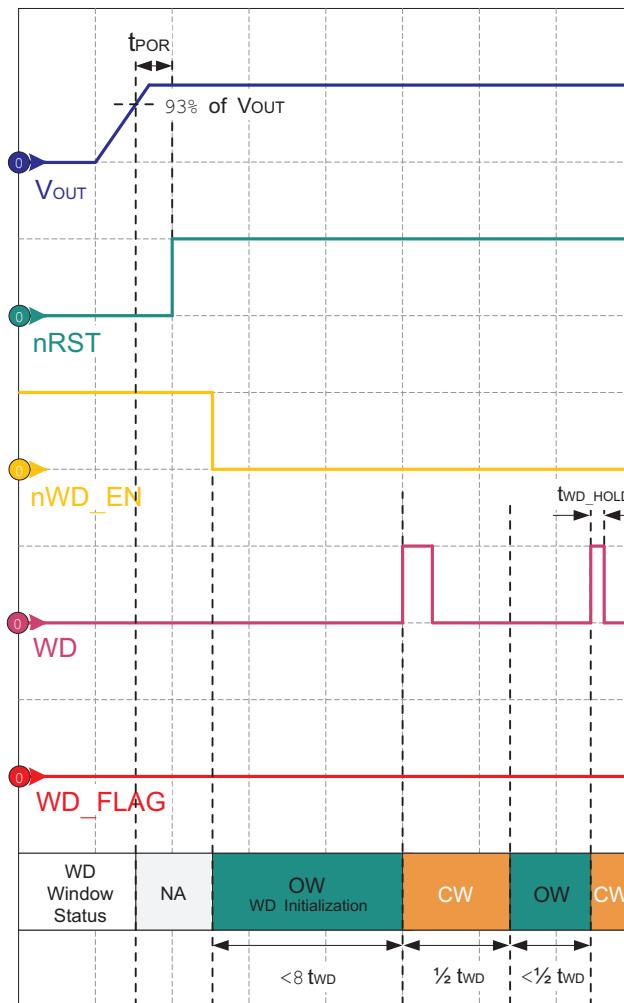
$$t_{WD\_HOLD} = 3 \times t_{WD\_OUT} \quad (7)$$

### 7.3.10.4 Watchdog Fault Outputs

The WD\_FLT pin and WD\_FLAG pin are fault output terminals for the TPS7A63-Q1 and TPS7A6401-Q1 devices, respectively. Typically, one pulls these fault outputs high to a regulated output supply. In the case of a watchdog fault condition, the TPS7A63-Q1 momentarily pulls WD\_FLT low for a duration of  $t_{WD\_OUT}$ , whereas the TPS7A6401-Q1 latches the WD\_FLAG high and momentarily pulls nRST low for a duration of  $t_{WD\_OUT}$ .


### 7.3.10.5 Watchdog Initialization

On power up and during normal operation, the watchdog initializes under the conditions shown in [Table 2](#). The normal operation of the watchdog for the WD\_FLT and WD\_FLAG output device options is shown in [Figure 23](#) and [Figure 24](#), respectively.


**Table 2. Conditions For Watchdog Initialization**

| Edge                                                                                | What causes watchdog to initialize?                                                                                                                 | TPS7A63-Q1<br>(FAULT Option) | TPS7A6401-Q1<br>(FLAG Option) |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------|
|  | Rising edge of nRST (when $V_{OUT}$ exceeds $V_{TH(POR)}$ ) while the watchdog is in the enabled state, for example, during soft power up           | ✓                            | ✓                             |
|  | Falling edge of nWD_EN while the nRST is already high, for example, when the microprocessor enables the watchdog after the device is powered up     | ✓                            | ✓                             |
|  | Rising edge of WD_FLT while the nRST is already high and the watchdog is in the enabled state, for example, right after a closed window is serviced | ✓                            | X                             |

### 7.3.10.6 Watchdog Operation



**Figure 23. Power Up, Initialization, and Normal Operation for TPS7A63-Q1**



**Figure 24. Power Up, Initialization, and Normal Operation for TPS7A6401-Q1**

Figure 23 shows watchdog initialization and operation for the TPS7A63-Q1. After output voltage is in regulation and reset asserts high (clearly the chip-enable pin is high), the watchdog becomes enabled when an external signal pulls nWD\_EN (the watchdog enable pin) low. This causes the watchdog to initialize and wait for a service signal during the first open window for 8x the duration of tWD. A service signal applied to the WD pin during the first open window resets the watchdog counter and a closed window starts. To prevent a fault condition from occurring, watchdog service must not occur during the closed window. Watchdog service must occur during the following open window to prevent fault condition from occurring. The fault output (WD\_FLT), externally pulled up to VOUT (typically), stays high as long as the watchdog receives proper serviced and there is no fault condition.

Figure 24 shows watchdog initialization and operation for FLAG output version (TPS7A6401-Q1). The fault output (WD\_FLAG), externally pulled up to VOUT (typically), stays low as long as the watchdog receives proper service and there is no fault condition.

Likewise, enabling the watchdog before powering the device on (that is, pulling the nWD\_EN pin low before power up), the watchdog initializes as soon as the output voltage is in regulation and reset asserts high (see Table 2 for Conditions for Watchdog Initialization).

### 7.3.10.7 Watchdog Fault Conditions

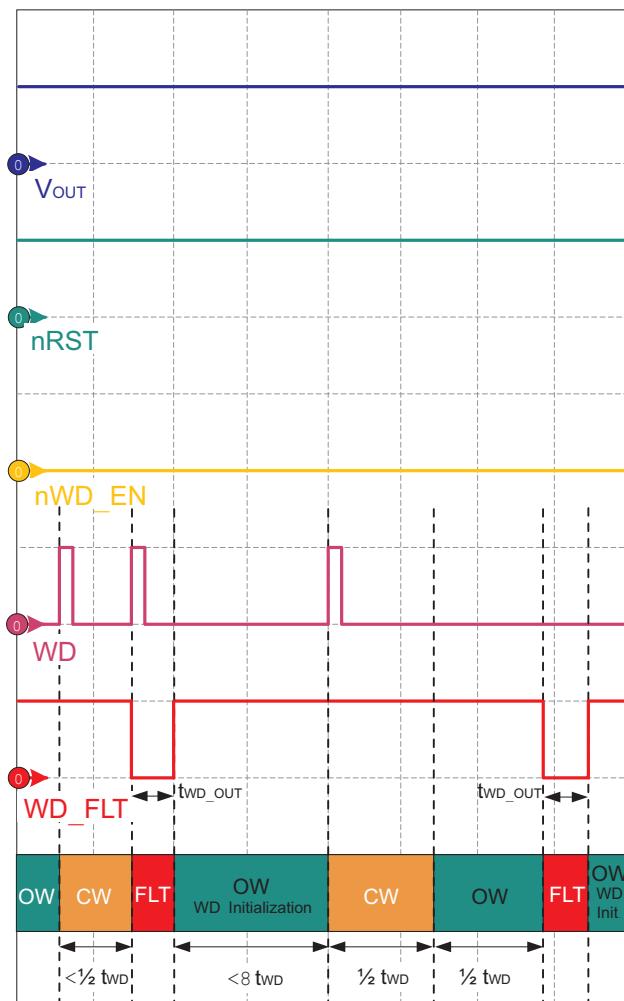
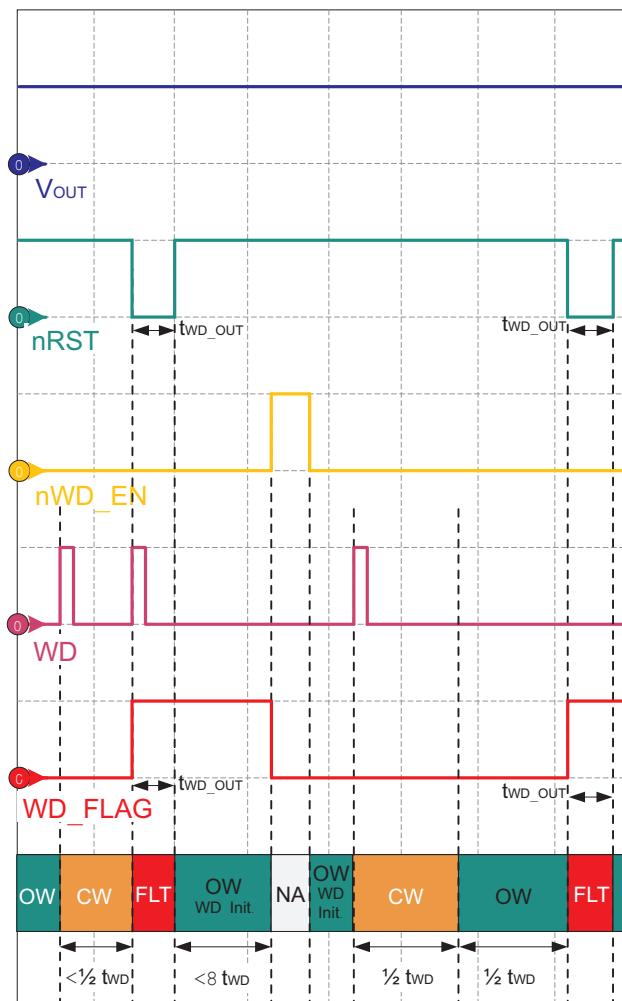
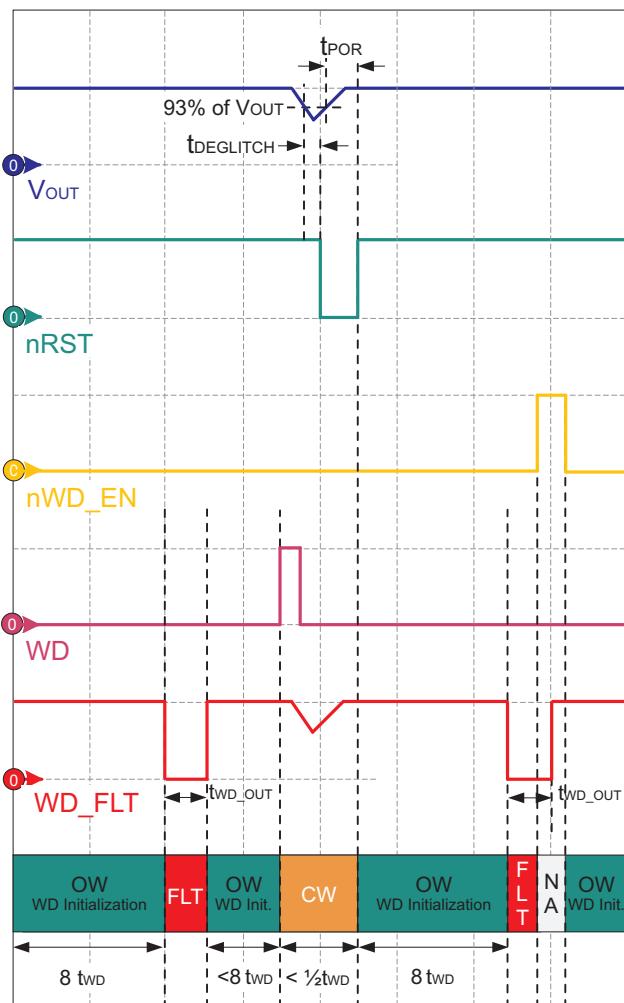
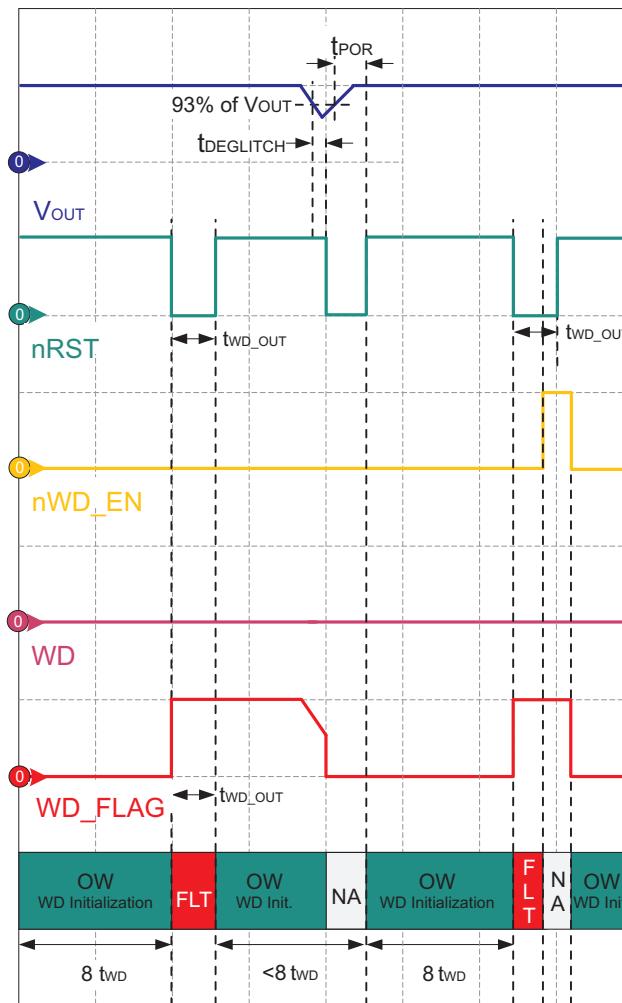



Figure 25. Watchdog Service Fault Conditions for TPS7A63-Q1





Figure 26. Watchdog Service Fault Conditions for TPS7A6401-Q1

For both device options, a watchdog fault condition occurs in following (non-exhaustive) cases:


- When the watchdog receives service during a closed window.
- When watchdog does not receive service during an open window (this open window could be the one after watchdog initialization, or the one following a closed window).

As shown in Figure 25, for TPS7A63-Q1 the first watchdog fault registers when the watchdog receives service during a closed window. This causes the watchdog fault pin (WD\_FLT) to go low temporarily for a duration of  $t_{WD\_OUT}$ . Following the fault, the watchdog reinitializes. Likewise, the second fault registers when the watchdog does not receive service during an open window (following a closed window). Again, the fault pin (WD\_FLT) asserts low for a duration of  $t_{WD\_OUT}$ .

As shown in Figure 26, for TPS7A6401-Q1 the first watchdog fault registers when watchdog receives service during a closes window. This causes the watchdog flag pin (WD\_FLAG) to become high and stay latched. At the same time, nRST pin goes low temporarily for the duration of  $t_{WD\_OUT}$ . WD\_FLAG remains high until toggling the nWD\_EN pin disables and re-enables the watchdog or the watchdog receives service properly (while nWD\_EN is low and nRST is high). The second fault registers when the watchdog does not receive service during an open window (following a closed window). While WD\_FLAG is high (that is, during a fault condition), if the watchdog stays enabled, and reset is high; a watchdog service signal can also bring WD\_FLAG low (about 5  $\mu$ s after the watchdog receives service).



**Figure 27. Watchdog Fault During Initialization, and Reinitialization During Reset for TPS7A63-Q1**



**Figure 28. Watchdog Fault During Initialization, and Reinitialization During Reset for TPS7A6401-Q1**

As shown in Figure 27 for the TPS7A6401-Q1, the watchdog fault condition also occurs if the watchdog does not receive service during the open window after watchdog initialization. That is, if the watchdog does not receive service during the first  $8 \times t_{WD\_OUT}$  period after initialization, a fault condition occurs. This causes the watchdog fault pin (WD\_FLT) to go low temporarily for a duration of  $t_{WD\_OUT}$ . In case of a load transient, if the regulated output voltage drops down causing reset (nRST) to go low, the rising edge on nRST causes the watchdog to reinitialize (that is, when reset becomes high with the watchdog still enabled). During a fault condition (that is, WD\_FLT is low) with the watchdog disabled, the fault output continues to stay low until  $t_{WD\_OUT}$  is elapsed. A falling edge on nWD\_EN pin causes the watchdog to reinitialize while nRST is still high.

As shown in Figure 28 for the TPS7A6401-Q1, the watchdog fault condition also occurs if the watchdog does not receive service during the open window after watchdog initialization. That is, if the watchdog does not receive service in first  $8 \times t_{WD\_OUT}$  period after initialization, a fault condition occurs. This causes the watchdog flag pin (WD\_FLAG) to become high and stay latched. At the same time, the nRST pin goes low temporarily for a duration of  $t_{WD\_OUT}$ . In the case of a load transient, if the regulated output voltage drops down causing the reset output to go low, the WD\_FLAG asserts low, and the rising edge on nRST causes the watchdog to reinitialize (while the watchdog remains enabled). During a fault condition (that is, WD\_FLAG is high), and with a disabled watchdog, the flag output continues to stay high as long as the watchdog remains enabled or receives proper service. However, nRST stays low until  $t_{WD\_OUT}$  elapses. Re-enabling the watchdog causes watchdog to reinitialize (while nRST is still high).

## 7.4 Device Functional Modes

### 7.4.1 Operation With $V_{IN}$ Lower Than 4 V

The TPS7A63-Q1 and TPS7A6401-Q1 family devices operate with input voltage above 4 V. The typical UVLO voltage is 3.16 V. The device can operate at input voltage lower than 4 V, but at input voltage below the actual UVLO, the device will shut down.

### 7.4.2 Operation With $V_{IN}$ Larger Than 4 V

When  $V_{IN}$  is greater than 4 V, if the input voltage is higher than  $V_{OUT}$  plus the dropout voltage, the output voltage is equal to the set value. Otherwise, the output voltage is equal to  $V_{IN}$  minus the dropout voltage.

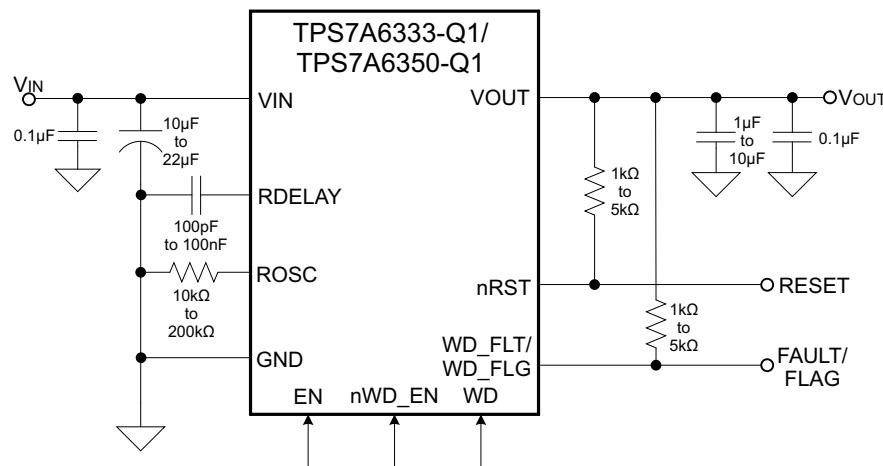
## 8 Application and Implementation

### NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

### 8.1 Application Information

Typical application circuits for TPS76333-Q1/TPS76350-Q1 and TPS7A6401-Q1 are shown in [Figure 29](#) and [Figure 32](#). Depending on the end application, one may use different values of external components. Carefully select feedback resistors (R1 and R2), used to program the output voltage. Using smaller resistors results in higher current consumption, whereas using very large resistors impacts the sensitivity of the regulator. Therefore, TI recommends selecting feedback resistors such that the sum of R1 and R2 is from 20 k $\Omega$  to 200 k $\Omega$ .


#### 8.1.1 Example

If the desired regulated output voltage is 5 V, after selecting R2 then one can calculate R1 using (or vice versa) [Equation 2](#). Knowing  $V_{REF} = 1.23$  V (typical),  $V_{OUT} = 5$  V, selecting  $R2 = 20$  k $\Omega$ , the calculated value of R1 is 61.3 k $\Omega$ .

During fast load steps, an application may require a larger output capacitor to prevent the output from temporarily dropping down. TI recommends a low-ESR ceramic capacitor with dielectric of type X5R or X7R. One can also connect a bypass capacitor at the output to decouple high-frequency noise as per the end application.

### 8.2 Typical Applications

#### 8.2.1 Typical Application Using the TPS7A6333-Q1 or TPS7A6350-Q1



**Figure 29. Typical Application Schematic, TPS7A6333-Q1/6350-Q1**

## Typical Applications (continued)

### 8.2.1.1 Design Requirements

For this design example, use the parameters listed in [Table 3](#).

**Table 3. Design Parameters**

| DESIGN PARAMETER       | EXAMPLE VALUES          |
|------------------------|-------------------------|
| Input voltage range    | 7 V - 40 V              |
| Input capacitor range  | 10 $\mu$ F - 22 $\mu$ F |
| Output voltage         | 3.3 V, 5 V              |
| Output current rating  | 300 mA maximum          |
| Output capacitor range | 1 $\mu$ F-10 $\mu$ F    |

### 8.2.1.2 Detailed Design Procedure

When using the TPS7A6333-Q1, TPS7A6350-Q1, TI recommends adding a 10- $\mu$ F to 22- $\mu$ F capacitor to the input to keep the input voltage stable. TI also recommends adding a 1- $\mu$ F to 10- $\mu$ F low ESR ceramic capacitor to get a stable output.

The reset delay time is set by an external capacitor (CDLY) to ground, capacitor value typical from 100 pF to 100 nF. [Equation 1](#) provides the method for the calculation.

Connecting an external resistor to ground at the ROSC pin can set the duration of the watchdog window. [Equation 4](#) provides the method for the calculation. Usually a 10-k $\Omega$  to 200-k $\Omega$  resistor can be used to set the time.

### 8.2.1.3 Application Curves

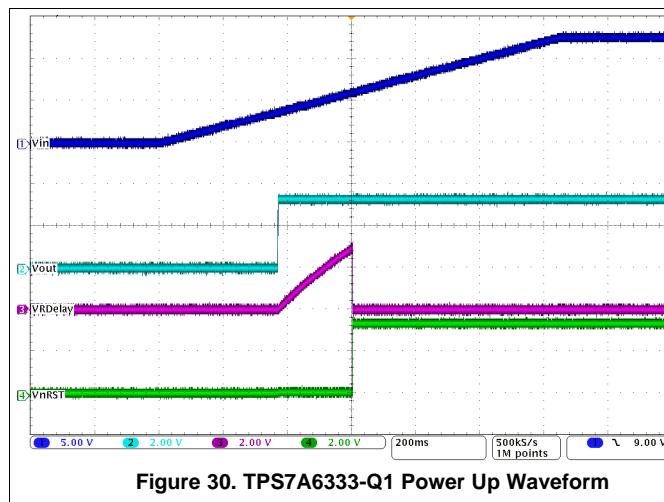



Figure 30. TPS7A6333-Q1 Power Up Waveform

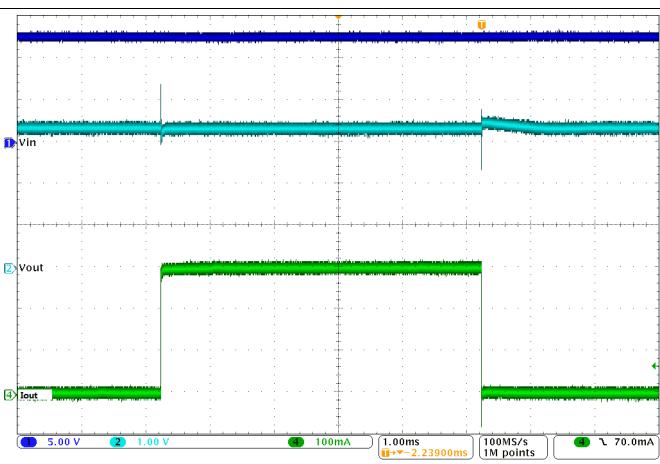
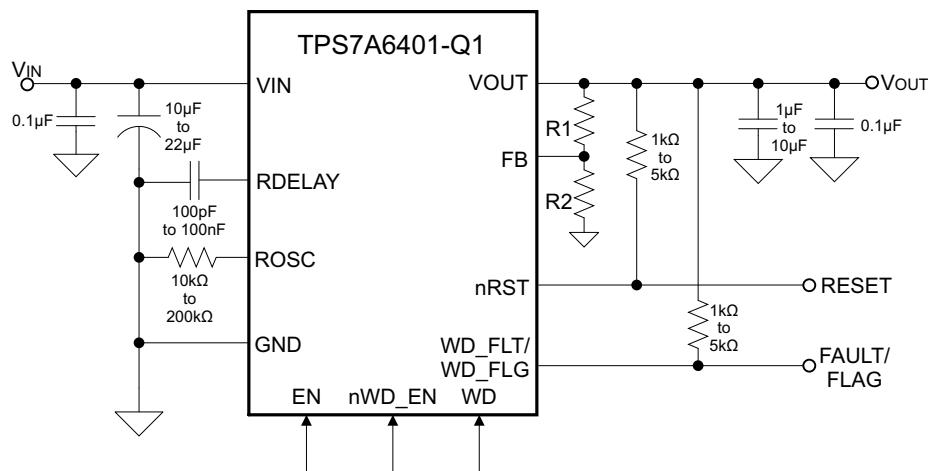




Figure 31. TPS7A6333-Q1 Load Transient Waveform

## 8.2.2 Typical Application Using the TPS7A6401-Q1



**Figure 32. Typical Application Schematic TPS7A6401-Q1**

### 8.2.2.1 Design Requirements

For this design example, use the parameters listed in [Table 4](#).

**Table 4. Design Parameters**

| DESIGN PARAMETER       | EXAMPLE VALUES |
|------------------------|----------------|
| Input voltage range    | 7 V - 40 V     |
| Input capacitor range  | 10 µF-22 µF    |
| Output voltage         | 2.5 V - 7 V    |
| Output current rating  | 300 mA maximum |
| Output capacitor range | 1 µF-10 µF     |

### 8.2.2.2 Detailed Design Procedure

When using TPS7A6401-Q1, TI recommends adding a 10-µF to 22-µF capacitor to the input to keep the input voltage stable. TI also recommends adding a 1-µF to 10-µF low ESR ceramic capacitor to get a stable output.

The output voltage is set by the R1 and R2 resistor network. Output voltage can be calculated by [Equation 2](#).

The reset delay time is set by an external capacitor (CDLY) to ground, capacitor value typical from 100 pF to 100 nF. [Equation 1](#) provides the method for the calculation. Connecting an external resistor to ground at the ROOSC pin can set the duration of the watchdog window. [Equation 4](#) provides the method for the calculation. Usually a 10-kΩ to 200-kΩ resistor can be used to set the time.

### 8.2.2.3 Application Curves

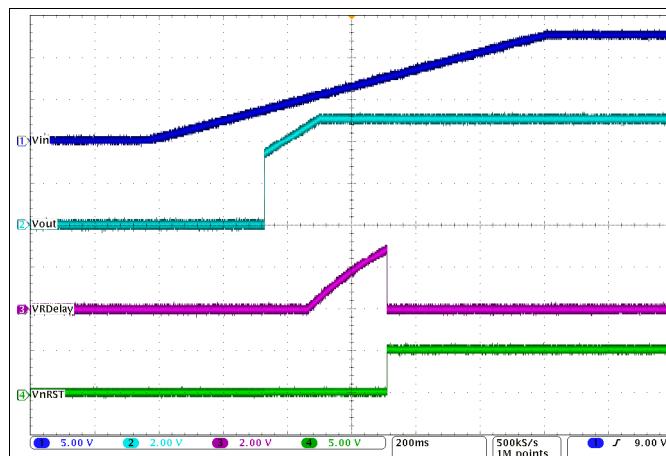



Figure 33. TPS7A6401-Q1 Power Up Waveform

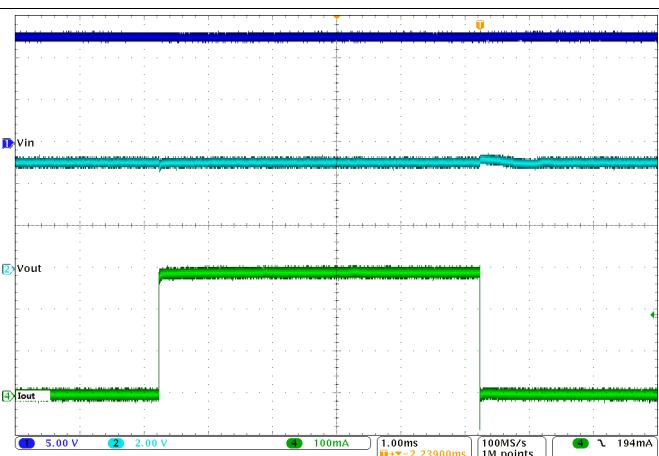



Figure 34. TPS7A6401-Q1 Load Transient Waveform

## 9 Power Supply Recommendations

The device is designed to operate from an input-voltage supply range from 7 V to 40 V. This input supply must be well regulated. If the input supply is located more than a few inches from the TPS7A63XX-Q1 or TPS7A64XX-Q1 device, TI recommends adding an electrolytic capacitor with a value of 10  $\mu$ F and a ceramic bypass capacitor at the input.

## 10 Layout

### 10.1 Layout Guidelines

For the LDO power supply, especially these high voltage and large current ones, layout is an important step. If layout is not carefully designed, the regulator could not deliver enough output current because of the thermal limitation. To improve the thermal performance of the device, and maximize the current output at high ambient temperature, it is recommended to spread the thermal pad as large as possible and put enough thermal vias on the thermal pad. [Figure 37](#) shows an example layout.

#### 10.1.1 Power Dissipation and Thermal Considerations

Calculated the power dissipated in the device using [Equation 8](#).

$$P_D = I_{OUT} \times (V_{IN} - V_{OUT}) + I_{QUIESCENT} \times V_{IN}$$

where

- $P_D$  = continuous power dissipation
- $I_{OUT}$  = output current
- $V_{IN}$  = input voltage
- $V_{OUT}$  = output voltage
- $I_{QUIESCENT}$  = quiescent current

(8)

As  $I_{QUIESCENT} \ll I_{OUT}$ , therefore, ignore the term  $I_{QUIESCENT} \times V_{IN}$  in [Equation 8](#).

For a device in operation at a given ambient air temperature ( $T_A$ ), calculate the junction temperature ( $T_J$ ) using [Equation 9](#).

$$T_J = T_A + (R_{\theta JA} \times P_D)$$

where

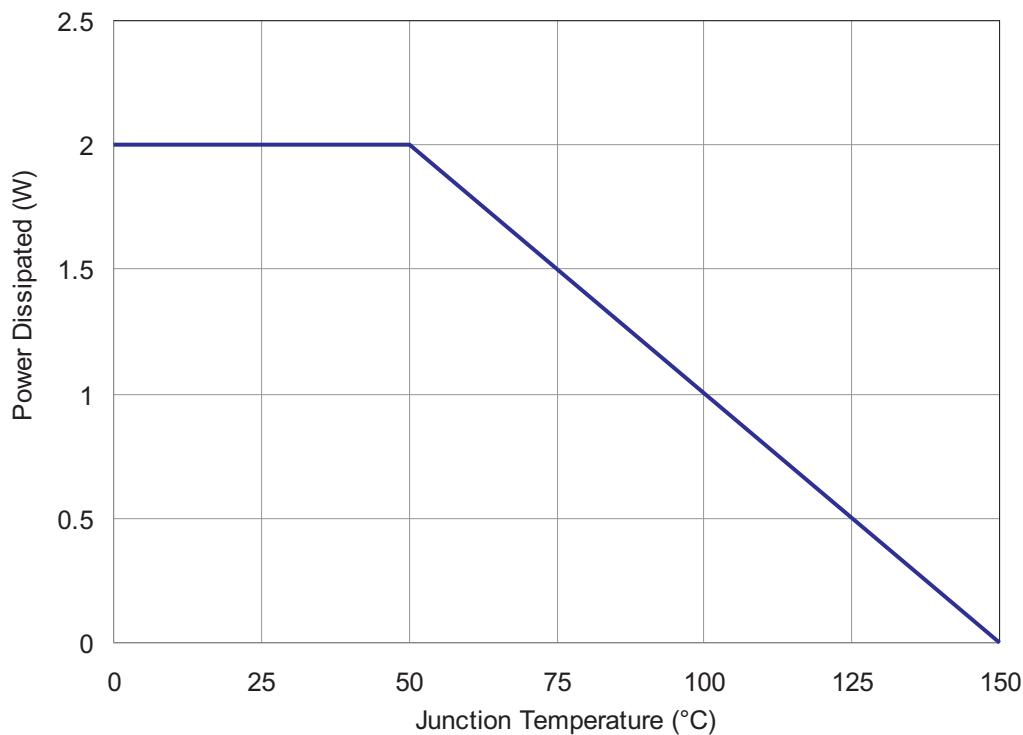
- $R_{\theta JA}$  = junction-to-ambient-air thermal impedance

(9)

Calculate the rise in junction temperature due to power dissipation using [Equation 10](#).

## Layout Guidelines (continued)

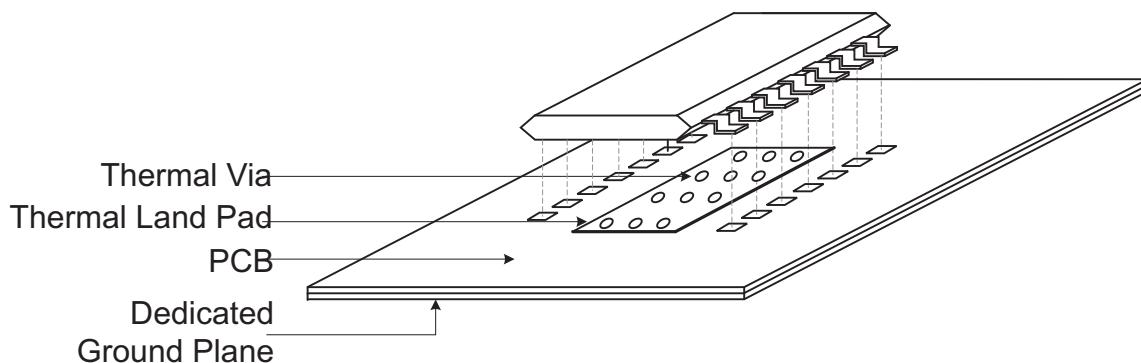
$$\Delta T = T_J - T_A = (R_{\theta JA} \times P_D) \quad (10)$$


For a given maximum junction temperature ( $T_{J\text{-Max}}$ ), calculate the maximum ambient air temperature ( $T_{A\text{-Max}}$ ) at which the device can operate using [Equation 11](#).

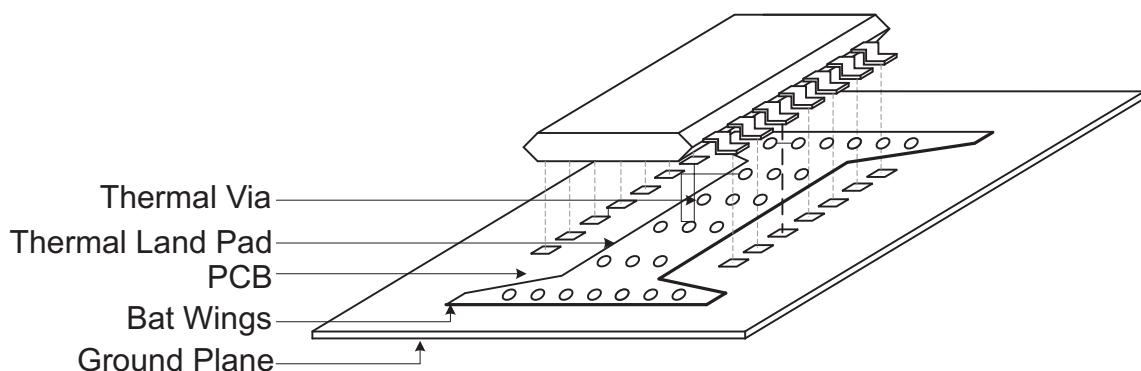
$$T_{A\text{-Max}} = T_{J\text{-Max}} - (R_{\theta JA} \times P_D) \quad (11)$$

### 10.1.1.1 Example

If  $I_{OUT} = 100$  mA,  $V_{OUT} = 5$  V,  $V_{IN} = 14$  V,  $I_{QUIESCENT} = 250$   $\mu$ A, and  $R_{\theta JA} = 50^\circ\text{C}/\text{W}$ , the continuous power dissipated in the device is 0.9 W. The rise in junction temperature due to power dissipation is  $45^\circ\text{C}$ . For a maximum junction temperature of  $150^\circ\text{C}$ , the maximum ambient air temperature at which the device can operate is  $105^\circ\text{C}$ .


For adequate heat dissipation, TI recommends soldering the thermal pad (exposed heat sink) to the thermal land pad on the PCB. Doing this provides a heat conduction path from the die to the PCB and reduces overall package thermal resistance. Power derating curves for the TPS7A63-Q1 and TPS7A6401-Q1 PWP package and TPS7A6333-Q1 DRK are comparable; see [Figure 35](#).




**Figure 35. Power Derating Curve**

For optimum thermal performance, TI recommends using a high-K PCB with thermal vias between the ground plane and solder pad or thermal land pad; see [Figure 36](#) (a) and (b). Further, use a thicker ground plane and a thermal land pad with a larger surface area to improve considerably the heat-spreading capabilities of a PCB. For a two-layer PCB, a bat wing layout can enhance the heat-spreading capabilities.

## Layout Guidelines (continued)



(a) Multilayer PCB with a dedicated ground plane



(b) Dual layer PCB with Bat wings for enhanced heat spreading

**Figure 36. Using Multilayer PCB and Thermal Vias for Adequate Heat Dissipation**

Keeping other factors constant, surface area of the thermal land pad contributes to heat dissipation only to a certain extent.

## 10.2 Layout Example

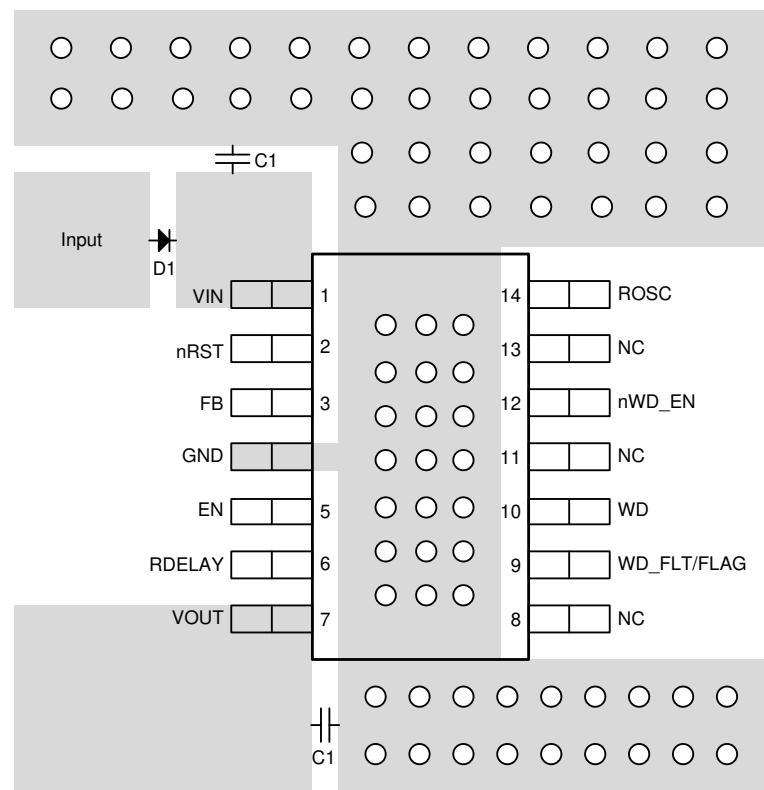



Figure 37. Layout Recommendation

## 11 デバイスおよびドキュメントのサポート

### 11.1 関連リンク

次の表に、クイック・アクセス・リンクを示します。カテゴリには、技術資料、サポートおよびコミュニティ・リソース、ツールとソフトウェア、およびご注文へのクイック・アクセスが含まれます。

表 5. 関連リンク

| 製品           | プロダクト・フォルダ              | ご注文はこちら                 | 技術資料                    | ツールとソフトウェア              | サポートとコミュニティ             |
|--------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| TPS7A63-Q1   | <a href="#">ここをクリック</a> |
| TPS7A6401-Q1 | <a href="#">ここをクリック</a> |

### 11.2 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、ti.comのデバイス製品フォルダを開いてください。右上の「アラートを受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。

### 11.3 コミュニティ・リソース

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

### 11.4 商標

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

### 11.5 静電気放電に関する注意事項

 すべての集積回路は、適切なESD保護方法を用いて、取扱いと保存を行うようにして下さい。  
静電気放電はわずかな性能の低下から完全なデバイスの故障に至るまで、様々な損傷を与えます。高精度の集積回路は、損傷に対して敏感であり、極めてわずかなバラメータの変化により、デバイスに規定された仕様に適合しなくなる場合があります。

### 11.6 Glossary

[SLYZ022 — TI Glossary](#).

This glossary lists and explains terms, acronyms, and definitions.

## 12 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。この情報は、そのデバイスについて利用可能な最新のデータです。このデータは予告なく変更されることがあります。ドキュメントが改訂される場合もあります。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。

**PACKAGING INFORMATION**

| Orderable part number              | Status<br>(1) | Material type<br>(2) | Package   Pins    | Package qty   Carrier | RoHS<br>(3) | Lead finish/<br>Ball material<br>(4) | MSL rating/<br>Peak reflow<br>(5) | Op temp (°C) | Part marking<br>(6) |
|------------------------------------|---------------|----------------------|-------------------|-----------------------|-------------|--------------------------------------|-----------------------------------|--------------|---------------------|
| <a href="#">TPS7A6301QPWPRQ1</a>   | Active        | Production           | HTSSOP (PWP)   14 | 2000   LARGE T&R      | Yes         | NIPDAU                               | Level-3-260C-168 HR               | -40 to 125   | 7A6301              |
| <a href="#">TPS7A6301QPWPRQ1.A</a> | Active        | Production           | HTSSOP (PWP)   14 | 2000   LARGE T&R      | Yes         | NIPDAU                               | Level-3-260C-168 HR               | -40 to 125   | 7A6301              |
| <a href="#">TPS7A6333QDRKRQ1</a>   | Active        | Production           | VSON (DRK)   10   | 3000   LARGE T&R      | Yes         | NIPDAU                               | Level-3-260C-168 HR               | -40 to 125   | PRGQ                |
| <a href="#">TPS7A6333QDRKRQ1.A</a> | Active        | Production           | VSON (DRK)   10   | 3000   LARGE T&R      | Yes         | NIPDAU                               | Level-3-260C-168 HR               | -40 to 125   | PRGQ                |
| <a href="#">TPS7A6333QPWPRQ1</a>   | Active        | Production           | HTSSOP (PWP)   14 | 2000   LARGE T&R      | Yes         | NIPDAU                               | Level-3-260C-168 HR               | -40 to 125   | 7A6333              |
| <a href="#">TPS7A6333QPWPRQ1.A</a> | Active        | Production           | HTSSOP (PWP)   14 | 2000   LARGE T&R      | Yes         | NIPDAU                               | Level-3-260C-168 HR               | -40 to 125   | 7A6333              |
| <a href="#">TPS7A6350QPWPRQ1</a>   | Active        | Production           | HTSSOP (PWP)   14 | 2000   LARGE T&R      | Yes         | NIPDAU                               | Level-3-260C-168 HR               | -40 to 125   | 7A6350              |
| <a href="#">TPS7A6350QPWPRQ1.A</a> | Active        | Production           | HTSSOP (PWP)   14 | 2000   LARGE T&R      | Yes         | NIPDAU                               | Level-3-260C-168 HR               | -40 to 125   | 7A6350              |
| <a href="#">TPS7A6401QPWPRQ1</a>   | Active        | Production           | HTSSOP (PWP)   14 | 2000   LARGE T&R      | Yes         | NIPDAU                               | Level-3-260C-168 HR               | -40 to 125   | 7A6401              |
| <a href="#">TPS7A6401QPWPRQ1.A</a> | Active        | Production           | HTSSOP (PWP)   14 | 2000   LARGE T&R      | Yes         | NIPDAU                               | Level-3-260C-168 HR               | -40 to 125   | 7A6401              |

<sup>(1)</sup> **Status:** For more details on status, see our [product life cycle](#).

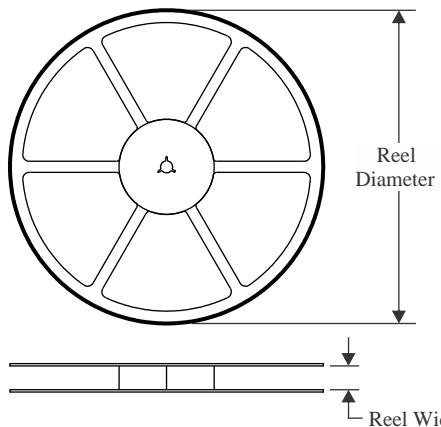
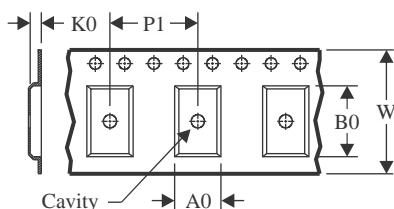
<sup>(2)</sup> **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

<sup>(3)</sup> **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

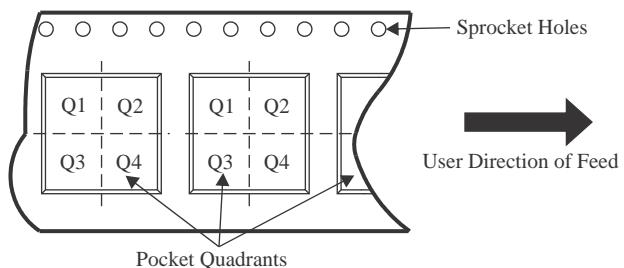
<sup>(4)</sup> **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

<sup>(5)</sup> **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

<sup>(6)</sup> **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

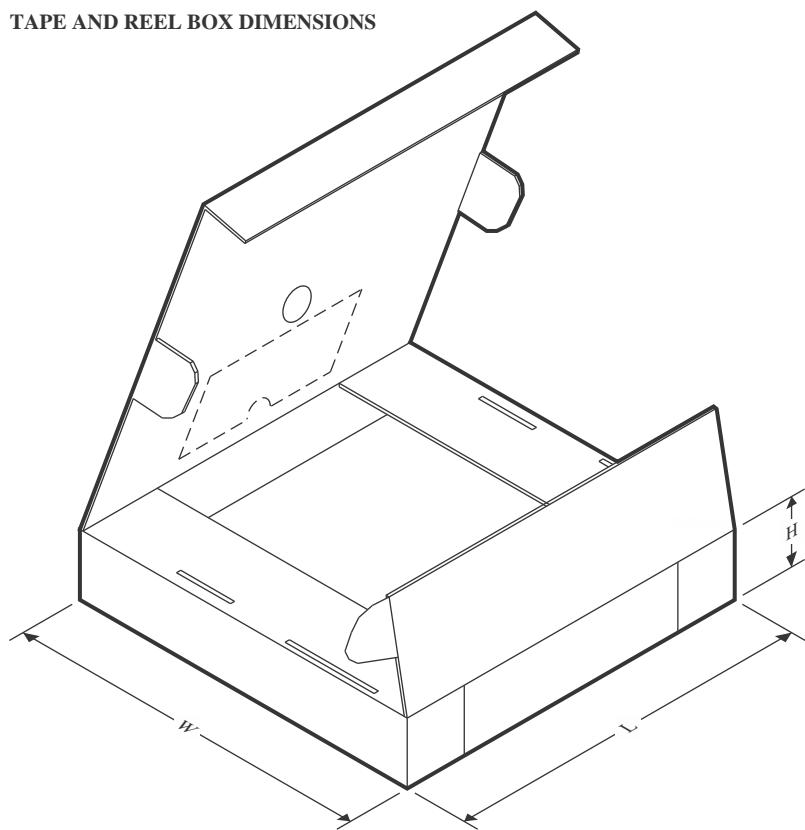


Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative


---

and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


**TAPE AND REEL INFORMATION**
**REEL DIMENSIONS**

**TAPE DIMENSIONS**


|    |                                                           |
|----|-----------------------------------------------------------|
| A0 | Dimension designed to accommodate the component width     |
| B0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

**QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE**

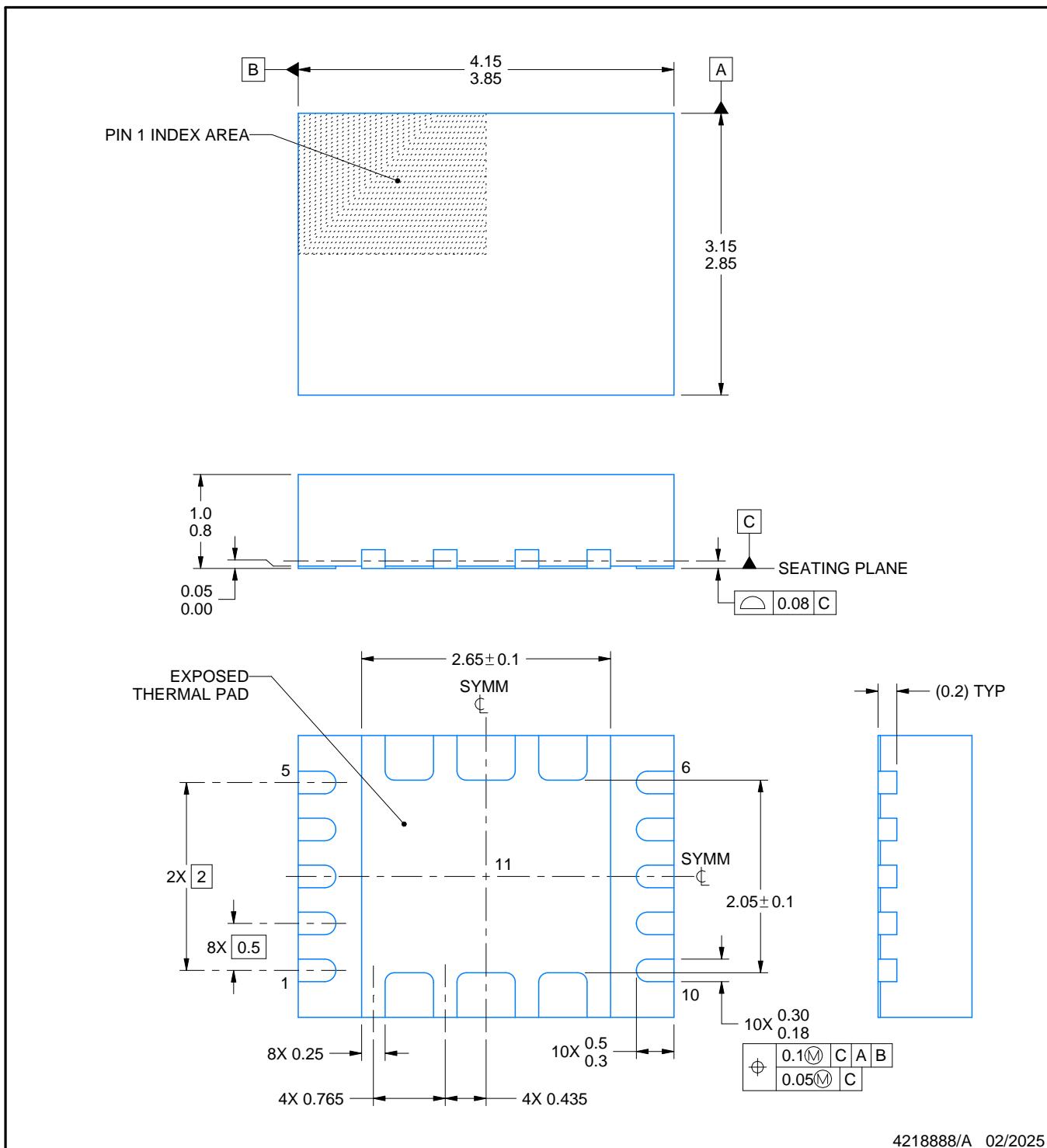

\*All dimensions are nominal


| Device           | Package Type | Package Drawing | Pins | SPQ  | Reel Diameter (mm) | Reel Width W1 (mm) | A0 (mm) | B0 (mm) | K0 (mm) | P1 (mm) | W (mm) | Pin1 Quadrant |
|------------------|--------------|-----------------|------|------|--------------------|--------------------|---------|---------|---------|---------|--------|---------------|
| TPS7A6301QPWPRQ1 | HTSSOP       | PWP             | 14   | 2000 | 330.0              | 12.4               | 6.9     | 5.6     | 1.6     | 8.0     | 12.0   | Q1            |
| TPS7A6333QDRKRQ1 | VSON         | DRK             | 10   | 3000 | 330.0              | 12.4               | 3.3     | 4.3     | 1.1     | 8.0     | 12.0   | Q2            |
| TPS7A6333QPWPRQ1 | HTSSOP       | PWP             | 14   | 2000 | 330.0              | 12.4               | 6.9     | 5.6     | 1.6     | 8.0     | 12.0   | Q1            |
| TPS7A6350QPWPRQ1 | HTSSOP       | PWP             | 14   | 2000 | 330.0              | 12.4               | 6.9     | 5.6     | 1.6     | 8.0     | 12.0   | Q1            |
| TPS7A6401QPWPRQ1 | HTSSOP       | PWP             | 14   | 2000 | 330.0              | 12.4               | 6.9     | 5.6     | 1.6     | 8.0     | 12.0   | Q1            |

**TAPE AND REEL BOX DIMENSIONS**


\*All dimensions are nominal

| Device           | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|------------------|--------------|-----------------|------|------|-------------|------------|-------------|
| TPS7A6301QPWPRQ1 | HTSSOP       | PWP             | 14   | 2000 | 350.0       | 350.0      | 43.0        |
| TPS7A6333QDRKRQ1 | VSON         | DRK             | 10   | 3000 | 353.0       | 353.0      | 32.0        |
| TPS7A6333QPWPRQ1 | HTSSOP       | PWP             | 14   | 2000 | 350.0       | 350.0      | 43.0        |
| TPS7A6350QPWPRQ1 | HTSSOP       | PWP             | 14   | 2000 | 350.0       | 350.0      | 43.0        |
| TPS7A6401QPWPRQ1 | HTSSOP       | PWP             | 14   | 2000 | 350.0       | 350.0      | 43.0        |


DRK0010A



PACKAGE OUTLINE

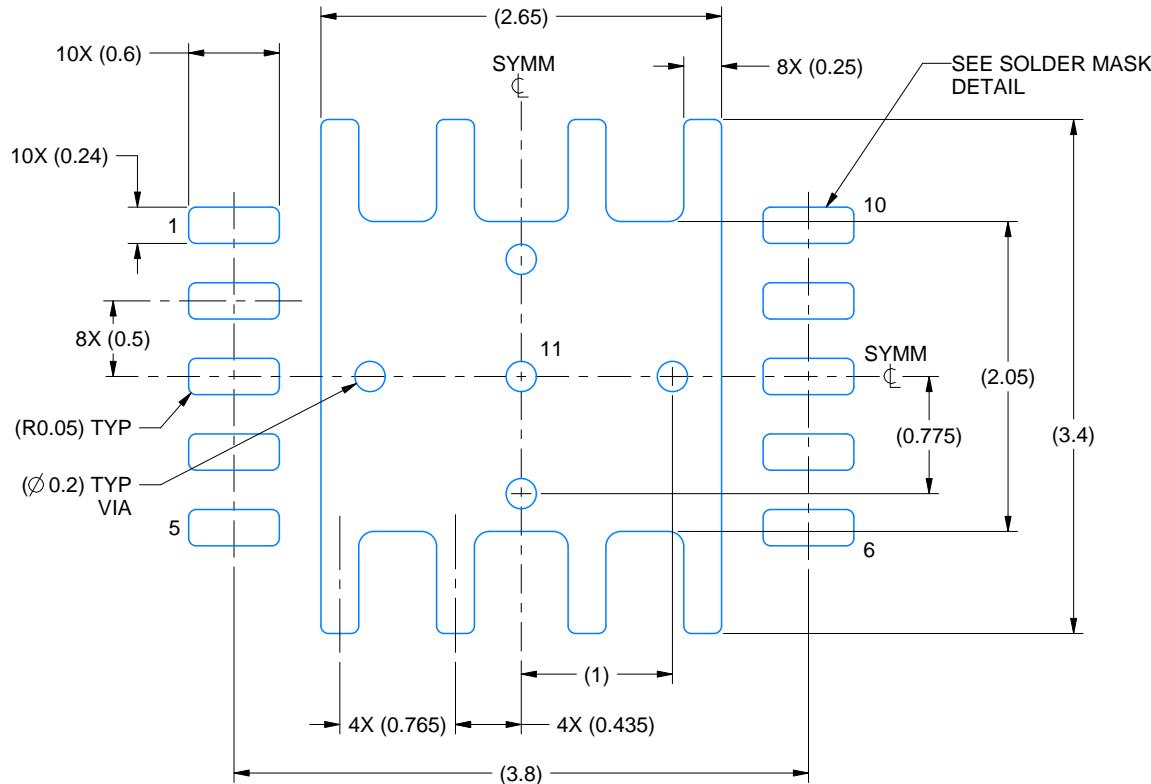
VSON - 1 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

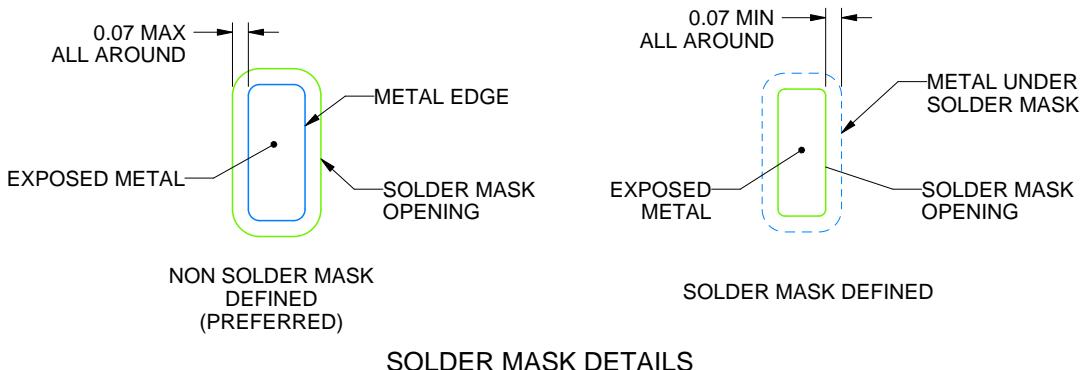


4218888/A 02/2025

NOTES:


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

# EXAMPLE BOARD LAYOUT


DRK0010A

VSON - 1 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

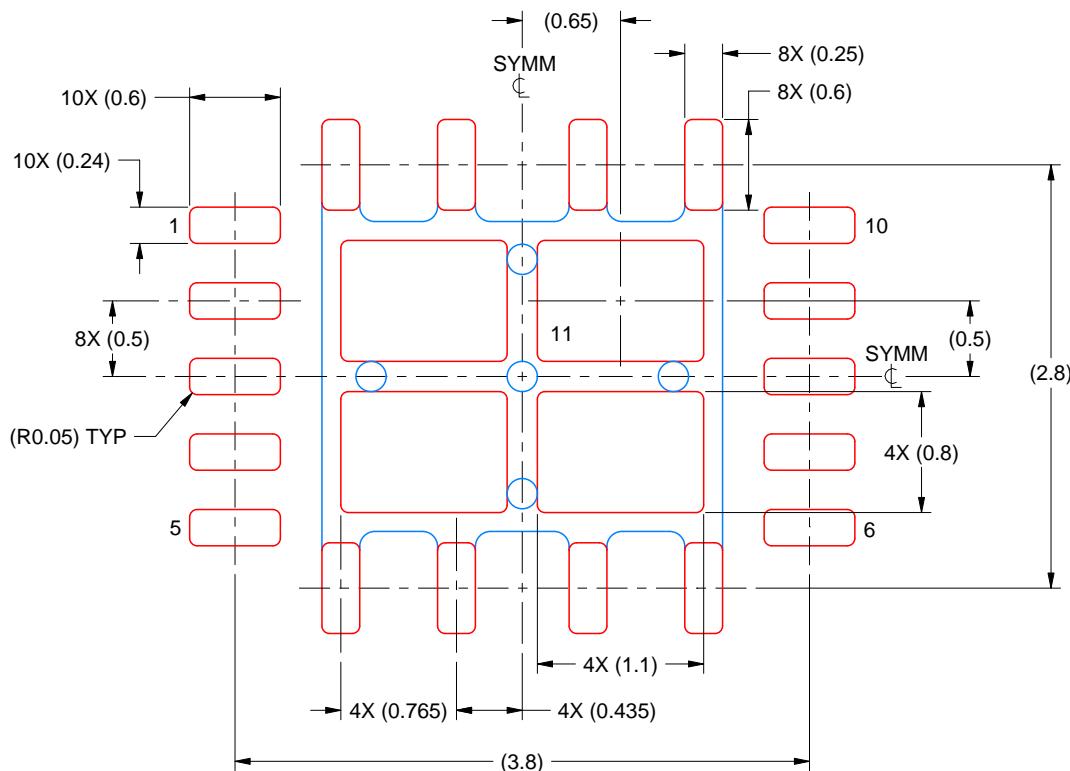


LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X



4218888/A 02/2025

NOTES: (continued)


4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 ([www.ti.com/lit/slua271](http://www.ti.com/lit/slua271)).
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

# EXAMPLE STENCIL DESIGN

DRK0010A

VSON - 1 mm max height

PLASTIC SMALL OUTLINE - NO LEAD



SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 20X

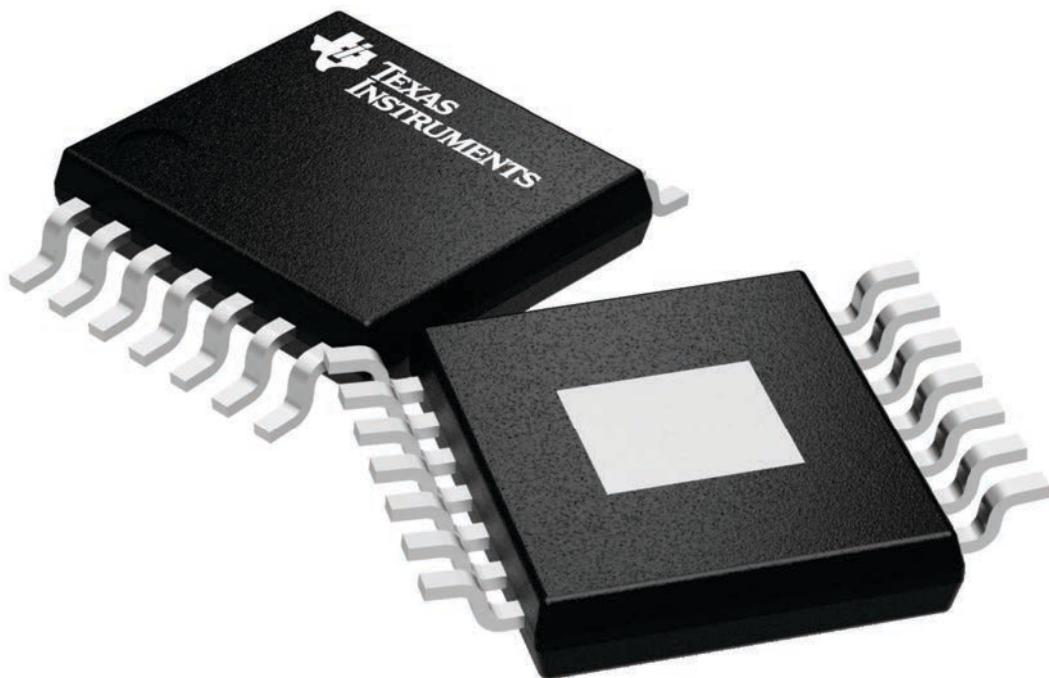
EXPOSED PAD 11  
70% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE

4218888/A 02/2025

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

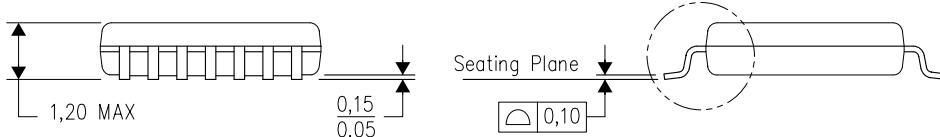
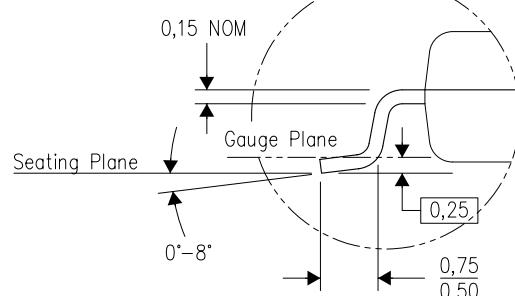
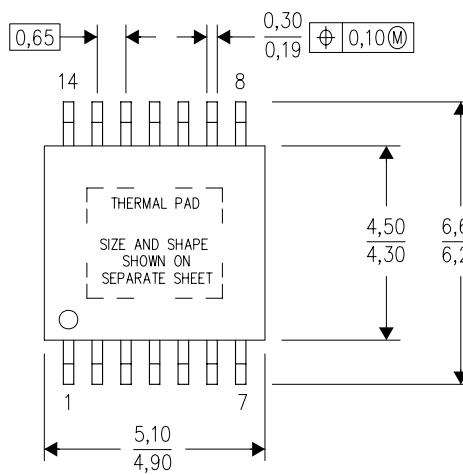
## GENERIC PACKAGE VIEW


### PWP 14

### PowerPAD TSSOP - 1.2 mm max height

4.4 x 5.0, 0.65 mm pitch

PLASTIC SMALL OUTLINE




This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.



4224995/A

PWP (R-PDSO-G14)

PowerPAD™ PLASTIC SMALL OUTLINE



4073225-2/1 05/11

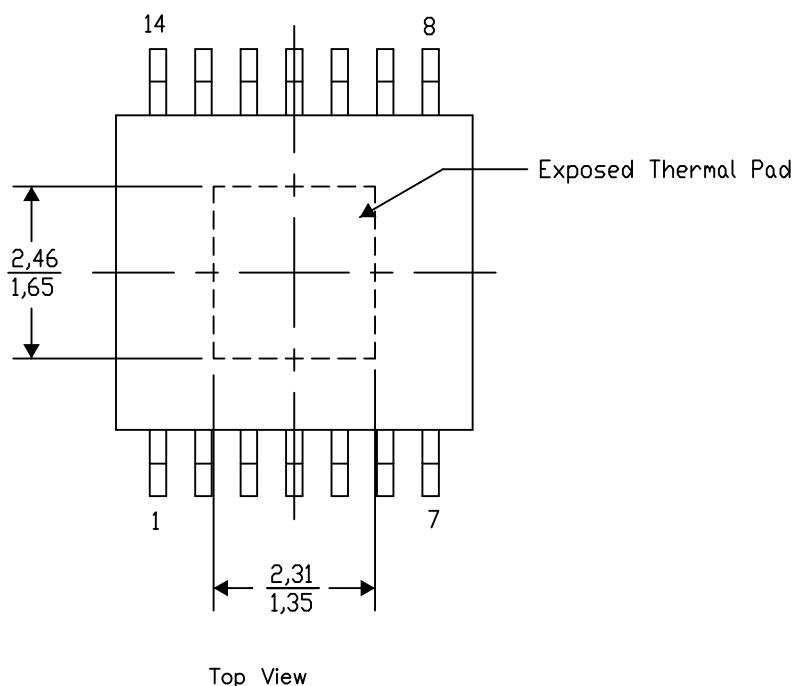
NOTES:

- All linear dimensions are in millimeters.
- This drawing is subject to change without notice.
- Body dimensions do not include mold flash or protrusions. Mold flash and protrusion shall not exceed 0.15 per side.
- This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at [www.ti.com](http://www.ti.com) <<http://www.ti.com>>.
- See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- Falls within JEDEC MO-153

PowerPAD is a trademark of Texas Instruments.

# THERMAL PAD MECHANICAL DATA

PWP (R-PDSO-G14)


PowerPAD™ SMALL PLASTIC OUTLINE

## THERMAL INFORMATION

This PowerPAD™ package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

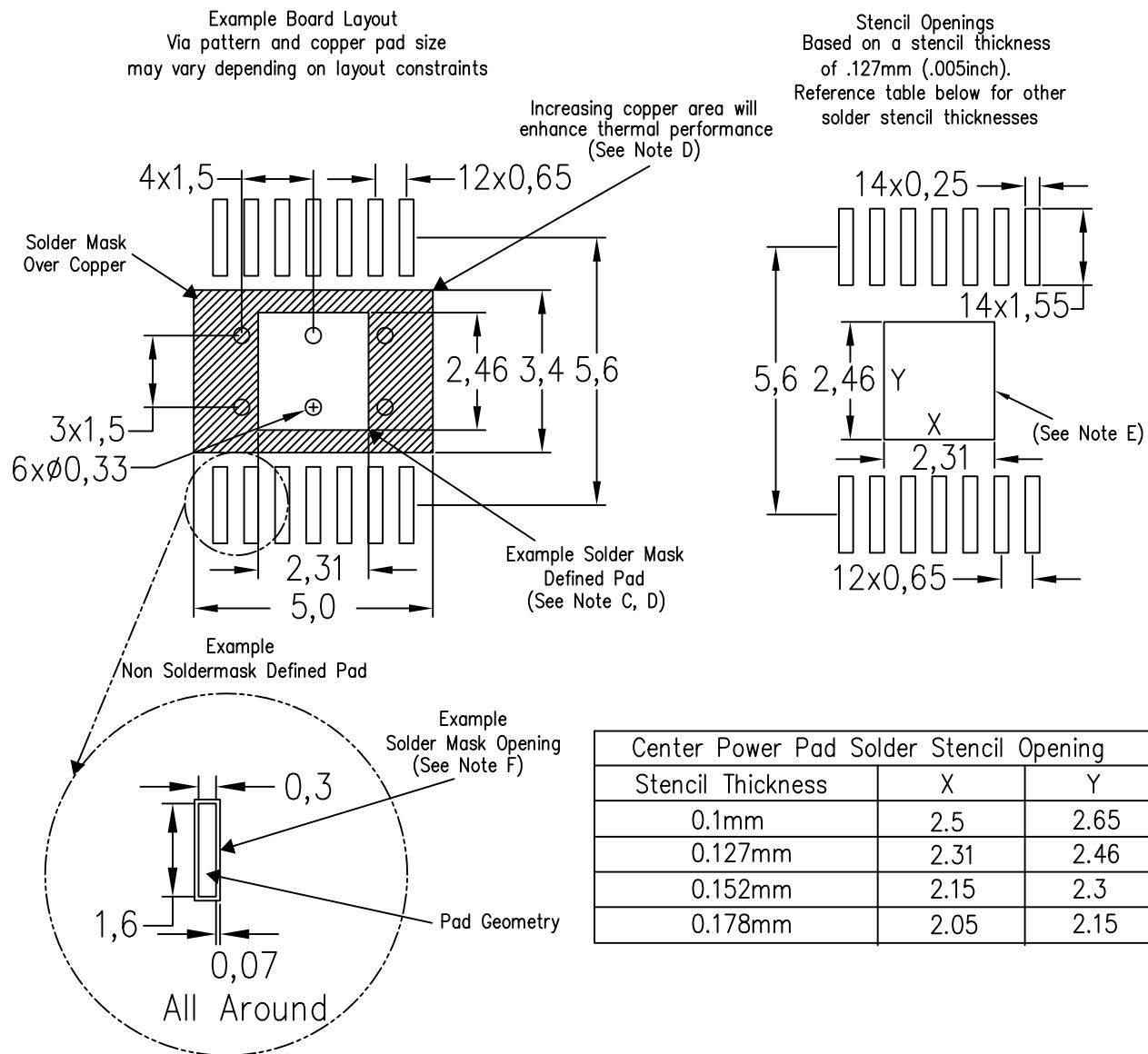
For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at [www.ti.com](http://www.ti.com).

The exposed thermal pad dimensions for this package are shown in the following illustration.



Top View

Exposed Thermal Pad Dimensions

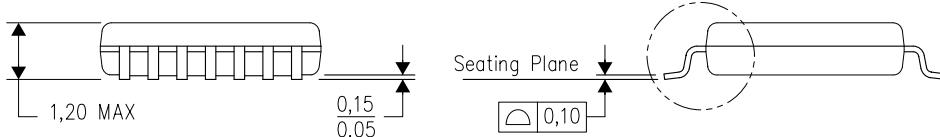
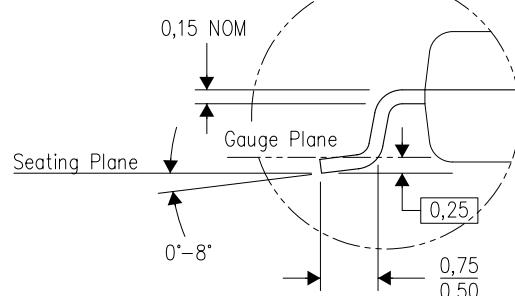
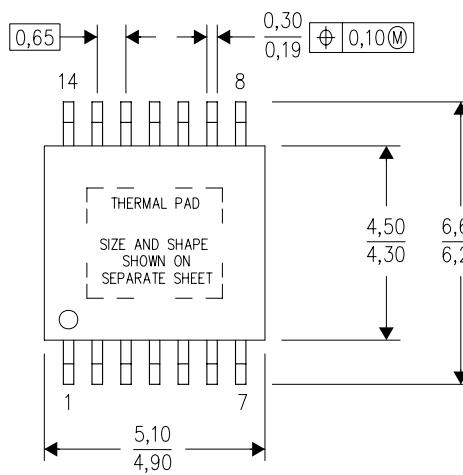

4206332-2/AO 01/16

NOTE: A. All linear dimensions are in millimeters

PowerPAD is a trademark of Texas Instruments

## PWP (R-PDSO-G14)

## PowerPAD™ PLASTIC SMALL OUTLINE


NOTES:

- All linear dimensions are in millimeters.
- This drawing is subject to change without notice.
- Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at [www.ti.com](http://www.ti.com) <<http://www.ti.com>>. Publication IPC-7351 is recommended for alternate designs.
- Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

PWP (R-PDSO-G14)

PowerPAD™ PLASTIC SMALL OUTLINE



4073225-2/1 05/11

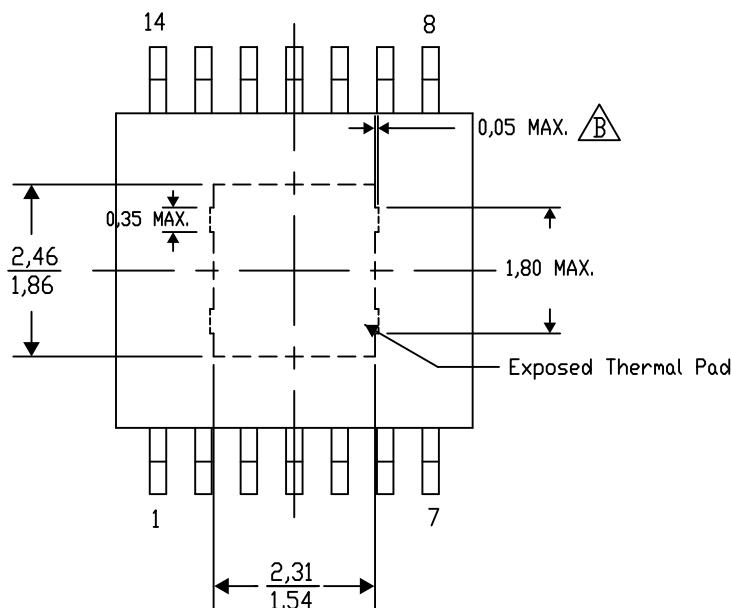
NOTES:

- All linear dimensions are in millimeters.
- This drawing is subject to change without notice.
- Body dimensions do not include mold flash or protrusions. Mold flash and protrusion shall not exceed 0.15 per side.
- This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at [www.ti.com](http://www.ti.com) <<http://www.ti.com>>.
- See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- Falls within JEDEC MO-153

PowerPAD is a trademark of Texas Instruments.

# THERMAL PAD MECHANICAL DATA

PWP (R-PDSO-G14)


PowerPAD™ SMALL PLASTIC OUTLINE

## THERMAL INFORMATION

This PowerPAD™ package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at [www.ti.com](http://www.ti.com).

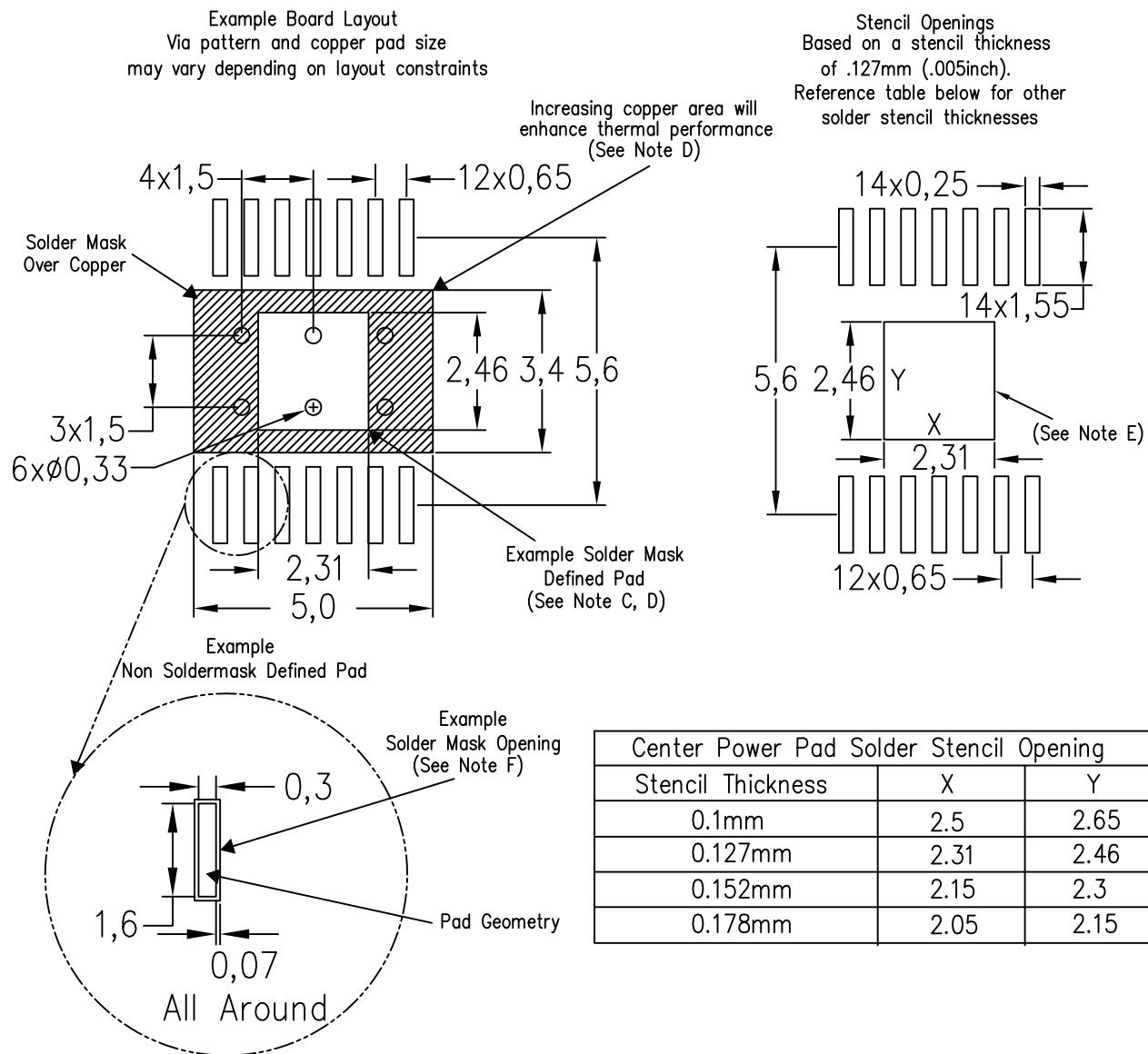
The exposed thermal pad dimensions for this package are shown in the following illustration.



Top View

Exposed Thermal Pad Dimensions

4206332-44/AO 01/16


NOTE: A. All linear dimensions are in millimeters

 Exposed tie strap features may not be present.

PowerPAD is a trademark of Texas Instruments

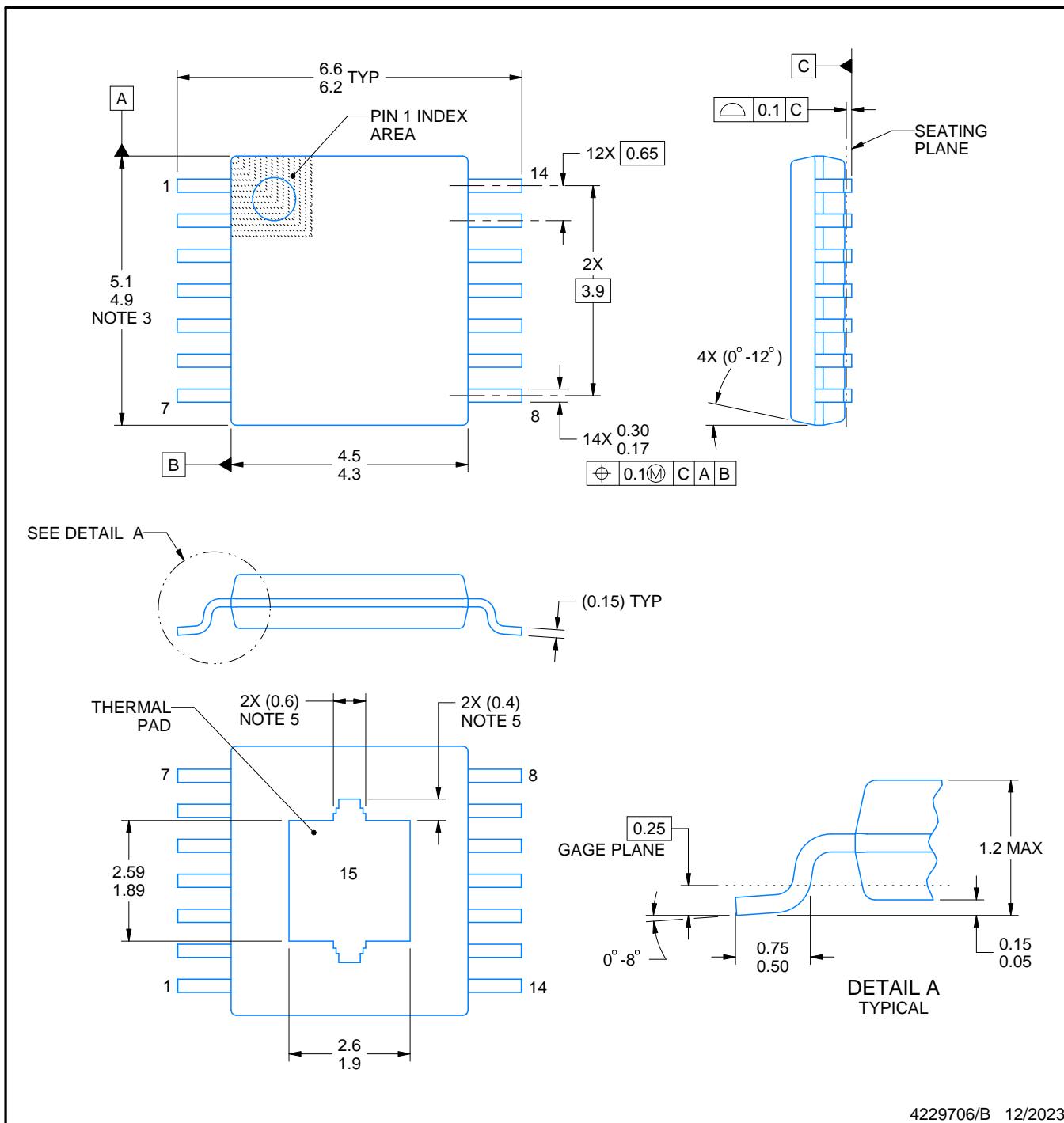
## PWP (R-PDSO-G14)

## PowerPAD™ PLASTIC SMALL OUTLINE



NOTES:

- All linear dimensions are in millimeters.
- This drawing is subject to change without notice.
- Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at [www.ti.com](http://www.ti.com) <<http://www.ti.com>>. Publication IPC-7351 is recommended for alternate designs.
- Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.
- Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


# PACKAGE OUTLINE

PWP0014K



PowerPAD™ TSSOP - 1.2 mm max height

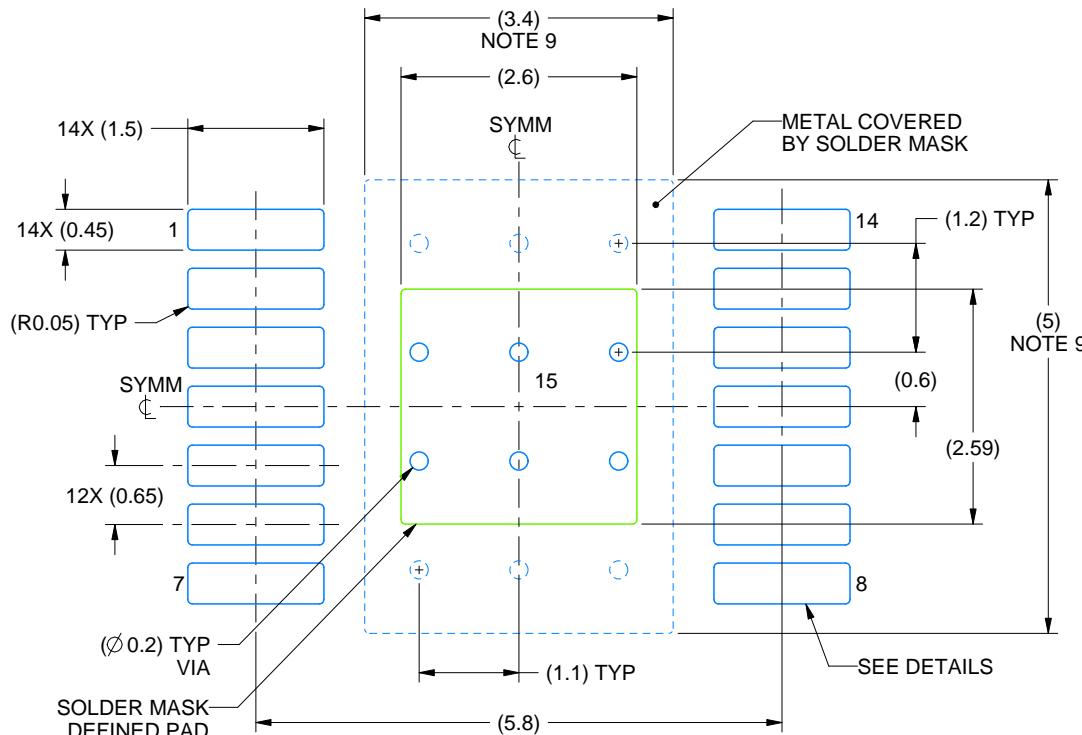
SMALL OUTLINE PACKAGE



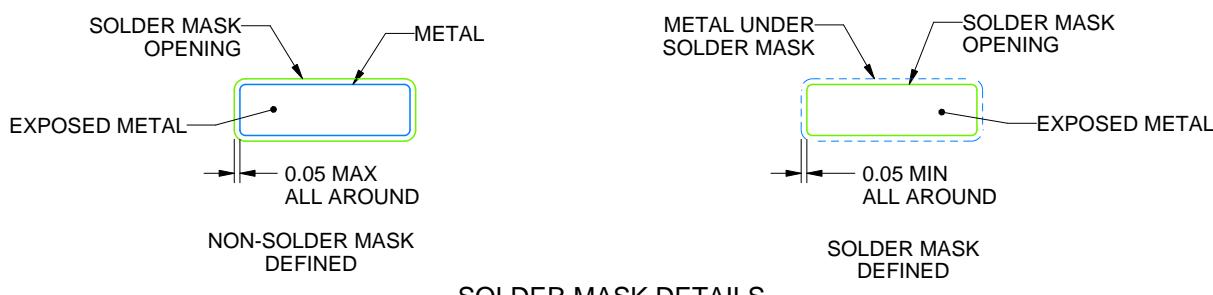
4229706/B 12/2023

NOTES:

PowerPAD is a trademark of Texas Instruments.


1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. Reference JEDEC registration MO-153.
5. Features may differ or may not be present.

# EXAMPLE BOARD LAYOUT


PWP0014K

PowerPAD™ TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE



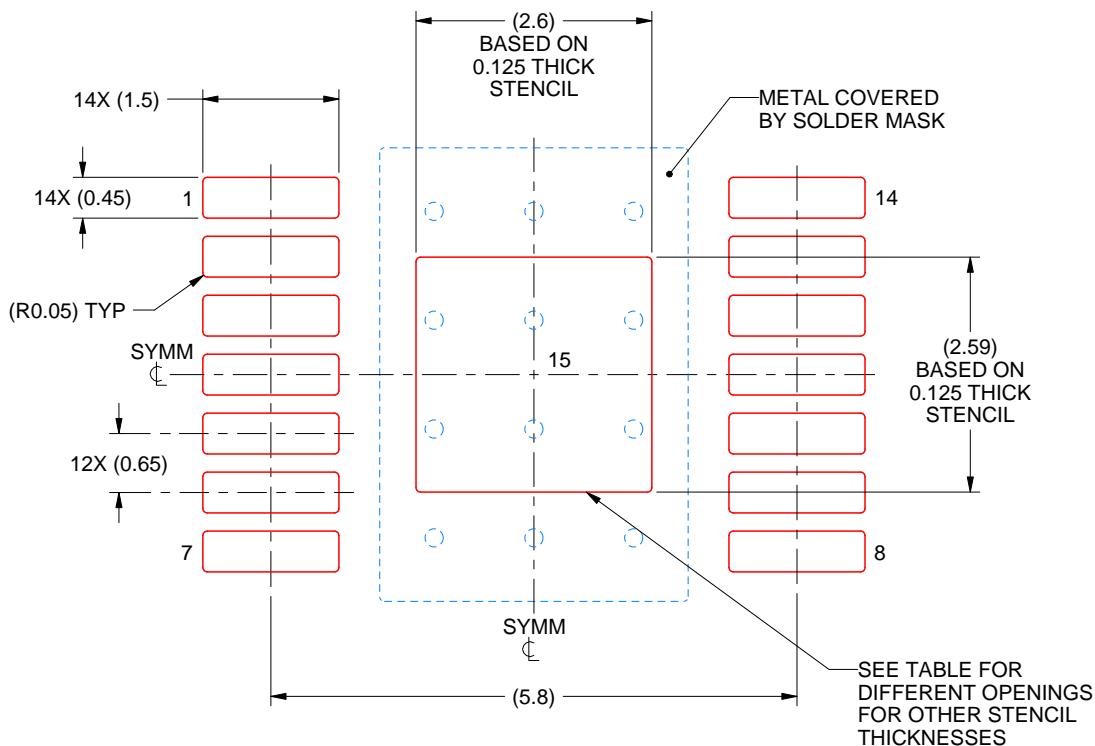
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 12X



SOLDER MASK DETAILS

4229706/B 12/2023

NOTES: (continued)


6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature numbers SLMA002 ([www.ti.com/lit/slma002](http://www.ti.com/lit/slma002)) and SLMA004 ([www.ti.com/lit/slma004](http://www.ti.com/lit/slma004)).
9. Size of metal pad may vary due to creepage requirement.
10. Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.

# EXAMPLE STENCIL DESIGN

PWP0014K

PowerPAD™ TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE



SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 12X

| STENCIL THICKNESS | SOLDER STENCIL OPENING |
|-------------------|------------------------|
| 0.1               | 2.91 X 2.90            |
| 0.125             | 2.60 X 2.59 (SHOWN)    |
| 0.15              | 2.37 X 2.36            |
| 0.175             | 2.20 X 2.19            |

4229706/B 12/2023

NOTES: (continued)

11. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
12. Board assembly site may have different recommendations for stencil design.

## 重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の默示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または默示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したもので、(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TI の製品は、[TI の販売条件](#)、[TI の総合的な品質ガイドライン](#)、[ti.com](#) または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TI はそれらに異議を唱え、拒否します。

Copyright © 2025, Texas Instruments Incorporated

最終更新日：2025 年 10 月