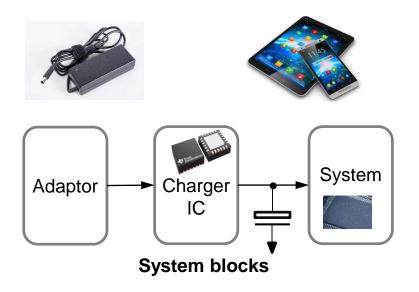
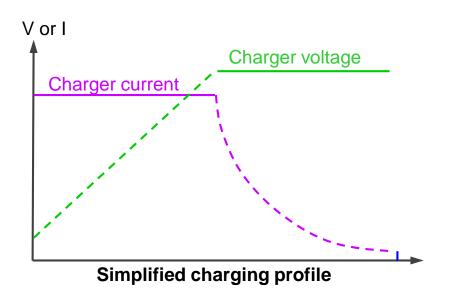


TI Live! BATTERY MANAGEMENT SYSTEMS SEMINAR

ERIC ZHAO

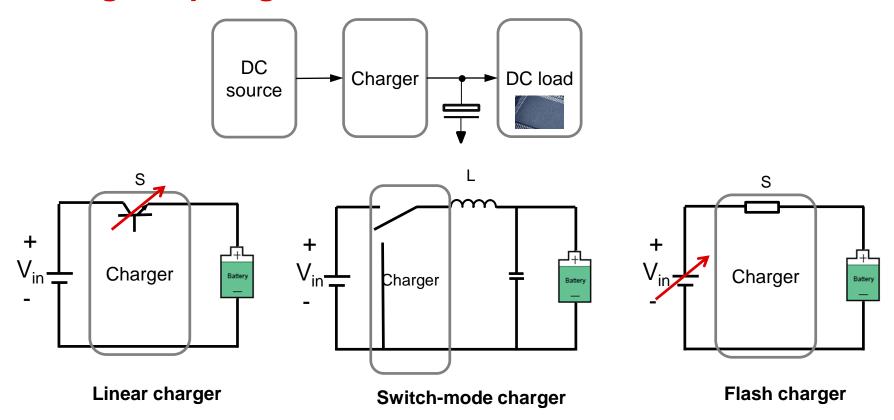

BATTERY CHARGER OVERVIEW – FROM THE FUNDAMENTAL TO THE SYSTEM CHALLENGES AND APPLICATION SOLUTIONS



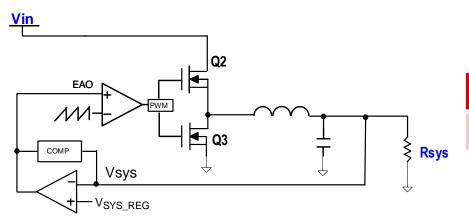
Agenda

- Battery charger fundamentals
 - The difference between a DC/DC converter and a battery charger
 - The system challenges and why
 - The solutions!
- How to find the right chargers for your applications
 - 5V input for 1S and 2S battery
 - Other inputs for multicell battery
 - Solar panel inputs
- Summary

What charger ICs do?

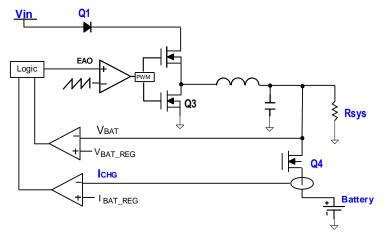

Charging functions:

- Regulate: constant current and constant voltage
- Safety of charging: current, voltage and thermal protections
- Status of charging: charging, charge full, abnormal state
- Advanced features: dynamic power management, system and battery monitoring...



Charger topologies

DC/DC converter vs. charger – DC/DC source and load

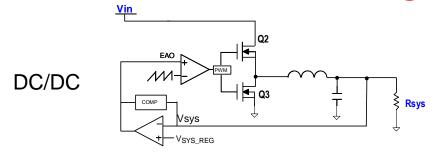


Vin	Rsys	Battery	Source	Load	Mode
Source	Load	NA	1	1	CV or CC

A DC/DC converter:

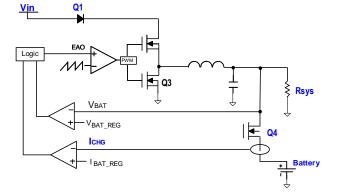
- Single source and single load
- One active switch and one syn rectifier switch for efficiency 2 switches
- Single loop to regulate the output voltage or current

DC/DC converter vs. charger – charger source and load



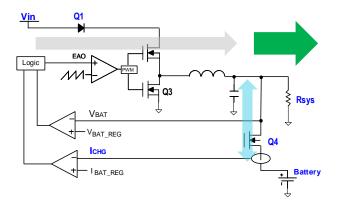
Vin	Rsys	Battery	Source	Load	Mode
S	L	Idle	1	1	Charge done
S	L	Load	1	2	CC and CV
S	L	Source	2	1	Supplement
L	L	Source	1	2	On-The-Go

A battery charger


- Different combinations 1 or 2 source and 1 or 2 load
- Two loops to regulate the output voltage and current
- Buck converter (2) + reverse blocking 3 switches + power path 4 switches

DC/DC converter vs. charger – source and load comparison

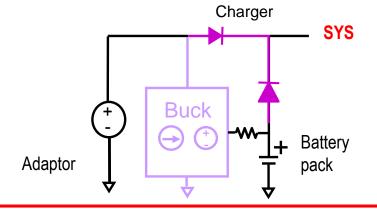
Vin	Rsys	Battery	Source	Load	Mode
Source	Load	NA	1	1	CV or CC



Vin	Rsys	Battery	Source	Load	Mode
S	L	Idle	1	1	Charge done
S	L	L	1	2	CC and CV
S	L	S	2	1	Supplement
L	L	S	1	2	On-The-Go

- Battery charger multiple control loops (CC, CV)
- Battery is a source reverse block FET/diode (Q1), power path (Q4)

The unique challenge for a charger - two sources/loads


Vin	Rsys	Battery	Source	Load	Mode
S	L	Idle	1	1	Charge done
S	L	L	1	2	CC and CV
S	L	S	2	1	Supplement

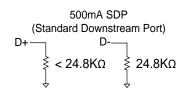
System power is dynamic depending on the system (applications)

Power path – prioritize SYS from the load perspective

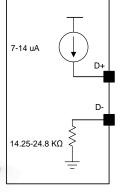


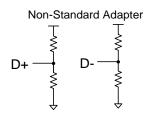
- System power is dynamic depending on the system (applications)
- Power path is to prioritize the SYS

g

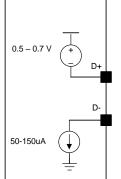

Input DPM – maximize the utilization of the input power

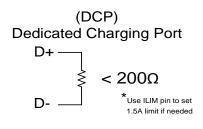
3 types of 5-V input sources

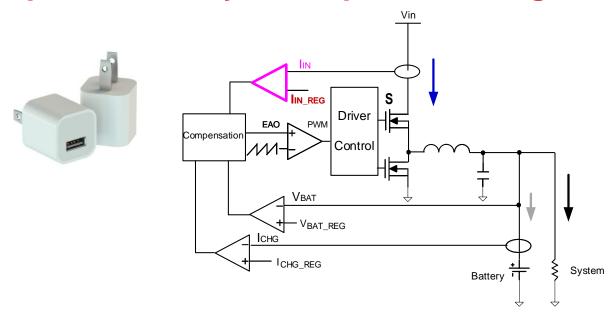


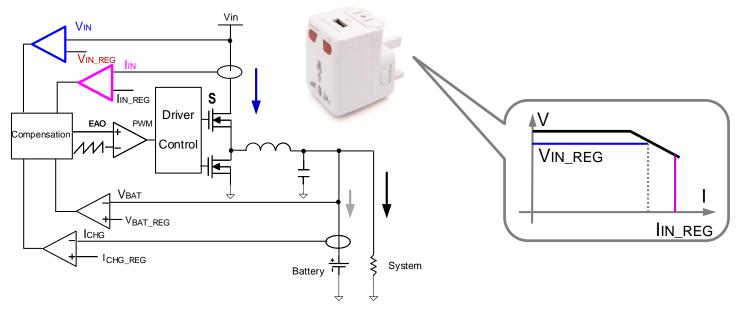

- Detect the input power source maximum power capability
- Provide the end user the convenience to charge with different adaptors

Input current dynamic for USB – USB detection



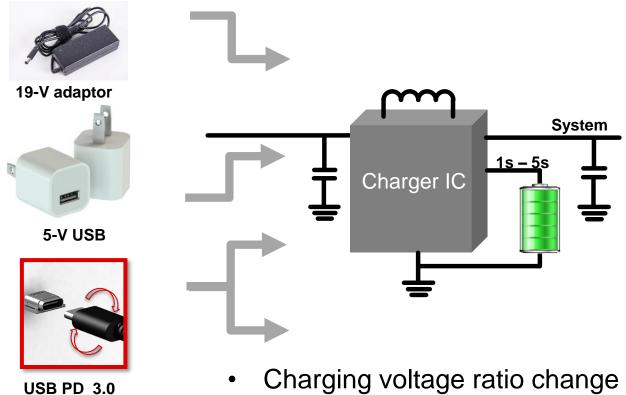





11

Input current dynamic power management

- Input current dynamic power management (I_{in} DPM)
 - Limit the input current with the system load as high priority
 - Current DPM: for OEM adaptor and OEM sets the current reference IN REG

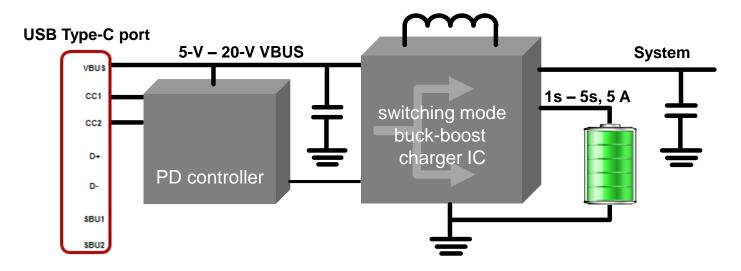

Input voltage dynamic power management

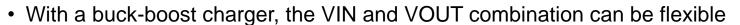
- Input voltage dynamic power management (V_{in} DPM)
 - Limit the input current with the system load as high priority
 - Voltage DPM: for using with the third party adaptor setting VIN_REG
 - Current DPM: for OEM adaptor and OEM sets the current reference

The challenge – universal charging

5 V, 9 V, 15 V, 20 V

Topology: buck, boost, buck-boost





14

USB-PD system with buck-boost charger

- Wide input voltage 5 V ~ 20 V to charge multi-cell battery 1S ~ 5S
- Support up to 100-W power delivery, 5 V/3 A, 9 V/3 A, 15 V/3 A, 20 V/3 A, 20 V/5 A

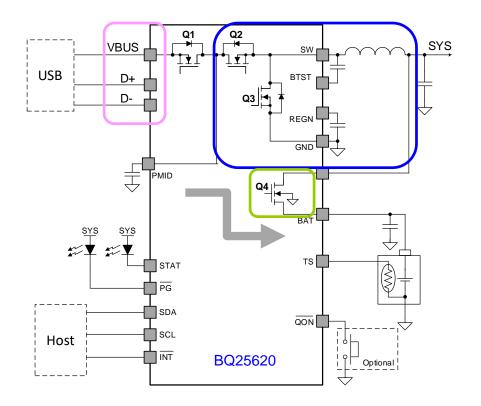
2 cells

2~4 cells

4 cells

Agenda

- Battery charger fundamentals
 - DC/DC converter vs. battery chargers
 - The system challenges for multiple sources
 - Battery charger key features
- Applications and TI charger ICs
 - 5V input for 1S and 2S
 - Other inputs for multicell battery
 - Solar panel input for charging
 - How to find the best solutions for your applications
- Summary


5-V input for 1S and 2S charging

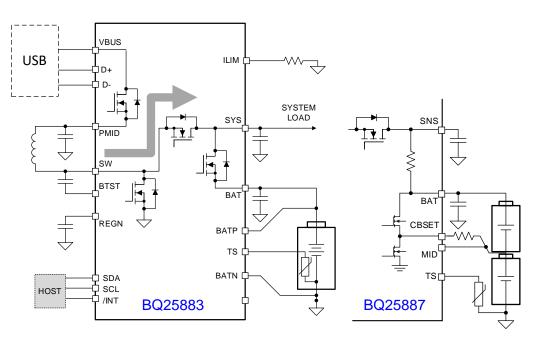
- Why 5V is the most popular adapter?
 - USB 5V is the most easy to find and standard source
 - Cost effective than higher voltage adaptor
 - Good for relative low power and small battery
- Examples for 5V input
 - Personal electronics: smartphones, tablets, watches
 - Speaker: high quality class D amplifier 1S or 2S battery
 - EPOS: thermal printing speed 2S battery
- Key charging requirements
 - USB detection
 - Small size
 - System monitoring
 - Low Iq

Input	5V USB ports 5V adaptor
Battery	1S
ICHG (A)	
Topology	
IIN DPM VIN DPM	
External FETs	
ADC bit	
Unique features	
Charger	

5V input for 1S charging

Input	5V USB ports 5V adaptor
Battery	1S
ICHG (A)	3.5
Topology	Buck
IIN DPM VIN DPM	D+D- Yes
External FETs	0 (integrated)
ADC bit	16
Unique features	SHIPMODE Iq=1.5 µA
Charger	BQ25620/2/8/9

5-V input for 2S charging

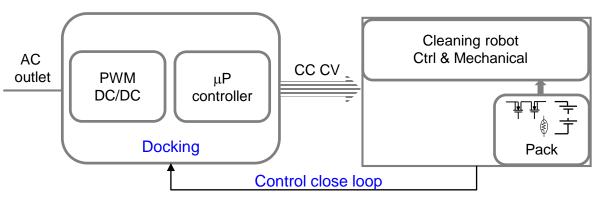

- Why 5V is the most popular adapter?
 - USB 5V is the most easy to find and standard source
 - Cost effective than higher voltage adaptor
 - Good for relative low power and small battery
- Examples of 2S applications
 - Speaker: high quality class D amplifier –2S battery
 - EPOS: thermal printing speed 2S battery
- Key charging requirements
 - USB detection
 - Small size
 - System monitoring
 - Balancing

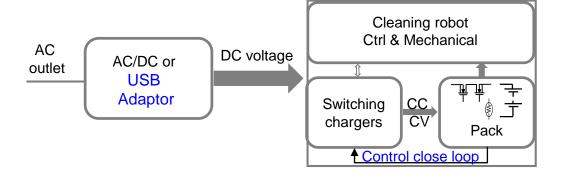
Input	5V USB ports 5V adaptor
Battery	2S
ICHG (A)_MAX	
Topology	
IIN DPM VIN DPM	
External FETs	
ADC bit	
Unique features	
Charger	

5-V input for 2S charging

Input	5V USB ports 5V adaptor
Battery	28
ICHG (A)_MAX	2.0
Topology	Boost
IIN DPM VIN DPM	D+D- or PSEL Yes
External FETs	0
ADC bit	16
Unique features	Cell Balance
Charger	BQ25887/3/6

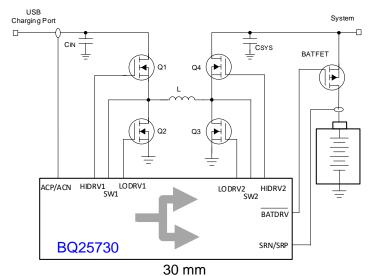
Other inputs for multiple cell charging

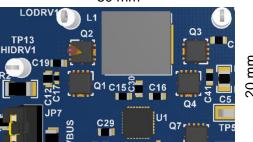

- Other input source high voltage adaptor and USB
 - Deliver higher power, low cable loss
 - USB is the trend as the standard source
 - Good for relative high power and multi-cell battery
- Examples for high input voltage
 - Cleaning robots
 - Drone
 - Medical equipment
- Key charging requirements
 - Small size
 - Flexibility and low system cost
 - High efficiency / good thermal


Input	USB PD High-V adaptor
Battery	1S-5S
ICHG (A)_MAX	
Topology	
IIN DPM VIN DPM	
External FETs	
ADC bit	
Unique features	
Charger	

Charging solutions power tool and cleaning robots

Solution 1:

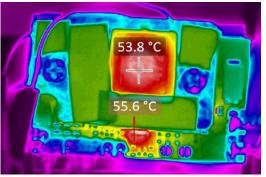

- Single stage isolated AC-DC converter
- Bulky and relative low cost
- Low efficiency
- Low accuracy



Solution 2:

- USB Type C PD charging
- Compact and light weight
- High efficiency
- Accurate

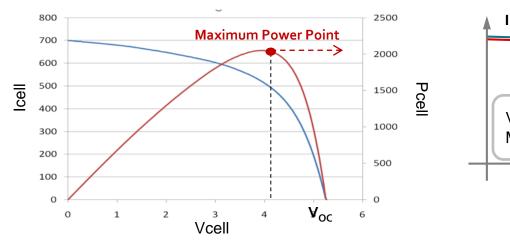
USB inputs for multiple cell charging

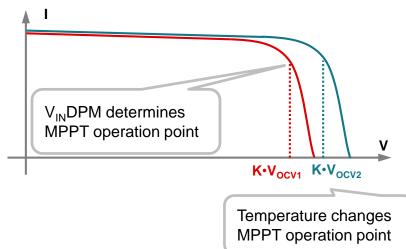


Input	USB PD High-V adaptor
Battery	1S-5S
ICHG (A)_MAX	16.2
Topology	Buck-boost
IIN DPM VIN DPM	+ PD Controller Yes
External FETs	5
ADC bit	8
Unique features	EMI reduction
Charger	BQ25730/1

A reference design

24-VIN, 240-W, 98% Efficient, BQ25731 5S Battery Charger with USB On-The-Go



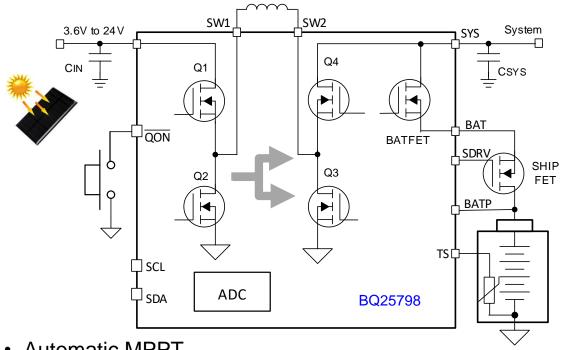

https://www.ti.com/tool/PMP22805

Features:

- High efficiency up to 98% with high power 5 to 24 V_{IN}, 240 W
- Supports 1-5S battery
- Compact size 1.08 in x 1.68 in
- Wide input range USB-Type C PD compliance, USB On-the-Go (OTG) power bank

Solar panel as the source - maximum power point

Autonomous MPPT implementation


- Periodic measurement of OCV
- K factor determined
- **K V**_{OCV} (V_{IN}DPM) determines the MPPT

Solar panel for charging

- Why solar panel?
 - No power grid
 - Green power and sustaining
 - Different power range
- Examples for solar panel applications
 - Remote sensing 1S 2S battery
 - Lawn mower 4S and above
- Key charging requirements
 - Maximum power point
 - Small size
 - System monitoring
 - Low quiescent current

Input	Solar panel
Battery	1S-4S
ICHG (A)_MAX	
Topology	
IIN DPM VIN DPM	
External FETs	
ADC bit	
Unique features	
Charger	

Solar Charging Features

	Autor	matic	MPPT	-
•	Autor	nauc	IMPPI	

- Measures the open circuit voltage (VOC)
- Charger VINDPM will be set to a programmable ratio of VOC with the K factor

Input	Solar panel	
Battery	1S-4S	
ICHG (A)_MAX	5.0	
Topology	Buck-boost	
IIN DPM VIN DPM	+ PD controller Yes	
External FETs	0 or 1 (SHIP)	
ADC bit	16	
Unique features	K•Voc for MPPT SHIP Iq= 11μA	
Charger	BQ25798	

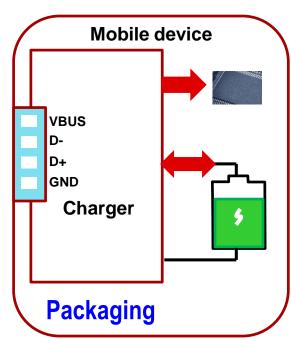
Different combinations of the input and battery

Input	5V USB ports 5V adaptor	5V USB ports 5V adaptor	USB PD High-V adaptor	Solar panel
Battery	1S	28	1S-5S	1S-4S
ICHG (A)_MAX	3.5	2.0	16.2	5.0
Topology	Buck	Boost	Buck-boost	Buck-boost
IIN DPM VIN DPM	D+D- Yes	D+D- or PSEL Yes	+ PD Controller Yes	+ PD controller Yes
External FETs	0	0	5	0 or 1 (SHIP)
ADC bit	16	16	8	16
Unique features	SHIPMODE Iq=1.5uA	Cell Balance	EMI reduction	K•Voc for MPPT SHIP Iq=11µA
Charger	BQ25620/2/8/9	BQ25887/3/6	BQ25730/1	BQ25798/2

Finding the requirements

Input source

Adaptor or USB Input current / Voltage



Control interface

Standalone I2C SMBus

Safety and Protection

Overvoltage/Overcurrent/
Over-temperature, etc

System

Min Voltage Current

Battery

Voltage, Charge Current Chemistry Configuration Capacity

Temperature profile

JEITA COLD/HOT

29

Summary

- Battery charger fundamentals
 - DC/DC converter with multiple loops including CC and CV
 - Challenges due to multiple sources and the solutions
 - DPM (input current or voltage) for the best utilization of the adaptor capacity
- How to select a charger for different input sources and battery configurations
 - Key parameters to identify
 - Unique features improving the system design and customer experience
- The comparisons of application cases

© Copyright 2022 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty.

Use of this material is subject to TI's **Terms of Use**, viewable at TI.com

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated