

ISO1042 70Vバス障害保護機能付き、フレキシブル・データレート対応の絶縁型CANトランシーバ

1 特長

- ISO 11898-2:2016 および ISO 11898-5:2007 物理層規格に準拠
- 最大 1Mbps の Classic CAN、最大 5Mbps の FD (フレキシブル・データレート) に対応
- 短いループ遅延時間 : 152ns
- 保護機能
 - DC バス障害保護電圧: ±70V
 - バス・ピンの HBM ESD 耐性: ±16kV
 - ドライバ優先タイムアウト(TXD DTO)
 - V_{CC1} および V_{CC2} の低電圧保護機能
- 同相電圧範囲: ±30V
- 無電源時の理想的なパッシブ動作、高インピーダンスのバス端子
- 高いCMTI: 100kV/μs
- V_{CC1} 電圧範囲 : 1.71V~5.5V
 - CANコントローラへの1.8V、2.5V、3.3V、5.0Vロジック・インターフェイス
- V_{CC2} 電圧範囲: 4.5V~5.5V
- 堅牢な電磁環境適合性(EMC)
 - システム・レベルでの ESD、EFT、サージ耐性
 - 低い放射
- 周囲温度範囲 : -40°C~+125°C
- 16-SOIC および 8-SOIC パッケージ・オプション
- 車載用バージョンも提供 : [ISO1042-Q1](#)
- 安全関連の認定
 - DIN VDE V 0884-11:2017-01に準拠した $7071V_{PK}$ $V_{IOTM}/1500V_{PK}$ V_{IORM} (強化絶縁型/基本絶縁型)
 - UL1577に準拠した絶縁耐圧: $5000V_{RMS}$ (1分間)
 - IEC 60950-1、IEC 60601-1、EN 61010-1認定
 - CQC、TUV、CSA 認定

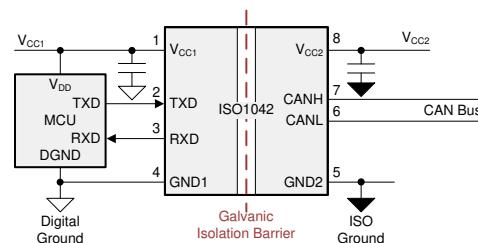
2 アプリケーション

- AC およびサーボ・ドライブ
- 太陽光インバータ
- PLC および DCS 通信モジュール
- エレベータ/エスカレータ
- 産業用電源
- バッテリ充電 / 管理

3 概要

ISO1042デバイスは、ISO11898-2 (2016)規格に準拠したガルバニック絶縁のコントローラ・エリア・ネットワーク(CAN)トランシーバです。±70VのDCバス障害保護機能を搭載し、±30Vの同相電圧範囲に対応しています。CAN FDモードで最高5Mbpsのデータレートに対応するため、Classic CANよりもはるかに高速にペイロードを伝送できます。耐圧5000V_{RMS}の二酸化ケイ素(SiO₂)絶縁膜を採用しており、1060V_{RMS}の動作電圧を実現しています。電磁環境適合性が大幅に強化されているため、システム・レベルのESD、EFT、サージ、放射の規格に準拠できます。絶縁型電源と組み合わせて使用した場合、高電圧に対して保護し、バスからのノイズ電流がローカル・グランドに入り込むことを防止できます。ISO1042デバイスには基本絶縁型と強化絶縁型があります(強化絶縁型と基本絶縁型のオプションを参照)。ISO1042デバイスは-40°C ~ +125°Cの広い周囲温度範囲に対応し、SOIC-16 (DW)パッケージおよび小型のSOIC-8 (DWV)パッケージで供給されます。

製品情報⁽¹⁾


型番	パッケージ	本体サイズ(公称)
ISO1042	SOIC (8)	5.85mm×7.50mm
	SOIC (16)	10.30mm×7.50mm

(1) 利用可能なすべてのパッケージについては、このデータシートの末尾にある注文情報を参照してください。

強化絶縁型と基本絶縁型のオプション

機能	ISO1042x	ISO1042Bx
保護レベル	強化	基本
サージ・テスト電圧	10000V _{PK}	6000V _{PK}
定格絶縁電圧	5000V _{RMS}	5000V _{RMS}
動作電圧	1060V _{RMS} /1500V _{PK}	1060V _{RMS} /1500V _{PK}

アプリケーション図

Copyright © 2017, Texas Instruments Incorporated

英語版のTI製品についての情報を翻訳したこの資料は、製品の概要を確認する目的で便宜的に提供しているものです。該当する正式な英語版の最新情報は、www.ti.comで閲覧でき、その内容が常に優先されます。TIでは翻訳の正確性および妥当性につきましては一切保証いたしません。実際の設計などの前には、必ず最新版の英語版をご参照くださいますようお願いいたします。

English Data Sheet: [SSLF09](#)

目次

1	特長	1	8	Detailed Description	19
2	アプリケーション	1	8.1	Overview	19
3	概要	1	8.2	Functional Block Diagram	19
4	改訂履歴	2	8.3	Feature Description	19
5	Pin Configuration and Functions	3	8.4	Device Functional Modes	23
6	Specifications	5	9	Application and Implementation	24
6.1	Absolute Maximum Ratings	5	9.1	Application Information	24
6.2	ESD Ratings	5	9.2	Typical Application	24
6.3	Transient Immunity	5	9.3	DeviceNet Application	27
6.4	Recommended Operating Conditions	5	10	Power Supply Recommendations	28
6.5	Thermal Information	6	11	Layout	29
6.6	Power Ratings	6	11.1	Layout Guidelines	29
6.7	Insulation Specifications	7	11.2	Layout Example	29
6.8	Safety-Related Certifications	8	12	デバイスおよびドキュメントのサポート	31
6.9	Safety Limiting Values	8	12.1	ドキュメントのサポート	31
6.10	Electrical Characteristics - DC Specification	9	12.2	ドキュメントの更新通知を受け取る方法	31
6.11	Switching Characteristics	11	12.3	コミュニティ・リソース	31
6.12	Insulation Characteristics Curves	12	12.4	商標	31
6.13	Typical Characteristics	13	12.5	静電気放電に関する注意事項	31
7	Parameter Measurement Information	15	12.6	Glossary	31
7.1	Test Circuits	15	13	メカニカル、パッケージ、および注文情報	31

4 改訂履歴

資料番号末尾の英字は改訂を表しています。その改訂履歴は英語版に準じています。

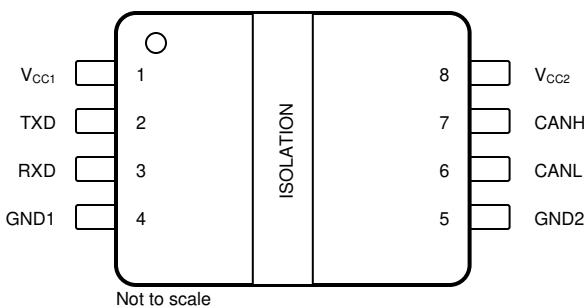
Revision D (October 2019) から Revision E に変更	Page
• 新しい安全関連の認定を 変更	1
• Changed Safety Related Certifications section to include new safety certification	8

Revision C (October 2018) から Revision D に変更	Page
• ISO1042-Q1 のリンクを 追加	1

Revision B (July 2018) から Revision C に変更	Page
• 初版	1

Revision A (May 2018) から Revision B に変更	Page
• Increased the size of the GND2 plane and changed the NC pin to GND2 in the 16-DW Layout Example	30

2017年12月発行のものから更新	Page
• Changed pin 10 from NC to GND2	3


5 Pin Configuration and Functions

Pin Functions—16 Pins

PIN		I/O	DESCRIPTION
NO.	NAME		
1	V _{CC1}	—	Digital-side supply voltage, Side 1
2	GND1	—	Digital-side ground connection, Side 1
3	TXD	I	CAN transmit data input (LOW for dominant and HIGH for recessive bus states)
4	NC	—	Not connected
5	RXD	O	CAN receive data output (LOW for dominant and HIGH for recessive bus states)
6	NC	—	Not connected
7	NC	—	Not connected
8	GND1	—	Digital-side ground connection, Side 1
9			
10	GND2	—	Transceiver-side ground connection, Side 2
11	V _{CC2}	—	Transceiver-side supply voltage, Side 2. Must be externally connected to pin 16.
12	CANL	I/O	Low-level CAN bus line
13	CANH	I/O	High-level CAN bus line
14	NC	—	Not connected
15	GND2	—	Transceiver-side ground connection, Side 2
16	V _{CC2}	—	Transceiver-side supply voltage, Side 2. Must be externally connected to pin 11.

**DWV Package
8-Pin SOIC
Top View**

Pin Functions—8 Pins

PIN		I/O	DESCRIPTION
NO.	NAME		
1	V _{CC1}	—	Digital-side supply voltage, Side 1
2	TXD	I	CAN transmit data input (LOW for dominant and HIGH for recessive bus states)
3	RXD	O	CAN receive data output (LOW for dominant and HIGH for recessive bus states)
4	GND1	—	Digital-side ground connection, Side 1
5	GND2	—	Transceiver-side ground connection, Side 2
6	CANL	I/O	Low-level CAN bus line
7	CANH	I/O	High-level CAN bus line
8	V _{CC2}	—	Transceiver-side supply voltage, Side 2

6 Specifications

6.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾⁽²⁾

		MIN	MAX	UNIT
V_{CC1}	Supply voltage, side 1	-0.5	6	V
V_{CC2}	Supply voltage, side 2	-0.5	6	V
V_{IO}	Logic input and output voltage range (TXD and RXD)	-0.5	$V_{CC1}+0.5^{(3)}$	V
I_o	Output current on RXD pin	-15	15	mA
V_{BUS}	Voltage on bus pins (CANH, CANL)	-70	70	V
V_{BUS_DIFF}	Differential voltage on bus pins (CANH-CANL)	-70	70	V
T_J	Junction temperature	-40	150	°C
T_{STG}	Storage temperature	-65	150	°C

- (1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak voltage values.
- (3) Maximum voltage must not exceed 6 V

6.2 ESD Ratings

		VALUE	UNIT
$V_{(ESD)}$	Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001	All pins ⁽¹⁾	±6000
	CANH and CANL to GND2 ⁽¹⁾	±16000	V
	Electrostatic discharge Charged device model (CDM), per JEDEC specification JESD22-C101	All pins ⁽²⁾	±1500

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Transient Immunity

PARAMETER		TEST CONDITIONS	VALUE	UNIT
V_{PULSE}	ISO7637-2 Transients according to GIFT - ICT CAN EMC test specification	Pulse 1; CAN bus terminals (CANH, CANL) to GND2	-100	V
		Pulse 2; CAN bus terminals (CANH, CANL) to GND2	75	V
		Pulse 3a; CAN bus terminals (CANH, CANL) to GND2	-150	V
		Pulse 3b; CAN bus terminals (CANH, CANL) to GND2	100	V

6.4 Recommended Operating Conditions

		MIN	MAX	UNIT
V_{CC1}	Supply Voltage, Side 1, 1.8-V operation	1.71	1.89	V
	Supply Voltage, Side 1, 2.5-V, 3.3-V and 5.5-V operation	2.25	5.5	V
V_{CC2}	Supply Voltage, Side 2	4.5	5.5	V
T_A	Operating ambient temperature	-40	125	°C

6.5 Thermal Information

THERMAL METRIC ⁽¹⁾		ISO1042		UNIT
		DW (SOIC)	DWV (SOIC)	
		16 PINS	8 PINS	
$R_{\Theta JA}$	Junction-to-ambient thermal resistance	69.9	100	°C/W
$R_{\Theta JC(\text{top})}$	Junction-to-case (top) thermal resistance	31.8	40.8	°C/W
$R_{\Theta JB}$	Junction-to-board thermal resistance	29.0	51.8	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	13.2	16.8	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	28.6	49.8	°C/W
$R_{\Theta JC(\text{bot})}$	Junction-to-case (bottom) thermal resistance	-	-	°C/W

(1) For more information about traditional and new thermal metrics, see the [Semiconductor and IC Package Thermal Metrics](#) application report.

6.6 Power Ratings

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
P_D	Maximum power dissipation (both sides)	See 图 17 , $V_{CC1} = V_{CC2} = 5.5$ V, $T_J = 150^\circ\text{C}$, $R_L = 50 \Omega$, A repetitive pattern on TXD with 1 ms time period, 990 μs LOW time, and 10 μs HIGH time.			385	mW
P_{D1}	Maximum power dissipation (side-1)	See 图 19 , $V_{CC1} = V_{CC2} = 5.5$ V, $T_J = 150^\circ\text{C}$, $R_L = 50 \Omega$, Input a 2-V pk-pk 2.5-MHz 50% duty cycle differential square wave on CANH-CANL			25	mW
P_{D2}	Maximum power dissipation (side-2)	See 图 17 , $V_{CC1} = V_{CC2} = 5.5$ V, $T_J = 150^\circ\text{C}$, $R_L = 50 \Omega$, A repetitive pattern on TXD with 1 ms time period, 990 μs LOW time, and 10 μs HIGH time.			360	mW

6.7 Insulation Specifications

PARAMETER		TEST CONDITIONS	SPECIFICATIONS		UNIT
			DW-16	DWV-8	
IEC 60664-1					
CLR	External clearance ⁽¹⁾	Side 1 to side 2 distance through air	>8	>8.5	mm
CPG	External Creepage ⁽¹⁾	Side 1 to side 2 distance across package surface	>8	>8.5	mm
DTI	Distance through the insulation	Minimum internal gap (internal clearance)	>17	>17	μm
CTI	Comparative tracking index	IEC 60112; UL 746A	>600	>600	V
	Material Group	According to IEC 60664-1	I	I	
	Overvoltage category	Rated mains voltage \leq 600 V _{RMS}	I-IV	I-IV	
		Rated mains voltage \leq 1000 V _{RMS}	I-III	I-III	
DIN VDE V 0884-11:2017-01⁽²⁾					
V _{IORM}	Maximum repetitive peak isolation voltage	AC voltage (bipolar)	1500	1500	V _{PK}
V _{IOWM}	Maximum isolation working voltage	AC voltage (sine wave); time-dependent dielectric breakdown (TDDB) test;	1060	1060	V _{RMS}
		DC voltage	1500	1500	V _{DC}
V _{IOTM}	Maximum transient isolation voltage	V _{TEST} = V _{IOTM} , t = 60 s (qualification); V _{TEST} = 1.2 \times V _{IOTM} , t = 1 s (100% production)	7071	7071	V _{PK}
V _{IOSM}	Maximum surge isolation voltage ISO1042 ⁽³⁾	Test method per IEC 62368-1, 1.2/50 μs waveform, V _{TEST} = 1.6 \times V _{IOSM} = 10000 V _{PK} (qualification)	6250	6250	V _{PK}
	Maximum surge isolation voltage ISO1042B ⁽³⁾	Test method per IEC 62368-1, 1.2/50 μs waveform, V _{TEST} = 1.3 \times V _{IOSM} = 6000 V _{PK} (qualification)	4615	4615	V _{PK}
q _{pd}	Apparent charge ⁽⁴⁾	Method a: After I/O safety test subgroup 2/3, V _{ini} = V _{IOTM} , t _{ini} = 60 s; V _{pd(m)} = 1.2 \times V _{IORM} , t _m = 10 s	\leq 5	\leq 5	pC
		Method a: After environmental tests subgroup 1, V _{ini} = V _{IOTM} , t _{ini} = 60 s; ISO1042: V _{pd(m)} = 1.6 \times V _{IORM} , t _m = 10 s ISO1042B: V _{pd(m)} = 1.2 \times V _{IORM} , t _m = 10 s	\leq 5	\leq 5	
		Method b1: At routine test (100% production) and preconditioning (type test), V _{ini} = V _{IOTM} , t _{ini} = 1 s; ISO1042: V _{pd(m)} = 1.875 \times V _{IORM} , t _m = 1 s ISO1042B: V _{pd(m)} = 1.5 \times V _{IORM} , t _m = 1 s	\leq 5	\leq 5	
C _{IO}	Barrier capacitance, input to output ⁽⁵⁾	V _{IO} = 0.4 \times sin (2 π f), f = 1 MHz	1	1	pF
R _{IO}	Insulation resistance, input to output ⁽⁵⁾	V _{IO} = 500 V, T _A = 25°C	$> 10^{12}$	$> 10^{12}$	Ω
		V _{IO} = 500 V, 100°C \leq T _A \leq 150°C	$> 10^{11}$	$> 10^{11}$	
		V _{IO} = 500 V at T _S = 150°C	$> 10^9$	$> 10^9$	
	Pollution degree		2	2	
	Climatic category		40/125/ 21	40/125/ 21	
UL 1577					
V _{ISO}	Withstand isolation voltage	V _{TEST} = V _{ISO} , t = 60 s (qualification); V _{TEST} = 1.2 \times V _{ISO} , t = 1 s (100% production)	5000	5000	V _{RMS}

- (1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves, ribs, or both on a printed circuit board are used to help increase these specifications.
- (2) ISO1042 is suitable for *safe electrical insulation* and ISO1042B is suitable for *basic electrical insulation* only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.
- (3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.
- (4) Apparent charge is electrical discharge caused by a partial discharge (pd).
- (5) All pins on each side of the barrier tied together creating a two-pin device.

6.8 Safety-Related Certifications

VDE	CSA	UL	CQC	TUV
Certified according to DIN VDE V 0884-11:2017-01	Certified according to IEC 60950-1, IEC 62368-1 and IEC 60601-1	Recognized under UL 1577 Component Recognition Program	Certified according to GB4943.1-2011	Certified according to EN 61010-1:2010/A1:2019, EN 60950-1:2006/A2:2013 and EN 62368-1:2014
Maximum transient isolation voltage, 7071 V _{PK} ; Maximum repetitive peak isolation voltage, 1500 V _{PK} ; Maximum surge isolation voltage, ISO1042: 6250 V _{PK} (Reinforced) ISO1042B: 4615 V _{PK} (Basic)	CSA 60950-1-07+A1+A2, IEC 60950-1 2 nd Ed.+A1+A2 and IEC 62368-1 2 nd Ed., for pollution degree 2, material group I ISO1042: 800 V _{RMS} reinforced isolation ISO1042B: 1060 V _{RMS} basic isolation ----- CSA 60601-1:14 and IEC 60601-1 Ed. 3.1+A1, ISO1042: 2 MOPP (Means of Patient Protection) 250 V _{RMS} (354 V _{PK}) maximum working voltage	Single protection, 5000 V _{RMS}	Reinforced insulation, Altitude ≤ 5000 m, Tropical Climate, 700 V _{RMS} maximum working voltage	EN 61010-1:2010 /A1:2019 ISO1042: 600 V _{RMS} reinforced isolation ISO1042B: 1000 V _{RMS} basic isolation ----- EN 60950-1:2006/A2:2013 and EN 62368-1:2014 ISO1042: 800 V _{RMS} reinforced isolation ISO1042B: 1060 V _{RMS} basic isolation
Certificates: Reinforced: 40040142 Basic: 40047657	Master contract number: 220991	File number: E181974	Certificate: CQC15001121716 (DW-16) CQC18001199096 (DWV-8)	Client ID number: 77311

6.9 Safety Limiting Values

Safety limiting⁽¹⁾ intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
DW-16 PACKAGE						
I _S	Safety input, output, or supply current	R _{θJA} = 69.9°C/W, V _I = 5.5 V, T _J = 150°C, T _A = 25°C, see 图 1	325	mA		
		R _{θJA} = 69.9°C/W, V _I = 3.6 V, T _J = 150°C, T _A = 25°C, see 图 1	496			
		R _{θJA} = 69.9°C/W, V _I = 2.75 V, T _J = 150°C, T _A = 25°C, see 图 1	650			
		R _{θJA} = 69.9°C/W, V _I = 1.89 V, T _J = 150°C, T _A = 25°C, see 图 1	946			
P _S	Safety input, output, or total power	R _{θJA} = 69.9°C/W, T _J = 150°C, T _A = 25°C, see 图 3	1788	mW		
T _S	Maximum safety temperature		150	°C		
DWV-8 PACKAGE						
I _S	Safety input, output, or supply current	R _{θJA} = 100°C/W, V _I = 5.5 V, T _J = 150°C, T _A = 25°C, see 图 2	227	mA		
		R _{θJA} = 100°C/W, V _I = 3.6 V, T _J = 150°C, T _A = 25°C, see 图 2	347			
		R _{θJA} = 100°C/W, V _I = 2.75 V, T _J = 150°C, T _A = 25°C, see 图 2	454			
		R _{θJA} = 100°C/W, V _I = 1.89 V, T _J = 150°C, T _A = 25°C, see 图 2	661			
P _S	Safety input, output, or total power	R _{θJA} = 100°C/W, T _J = 150°C, T _A = 25°C, see 图 4	1250	mW		
T _S	Maximum safety temperature		150	°C		

(1) The maximum safety temperature, T_S, has the same value as the maximum junction temperature, T_J, specified for the device. The I_S and P_S parameters represent the safety current and safety power respectively. The maximum limits of I_S and P_S should not be exceeded. These limits vary with the ambient temperature, T_A.

The junction-to-air thermal resistance, R_{θJA}, in the table is that of a device installed on a high-K test board for leaded surface-mount packages. Use these equations to calculate the value for each parameter:

$$T_J = T_A + R_{\theta JA} \times P, \text{ where } P \text{ is the power dissipated in the device.}$$

$$T_{J(max)} = T_S = T_A + R_{\theta JA} \times P_S, \text{ where } T_{J(max)} \text{ is the maximum allowed junction temperature.}$$

$$P_S = I_S \times V_I, \text{ where } V_I \text{ is the maximum input voltage.}$$

6.10 Electrical Characteristics - DC Specification

Over recommended operating conditions (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
SUPPLY CHARACTERISTICS						
I_{CC1}	Supply current Side 1	$V_{CC1} = 1.71\text{ V to }1.89\text{ V, }TXD = 0\text{ V, bus dominant}$	2.3	3.5	mA	
		$V_{CC1} = 2.25\text{ V to }5.5\text{ V, }TXD = 0\text{ V, bus dominant}$	2.4	3.5	mA	
		$V_{CC1} = 1.71\text{ V to }1.89\text{ V, }TXD = V_{CC1}, bus recessive$	1.2	2.1	mA	
		$V_{CC1} = 2.25\text{ V to }5.5\text{ V, }TXD = V_{CC1}, bus recessive$	1.3	2.1	mA	
I_{CC2}	Supply current Side 2	$TXD = 0\text{ V, bus dominant, }R_L = 60\text{ }\Omega$	43	73.4	mA	
		$TXD = V_{CC1}, bus recessive, R_L = 60\text{ }\Omega$	2.8	4.1	mA	
UV_{VCC1}	Rising under voltage detection, Side 1			1.7	V	
UV_{VCC1}	Falling under voltage detection, Side 1		1.0		V	
$V_{HYS(UVC1)}$	Hysteresis voltage on V_{CC1} undervoltage lock-out		75	125	mV	
UV_{VCC2}	Rising under voltage detection, side 2			4.2	4.45	V
UV_{VCC2}	Falling under voltage detection, side 2		3.8	4.0	4.25	V
$V_{HYS(UVC2)}$	Hysteresis voltage on V_{CC2} undervoltage lock-out			200		mV
TXD TERMINAL						
V_{IH}	High level input voltage		$0.7 \times V_{CC1}$		V	
V_{IL}	Low level input voltage			$0.3 \times V_{CC1}$	V	
I_{IH}	High level input leakage current	$TXD = V_{CC1}$		1	uA	
I_{IL}	Low level input leakage current	$TXD = 0\text{ V}$	-20		uA	
C_I	Input capacitance	$V_{IN} = 0.4 \times \sin(2 \times \pi \times 1\text{ E}+6 \times t) + 2.5\text{ V, }V_{CC1} = 5\text{ V}$	3		pF	
RXD TERMINAL						
$V_{OH} - V_{CC1}$	High level output voltage	See 图 18 , $I_O = -4\text{ mA for }4.5\text{ V} \leq V_{CC1} \leq 5.5\text{ V}$	-0.4	-0.2	V	
		See 图 18 , $I_O = -2\text{ mA for }3.0\text{ V} \leq V_{CC1} \leq 3.6\text{ V}$	-0.2	-0.07	V	
		See 图 18 , $I_O = -1\text{ mA for }2.25\text{ V} \leq V_{CC1} \leq 2.75\text{ V}$	-0.1	-0.04	V	
		See 图 18 , $I_O = -1\text{ mA for }1.71\text{ V} \leq V_{CC1} \leq 1.89\text{ V}$	-0.1	-0.045	V	
V_{OL}	Low level output voltage	See 图 18 , $I_O = 4\text{ mA for }4.5\text{ V} \leq V_{CC1} \leq 5.5\text{ V}$	0.2	0.4	V	
		See 图 18 , $I_O = 2\text{ mA for }3.0\text{ V} \leq V_{CC1} \leq 3.6\text{ V}$	0.07	0.2	V	
		See 图 18 , $I_O = 1\text{ mA for }2.25\text{ V} \leq V_{CC1} \leq 2.75\text{ V}$	0.035	0.1	V	
		See 图 18 , $I_O = 1\text{ mA for }1.71\text{ V} \leq V_{CC1} \leq 1.89\text{ V}$	0.04	0.1	V	
DRIVER ELECTRICAL CHARACTERISTICS						
$V_{O(DOM)}$	Bus output voltage(Dominant), CANH	See 图 15 and 图 16 , $TXD = 0\text{ V, }50\text{ }\Omega \leq R_L \leq 65\text{ }\Omega, C_L = \text{open}$	2.75	4.5	V	
	Bus output voltage(Dominant), CANL	See 图 15 and 图 16 , $TXD = 0\text{ V, }50\text{ }\Omega \leq R_L \leq 65\text{ }\Omega, C_L = \text{open}$	0.5	2.25	V	
$V_{O(REC)}$	Bus output voltage(recessive), CANH and CANL	See 图 15 and 图 16 , $TXD = V_{CC1}, R_L = \text{open}$	2.0	$0.5 \times V_{CC2}$	3.0	V

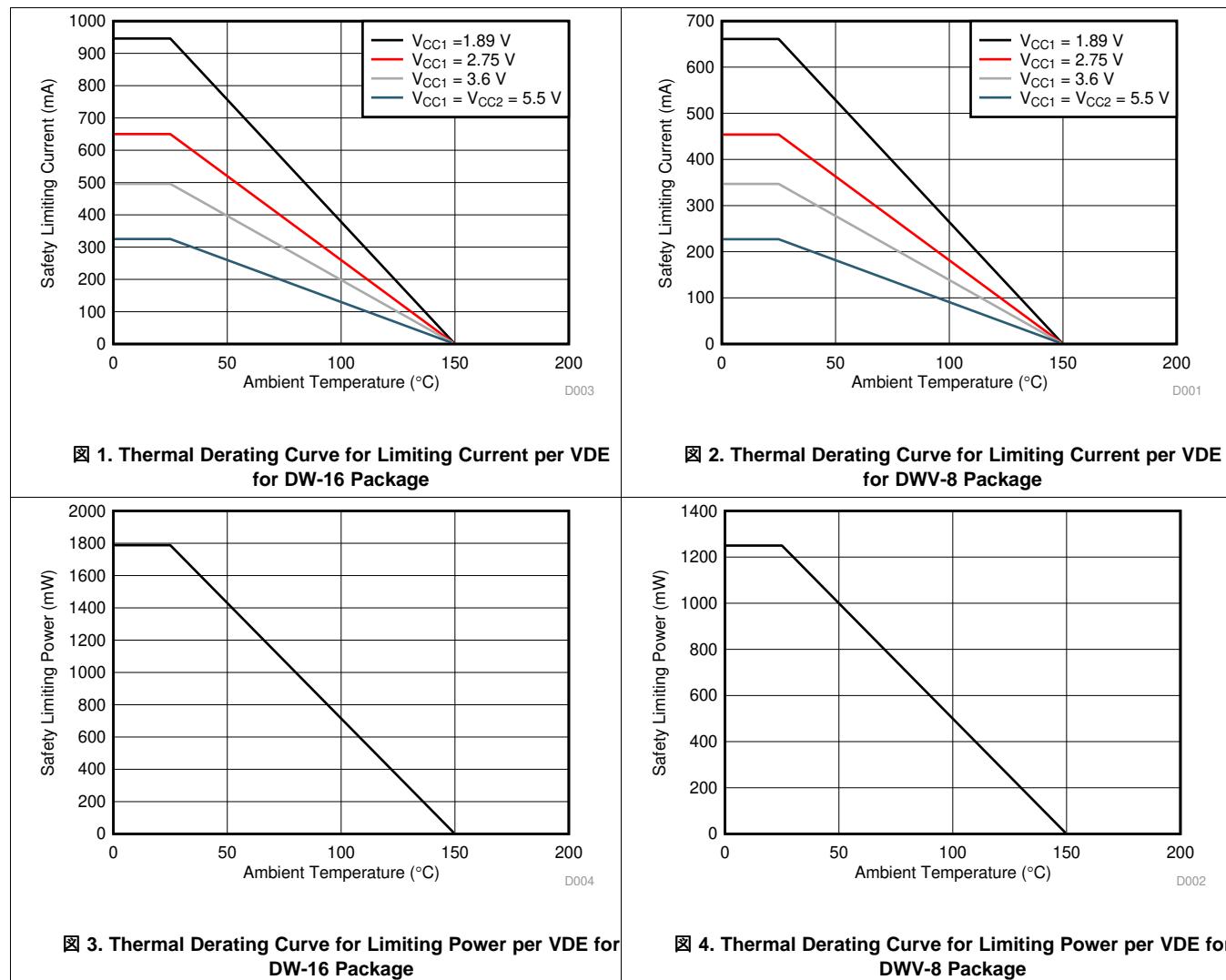
Electrical Characteristics - DC Specification (continued)

Over recommended operating conditions (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
$V_{OD(DOM)}$	Differential output voltage, CANH-CANL (dominant)	See 图 15 and 图 16 , $TXD = 0 \text{ V}$, $45 \Omega \leq R_L \leq 50 \Omega$, $C_L = \text{open}$	1.4		3.0	V
	Differential output voltage, CANH-CANL (dominant)	See 图 15 and 图 16 , $TXD = 0 \text{ V}$, $50 \Omega \leq R_L \leq 65 \Omega$, $C_L = \text{open}$	1.5		3.0	V
	Differential output voltage, CANH-CANL (dominant)	See 图 15 and 图 16 , $TXD = 0 \text{ V}$, $R_L = 2240 \Omega$, $C_L = \text{open}$	1.5		5.0	V
$V_{OD(REC)}$	Differential output voltage, CANH-CANL (recessive)	See 图 15 and 图 16 , $TXD = V_{CC1}$, $R_L = 60 \Omega$, $C_L = \text{open}$	-120.0		12.0	mV
	Differential output voltage, CANH-CANL (recessive)	See 图 15 and 图 16 , $TXD = V_{CC1}$, $R_L = \text{open}$, $C_L = \text{open}$	-50.0		50.0	mV
V_{SYM_DC}	DC Output symmetry ($V_{CC2} - V_{O(CANH)} - V_{O(CANL)}$)	See 图 15 and 图 16 , $R_L = 60 \Omega$, $C_L = \text{open}$, $TXD = V_{CC1}$ or 0 V	-400.0		400.0	mV
$I_{SO(ss_DO)}$	Short circuit current steady state output current, dominant	See 图 23 , $V_{CANH} = -5 \text{ V}$ to 40 V , $CANL = \text{open}$, $TXD = 0 \text{ V}$	-100.0			mA
		See 图 23 , $V_{CANL} = -5 \text{ V}$ to 40 V , $CANH = \text{open}$, $TXD = 0 \text{ V}$			100.0	mA
$I_{SO(ss_RE)}$	Short circuit current steady state output current, recessive	See 图 23 , $-27 \text{ V} \leq V_{BUS} \leq 32 \text{ V}$, $V_{BUS} = CANH = CANL$, $TXD = V_{CC1}$	-5.0		5.0	mA
RECEIVER ELECTRICAL CHARACTERISTICS						
V_{IT}	Differential input threshold voltage	See 图 18 and 表 1 , $ VCM \leq 20 \text{ V}$	500.0		900.0	mV
	Differential input threshold voltage	See 图 18 and 表 1 , $20 \text{ V} \leq VCM \leq 30 \text{ V}$	400.0		1000.0	
V_{HYS}	Hysteresis voltage for differential input threshold	See 图 18 and 表 1			120	
V_{CM}	Input common mode range	See 图 18 and 表 1	-30.0		30.0	V
$I_{OFF(LKG)}$	Power-off bus input leakage current	$CANH = CANL = 5 \text{ V}$, V_{CC2} to GND via 0Ω and $47 \text{ k}\Omega$ resistor			4.8	uA
C_I	Input capacitance to ground (CANH or CANL)	$TXD = V_{CC1}$		24.0	30	pF
C_{ID}	Differential input capacitance (CANH-CANL)	$TXD = V_{CC1}$		12.0	15	pF
R_{ID}	Differential input resistance	$TXD = V_{CC1}$; $-30 \text{ V} \leq VCM \leq +30 \text{ V}$	30.0		80.0	k Ω
R_{IN}	Input resistance (CANH or CANL)	$TXD = V_{CC1}$; $-30 \text{ V} \leq VCM \leq +30 \text{ V}$	15.0		40.0	k Ω
$R_{IN(M)}$	Input resistance matching: $(1 - R_{IN(CANH)}/R_{IN(CANL)}) \times 100\%$	$V_{CANH} = V_{CANL} = 5 \text{ V}$	-2.0		2.0	%
THERMAL SHUTDOWN						
T_{TSD}	Thermal shutdown temperature			170		°C
T_{TSD_HYS}	Thermal shutdown hysteresis			5		°C

6.11 Switching Characteristics

Over recommended operating conditions (unless otherwise noted)


PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
DEVICE SWITCHING CHARACTERISTICS						
$t_{PROP(LO OP1)}$	Total loop delay, driver input TXD to receiver RXD, recessive to dominant	See 图 20 , $R_L = 60 \Omega$, $C_L = 100 \text{ pF}$, $C_{L(RXD)} = 15 \text{ pF}$; input rise/fall time (10% to 90%) on TXD = 1 ns; $1.71 \text{ V} \leq V_{CC1} \leq 1.89 \text{ V}$	70	125	198.0	ns
		See 图 20 , $R_L = 60 \Omega$, $C_L = 100 \text{ pF}$, $C_{L(RXD)} = 15 \text{ pF}$; input rise/fall time (10% to 90%) on TXD = 1 ns; $2.25 \text{ V} \leq V_{CC1} \leq 5.5 \text{ V}$	70	122	192.0	ns
$t_{PROP(LO OP2)}$	Total loop delay, driver input TXD to receiver RXD, dominant to recessive	See 图 20 , $R_L = 60 \Omega$, $C_L = 100 \text{ pF}$, $C_{L(RXD)} = 15 \text{ pF}$; input rise/fall time (10% to 90%) on TXD = 1 ns; $1.71 \text{ V} \leq V_{CC1} \leq 1.89 \text{ V}$	70	155	215.0	ns
		See 图 20 , $R_L = 60 \Omega$, $C_L = 100 \text{ pF}$, $C_{L(RXD)} = 15 \text{ pF}$; input rise/fall time (10% to 90%) on TXD = 1 ns; $2.25 \text{ V} \leq V_{CC1} \leq 5.5 \text{ V}$	70	152	215.0	ns
$t_{UV_RE_ENABLE}$	Re-enable time after Undervoltage event	Time for device to return to normal operation from V_{CC1} or V_{CC2} under voltage event			300.0	μs
CMTI	Common mode transient immunity	$V_{CM} = 1200 \text{ V}_{PK}$, See 图 24	85	100		$\text{kV}/\mu\text{s}$
DRIVER SWITCHING CHARACTERISTICS						
t_{pHR}	Propagation delay time, HIGH TXD to driver recessive	See 图 17 , $R_L = 60 \Omega$ and $C_L = 100 \text{ pF}$; input rise/fall time (10% to 90%) on TXD = 1 ns	76	120	ns	
t_{pLD}	Propagation delay time, LOW TXD to driver dominant		61	120		
$t_{sk(p)}$	Pulse skew ($ t_{pHR} - t_{pLD} $)		14			
t_R	Differential output signal rise time		45			
t_F	Differential output signal fall time		45			
V_{SYM}	Output symmetry (dominant or recessive) $(V_{O(CANH)} + V_{O(CANL)}) / V_{CC2}$	See 图 17 and 图 31 , $R_{TERM} = 60 \Omega$, $C_{SPLIT} = 4.7 \text{ nF}$, $C_L = \text{open}$, $R_L = \text{open}$, TXD = 250 kHz, 1 MHz	0.9	1.1	V/V	
t_{TXD_DTO}	Dominant time out	See 图 22 , $R_L = 60 \Omega$ and $C_L = \text{open}$	1.2	3.8	ms	
RECEIVER SWITCHING CHARACTERISTICS						
t_{pRH}	Propagation delay time, bus recessive input to RXD high output	See 图 19 , $C_{L(RXD)} = 15 \text{ pF}$	75	130	ns	
t_{pDL}	Propagation delay time, bus dominant input to RXD low output		63	130	ns	
t_R	Output signal rise time(RXD)		1.4		ns	
t_F	Output signal fall time(RXD)		1.8		ns	
FD TIMING PARAMETERS						
$t_{BIT(BUS)}$	Bit time on CAN bus output pins with $t_{BIT(TXD)} = 500 \text{ ns}$	See 图 21 , $R_L = 60 \Omega$, $C_L = 100 \text{ pF}$, $C_{L(RXD)} = 15 \text{ pF}$; input rise/fall time (10% to 90%) on TXD = 1 ns	435.0	530.0	ns	
	Bit time on CAN bus output pins with $t_{BIT(TXD)} = 200 \text{ ns}$	See 图 21 , $R_L = 60 \Omega$, $C_L = 100 \text{ pF}$, $C_{L(RXD)} = 15 \text{ pF}$; input rise/fall time (10% to 90%) on TXD = 1 ns	155.0	210.0	ns	
$t_{BIT(RXD)}$	Bit time on RXD output pins with $t_{BIT(TXD)} = 500 \text{ ns}$	See 图 21 , $R_L = 60 \Omega$, $C_L = 100 \text{ pF}$, $C_{L(RXD)} = 15 \text{ pF}$; input rise/fall time (10% to 90%) on TXD = 1 ns	400	550.0	ns	
	Bit time on RXD output pins with $t_{BIT(TXD)} = 200 \text{ ns}$	See 图 21 , $R_L = 60 \Omega$, $C_L = 100 \text{ pF}$, $C_{L(RXD)} = 15 \text{ pF}$; input rise/fall time (10% to 90%) on TXD = 1 ns	120.0	220.0	ns	

Switching Characteristics (continued)

Over recommended operating conditions (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
Δt_{REC}	Receiver timing symmetry with $t_{BIT(TXD)} = 500$ ns	See 图 21 , $R_L = 60 \Omega$, $C_L = 100 \text{ pF}$, $C_{L(RXD)} = 15 \text{ pF}$; input rise/fall time (10% to 90%) on TXD =1 ns; $\Delta t_{REC} = t_{BIT(RXD)} - t_{BIT(BUS)}$	-65.0		40.0	ns
	Receiver timing symmetry with $t_{BIT(TXD)} = 200$ ns	See 图 21 , $R_L = 60 \Omega$, $C_L = 100 \text{ pF}$, $C_{L(RXD)} = 15 \text{ pF}$; input rise/fall time (10% to 90%) on TXD =1 ns; $\Delta t_{REC} = t_{BIT(RXD)} - t_{BIT(BUS)}$	-45.0		15.0	ns

6.12 Insulation Characteristics Curves

6.13 Typical Characteristics

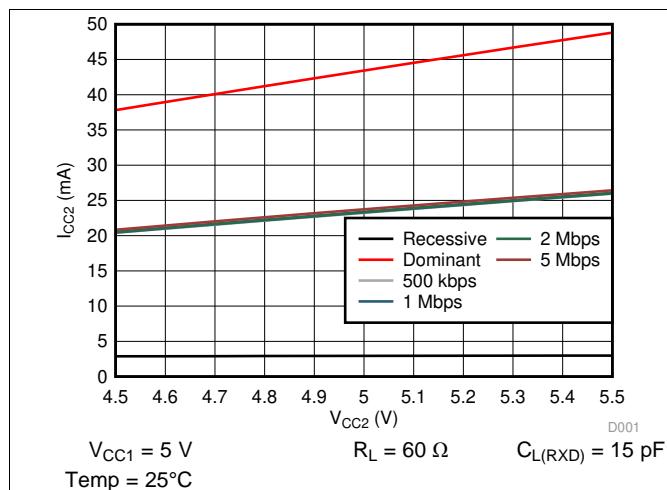


图 5. I_{CC2} vs V_{CC2} for Recessive, Dominant and Different CAN Datarates

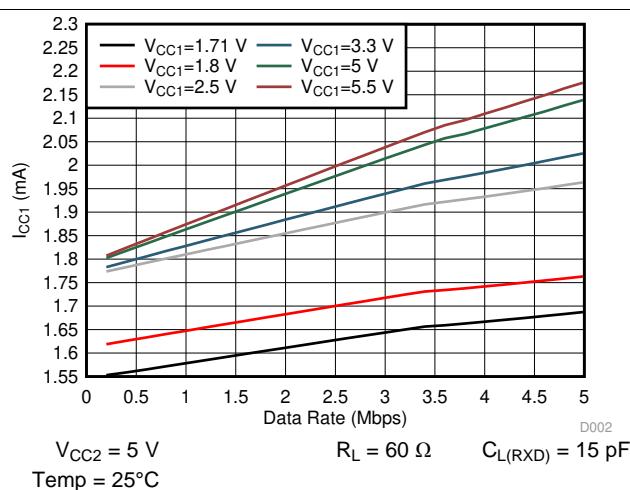


图 6. I_{CC1} vs Datarate

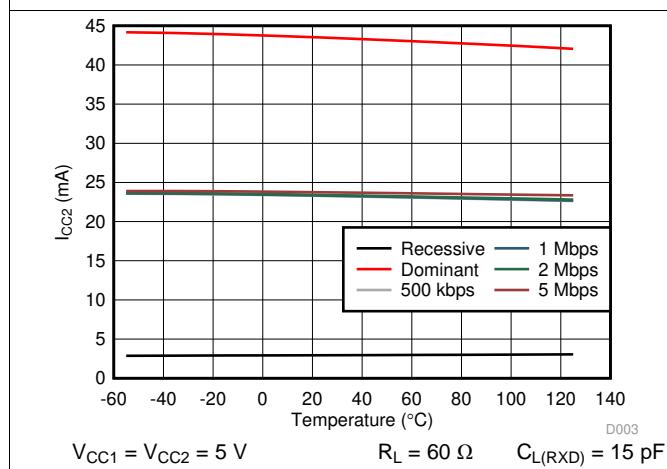


图 7. I_{CC2} vs Ambient Temperature for Recessive, Dominant and Different CAN Datarates

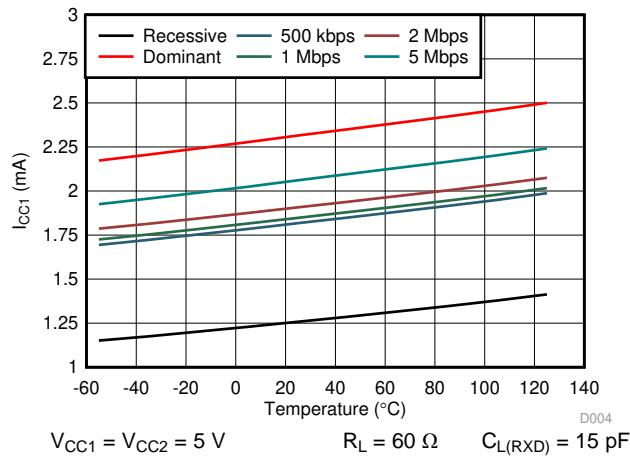


图 8. : I_{CC1} vs Ambient Temperature for Recessive, Dominant and Different CAN Datarates.

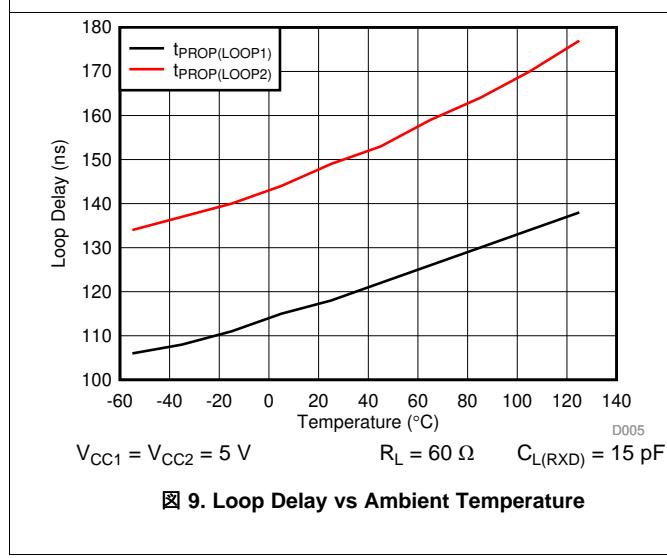
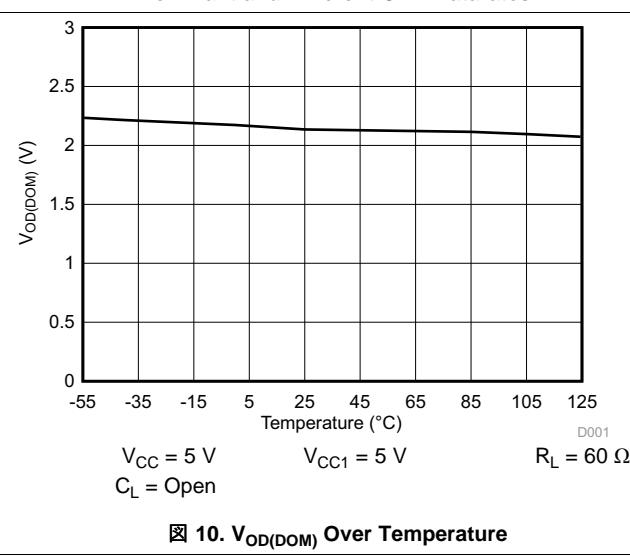



图 9. Loop Delay vs Ambient Temperature

Typical Characteristics (continued)

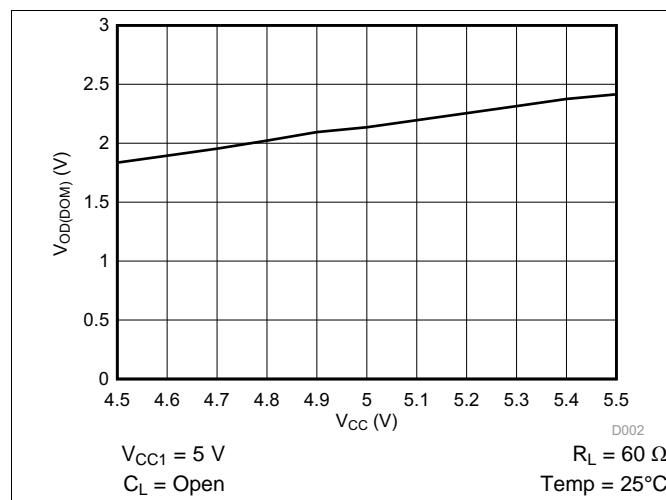


図 11. $V_{OD(DOM)}$ Over V_{CC}

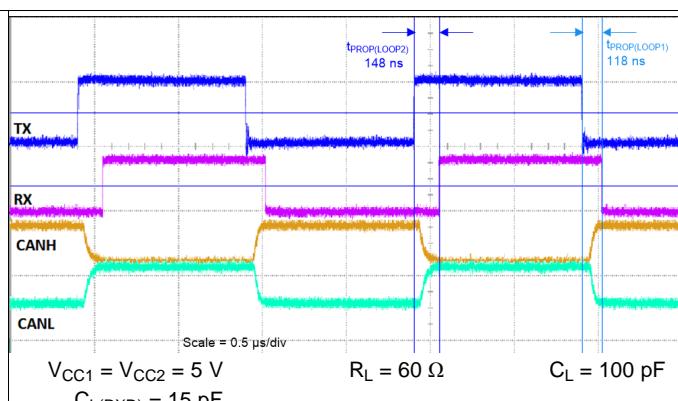


図 12. Typical TXD, RXD, CANH and CANL Waveforms at 1 Mbps



図 13. Glitch Free Power Up on V_{CC1} – CAN Bus Remains Recessive

図 14. Glitch Free Power Up on V_{CC2} – CAN Bus Remains Recessive

7 Parameter Measurement Information

7.1 Test Circuits

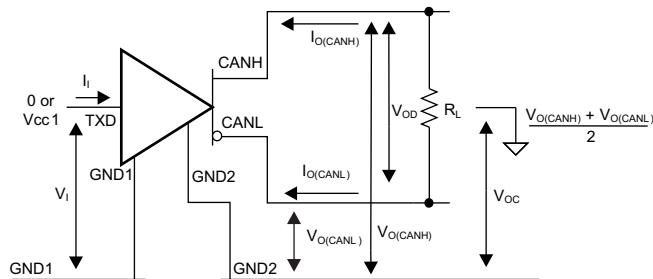


図 15. Driver Voltage, Current and Test Definitions

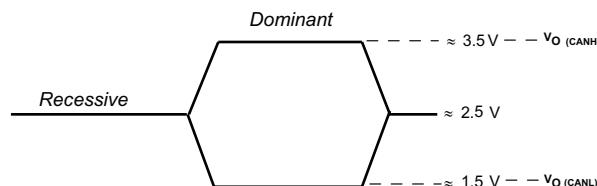
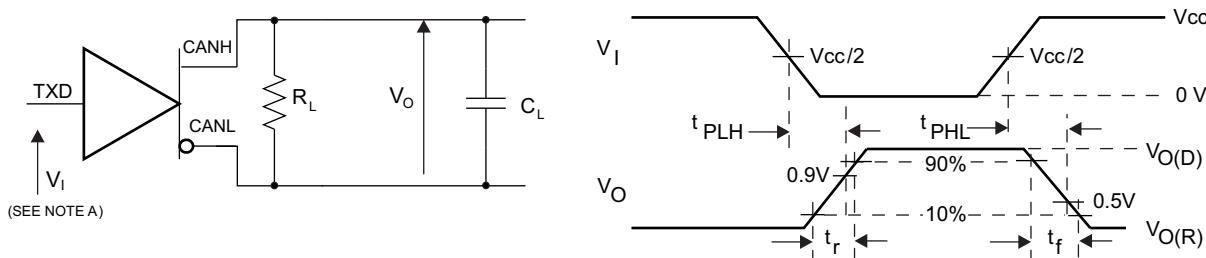



図 16. Bus Logic State Voltage Definitions

A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 125 kHz, 50% duty cycle, $t_r \leq 6$ ns, $t_f \leq 6$ ns, $Z_O = 50 \Omega$.

図 17. Driver Test Circuit and Voltage Waveforms

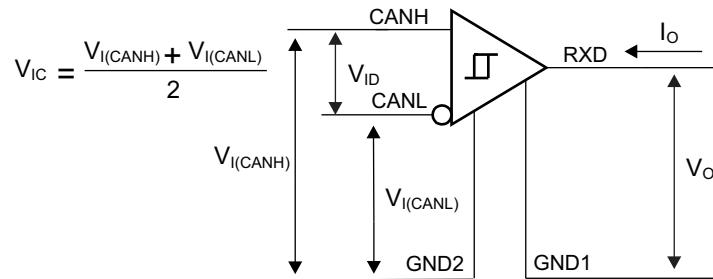
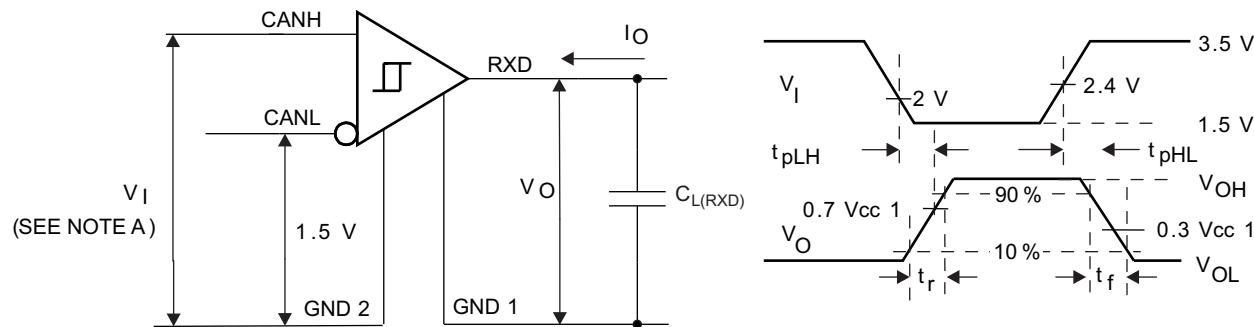



図 18. Receiver Voltage and Current Definitions

Test Circuits (continued)

A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 125 kHz, 50% duty cycle, $t_r \leq 6$ ns, $t_f \leq 6$ ns, $Z_O = 50 \Omega$.

図 19. Receiver Test Circuit and Voltage Waveforms

表 1. Receiver Differential Input Voltage Threshold Test

INPUT			OUTPUT	
V_{CANH}	V_{CANL}	$ V_{ID} $	RXD	
-29.5 V	-30.5 V	1000 mV	L	V_{OL}
30.5 V	29.5 V	1000 mV	L	
-19.55 V	-20.45 V	900 mV	L	
20.45 V	19.55 V	900 mV	L	
-19.75 V	-20.25 V	500 mV	H	
20.25 V	19.75 V	500 mV	H	
-29.8 V	-30.2 V	400 mV	H	
30.2 V	29.8 V	400 mV	H	
Open	Open	X	H	

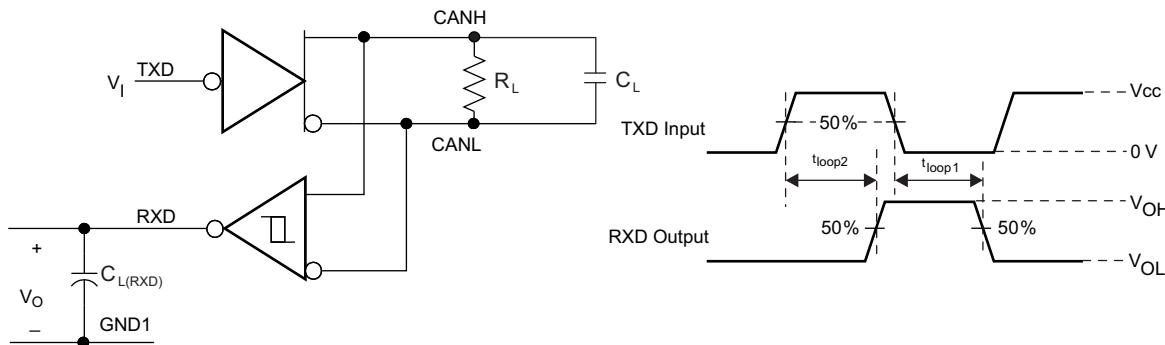
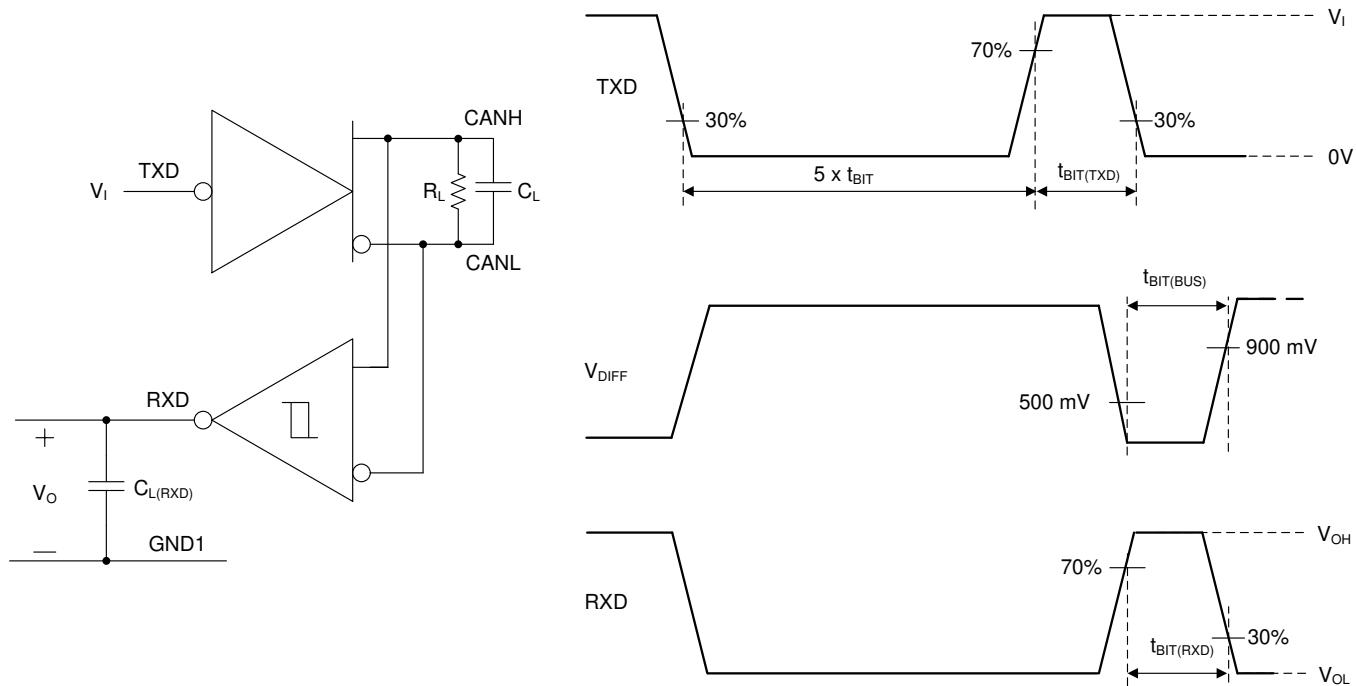
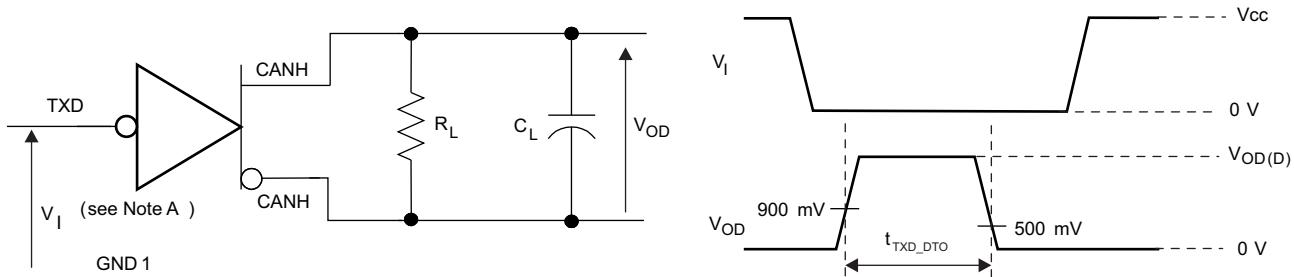
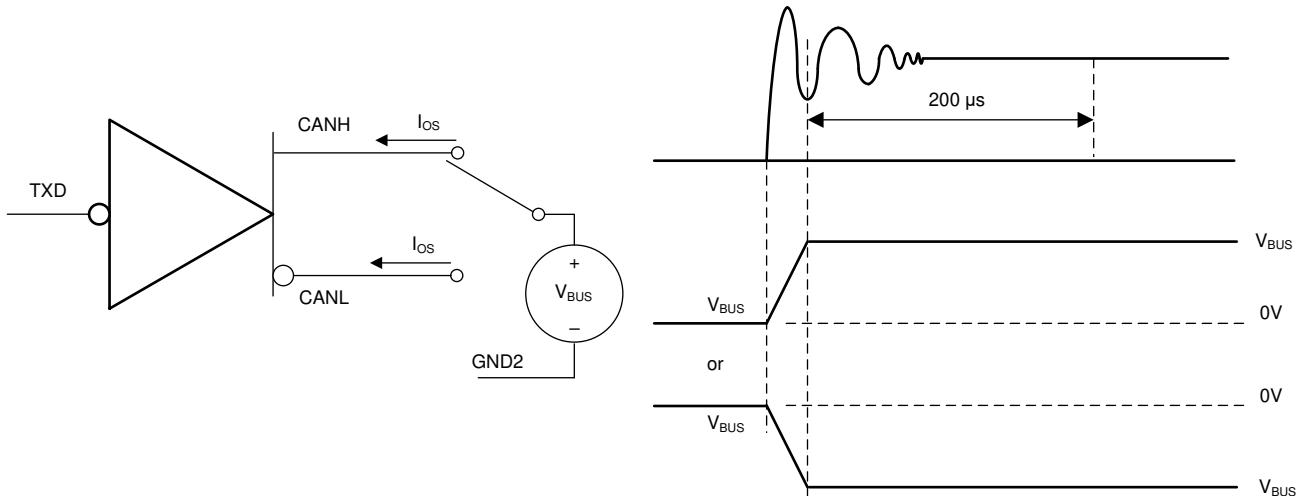





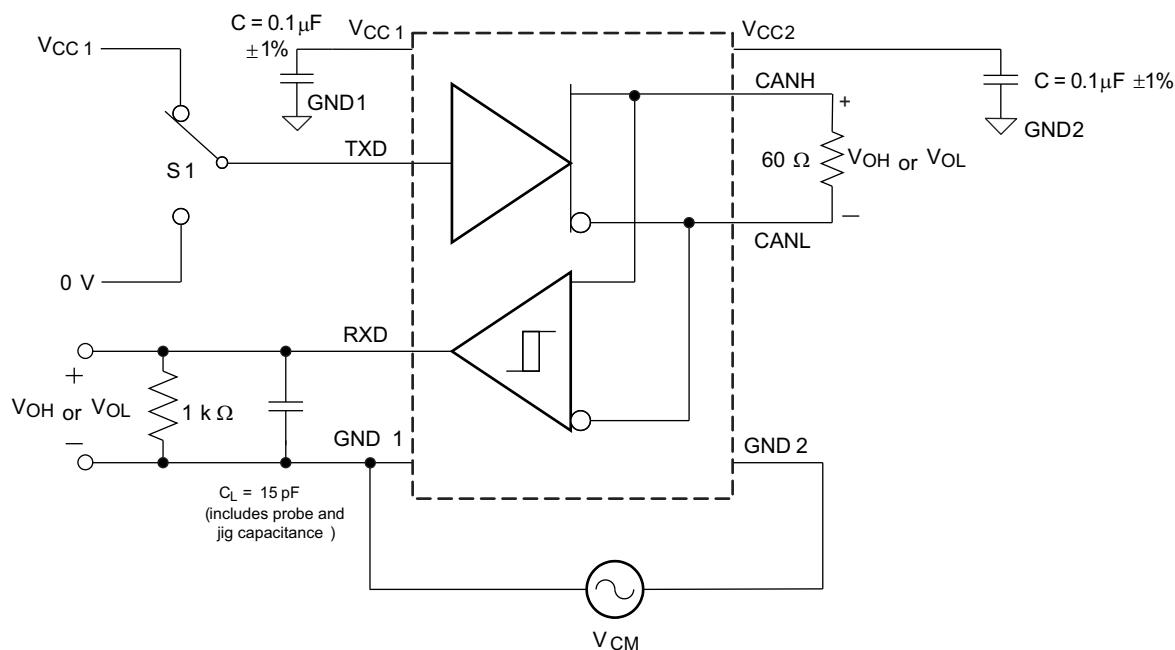
図 20. t_{LOOP} Test Circuit and Voltage Waveforms

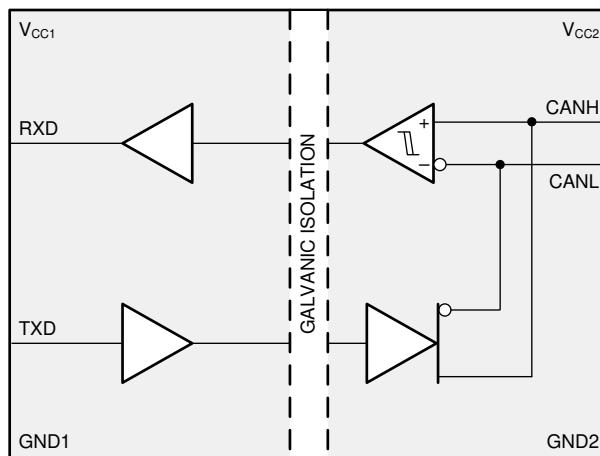
図 21. CAN FD Timing Parameter Measurement

A. The input pulse is supplied by a generator having the following characteristics: $t_r \leq 6 \text{ ns}$, $t_f \leq 6 \text{ ns}$, $Z_O = 50 \Omega$.

図 22. Dominant Time-out Test Circuit and Voltage Waveforms

図 23. Driver Short-Circuit Current Test Circuit and Waveforms




図 24. Common-Mode Transient Immunity Test Circuit

8 Detailed Description

8.1 Overview

The ISO1042 device is a digitally isolated CAN transceiver that offers ± 70 -V DC bus fault protection and ± 30 -V common-mode voltage range. The device supports up to 5-Mbps data rate in CAN FD mode allowing much faster transfer of payload compared to classic CAN. The ISO1042 device has an isolation withstand voltage of 5000 V_{RMS} and is available in basic and reinforced isolation with a surge test voltage of 6 kV_{PK} and 10 kV_{PK} respectively. The device can operate from 1.8-V, 2.5-V, 3.3-V, and 5-V supplies on side 1 and a 5-V supply on side 2. This supply range is of particular advantage for applications operating in harsh industrial environments because the low voltage on side 1 enables the connection to low-voltage microcontrollers for power conservation, whereas the 5 V on side 2 maintains a high signal-to-noise ratio of the bus signals.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 CAN Bus States

The CAN bus has two states during operation: *dominant* and *recessive*. A dominant bus state, equivalent to logic low, is when the bus is driven differentially by a driver. A recessive bus state is when the bus is biased to a common mode of $V_{CC} / 2$ through the high-resistance internal input resistors of the receiver, equivalent to a logic high. The host microprocessor of the CAN node uses the TXD pin to drive the bus and receives data from the bus on the RXD pin. See [图 25](#) and [图 26](#).

Feature Description (continued)

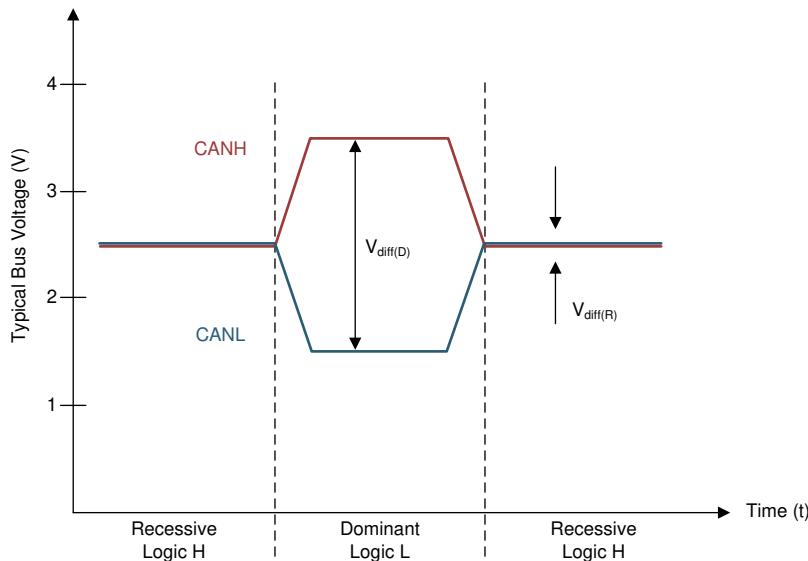


図 25. Bus States (Physical Bit Representation)

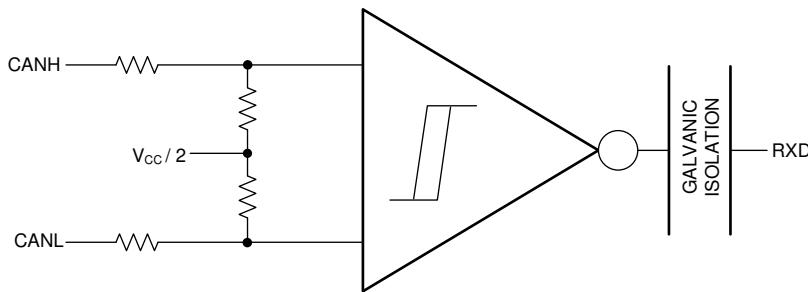


図 26. Simplified Recessive Common Mode Bias and Receiver

8.3.2 Digital Inputs and Outputs: TXD (Input) and RXD (Output)

The V_{CC1} supply for the isolated digital input and output side of the device can be supplied by 1.8-V, 2.5-V, 3.3-V, and 5-V supplies and therefore the digital inputs and outputs are 1.8-V, 2.5-V, 3.3-V, and 5-V compatible.

注

The TXD pin is very weakly internally pulled up to V_{CC1} . An external pullup resistor should be used to make sure that the TXD pin is biased to recessive (high) level to avoid issues on the bus if the microprocessor does not control the pin and the TXD pin floats. The TXD pullup strength and CAN bit timing require special consideration when the device is used with an open-drain TXD output on the CAN controller of the microprocessor. An adequate external pullup resistor must be used to make sure that the TXD output of the microprocessor maintains adequate bit timing input to the input on the transceiver.

Feature Description (continued)

8.3.3 Protection Features

8.3.3.1 TXD Dominant Timeout (DTO)

The TXD DTO circuit prevents the transceiver from blocking network communication in the event of a hardware or software failure where the TXD pin is held dominant longer than the timeout period, t_{TXD_DTO} . The DTO circuit timer starts on a falling edge on the TXD pin. The DTO circuit disables the CAN bus driver if no rising edge occurs before the timeout period expires, which frees the bus for communication between other nodes on the network. The CAN driver is activated again when a recessive signal occurs on the TXD pin, clearing the TXD DTO condition. The receiver and RXD pin still reflect activity on the CAN bus, and the bus terminals are biased to the recessive level during a TXD dominant timeout.



図 27. Example Timing Diagram for TXD DTO

注

The minimum dominant TXD time (t_{TXD_DTO}) allowed by the TXD DTO circuit limits the minimum possible transmitted data rate of the device. The CAN protocol allows a maximum of eleven successive dominant bits (on TXD) for the worst case, where five successive dominant bits are followed immediately by an error frame. This, along with the t_{TXD_DTO} minimum, limits the minimum data rate. Calculate the minimum transmitted data rate with 式 1.

$$\text{Minimum Data Rate} = 11 / t_{TXD_DTO} \quad (1)$$

8.3.3.2 Thermal Shutdown (TSD)

If the junction temperature of the device exceeds the thermal shutdown threshold (T_{TSD}), the device turns off the CAN driver circuits, blocking the TXD-to-bus transmission path. The CAN bus terminals are biased to the recessive level during a thermal shutdown, and the receiver-to-RXD path remains operational. The shutdown condition is cleared when the junction temperature drops at least the thermal shutdown hysteresis temperature (T_{TSD_HYST}) below the thermal shutdown temperature (T_{TSD}) of the device.

Feature Description (continued)

8.3.3.3 Undervoltage Lockout and Default State

The supply pins have undervoltage detection that places the device in protected or default mode which protects the bus during an undervoltage event on the V_{CC1} or V_{CC2} supply pins. If the bus-side power supply, V_{CC2} , is less than about 4 V, the power shutdown circuits in the ISO1042 device disable the transceiver to prevent false transmissions because of an unstable supply. If the V_{CC1} supply is still active when this occurs, the receiver output (RXD) goes to a default HIGH (recessive) value. 表 2 summarizes the undervoltage lockout and fail-safe behavior.

表 2. Undervoltage Lockout and Default State

V_{CC1}	V_{CC2}	DEVICE STATE	BUS OUTPUT	RXD
> UV _{VCC1}	> UV _{VCC2}	Functional	Per Device State and TXD	Mirrors Bus
< UV _{VCC1}	> UV _{VCC2}	Protected	Recessive	Undetermined
> UV _{VCC1}	< UV _{VCC2}	Protected	High Impedance	Recessive (Default High)

注

After an undervoltage condition is cleared and the supplies have returned to valid levels, the device typically resumes normal operation in 300 μ s.

8.3.3.4 Floating Pins

Pullup and pulldown resistors should be used on critical pins to place the device into known states if the pins float. The TXD pin should be pulled up through a resistor to the V_{CC1} pin to force a recessive input level if the microprocessor output to the pin floats.

8.3.3.5 Unpowered Device

The device is designed to be *ideal passive* or *no load* to the CAN bus if it is unpowered. The bus pins (CANH, CANL) have extremely low leakage currents when the device is unpowered to avoid loading down the bus which is critical if some nodes of the network are unpowered while the rest of the network remains in operation.

8.3.3.6 CAN Bus Short Circuit Current Limiting

The device has two protection features that limit the short circuit current when a CAN bus line has a short-circuit fault condition. The first protection feature is driver current limiting (both dominant and recessive states) and the second feature is TXD dominant state time out to prevent permanent higher short circuit current of the dominant state during a system fault. During CAN communication the bus switches between dominant and recessive states, therefore the short circuit current may be viewed either as the instantaneous current during each bus state or as an average current of the two states. For system current (power supply) and power considerations in the termination resistors and common-mode choke ratings, use the average short circuit current. Determine the ratio of dominant and recessive bits by the data in the CAN frame plus the following factors of the protocol and PHY that force either recessive or dominant at certain times:

- Control fields with set bits
- Bit stuffing
- Interframe space
- TXD dominant time out (fault case limiting)

These factors ensure a minimum recessive amount of time on the bus even if the data field contains a high percentage of dominant bits. The short circuit current of the bus depends on the ratio of recessive to dominant bits and their respective short circuit currents. Use 式 2 to calculate the average short circuit current.

$$I_{OS(AVG)} = \%Transmit \times [(\%REC_Bits \times I_{OS(SS)_REC}) + (\%DOM_Bits \times I_{OS(SS)_DOM})] + [\%Receive \times I_{OS(SS)_REC}]$$

where

- $I_{OS(AVG)}$ is the average short circuit current
- %Transmit is the percentage the node is transmitting CAN messages
- %Receive is the percentage the node is receiving CAN messages

- %REC_Bits is the percentage of recessive bits in the transmitted CAN messages
- %DOM_Bits is the percentage of dominant bits in the transmitted CAN messages
- $I_{OS(SS)_REC}$ is the recessive steady state short circuit current
- $I_{OS(SS)_DOM}$ is the dominant steady state short circuit current

(2)

注

Consider the short circuit current and possible fault cases of the network when sizing the power ratings of the termination resistance and other network components.

8.4 Device Functional Modes

表 3 和 表 4 列出驱动器和接收器功能。表 5 列出 ISO1042 设备的功能模式。

表 3. Driver Function Table

INPUT	OUTPUTS		DRIVEN BUS STATE
	CANH ⁽¹⁾	CANL ⁽¹⁾	
L	H	L	Dominant
H	Z	Z	Recessive

(1) H = high level, L = low level, Z = common mode (recessive) bias to $V_{CC} / 2$. See 图 25 和 图 26 for bus state and common mode bias information.

表 4. Receiver Function Table

DEVICE MODE	CAN DIFFERENTIAL INPUTS $V_{ID} = V_{CANH} - V_{CANL}$ ⁽¹⁾	BUS STATE	RXD PIN ⁽²⁾
Normal	$V_{ID} \geq V_{IT(MAX)}$	Dominant	L
	$V_{IT(MIN)} < V_{ID} < V_{IT(MAX)}$?	?
	$V_{ID} \leq V_{IT(MIN)}$	Recessive	H
	Open ($V_{ID} \approx 0$ V)	Open	H

(1) See Receiver Electrical Characteristics section for input thresholds.

(2) H = high level, L = low level, ? = indeterminate.

表 5. Function Table⁽¹⁾

DRIVER			RECEIVER			
INPUTS	OUTPUTS		BUS STATE	DIFFERENTIAL INPUTS $V_{ID} = CANH - CANL$ ⁽²⁾	OUTPUT RXD	BUS STATE
TXD	CANH	CANL				
L ⁽³⁾	H	L	DOMINANT	$V_{ID} \geq V_{IT(MAX)}$	L	DOMINANT
H	Z	Z	RECESSIVE	$V_{IT(MIN)} < V_{ID} < V_{IT(MAX)}$?	?
Open	Z	Z	RECESSIVE	$V_{ID} \leq V_{IT(MIN)}$	H	RECESSIVE
X	Z	Z	RECESSIVE	Open ($V_{ID} \approx 0$ V)	H	RECESSIVE

(1) H = high level; L = low level; X = irrelevant; ? = indeterminate; Z = high impedance

(2) See Receiver Electrical Characteristics section for input thresholds.

(3) Logic low pulses to prevent dominant time-out.

9 Application and Implementation

注

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The ISO1042 device can be used with other components from Texas Instruments such as a microcontroller, a transformer driver, and a linear voltage regulator to form a fully isolated CAN interface.

9.2 Typical Application

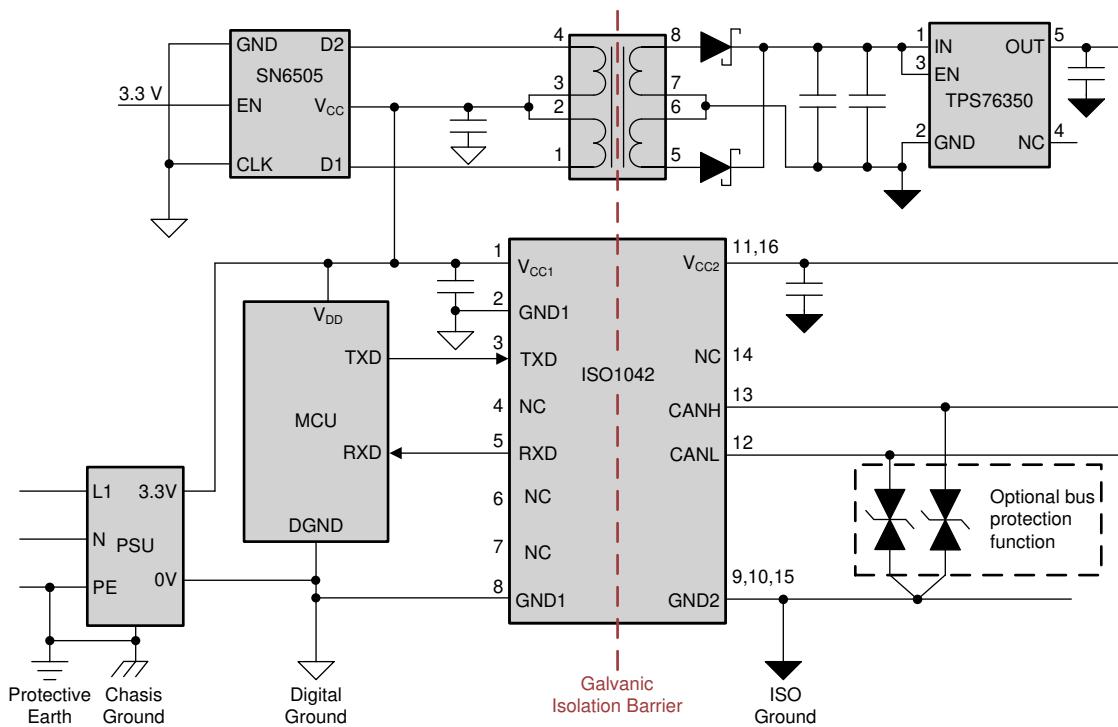
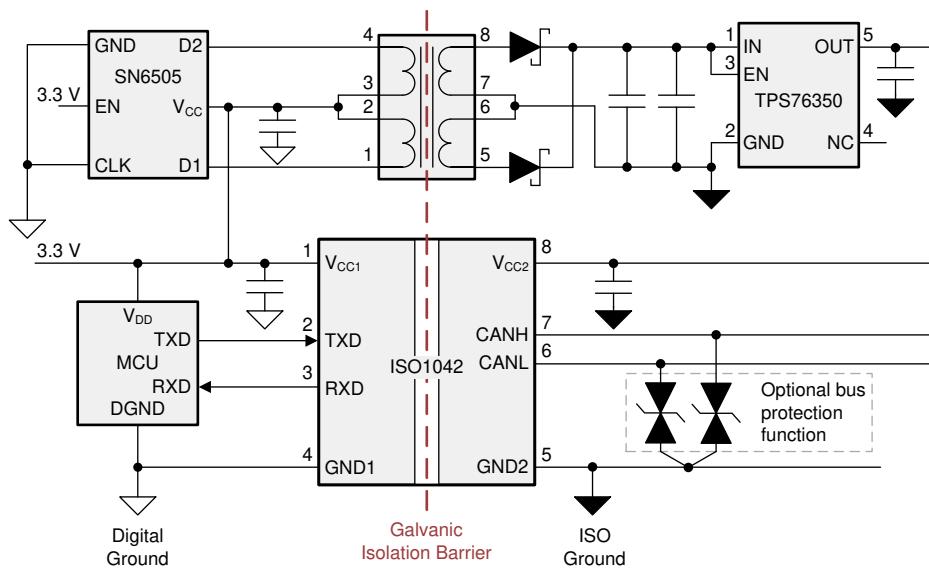



图 28. Application Circuit With ISO1042 in 16-SOIC Package

Typical Application (continued)

Copyright © 2017, Texas Instruments Incorporated

图 29. Application Circuit With ISO1042 in 8-SOIC Package

9.2.1 Design Requirements

Unlike an optocoupler-based solution, which requires several external components to improve performance, provide bias, or limit current, the ISO1042 device only requires external bypass capacitors to operate.

9.2.2 Detailed Design Procedure

9.2.2.1 Bus Loading, Length and Number of Nodes

The ISO 11898-2 Standard specifies a maximum bus length of 40 m and maximum stub length of 0.3 m. However, with careful design, users can have longer cables, longer stub lengths, and many more nodes to a bus. A large number of nodes requires transceivers with high input impedance such as the ISO1042 transceivers.

Many CAN organizations and standards have scaled the use of CAN for applications outside the original ISO 11898-2 Standard. These organizations and standards have made system-level trade-offs for data rate, cable length, and parasitic loading of the bus. Examples of some of these specifications are ARINC825, CANopen, DeviceNet, and NMEA2000.

The ISO1042 device is specified to meet the 1.5-V requirement with a $50\text{-}\Omega$ load, incorporating the worst case including parallel transceivers. The differential input resistance of the ISO1042 device is a minimum of $30\text{ k}\Omega$. If 100 ISO1042 transceivers are in parallel on a bus, this requirement is equivalent to a $300\text{-}\Omega$ differential load worst case. That transceiver load of $300\ \Omega$ in parallel with the $60\ \Omega$ gives an equivalent loading of $50\ \Omega$. Therefore, the ISO1042 device theoretically supports up to 100 transceivers on a single bus segment. However, for CAN network design margin must be given for signal loss across the system and cabling, parasitic loadings, network imbalances, ground offsets and signal integrity, therefore a practical maximum number of nodes is typically much lower. Bus length may also be extended beyond the original ISO 11898 standard of 40 m by careful system design and data-rate tradeoffs. For example, CANopen network design guidelines allow the network to be up to 1 km with changes in the termination resistance, cabling, less than 64 nodes, and a significantly lowered data rate.

This flexibility in CAN network design is one of the key strengths of the various extensions and additional standards that have been built on the original ISO 11898-2 CAN standard. Using this flexibility requires the responsibility of good network design and balancing these tradeoffs.

Typical Application (continued)

9.2.2.2 CAN Termination

The ISO11898 standard specifies the interconnect to be a single twisted pair cable (shielded or unshielded) with $120\text{-}\Omega$ characteristic impedance (Z_0). Resistors equal to the characteristic impedance of the line should be used to terminate both ends of the cable to prevent signal reflections. Unterminated drop-lines (stubs) connecting nodes to the bus should be kept as short as possible to minimize signal reflections. The termination may be in a node, but if nodes are removed from the bus, the termination must be carefully placed so that it is not removed from the bus.

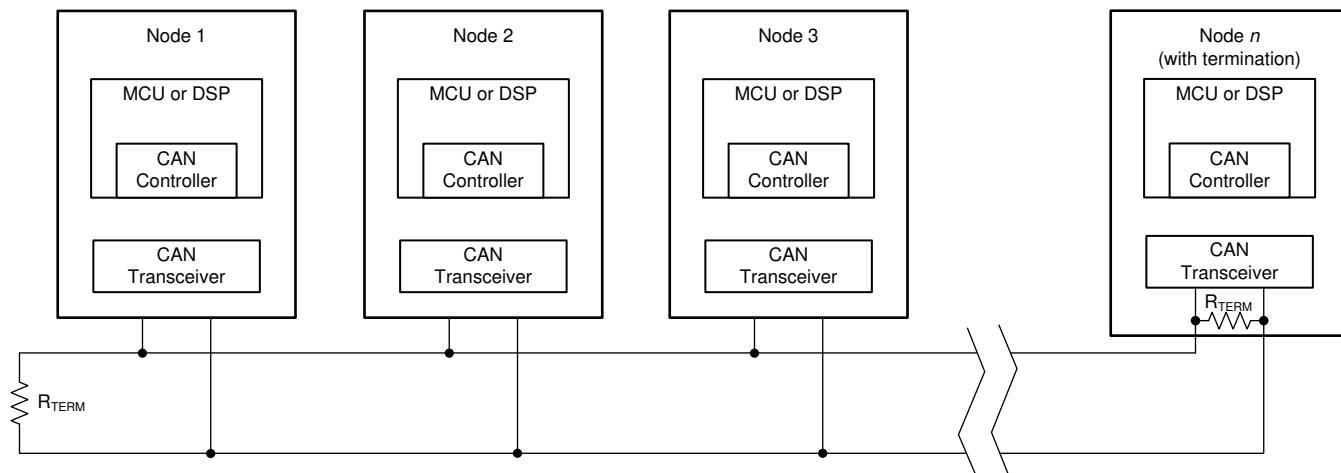


图 30. Typical CAN Bus

Termination may be a single $120\text{-}\Omega$ resistor at the end of the bus, either on the cable or in a terminating node. If filtering and stabilization of the common-mode voltage of the bus is desired, then split termination can be used. (See 图 31). Split termination improves the electromagnetic emissions behavior of the network by eliminating fluctuations in the bus common-mode voltages at the start and end of message transmissions.

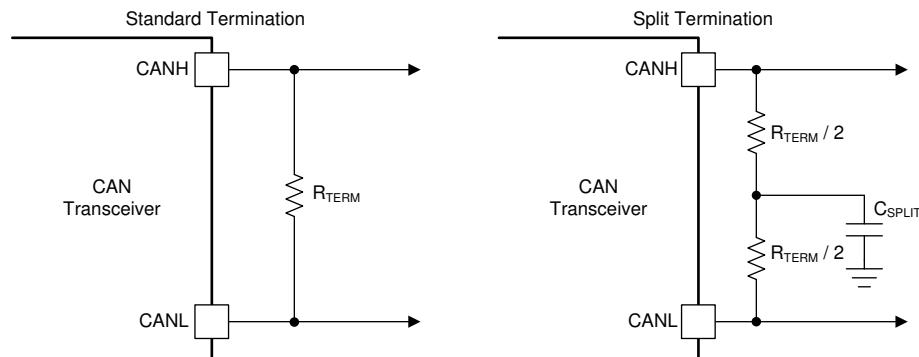


图 31. CAN Bus Termination Concepts

Typical Application (continued)

9.2.3 Application Curve

9.3 DeviceNet Application

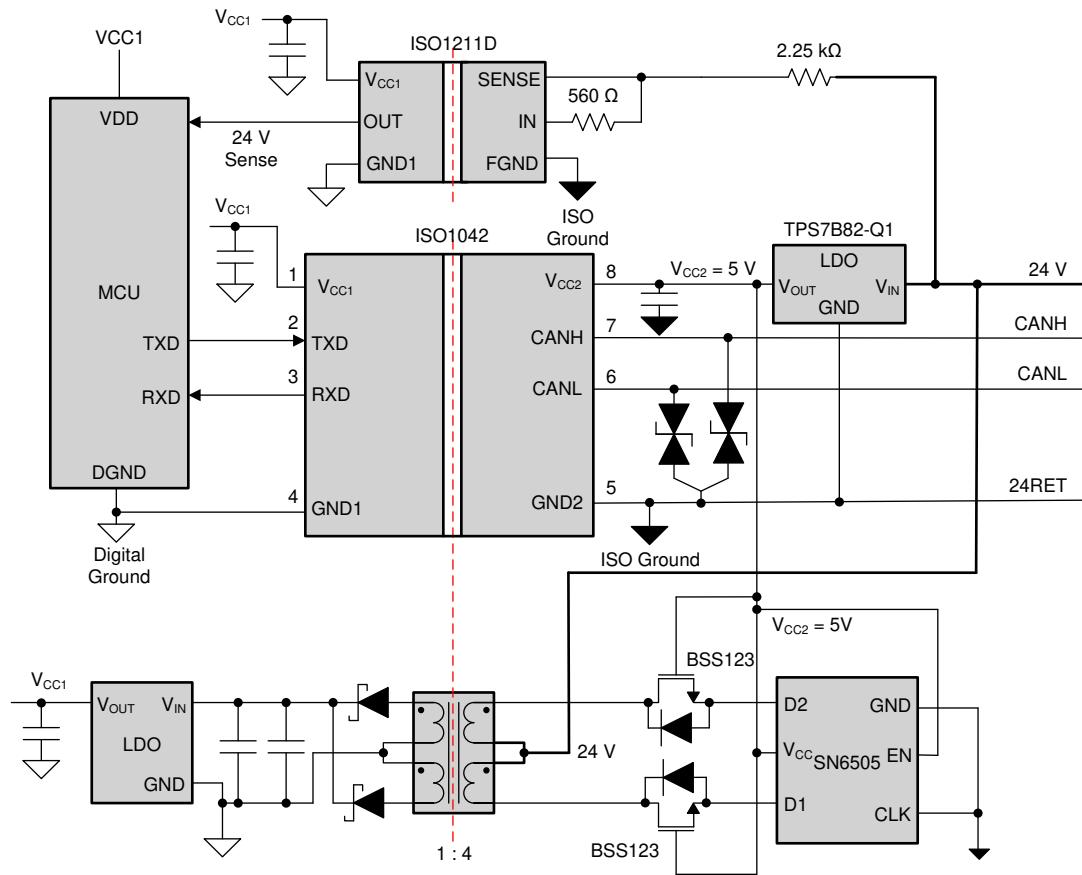


図 33. ISO1042, ISO1211 and SN6505 Used in a DeviceNet Application

DeviceNet Application (continued)

图 33 shows an application circuit for using ISO1042, ISO1211 and SN6505 in a DeviceNet application. ISO1042 is used to isolate the CAN interface. The ISO1211 24-V digital input receiver is used to detect the absence or presence of the 24-V field supply. The SN6505 push-pull transformer driver, is used to create an auxiliary isolated power supply for the micro-controller side using the 24-V field supply.

10 Power Supply Recommendations

To make sure operation is reliable at all data rates and supply voltages, a 0.1- μ F bypass capacitor is recommended at the input and output supply pins (V_{CC1} and V_{CC2}). The capacitors should be placed as close to the supply pins as possible. In addition, a bulk capacitance, typically 4.7 μ F, should be placed near the V_{CC2} supply pin. If only a single primary-side power supply is available in an application, isolated power can be generated for the secondary-side with the help of a transformer driver such as TI's [SN6505B](#). For such applications, detailed power supply design, and transformer selection recommendations are available in the [SN6505 Low-Noise 1-A Transformer Drivers for Isolated Power Supplies data sheet](#).

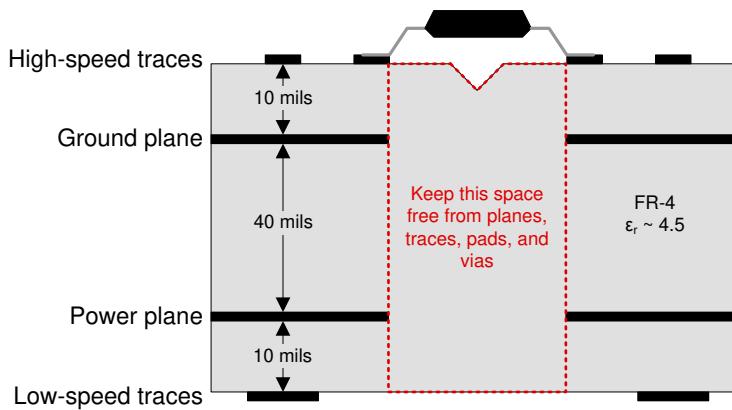
11 Layout

11.1 Layout Guidelines

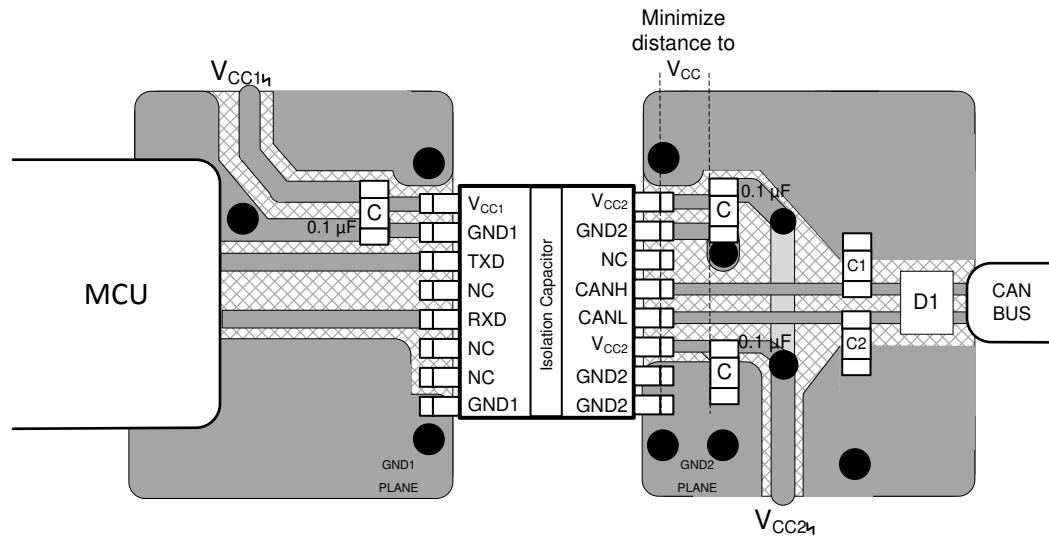
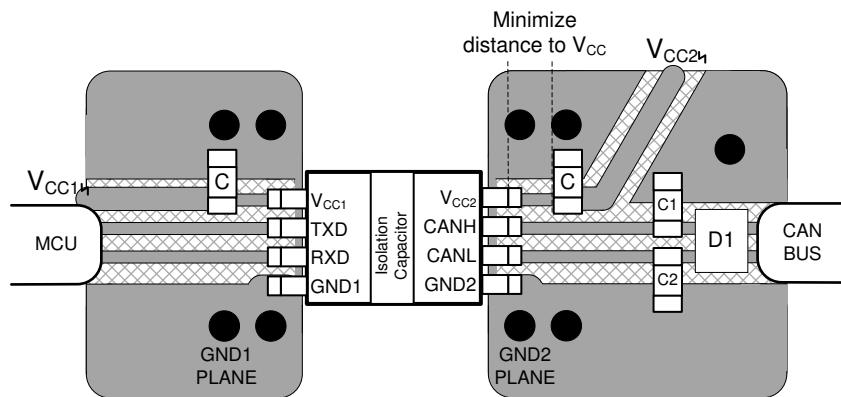
A minimum of four layers is required to accomplish a low EMI PCB design (see [Figure 34](#)). Layer stacking should be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency signal layer.

- Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits of the data link.
- Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for transmission line interconnects and provides an excellent low-inductance path for the return current flow.
- Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of approximately 100 pF/in².
- Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links usually have margin to tolerate discontinuities such as vias.

Suggested placement and routing of ISO1042 bypass capacitors and optional TVS diodes is shown in [Figure 35](#) and [Figure 36](#). In particular, place the V_{CC2} bypass capacitors on the top layer, as close to the device pins as possible, and complete the connection to the V_{CC2} and G_{ND2} pins without using vias. Note that the SOIC-16 variant needs two V_{CC2} bypass capacitor, one on each V_{CC2} pin.


If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the power and ground plane of each power system can be placed closer together, thus increasing the high-frequency bypass capacitance significantly.

For detailed layout recommendations, refer to the [Digital Isolator Design Guide](#).



11.1.1 PCB Material

For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over lower-cost alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and the self-extinguishing flammability-characteristics.

11.2 Layout Example

Figure 34. Recommended Layer Stack

Layout Example (continued)

図 35. 16-DW Layout Example

図 36. 8-DWV Layout Example

12 デバイスおよびドキュメントのサポート

12.1 ドキュメントのサポート

12.1.1 関連資料

関連資料については、以下を参照してください。

- テキサス・インスツルメンツ、『デジタル・アイソレータ設計ガイド』
- テキサス・インスツルメンツ、『ISO1042DW絶縁型CANトランシーバ評価基板』ユーザー・ガイド
- テキサス・インスツルメンツ、『性能やスペースを犠牲にしないCANシステムの絶縁』TI TechNote
- テキサス・インスツルメンツ、『絶縁の用語集』
- テキサス・インスツルメンツ、『高電圧強化絶縁: 定義とテスト手法』
- テキサス・インスツルメンツ、『絶縁型CANシステムで信号および電源を絶縁する方法』TI TechNote
- テキサス・インスツルメンツ、『正しいバス保護による絶縁型CANシステムの設計方法』アプリケーション・レポート

12.2 ドキュメントの更新通知を受け取る方法

ドキュメントの更新についての通知を受け取るには、ti.comのデバイス製品フォルダを開いてください。右上の「アラートを受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。

12.3 コミュニティ・リソース

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's [Terms of Use](#).

12.4 商標

E2E is a trademark of Texas Instruments.

12.5 静電気放電に関する注意事項

すべての集積回路は、適切なESD保護方法を用いて、取扱いと保存を行うようにして下さい。

 静電気放電はわずかな性能の低下から完全なデバイスの故障に至るまで、様々な損傷を与えます。高精度の集積回路は、損傷に対して敏感であり、極めてわずかなパラメータの変化により、デバイスに規定された仕様に適合しなくなる場合があります。

12.6 Glossary

[SLYZ022 — TI Glossary](#).

This glossary lists and explains terms, acronyms, and definitions.

13 メカニカル、パッケージ、および注文情報

以降のページには、メカニカル、パッケージ、および注文に関する情報が記載されています。これらの情報は、指定のデバイスに対して提供されている最新のデータです。このデータは予告なく変更されることがあります。ドキュメントが改訂される場合もあります。本データシートのブラウザ版を使用されている場合は、画面左側の説明をご覧ください。

PACKAGING INFORMATION

Orderable part number	Status (1)	Material type (2)	Package Pins	Package qty Carrier	RoHS (3)	Lead finish/ Ball material (4)	MSL rating/ Peak reflow (5)	Op temp (°C)	Part marking (6)
ISO1042BDW	Active	Production	SOIC (DW) 16	40 TUBE	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO1042B
ISO1042BDW.A	Active	Production	SOIC (DW) 16	40 TUBE	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO1042B
ISO1042BDWR	Active	Production	SOIC (DW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO1042B
ISO1042BDWR.A	Active	Production	SOIC (DW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO1042B
ISO1042BDWV	Active	Production	SOIC (DWV) 8	64 TUBE	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO1042B
ISO1042BDWV.A	Active	Production	SOIC (DWV) 8	64 TUBE	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO1042B
ISO1042BDWVR	Active	Production	SOIC (DWV) 8	1000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO1042B
ISO1042BDWVR.A	Active	Production	SOIC (DWV) 8	1000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO1042B
ISO1042DW	Active	Production	SOIC (DW) 16	40 TUBE	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO1042
ISO1042DW.A	Active	Production	SOIC (DW) 16	40 TUBE	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO1042
ISO1042DWR	Active	Production	SOIC (DW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO1042
ISO1042DWR.A	Active	Production	SOIC (DW) 16	2000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO1042
ISO1042DWV	Active	Production	SOIC (DWV) 8	64 TUBE	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO1042
ISO1042DWV.A	Active	Production	SOIC (DWV) 8	64 TUBE	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO1042
ISO1042DWVR	Active	Production	SOIC (DWV) 8	1000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO1042
ISO1042DWVR.A	Active	Production	SOIC (DWV) 8	1000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO1042
ISO1042DWVRG4	Active	Production	SOIC (DWV) 8	1000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO1042
ISO1042DWVRG4.A	Active	Production	SOIC (DWV) 8	1000 LARGE T&R	Yes	NIPDAU	Level-3-260C-168 HR	-40 to 125	ISO1042

⁽¹⁾ **Status:** For more details on status, see our [product life cycle](#).

⁽²⁾ **Material type:** When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ **RoHS values:** Yes, No, RoHS Exempt. See the [TI RoHS Statement](#) for additional information and value definition.

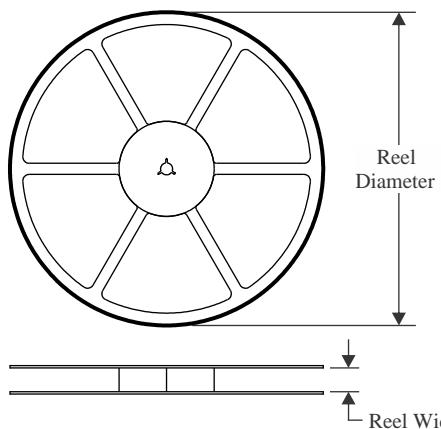
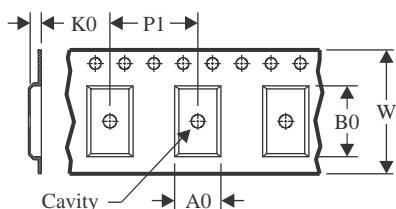
⁽⁴⁾ **Lead finish/Ball material:** Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ **MSL rating/Peak reflow:** The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

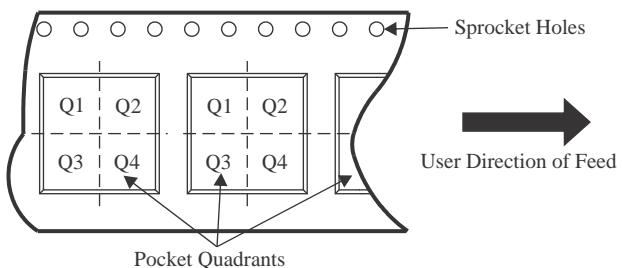
⁽⁶⁾ **Part marking:** There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

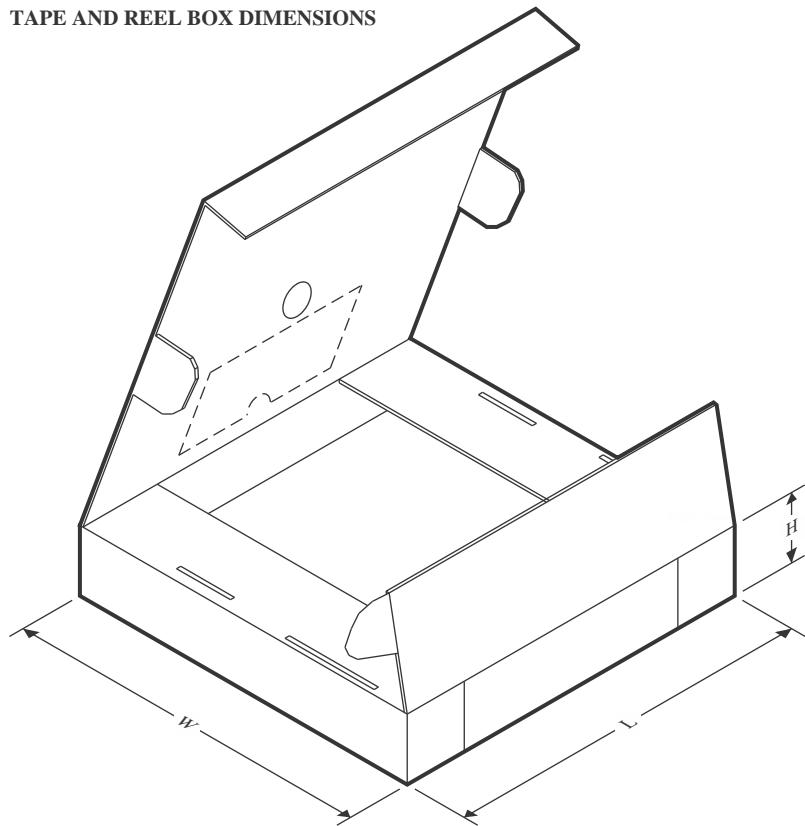


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF ISO1042 :


- Automotive : [ISO1042-Q1](#)

NOTE: Qualified Version Definitions:

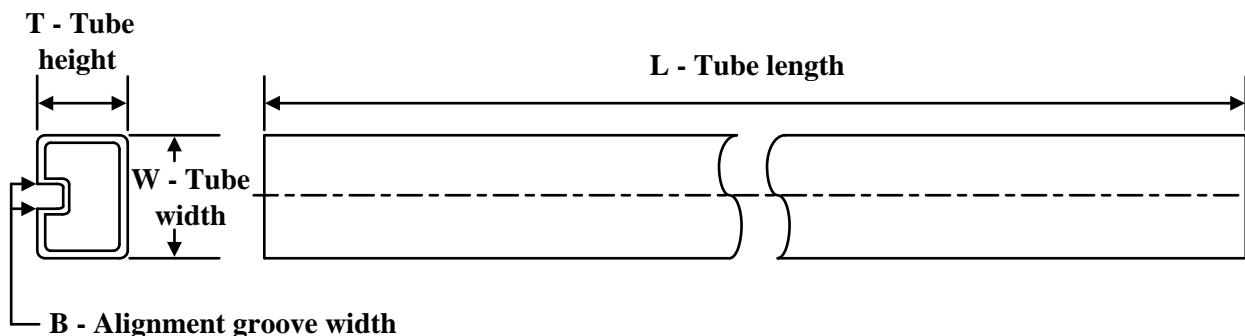
- Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects


TAPE AND REEL INFORMATION
REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ISO1042BDWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO1042BDWVR	SOIC	DWV	8	1000	330.0	16.4	12.05	6.15	3.3	16.0	16.0	Q1
ISO1042DWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
ISO1042DWVR	SOIC	DWV	8	1000	330.0	16.4	12.05	6.15	3.3	16.0	16.0	Q1
ISO1042DWVRG4	SOIC	DWV	8	1000	330.0	16.4	12.05	6.15	3.3	16.0	16.0	Q1

TAPE AND REEL BOX DIMENSIONS

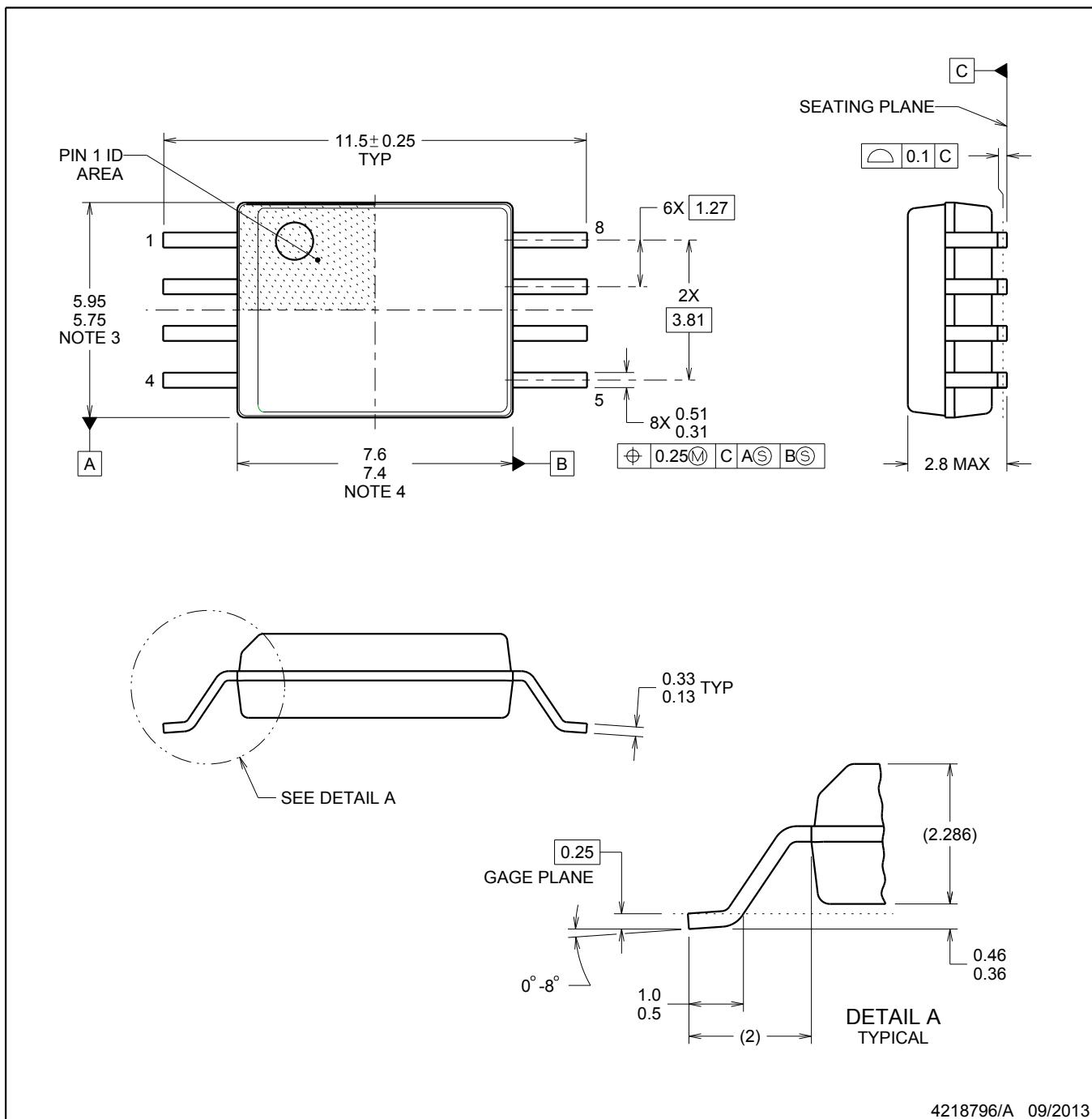
*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ISO1042BDWR	SOIC	DW	16	2000	350.0	350.0	43.0
ISO1042BDWVR	SOIC	DWV	8	1000	350.0	350.0	43.0
ISO1042DWR	SOIC	DW	16	2000	350.0	350.0	43.0
ISO1042DWVR	SOIC	DWV	8	1000	350.0	350.0	43.0
ISO1042DWVRG4	SOIC	DWV	8	1000	350.0	350.0	43.0

TUBE

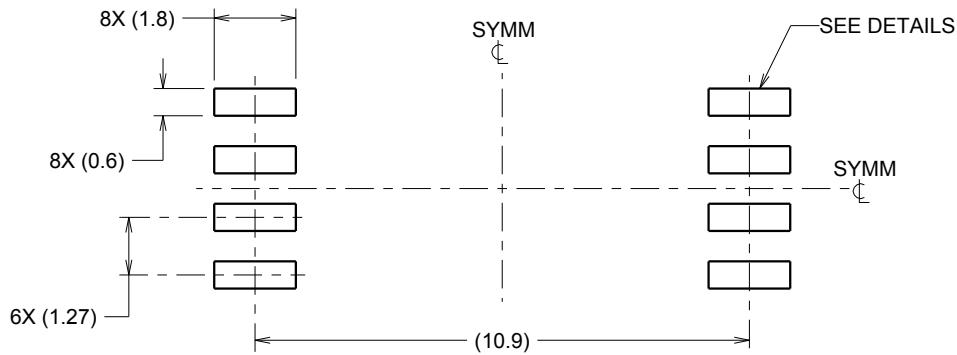
*All dimensions are nominal

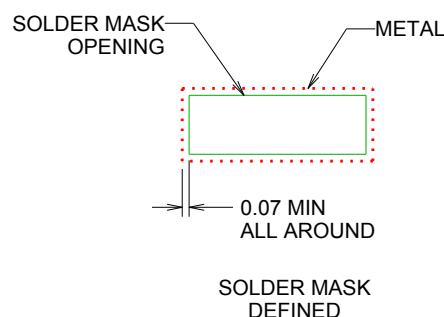
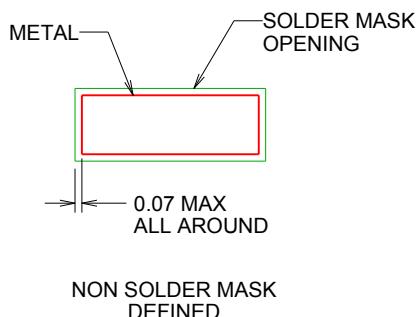
Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (μ m)	B (mm)
ISO1042BDW	DW	SOIC	16	40	506.98	12.7	4826	6.6
ISO1042BDW.A	DW	SOIC	16	40	506.98	12.7	4826	6.6
ISO1042BDWV	DWV	SOIC	8	64	505.46	13.94	4826	6.6
ISO1042BDWV.A	DWV	SOIC	8	64	505.46	13.94	4826	6.6
ISO1042DW	DW	SOIC	16	40	506.98	12.7	4826	6.6
ISO1042DW.A	DW	SOIC	16	40	506.98	12.7	4826	6.6
ISO1042DWV	DWV	SOIC	8	64	505.46	13.94	4826	6.6
ISO1042DWV.A	DWV	SOIC	8	64	505.46	13.94	4826	6.6


PACKAGE OUTLINE

DWV0008A

SOIC - 2.8 mm max height


SOIC



4218796/A 09/2013

NOTES:

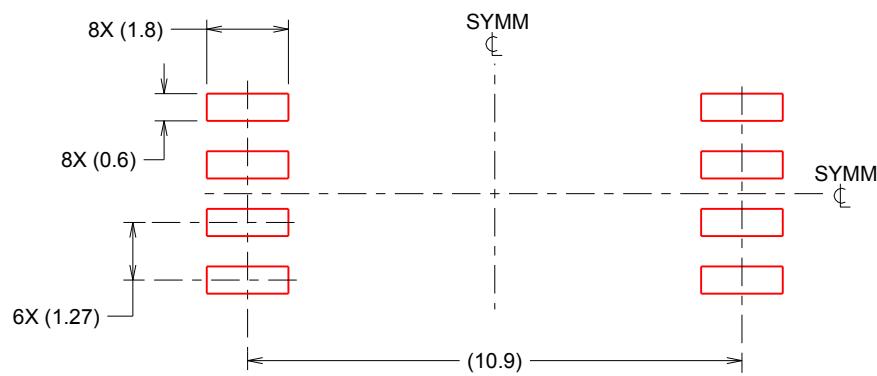
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.

LAND PATTERN EXAMPLE
9.1 mm NOMINAL CLEARANCE/CREEPAGE
SCALE:6X

SOLDER MASK DETAILS

4218796/A 09/2013

NOTES: (continued)


5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

DWV0008A

SOIC - 2.8 mm max height

SOIC

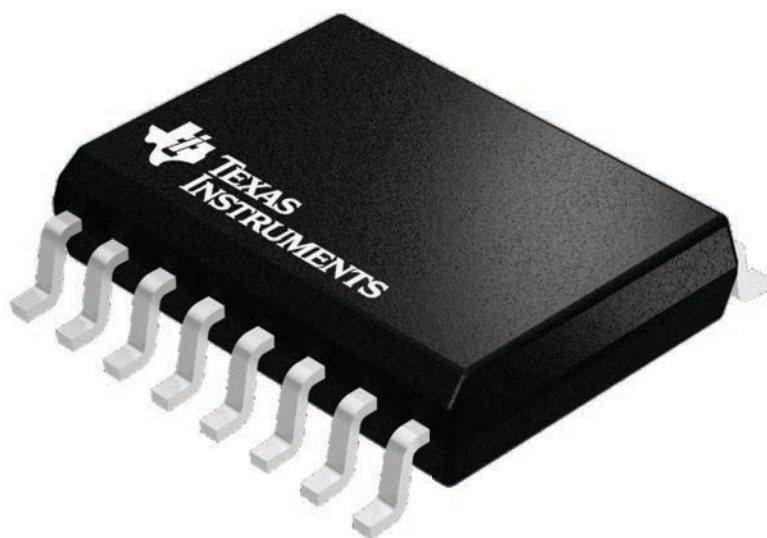
SOLDER PASTE EXAMPLE
BASED ON 0.125 mm THICK STENCIL
SCALE:6X

4218796/A 09/2013

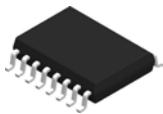
NOTES: (continued)

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
8. Board assembly site may have different recommendations for stencil design.

GENERIC PACKAGE VIEW


DW 16

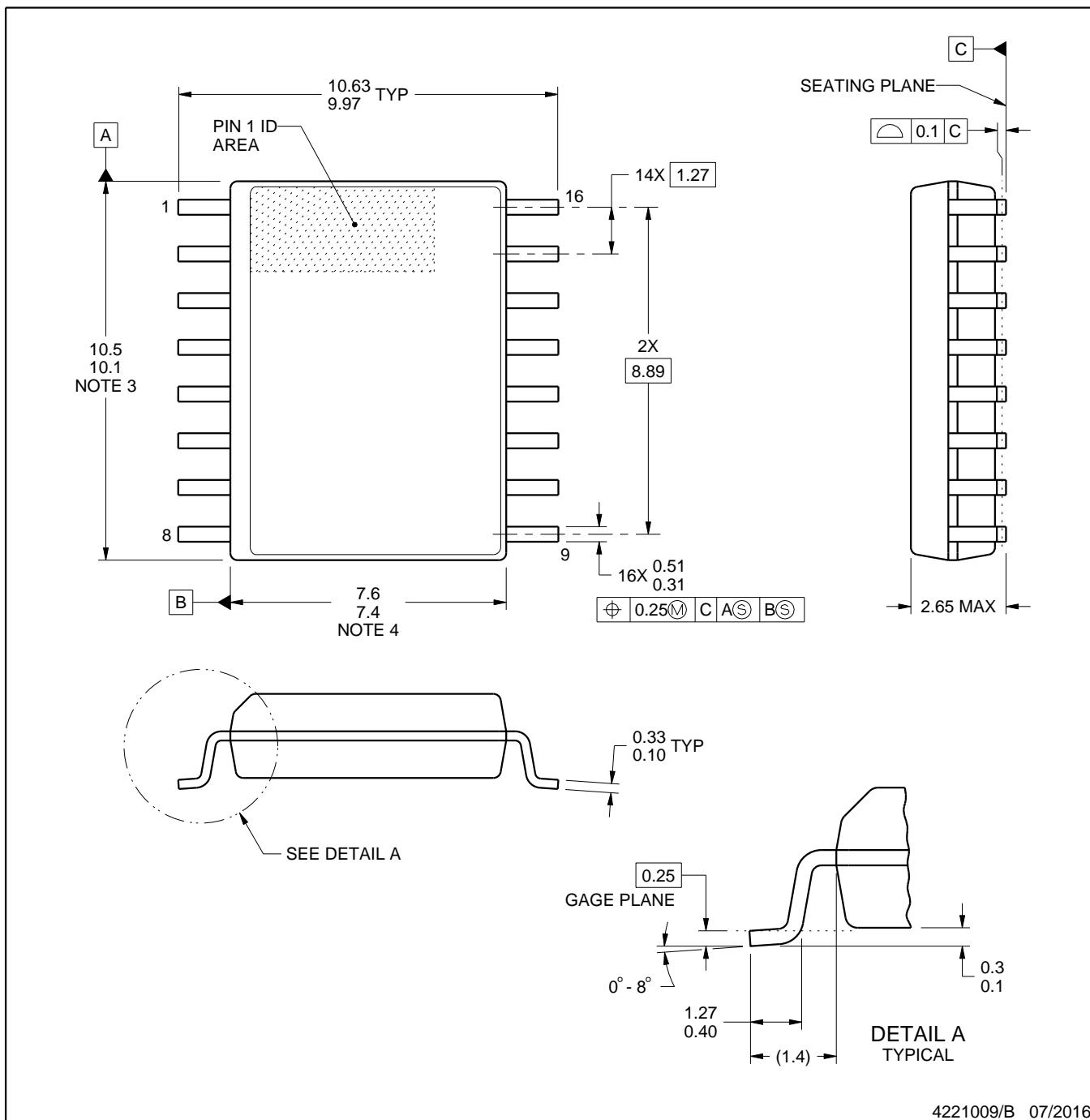
SOIC - 2.65 mm max height


7.5 x 10.3, 1.27 mm pitch

SMALL OUTLINE INTEGRATED CIRCUIT

This image is a representation of the package family, actual package may vary.
Refer to the product data sheet for package details.

4224780/A



PACKAGE OUTLINE

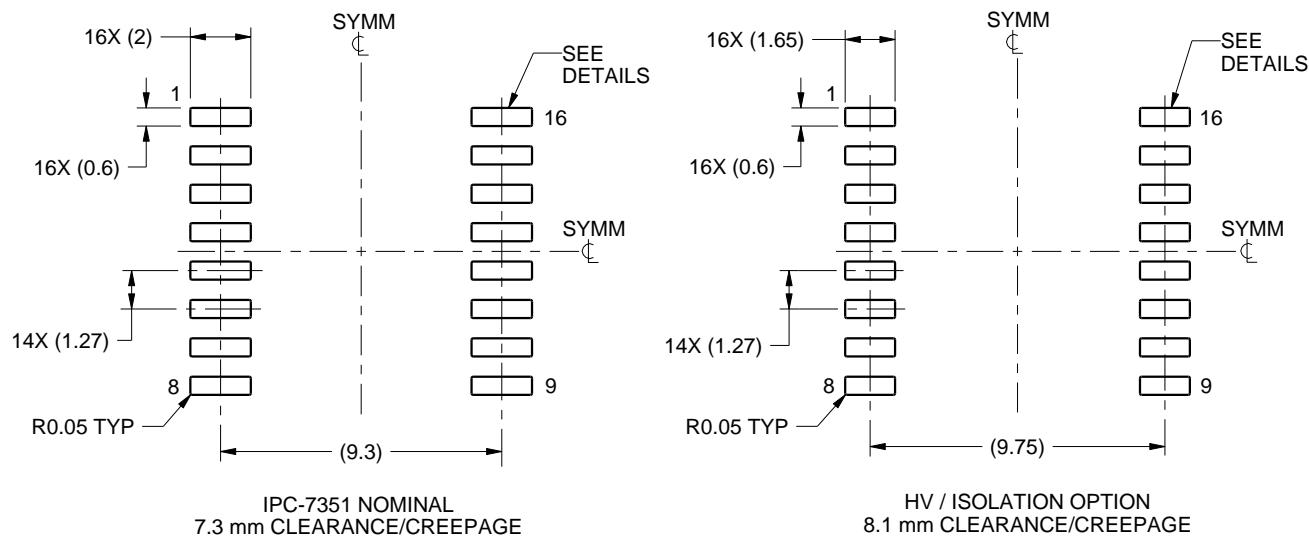
DW0016B

SOIC - 2.65 mm max height

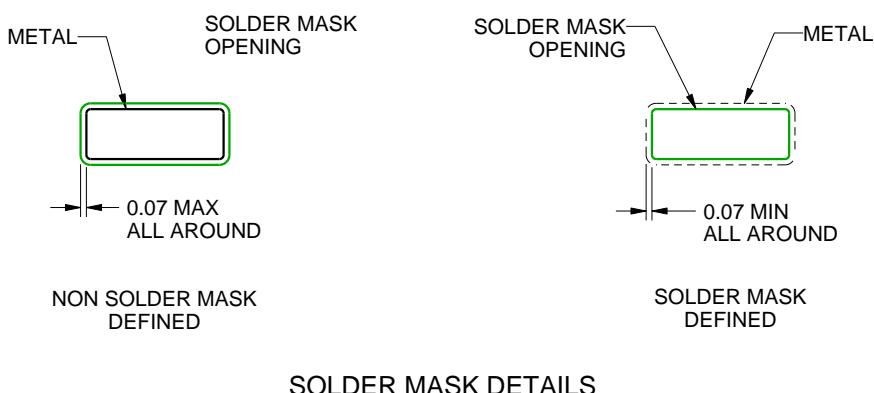
SOIC

4221009/B 07/2016

NOTES:


1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.
5. Reference JEDEC registration MS-013.

EXAMPLE BOARD LAYOUT


DW0016B

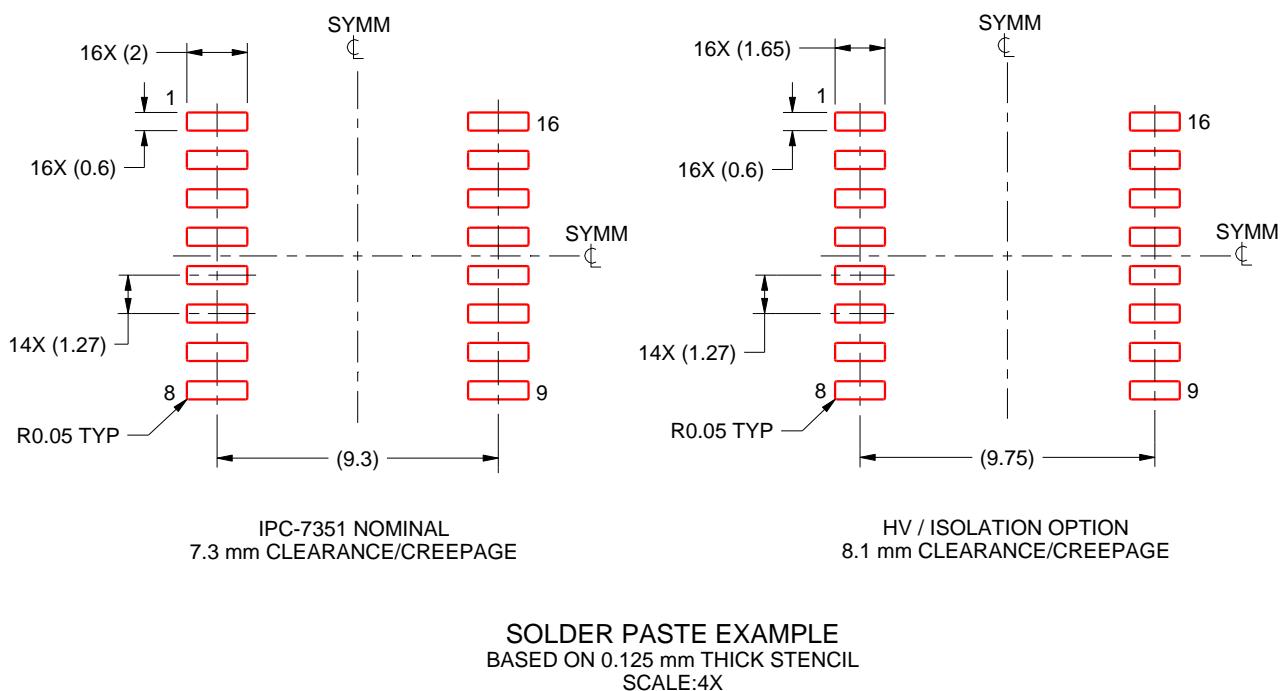
SOIC - 2.65 mm max height

SOIC

LAND PATTERN EXAMPLE
SCALE:4X

4221009/B 07/2016

NOTES: (continued)


6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

EXAMPLE STENCIL DESIGN

DW0016B

SOIC - 2.65 mm max height

SOIC

4221009/B 07/2016

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

重要なお知らせと免責事項

TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の默示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または默示的にかかわらず拒否します。

これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したもので、(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。

上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。

TI の製品は、[TI の販売条件](#)、[TI の総合的な品質ガイドライン](#)、[ti.com](#) または TI 製品などに関連して提供される他の適用条件に従い提供されます。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。TI がカスタム、またはカスタマー仕様として明示的に指定していない限り、TI の製品は標準的なカタログに掲載される汎用機器です。

お客様がいかなる追加条項または代替条項を提案する場合も、TI はそれらに異議を唱え、拒否します。

Copyright © 2026, Texas Instruments Incorporated

最終更新日：2025 年 10 月