
Application Report
SPRA580B

Digital Signal Processing Solutions November 2000

Using the TMS320 DSP Algorithm Standard in a
Dynamic DSP System

Carl Bergman Digital Signal Processing Solutions

Abstract

This application note illustrates some techniques used to manage data memory when using the
TMS320 DSP Algorithm Standard. As system complexity grows and more functions and features
are integrated into one system, data memory becomes increasingly precious. We can make the
most of this precious resource by 'dynamically' sharing it between algorithms.

Contents

Definition of a Dynamic System ... 2
Example .. 2

A Review of TMS320 DSP Algorithm Standard Object and Memory Management....................................... 2
The Create Function .. 2

Why a Dynamic System? .. 9
How Does a Dynamic System Work? ... 9

Conclusion ..15
References ...15

Figures
Figure 1. The Function Table... 3
Figure 2. Key Data Elements Used for Create.. 4
Figure 3. Memory Descriptor Table.. 5
Figure 4. Algorithm Instance Created... 6
Figure 5. Algorithm Activate .. 7
Figure 6a. Relocating Data with algMoved()... 8
Figure 6b. After Move, Memory Descriptor Points to New Location.. 8
Figure 7. The Telephone in Our Example..10
Figure 8. Memory Diagram at Power On...10
Figure 9. Algorithm Instance Data ..11
Figure 10. Algorithm Can Not Be Created...11
Figure 11. Enough Space Available for Another Algorithm ..12
Figure 12. Again, More Memory Needed ..13
Figure 13. Secure Voice Algorithm Instantiated...14
Figure 14. Voice Response Active Once Again ...15

Definition of a Dynamic System
A dynamic system is one in which system memory may be reclaimed and reused while the
application is executing. The details become very complex when the requirements of real-time
algorithms and multi-tasking operating systems are considered. To keep things manageable, we
will consider the case of a single-tasking system where only the data memory is reused.

Example

We will illustrate how memory is used in a dynamic system with a hypothetical secure-voice
telephone. This phone has a built-in DSP with the ability to digitize and encrypt voice. When not
used as a phone, the DSP has a voice-recognition algorithm that communicates with a desktop
computer. These two demanding applications, voice recognition and secure voice, require the
system to reconfigure data memory depending on which application is currently running. Before
we go any further, let’s review how the TMS320 DSP Algorithm Standard, which is part of TI's
eXpressDSP (XDAIS) technology initiative, manages algorithms.

A Review of TMS320 DSP Algorithm Standard Object and
Memory Management

The Create Function

The create function allocates memory for an instance of the algorithm and calls the algorithm's
initialization function. Let's step through the create process to understand what takes place.

The Function Table

The starting point for any operation involving a standard algorithm is the IALG_Fxns structure.
This function table is the means through which services are made available. The function table
for the 'example' (XMP) algorithm looks like this:

IXMP_Fxns XMP_IXMP ={
 &XMP_IXMP, /* implementationId */
 xmpActivate, /* algActivate */
 xmpAlloc, /* algAlloc */
 xmpControl, /* algControl */
 xmpDeactivate, /* algDeactivate */
 xmpFree, /* algFree */
 xmpInit, /* algInit */
 xmpMoved, /* algMoved */
 xmpNumAlloc, /* algNumAlloc */
 xmpProcess /* algorithm specific processing */

 };

The first field of the above table is the unique implementation ID. The next 8 fields are the
function pointers for the standard IALG functions. The last field is the function pointer for the
algorithm-specific data processing function.

Figure 1 illustrates the function table and its location in memory. Note that the IXMP_Fxns
structure differs from the IALG_Fxns structure in the last field.

Figure 1. The Function Table

The Algorithm-Specific Create Function

The XMP_create() function is the high-level, algorithm-specific function that creates an
algorithm instance and returns the address of the instance object.

 XMP_Handle handle;

 handle = XMP_create(&XMP_IXMP, NULL);

XMP_create() accepts a pointer to the function table and a pointer to the creation parameters
as its parameters (see Figure 2). The creation parameter pointer may be NULL if we are willing to
accept the default creation parameters.

If we use a NULL parameter pointer, the following operation will take place.

 if (prms == NULL) {
 prms = &XMP_PARAMS;
 }

After ensuring that the creation parameters are defined, the generic ALG_create() function is
called:

handle = (XMP_Handle)ALG_create (
 (IALG_Fxns *)fxns, /* function table */
 (IALG_Handle) NULL, /* parent object or NULL */
 (IALG_Params *)prms /* creation parameters */

Pro g ram

IXMP_Fxns

implementationId
(*algActivate)()

(*algAlloc)()
(*algControl)()

(*algDeactivate)()
(*algFree)()
(*algInit)()

(*algMoved)()
(*algNumAlloc)()
(*xmpProcess)()

Pro g ram

application code

IXMP_Fxns

algorithm code

IXMP_Params
IALG_Fxns

);

The generic create function does the remainder of the work: determines memory requirements,
allocates memory, and initializes the new object.

Figure 2. Key Data Elements Used for Create

Memory Requirements

The next step in creating an instance of an algorithm is to allocate the required memory. The
algorithm makes its memory requirements known by filling in a memory descriptor table.

Here is how we create this table:

The function algNumAlloc() tells us the maximum number of memory blocks the algorithm
needs. If algNumAlloc is not implemented, then the default number of memory records is used.
Currently, the default, IALG_DEFMEMRECS, is set to 4.

 /* find out the maximum number of records needed */
 numRecs = fxns->algNumAlloc();

When the number of records is known, a table of memory descriptors (IALG_MemRec) is
allocated.

 /* allocate space for the memory descriptor table */
 /* allow maximum number of records specified by algNumAlloc*/
 IALG_MemRec *memTab;

 memTab = malloc(numRecs * sizeof(IALG_MemRec));

Program

IXMP_Fxns

algorithm code

Data

system stack

External
application code

XMP_Handle (NULL)

system data system data

scratch memory
IXMP_Params

This table is passed to algAlloc() to be filled in. algAlloc() fills in all the fields except the
base address.

 /* fill in the memory descriptor table */
 /* returned value is actual number of records initialized */
 /* it might be different than the maximum records required */
 numRecs = fxns->algAlloc(prms, NULL, memTab);

Allocate Memory.

Each memory descriptor describes the following characteristics:
 size (in bytes)
 alignment (byte boundaries)
 space (single access, dual access, external)
 attributes (scratch, persistent, write-once)
 base address

The memory allocation routine (typically a system function call) must reserve memory that
matches these characteristics and fill in the base address. When the memory descriptor table is
complete, it is passed to algInit() .

Figure 3. Memory Descriptor Table

Initialize the Object

By convention, the first memory descriptor is for the algorithm instance object
(IALG_OBJMEMREC) is defined as 0. The handle to the object is set to the corresponding base
address.

Data

IALG_MemRec:

size
alignment

space
attrs

base0
...

base1
...

base2

Data

system stack

system data

XMP_Handle (NULL)

scratch memory

IALG_MemRec

Data

block 0

block 1

block 2

/* note: IALG_OBJMEMREC is defined as 0 */

 handle = memTab[IALG_OBJMEMREC].base;

The object's function table pointer is initialized, making it possible to access algorithm functions.

 handle->fxns = fxns;

Finally, the algInit() function is called to complete the initialization of the instance object and
the algorithm.

 /* init the algorithm */
 if (fxns->algInit(handle, memTab, NULL, prms) == IALG_EOK) {
 return(handle);
 }

This completes the creation process. The returned handle is used for any future communication
with the algorithm.

Figure 4. Algorithm Instance Created

The Activate Function

The implementation of algActivate() and algDeactivate() is optional. If they are not
implemented, a NULL is entered in the corresponding field of the function table.

If they are implemented, these functions manage the scratch and shared memory. The activate
function prepares the scratch data to enable the algorithm to run. The deactivate function saves
what is necessary from the scratch data so that another algorithm can run.

Program

IXMP_Fxns

algorithm code

Data External
application code

object

working data

system stack

system datasystem data

IXMP_Handle (&object)

scratch memory
IXMP_Params

scratch data

It is important to remember that algActivate() must be called before calling algMoved().
This ensures that the algorithm's data is ready to run and that any pointer calculation will reflect
the 'ready to run' state of the system.

Figure 5. Algorithm Activate

The Move Function

When it is necessary to relocate the algorithm's data, the application notifies the algorithm with a
call to algMoved() . The same parameters that are passed to algMoved() are also passed to
algInit() . The only difference is in the pointer values. The algorithm must update its internal
data references based on the new pointer values. This function is optional, and if not
implemented, a NULL is entered in the corresponding field of the function table. Remember that
the algorithm must be 'active' before calling algMoved().

Figure 6 illustrates memory that is 'defragmented' by moving the algorithm's data so that it is
contiguous with other existing blocks of memory.

Pro g ram

IXMP_Fxns

algor i thm code

Data External

appl icat ion code

ob jec t

work ing data

system s tack

system datasystem data

IXMP_Handle (&ob jec t)

sc ra tch memory
I X M P _ P a r a m s

scratch data

Figure 6a. Relocating Data with algMoved()

Figure 6b. After Move, Memory Descriptor Points to New Location

Data

IALG_MemRec :

s ize
a l ignment

space
attrs

base0
...

base1
...

base2

Data

algor i thm scratch

algor i thm
 working data

algor i thm object

sys tem s tack

I A L G _ M e m R e c

Data

IALG_MemRec :

size
al ignment

space
attrs

new base0
...

new base1
...

new base2

Data

algor i thm scratch

algor i thm
 working data

algor i thm object

system stack

IALG_MemRec

The Delete Function

The object management function, ALG_delete() , calls the IALG function algFree() . The
algFree() function operates in a way similar to algAlloc() in that it returns a completed
memory descriptor table. The algorithm's memory is freed, based on the information returned to
the application in the table. There is no change to the program memory - the algorithm code still
exists in the system code image.

Why a Dynamic System?
It is common in DSP systems to have both on-chip and external memory. To get the most out of
a DSP, the algorithm must keep its data structures in on-chip memory with its faster access
times. Inevitably though, the number of features desired for the system exceeds the ability of on-
chip memory to support them. When that happens, the dynamic use of on-chip memory becomes
desirable. Furthermore, if we can quickly switch between functions, and quickly move an
algorithm's working data between on-chip and off-chip memory, we can achieve the effect of
parallel processing.

How Does a Dynamic System Work?

Our illustration of a dynamic system will be a telephone with DSP capability. This specialized
(and hypothetical) telephone operates in the normal way; additionally, it has the ability to do voice
recognition and also to establish a secure voice connection. The system in our illustration has
the following characteristics:

The system is non-preemptive:

• Task or algorithm switching happens under application control.

The program memory usage is static:

• There is adequate program memory and all of the application code fits in program
memory.

The data memory usage is dynamic:

• On-chip memory is limited and must be shared. There is adequate off-chip memory.

We will run through the following scenario to show how data memory can be managed. Through
this sequence we will use the algorithm standard interface to manage algorithm instances.

1. Power on. The voice recognition software (via the speaker phone) provides voice input
and output for the computer.

2. Initiate a call. The DTMF tone generation and echo cancellation software are used to
make a normal phone call.

3. Initiate secure voice. The secure voice algorithm provides us with an encrypted voice
connection to the compatible telephone at the other end.

4. The call is discontinued. Back to the voice recognition mode for communication with the
computer.

Figure 7 illustrates the system.

Figure 7. The Telephone in Our Example

The Power-On State

At power-on, the code for the telephone application is stored in an inexpensive low-speed ROM.
The on-chip program memory, on-chip data memory, and external memory are all RAM and are
undefined.

The system boot program loads the application into on-chip program memory from the ROM
(Figure 8 (1)). The initialization code runs (Figure 8 (2)) and establishes the system stack in data
RAM and establishes whatever other data structures the system needs in data RAM or external
RAM.

Figure 8. Memory Diagram at Power On

Telephone

data
telephone system

Program

algorithm code

Data

system stack

External

application code system data system data

scratch memory

secure voice SV

voice recognition VR

DTMF generator DTMF

echo cancellation EC

1

1 2

2

2

At this point, the application is running with no algorithms active. Since the default state of the
phone is with voice-recognition active, the application creates an instance of the voice recognition
algorithm and activates it (Figure 9 (3)). This enables voice commands via the speakerphone to
the computer. Note the addition of the algorithm object, working data, and scratch data to the
memory usage diagram in Figure 9.

Figure 9. Algorithm Instance Data

Initiating A Call

To initiate a call, the echo cancellation and DTMF tone generation algorithms must be created
and activated. Referring to the memory usage diagram, the echo cancellation can be instantiated
(Figure 10 (1)) but there is not enough data memory for the DTMF tone generator (Figure 10 (2)).

Figure 10. Algorithm Can Not Be Created

Program

algorithm code

External

application code
system data

EC data

secure voice SV

voice recognition VR

DTMF generator DTMF

echo cancellation EC
EC_TI_IEC

Data

system stack

system data

VR_TI_IVR

VR data

DTMF data

DTMF_TI_IDTMF

1

2

VR scratch data
EC scratch data

VR_TI_IVR

VR data

Pro gram

algorithm code

Data

system stack

External
application code system data system data

secure voice SV

voice recognition VR

DTMF generator DTMF

echo cancellation EC

3

VR scratch data

Our solution is to swap out the private data memory used by voice recognition
(Figure 11 (3)). The steps are:

1. Copy the voice recognition's private data memory to a location in external memory.

2. Make a call to algMoved() to inform the algorithm where its data is.

3. Call VR_deactivate() to preserve the current state of the algorithm.

With this done there is room to instantiate the DTMF tone generator (Figure 11 (4)).

Figure 11. Enough Space Available for Another Algorithm

Note that if we want to move an algorithm's data and deactivate it, we must do them in this
sequence: move data, call algMoved() , call algDeactivate() . This ensures the algorithms'
data pointers are current the next time it is activated.

Switching to Secure Voice

The combination of voice compression, data encryption, and modem functionality allows us to
have a secure communications channel to a compatible telephone at the distant end.

Looking again at the data memory usage map from the previous step, we see there is very little
free memory. To start the secure voice algorithm we first have to make some room. Since the
tone generator will not be used while in secure-voice mode, the first step is to move its private
data memory and deactivate it (Figure 12 (1)).

DTMF da ta

D T M F _ T I _ I D T M F

Program

algor i thm code

External

appl icat ion code
system data

EC data

secure voice SV

voice recogni t ion VR

DTMF genera to r DTMF

echo cancel lat ion EC
EC_TI_ IEC

Data

system stack

system data

VR_TI_ IVR
VR data3

4

4

DTMF scra tch data
EC scratch data

Figure 12. Again, More Memory Needed

Still looking for more memory (Figure 12 (2)) we delete the voice-recognition algorithm (Figure 13
(3)). Now we have enough free memory, but not in a big enough block. We will solve this
problem by relocating the object and private data memory for the echo cancellation. Let's look
again at the move sequence.

We must build a new memory descriptor table representing the new locations of the algorithm's
memory and pass the table to the algorithm via a call to algMoved() .

This is the sequence:

1. Allocate a memory descriptor table.

2. Pass it to the algAlloc() routine to get it initialized to the same values that were
used when the algorithm was created.

3. Fill in the new addresses for the algorithm's data memory.

4. Copy (or DMA) the contents of the memory to the new location.

5. Call the algMoved() function with the updated memory descriptor table.

With the echo cancellation data moved (Figure 13 (4)) there is enough room to create an instance
of the secure-voice algorithm (Figure 13 (5)).

DTMF data

DTMF_TI_IDTMF

Program

algorithm code

External

application code
system data

EC data

secure voice SV

voice recognition VR

DTMF generator DTMF

echo cancellation EC
EC_TI_IEC

Data

system stack

system data

VR_TI_IVR
VR data

SV_TI_ISV

SV data

1
2

2
EC scratch data

Figure 13. Secure Voice Algorithm Instantiated

Our telephone conversation continues on the newly created secure channel, over the same
phone lines.

Hanging Up the Phone

Hanging up the phone returns us to the voice-recognition mode for our computer through the
following sequence.

1. The secure voice object and private data memory are moved to external memory
(Figure 14 (1)). Then the algorithm is deactivated, freeing up the scratch memory it
was using.

2. The voice-recognition algorithm is re-created (Figure 14 (2)) and activated,
establishing it's object and private data memory and scratch memory.

3. The DTMF tone generator is simply deleted and its memory reclaimed.

The computer is available via voice commands until the next phone call.

DTMF data

DTMF_TI_IDTMF

Program

algorithm code

External

application code
system data

EC data

secure voice SV

voice recognition VR

DTMF generator DTMF

echo cancellation EC

EC_TI_IEC

Data

system stack

system data

SV_TI_ISV

SV data

5

4 3
3

SV scratch data
EC scratch data

Figure 14. Voice Response Active Once Again

Conclusion
Although hypothetical, this limited example shows how the functions provided by the TMS320
DSP Algorithm Standard interface can be used to manage algorithms in a dynamic system.

The functions to create, activate, move, deactivate, and delete algorithm instances provide the
ability to manage our memory usage as the system requirements change in a running system.

References

1. TMS320 DSP Algorithm Standard Rules and Guidelines, SPRU352.

2. TMS320 DSP Algorithm Standard API Reference, SPRU360.

3. Making DSP Algorithms Compliant with the TMS320 DSP Algorithm Standard, SPRA579.

4. Using the TMS320 DSP Algorithm Standard in a Static DSP System, SPRA577.

DTMF data

DTMF_TI_IDTMF

Pro gram

algorithm code

External

application code
system data

EC data

secure voice SV

voice recognition VR

DTMF generator DTMF

echo cancellation EC

EC_TI_IEC

Data

system stack

system data

SV_TI_ISV

SV data

1
VR_TI_IVR

VR data
2

VR scratch data
EC scratch data

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with
TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary
to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except
those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
products or services might be or are used. TI’s publication of information regarding any third party’s products
or services does not constitute TI’s approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation
or reproduction of this information with alteration voids all warranties provided for an associated TI product or
service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI’s products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service,
is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2001, Texas Instruments Incorporated

