TPS61193 JAJSL17C - OCTOBER 2015 - REVISED FEBRUARY 2021 ## TPS61193 高性能、3 チャネル LED ドライバ ## 1 特長 - 入力電圧動作範囲:4.5V~40V - 3 つの高精度電流シンク - 電流マッチング 1% (標準値) - チャネルごとに最大 100mA の LED ストリング電流 - 出力を外部で結合し、大電流を供給可能 - 100Hz で 10,000:1 の高い調光比 - LED ストリング電力用の昇圧 / SEPIC を内蔵 - 出力電圧:最大 45V - スイッチング周波数:300kHz~2.2MHz - スイッチング同期入力 - 拡散スペクトラムによる EMI の低減 - 広範なフォルト検出機能 - フォルト出力 - 入力電圧 OVP、UVLO、OCP - 開放および短絡 LED フォルトの検出 - サーマル・シャットダウン - 外付け部品数が最小限 #### 概略回路図 ## 2 アプリケーション - 制御パネルの産業用バックライト・システム - 産業用 PC - 試験および計測機器 ## 3 概要 TPS61193 は、高効率、低 EMI の使いやすい LED ドラ イバであり、広範なアプリケーションを柔軟にサポートでき ます。このデバイスには3つの高精度電流シンクが搭載さ れており、これらを結合すると大電流の能力を実現できま TPS61193 に搭載されている DC/DC は、昇圧と SEPIC の両方のモードで動作をサポートします。このコンバータ には、LED 電流シンクのヘッドルーム電圧に基づく適応 型出力電圧制御があります。この機能により、あらゆる状 況で十分な最低レベルに電圧を調整し、消費電力を最小 化できます。EMI 制御のため、DC/DC コンバータはスイッ チング周波数の拡散スペクトラムと、専用ピンによる外部 同期をサポートします。 TPS61193 は、4.5V~40V の広い入力電圧範囲に対応 しているため、各種のアプリケーションを確実にサポートで きます。TPS61193 には、広範なフォルト検出機能が組み 込まれています。このデバイスは、100Hz の入力 PWM 周波数において、10,000:1 の PWM 輝度調光比をサポ ートします。 #### デバイス情報⁽¹⁾ | 部品番号 | パッケージ | 本体サイズ (公称) | | | |----------|-------------|-----------------|--|--| | TPS61193 | HTSSOP (20) | 6.50mm × 4.40mm | | | 利用可能なパッケージについては、このデータシートの末尾にあ (1) る注文情報を参照してください。 システム効率 ## **Table of Contents** | 1 特長 | 7.2 Functional Block Diagram | 11 | |---|---|-------------------------| | 2 アプリケーション | | | | 2 無 | | | | | | | | 4 Revision History | | | | 5 Pin Configuration and Functions | | | | 6 Specifications | | | | 6.1 Absolute Maximum Ratings | | | | 6.2 ESD Ratings | | | | 6.3 Recommended Operating Conditions | · | | | 6.4 Thermal Information | 10.2 Layout Example 11 Device and Documentation Support | | | 6.5 Electrical Characteristics ⁽¹⁾ (2) | | | | 6.6 Internal LDO Electrical Characteristics | 44.0 D | | | 6.7 Protection Electrical Characteristics | | | | 6.8 Current Sinks Electrical Characteristics | | | | 6.9 PWM Brightness Control Electrical Characteristics | | | | 6.10 Boost and SEPIC Converter Characteristics | | | | 6.11 Logic Interface Characteristics | | | | 6.12 Typical Characteristics | | 28 | | 7 Detailed Description10 | | | | 7.1 Overview10 | Information | 28 | | Changes from Revision B (June 2017) to Revision・ 文書全体にわたって表、図、相互参照の採番方法を更・ Updated Device states section | 三新 | 1 | | | | | | Changes from Revision A (September 2016) to Rev | vision B (June 2017) | Page | | Changes from Revision A (September 2016) to Rev Enhanced pin descriptions for pins 3, 10, and 16 in | vision B (June 2017) | Page 3 | | Enhanced pin descriptions for pins 3, 10, and 16 in | n Pin Functions table | 3 | | Enhanced pin descriptions for pins 3, 10, and 16 in Deleted "I_{OUT} = 100 mA" from t_{ON/OFF} row of <i>PWM</i> | n Pin Functions table
Brightness Control Electrical Characteristics | 3 | | Enhanced pin descriptions for pins 3, 10, and 16 in Deleted "I_{OUT} = 100 mA" from t_{ON/OFF} row of <i>PWM</i> Changed "0.5" from MAX to TYP column in t_{ON/OFF} | n Pin Functions table
Brightness Control Electrical Characteristics
row of PWM Brightness Control Electrical | 3
6 | | Enhanced pin descriptions for pins 3, 10, and 16 in Deleted "I_{OUT} = 100 mA" from t_{ON/OFF} row of <i>PWM</i> Changed "0.5" from MAX to TYP column in t_{ON/OFF} Characteristics; add note 1 to <i>PWM Brightness Column</i> | n Pin Functions table
Brightness Control Electrical Characteristics
row of PWM Brightness Control Electrical
ontrol Electrical Characteristics | | | Enhanced pin descriptions for pins 3, 10, and 16 in Deleted "I_{OUT} = 100 mA" from t_{ON/OFF} row of <i>PWM</i> Changed "0.5" from MAX to TYP column in t_{ON/OFF} Characteristics; add note 1 to <i>PWM Brightness Column Added table note 1 for Boost and SEPIC Converted</i> | n Pin Functions table | | | Enhanced pin descriptions for pins 3, 10, and 16 in Deleted "I_{OUT} = 100 mA" from t_{ON/OFF} row of <i>PWM</i> Changed "0.5" from MAX to TYP column in t_{ON/OFF} <i>Characteristics</i>; add note 1 to <i>PWM Brightness Colorade Added table note 1 for <i>Boost and SEPIC Converte</i>.</i> Deleted "Initial DC-DC voltage is about 88% of V_{M/OFF} | n Pin Functions table | 3
6
6
7 | | Enhanced pin descriptions for pins 3, 10, and 16 in Deleted "I_{OUT} = 100 mA" from t_{ON/OFF} row of <i>PWM</i> Changed "0.5" from MAX to TYP column in t_{ON/OFF} <i>Characteristics</i>; add note 1 to <i>PWM Brightness Colorateristics</i>. Added table note 1 for <i>Boost and SEPIC Converter</i>. Deleted "Initial DC-DC voltage is about 88% of V_{M/W} wording in last sentence before 式 1 | n Pin Functions table | | | Enhanced pin descriptions for pins 3, 10, and 16 in Deleted "I_{OUT} = 100 mA" from t_{ON/OFF} row of <i>PWM</i> Changed "0.5" from MAX to TYP column in t_{ON/OFF} Characteristics; add note 1 to <i>PWM Brightness Column Added table note 1 for Boost and SEPIC Converted Deleted "Initial DC-DC voltage is about 88% of V_{M/W} wording in last sentence before 式 1</i> | n Pin Functions table | | | Enhanced pin descriptions for pins 3, 10, and 16 in Deleted "I_{OUT} = 100 mA" from t_{ON/OFF} row of <i>PWM</i> Changed "0.5" from MAX to TYP column in t_{ON/OFF} <i>Characteristics</i>; add note 1 to <i>PWM Brightness Colorateristics</i>. Added table note 1 for <i>Boost and SEPIC Converter</i>. Deleted "Initial DC-DC voltage is about 88% of V_{M/W} wording in last sentence before 式 1 | n Pin Functions table | | | Enhanced pin descriptions for pins 3, 10, and 16 in Deleted "I_{OUT} = 100 mA" from t_{ON/OFF} row of <i>PWM</i> Changed "0.5" from MAX to TYP column in t_{ON/OFF} Characteristics; add note 1 to <i>PWM Brightness Color Added table note 1 for Boost and SEPIC Converted Deleted "Initial DC-DC voltage is about 88% of V_M, wording in last sentence before 式 1</i> | n Pin Functions table | | | Enhanced pin descriptions for pins 3, 10, and 16 in Deleted "I_{OUT} = 100 mA" from t_{ON/OFF} row of <i>PWM</i> Changed "0.5" from MAX to TYP column in t_{ON/OFF} <i>Characteristics</i>; add note 1 to <i>PWM Brightness Coloracteristics</i>; add note 1 for <i>Boost and SEPIC Converter</i> Deleted "Initial DC-DC voltage is about 88% of V_M wording in last sentence before 式 1 Changed 式 1 and added "K" eq definitions; added Added new paragraph before セクション 7.3.2 Deleted "Dimming ratio is calculated as ratio between | n Pin Functions table | | | Enhanced pin descriptions for pins 3, 10, and 16 in Deleted "I_{OUT} = 100 mA" from t_{ON/OFF} row of <i>PWM</i> Changed "0.5" from MAX to TYP column in t_{ON/OFF} Characteristics; add note 1 to <i>PWM Brightness Color Added table note 1 for Boost and SEPIC Converted Deleted "Initial DC-DC voltage is about 88% of V_M, wording in last sentence before 式 1</i> | n Pin Functions table | | | Enhanced pin descriptions for pins 3, 10, and 16 in Deleted "I_{OUT} = 100 mA" from t_{ON/OFF} row of <i>PWM</i> Changed "0.5" from MAX to TYP column in t_{ON/OFF} <i>Characteristics</i>; add note 1 to <i>PWM Brightness Coloracteristics</i>; add note 1 for <i>Boost and SEPIC Converter</i> Deleted "Initial DC-DC voltage is about 88% of V_M wording in last sentence before 式 1 Changed 式 1 and added "K" eq definitions; added Added new paragraph before セクション 7.3.2 Deleted "Dimming ratio is calculated as ratio
between | a Pin Functions table | | | Enhanced pin descriptions for pins 3, 10, and 16 in Deleted "I_{OUT} = 100 mA" from t_{ON/OFF} row of <i>PWM</i> Changed "0.5" from MAX to TYP column in t_{ON/OFF} <i>Characteristics</i>; add note 1 to <i>PWM Brightness Colored Added table note 1 for <i>Boost and SEPIC Converterory</i></i> Deleted "Initial DC-DC voltage is about 88% of V_M wording in last sentence before 式 1 Changed 式 1 and added "K" eq definitions; added Added new paragraph before セクション 7.3.2 Deleted "Dimming ratio is calculated as ratio between purple in the property of pr | n Pin Functions table | | | Enhanced pin descriptions for pins 3, 10, and 16 in Deleted "I_{OUT} = 100 mA" from t_{ON/OFF} row of <i>PWM</i> Changed "0.5" from MAX to TYP column in t_{ON/OFF} <i>Characteristics</i>; add note 1 to <i>PWM Brightness Color Added table note 1 for Boost and SEPIC Converte</i> Deleted "Initial DC-DC voltage is about 88% of V_M, wording in last sentence before 式 1 | a Pin Functions table | | | Enhanced pin descriptions for pins 3, 10, and 16 in Deleted "I_{OUT} = 100 mA" from t_{ON/OFF} row of <i>PWM</i> Changed "0.5" from MAX to TYP column in t_{ON/OFF} <i>Characteristics</i>; add note 1 to <i>PWM Brightness Colored</i> Added table note 1 for <i>Boost and SEPIC Converte</i> Deleted "Initial DC-DC voltage is about 88% of V_M, wording in last sentence before 式 1 | Pin Functions table | | | Enhanced pin descriptions for pins 3, 10, and 16 in Deleted "I_{OUT} = 100 mA" from t_{ON/OFF} row of <i>PWM</i> Changed "0.5" from MAX to TYP column in t_{ON/OFF} <i>Characteristics</i>; add note 1 to <i>PWM Brightness Colored</i> Added table note 1 for <i>Boost and SEPIC Converte</i> Deleted "Initial DC-DC voltage is about 88% of V_M, wording in last sentence before 式 1 | n Pin Functions table | | | Enhanced pin descriptions for pins 3, 10, and 16 in Deleted "I_{OUT} = 100 mA" from t_{ON/OFF} row of <i>PWM</i> Changed "0.5" from MAX to TYP column in t_{ON/OFF} <i>Characteristics</i>; add note 1 to <i>PWM Brightness Colored Added table note 1 for Boost and SEPIC Converteration</i> Deleted "Initial DC-DC voltage is about 88% of V_M wording in last sentence before 式 1 | n Pin Functions table | 3661212 e (0.514 Page1 | | Enhanced pin descriptions for pins 3, 10, and 16 in Deleted "I_{OUT} = 100 mA" from t_{ON/OFF} row of <i>PWM</i> Changed "0.5" from MAX to TYP column in t_{ON/OFF} <i>Characteristics</i>; add note 1 to <i>PWM Brightness Colored Added table note 1 for Boost and SEPIC Converte</i> Deleted "Initial DC-DC voltage is about 88% of V_M, wording in last sentence before 式 1 | n Pin Functions table | 3661212 e (0.514 Page11 | | Enhanced pin descriptions for pins 3, 10, and 16 in Deleted "I_{OUT} = 100 mA" from t_{ON/OFF} row of <i>PWM</i> Changed "0.5" from MAX to TYP column in t_{ON/OFF} <i>Characteristics</i>; add note 1 to <i>PWM Brightness Colored Added table note 1 for Boost and SEPIC Converteration</i> Deleted "Initial DC-DC voltage is about 88% of V_M wording in last sentence before 式 1 | n Pin Functions table | 3661212 e (0.514 Page11 | Added Figures 7 and 8 - new graphs......8 ## **5 Pin Configuration and Functions** 図 5-1. PWP Package 20-Pin TSSOP With Exposed Thermal Pad Top View 表 5-1. Pin Functions | | PIN | TYPE ⁽¹⁾ | DESCRIPTION | |-----|----------|---------------------|--| | NO. | NAME | TTPE('' | DESCRIPTION | | 1 | VIN | Α | Input power pin | | 2 | LDO | Α | Output of internal LDO; connect a 1-µF decoupling capacitor between this pin and noise-free GND. | | 3 | FSET | А | DC-DC (boost or SEPIC) switching frequency setting resistor; for normal operation, resistor value from 24 k Ω to 219 k Ω must be connected between this pin and ground. | | 4 | VDDIO/EN | I | Enable input for the device as well as supply input (VDDIO) for digital pins | | 5 | FAULT | OD | Fault signal output. If unused, the pin may be left floating. | | 6 | SYNC | I | Input for synchronizing boost. If synchronization is not used, connect this pin to GND to disable spread spectrum or to VDDIO/EN to enable spread spectrum. | | 7 | PWM | I | PWM dimming input. | | 8 | NC | _ | No connect | | 9 | GND | G | Ground. | | 10 | ISET | Α | LED current setting resistor; for normal operation, resistor value from 24 k Ω to 129 k Ω must be connected between this pin and ground. | | 11 | GND | G | Ground | | 12 | GND | G | Ground | | 13 | OUT3 | Α | Current sink output; this pin must be connected to GND if not used. | | 14 | OUT2 | Α | Current sink output This pin must be connected to GND if not used. | | 15 | OUT1 | Α | Current sink output This pin must be connected to GND if not used. | | 16 | FB | А | Boost/SEPIC feedback input; for normal operation this pin must be connected to the middle of a resistor divider between VOUT and ground using feedback resistor values between 5 k Ω and 150 k Ω . | | 17 | PGND | G | DC-DC (boost or SEPIC) power ground | | 18 | SW | Α | DC-DC (boost or SEPIC) switch pin | | 19 | NC | Α | No connect | | 20 | VIN | Α | Input power pin | (1) A: Analog pin, G: Ground pin, P: Power pin, I: Input pin, I/O: Input/Output pin, O: Output pin, OD: Open Drain pin ## 6 Specifications ## 6.1 Absolute Maximum Ratings Over operating free-air temperature range (unless otherwise noted)(1) (2) | | | MIN | MAX | UNIT | |--------------------|---|--------------------|----------------|------| | | VIN, SW, FB | -0.3 | 50 | | | Voltage on pins | OUT1, OUT2, OUT3 | -0.3 | 45 | v | | | LDO, SYNC, FSET, ISET, PWM, VDDIO/EN, FAULT | -0.3 | 5.5 | | | Continuous power | dissipation ⁽³⁾ | Internally Limited | | | | Ambient temperati | ure range T _A ⁽⁴⁾ | -40 125 | | °C | | Junction temperate | ure range T _J ⁽⁴⁾ | -40 | -40 150 | | | Maximum lead ten | nperature (soldering) | See ⁽⁵⁾ | | | | Storage temperatu | Storage temperature, T _{stg} | | -65 150 | | - (1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - All voltages are with respect to the potential at the GND pins. - (3) Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at T₁ = 165°C (typical) and disengages at T_J = 145°C (typical). - In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature (T_{A-MAX}) is dependent on the maximum operating junction temperature (T_{J-MAX-OP} = 150°C), the maximum power dissipation of the device in the application (P_{D-MAX}), and the junction-to ambient thermal resistance of the part/package in the application ($R_{\theta JA}$), as given by the following equation: $T_{A-MAX} = T_{J-MAX-OP} - (R_{\theta JA} \times P_{D-MAX})$. - For detailed soldering specifications and information, refer to PowerPAD™ Thermally Enhanced Package. ### 6.2 ESD Ratings | | | | | VALUE | UNIT | |--|--|---|--------------------------|-------|------| | V _(ESD) Electrostatic discharge | Human-body model (HBM), per JESD22-A114, JS-001 ⁽¹⁾ | | ±2000 | | | | | Electrostatic discharge | Charged-device model (CDM), per JESD22-C101 | All other pins | ±500 | V | | | | Charged-device moder (CDM), per 3E3D22-C101 | Corner pins (1,10,11,20) | ±750 | | (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. #### 6.3 Recommended Operating Conditions Over operating free-air temperature range (unless otherwise noted)(1) | | | MIN | MAX | UNIT | |-----------------|--------------------------------------|-----|----------|------| | Voltage on pins | VIN | 4.5 | 45 | | | | SW | 0 | 45 | | | | OUT1, OUT2, OUT3 | 0 | 40 | V | | | FB, FSET, LDO, ISET, VDDIO/EN, FAULT | 0 | 5.25 | | | | SYNC, PWM | 0 | VDDIO/EN | | Product Folder Links: TPS61193 All voltages are with respect to the potential at the GND pins. #### **6.4 Thermal Information** | | | TPS61193 | | |-------------------------------|---|-------------|------| | THERMAL METRIC ⁽¹⁾ | | PWP (TSSOP) | UNIT | | | | 20 PINS | | | R _{θJA} | Junction-to-ambient thermal resistance ⁽²⁾ | 44.2 | °C/W | | R ₀ JCtop | Junction-to-case (top) thermal resistance | 26.5 | °C/W | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 22.4 | °C/W | | ΨЈТ | Junction-to-top characterization parameter | 0.9 | °C/W | | ΨЈВ | Junction-to-board characterization parameter | 22.2 | °C/W | | R _{0JCbot} | Junction-to-case (bottom) thermal resistance | 2.5 | °C/W | - (1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics. - (2) Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where high maximum power dissipation exists, special care must be paid to thermal dissipation issues in board design. ## 6.5 Electrical Characteristics⁽¹⁾ (2)
$T_J = -40$ °C to +125°C (unless otherwise noted). | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-----------------------|----------------------------------|---|-----|-----|-----|------| | | Standby supply current | Device disabled, V _{VDDIO/EN} = 0 V, V _{IN} = 12 V | | 4.5 | 20 | μΑ | | l _Q | Active supply current | V_{IN} = 12 V, V_{OUT} = 26 V, output
current 80 mA/channel, converter
f_{SW} = 300 kHz | | 5 | 12 | mA | | V _{POR_R} | Power-on reset rising threshold | LDO pin voltage | | | 2.7 | V | | V _{POR_F} | Power-on reset falling threshold | LDO pin voltage | 1.5 | | | V | | T _{TSD} | Thermal shutdown threshold | | 150 | 165 | 175 | °C | | T _{TSD_HYST} | Thermal shutdown hysteresis | | | 20 | | °C | - (1) All voltages are with respect to the potential at the GND pins. - (2) Minimum and maximum limits are specified by design, test, or statistical analysis. ## 6.6 Internal LDO Electrical Characteristics $T_J = -40$ °C to +125°C (unless otherwise noted). | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |--------------------|-----------------------|------------------------|------|-----|------|------| | V_{LDO} | Output voltage | V _{IN} = 12 V | 4.15 | 4.3 | 4.55 | V | | V_{DR} | Dropout voltage | | 120 | 300 | 430 | mV | | I _{SHORT} | Short circuit current | | | 50 | | mA | Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback #### **6.7 Protection Electrical Characteristics** $T_J = -40$ °C to +125°C (unless otherwise noted). | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |------------------------|-------------------------------|-----------------|-----|-----|-----|------| | V _{OVP} | VIN OVP threshold voltage | | 41 | 42 | 44 | V | | V _{UVLO} | VIN UVLO | | | 4 | | V | | V _{UVLO_HYST} | VIN UVLO hysteresis | | | 100 | | mV | | | LED short detection threshold | | 5.6 | 6 | 7 | V | #### 6.8 Current Sinks Electrical Characteristics $T_{.1} = -40$ °C to +125°C (unless otherwise noted). | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |----------------------|--|---|-----|-----|-----|------| | I _{LEAKAGE} | Leakage current | Outputs OUT1 to OUT3 , V _{OUTx} = 45 V | | 0.1 | 5 | μΑ | | I _{MAX} | Maximum current | OUT1, OUT2, OUT3 | | 100 | | mA | | I _{OUT} | Output current accuracy | I _{OUT} = 100 mA | -5% | | 5% | | | I _{MATCH} | Output current matching ⁽¹⁾ | I _{OUT} = 100 mA, PWM duty =100% | | 1% | 5% | | | V _{SAT} | Saturation voltage ⁽²⁾ | I _{OUT} = 100 mA | | 0.4 | 0.7 | V | ⁽¹⁾ Output Current Accuracy is the difference between the actual value of the output current and programmed value of this current. Matching is the maximum difference from the average. For the constant current sinks on the part (OUTx), the following are determined: the maximum output current (MAX), the minimum output current (MIN), and the average output current of all outputs (AVG). Matching number is calculated: (MAX-MIN)/AVG. The typical specification provided is the most likely norm of the matching figure for all parts. LED current sinks were characterized with 1-V headroom voltage. Note that some manufacturers have different definitions in use. ## 6.9 PWM Brightness Control Electrical Characteristics $T_J = -40$ °C to +125°C (unless otherwise noted). | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |---------------------|------------------------------------|-----------------|-----|-----|--------|------| | f_{PWM} | PWM input frequency | | 100 | | 20 000 | Hz | | t _{ON/OFF} | Minimum on/off time ⁽¹⁾ | | | 0.5 | | μs | (1) This specification is not ensured by ATE. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated ⁽²⁾ Saturation voltage is defined as the voltage when the LED current has dropped 10% from the value measured at 1 V. ## **6.10 Boost and SEPIC Converter Characteristics** T_J = -40°C to +125°C (unless otherwise noted). Unless otherwise specified: V_{IN} = 12 V, $V_{EN/VDDIO}$ = 3.3 V, L = 22 μH, C_{IN} = 2 × 10-μF ceramic and 33-μF electrolytic, D_{EN} = 300 kHz. | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-----------------------------------|---|---------------------------------------|-----|-------|-------|------| | V _{IN} | Input voltage | | 4.5 | | 40 | V | | V _{OUT} | Output voltage | | 6 | | 45 | | | f _{SW_MIN} | Minimum switching frequency (central frequency if spread spectrum is enabled) | Defined by B. register | | 300 | | kHz | | fsw_max | Maximum switching frequency (central frequency if spread spectrum is enabled) | Defined by R _{FSET} resistor | | 2 200 | | kHz | | V _{OUT} /V _{IN} | Conversion ratio | | | | 10 | | | T _{OFF} | Minimum switch OFF time ⁽¹⁾ | f _{SW} ≥ 1.15 MHz | | | 55 | ns | | I _{SW_MAX} | SW current limit | | 1.8 | 2 | 2.2 | Α | | R _{DSON} | FET R _{DSON} | Pin-to-pin | | 240 | 400 | mΩ | | f _{SYNC} | External SYNC frequency | | 300 | | 2 200 | kHz | | t _{SYNC_ON_MIN} | External SYNC minimum on time ⁽¹⁾ | | | 150 | | ns | | tsync_off_min | External SYNC minimum off time(1) | | | 150 | | ns | ⁽¹⁾ This specification is not ensured by ATE. ## **6.11 Logic Interface Characteristics** $T_J = -40$ °C to +125°C (unless otherwise noted). | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | | | | | | | | | | |----------------------|------------------------|---------------------|----------------|-------|----------|------|--|--|--|--|--|--|--|--|--| | LOGIC INI | OGIC INPUT VDDIO/EN | | | | | | | | | | | | | | | | V _{IL} | Input low level | | | | 0.4 | V | | | | | | | | | | | V _{IH} | Input high level | | 1.65 | | | V | | | | | | | | | | | I _I | Input current | | -1 | 5 | 30 | μA | | | | | | | | | | | LOGIC INI | PUT SYNC/FSET, PWM | <u> </u> | | | | | | | | | | | | | | | V _{IL} | Input low level | | | 0.2 × | VDDIO/EN | V | | | | | | | | | | | V _{IH} | Input high level | | 0.8 × VDDIO/EN | | | V | | | | | | | | | | | I _I | Input current | | -1 | | 1 | μA | | | | | | | | | | | LOGIC OL | JTPUT FAULT | | | | | | | | | | | | | | | | V _{OL} | Output low level | Pullup current 3 mA | | 0.3 | 0.5 | V | | | | | | | | | | | I _{LEAKAGE} | Output leakage current | V = 5.5 V | | | 1 | μA | | | | | | | | | | ## **6.12 Typical Characteristics** Unless otherwise specified: D = NRVB460MFS, T = 25°C Submit Document Feedback ## **6.12 Typical Characteristics (continued)** Unless otherwise specified: D = NRVB460MFS, T = 25°C ## 7 Detailed Description #### 7.1 Overview The TPS61193 is a highly integrated LED driver for medium-sized LCD backlight applications. It includes a DC-DC with an integrated FET, supporting both boost and SEPIC modes, an internal LDO enabling direct connection to battery without need for a pre-regulated supply and three LED current sinks. The VDDIO/EN pin provides the supply voltage for digital IOs (PWM and SYNC inputs) and at the same time enables the device. The switching frequency on the DC-DC converter is set by a resistor connected to the FSET pin. The maximum voltage of the DC-DC is set by a resistive divider connected to the FB pin. For the best efficiency the output voltage is adapted automatically to the minimum necessary level needed to drive the LED strings. This is done by monitoring LED output voltage drop in real time. For EMI reduction and control two optional features are available: - Spread spectrum, which reduces EMI noise around the switching frequency and its harmonic frequencies - DC-DC can be synchronized to an external frequency connected to SYNC pin The three constant current sinks OUT1, OUT2, and OUT3 provide LED current up to 100 mA. Value for the current per OUT pin is set with a resistor connected to ISET pin. Current sinks that are not used must be connected to ground. Grounded current sink is disabled and excluded from adaptive voltage detection loop. Brightness is controlled with the PWM input. Frequency range for the input PWM is from 100 Hz to 20 kHz. LED output PWM follows the input PWM so the output frequency is equal to the input frequency. TPS61193 has extensive fault detection features: - Open-string and shorted LED detections - LED fault detection prevents system overheating in case of open or short in some of the LED strings - V_{IN} input overvoltage protection - Threshold sensing from VIN pin - V_{IN} input undervoltage protection - Threshold sensing from VIN pin - Thermal shutdown in case of die overtemperature Fault condition is indicated through the FAULT output pin. ## 7.2 Functional Block Diagram ## 7.3 Feature Description #### 7.3.1 Integrated DC-DC Converter The TPS61193 DC-DC converter generates supply voltage for the LEDs and can operate in boost mode or in SEPIC mode. The maximum output voltage $V_{OUT\ MAX}$ is defined by an external resistive divider (R1, R2). V_{OUT_MAX} voltage should be chosen based on the maximum voltage required for LED strings. Recommended maximum voltage is about 30% higher than maximum LED string voltage. DC-DC output voltage is adjusted automatically based on LED current sink headroom voltage. Maximum, minimum, and initial boost voltages can be calculated with \pm 1: $$V_{BOOST} = \left(\frac{V_{BG}}{R2} + K \times 0.0387\right) \times R1 + V_{BG}$$ (1) #### where - V_{BG} = 1.2 V - R2 recommended value is 130 kΩ - Resistor values are in kΩ - K = 1 for maximum adaptive boost voltage (typical) - K = 0 for minimum adaptive boost voltage (typical) - K = 0.88 for initial boost voltage (typical) 図 7-1. Maximum Converter Output Voltage vs R1 Resistance Alternatively, a T-divider can be used if resistance less than 100 k Ω is required for the external resistive divider. Refer to *Using the TPS61193EVM and TPS61193-Q1EVM Evaluation Module* for details. The converter is a current mode
DC-DC converter, where the inductor current is measured and controlled with the feedback. Switching frequency is adjustable between 250 kHz and 2.2 MHz with R_{ESET} resistor as \pm 2: $$f_{SW} = 67600 / (R_{FSET} + 6.4)$$ (2) #### where - f_{SW} is switching frequency, kHz - R_{FSET} is frequency setting resistor, kΩ In most cases lower frequency has higher system efficiency. DC-DC internal parameters are chosen automatically according to the selected switching frequency (see \gtrsim 7-2) to ensure stability. In boost mode a 15-pF capacitor C_{FB} must be placed across resistor R1 when operating in 300-kHz to 500-kHz range (see *Typical Application for 3 LED Strings*). When operating in the 1.8-MHz to 2.2-MHz range C_{FB} = 4.7 pF. 図 7-2. Boost Block Diagram DC-DC can be driven by an external SYNC signal between 300 kHz and 2.2 MHz. If the external synchronization input disappears, DC-DC continues operation at the frequency defined by R_{FSET} resistor. When external frequency disappears and SYNC pin level is low, converter continues operation without spread spectrum immediately. If SYNC remains high, converter continues switching with spread spectrum enabled after 256 μ s. External SYNC frequency must be 1.2 to 1.5 times higher than the frequency defined by R_{FSET} resistor. Minimum frequency setting with R_{FSET} is 250 kHz to support 300-kHz switching with external clock. The optional spread spectrum feature (±3% from central frequency, 1-kHz modulation frequency) reduces EMI noise at the switching frequency and its harmonic frequencies. When external synchronization is used, spread spectrum is not available. | 表 7-1. DC-DC S | Synchronization Mode | |----------------|----------------------| |----------------|----------------------| | SYNC PIN INPUT | MODE | |---------------------------|---| | Low | Spread spectrum disabled | | High | Spread spectrum enabled | | 300 to 2200-kHz frequency | Spread spectrum disabled, external synchronization mode | 表 7-2. DC-DC Parameters⁽¹⁾ | RANGE | FREQUENCY (kHz) | TYPICAL
INDUCTANCE (μΗ) | TYPICAL BOOST INPUT
AND OUTPUT
CAPACITORS (µF) | MINIMUM SWITCH
OFF TIME (ns) ⁽²⁾ | BLANK
TIME (ns) | CURRENT
RAMP (A/s) | CURRENT RAMP
DELAY (ns) | |-------|-----------------|----------------------------|--|--|--------------------|-----------------------|----------------------------| | 1 | 300 to 480 | 33 | 2 ×10 (cer.) + 33 (electr.) | 150 | 95 | 24 | 550 | | 2 | 480 to 1150 | 15 | 10 (cer.) + 33 (electr.) | 60 | 95 | 43 | 300 | | 3 | 1150 to 1650 | 10 | 3 × 10 (cer.) | 40 | 95 | 79 | 0 | | 4 | 1650 to 2200 | 4.7 | 3 × 10 (cer.) | 40 | 70 | 145 | 0 | - (1) Parameters are for reference only. - (2) Due to current sensing comparator delay the actual minimum off time is 6 ns (typical) longer than in the table. The converter SW pin DC current is limited to 2 A (typical). To support short-term transient conditions the current limit is automatically increased to 2.5 A for a short period of 1.5 seconds when a 2-A limit is reached. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback 注 Application condition where the 2-A limit is exceeded continuously is not allowed. In this case the current limit would be 2 A for 1.5 seconds followed by 2.5-A limit for 1.5 seconds, and this 3-second period repeats. To keep switching voltage within safe levels there is a 48-V limit comparator in the event that FB loop is broken. #### 7.3.2 Internal LDO The internal LDO regulator converts the input voltage at VIN to a 4.3-V output voltage for internal use. Connect a minimum of 1-µF ceramic capacitor from LDO pin to ground, as close to the LDO pin as possible. #### 7.3.3 LED Current Sinks ### 7.3.3.1 Output Configuration TPS61193 detects LED output configuration during start-up. Any current sink output connected to ground is disabled and excluded from the adaptive voltage control of the DC-DC and fault detections. #### 7.3.3.2 Current Setting Maximum current for the LED outputs is controlled with external R_{ISET} resistor. R_{ISET} value for target maximum current can be calculated using ± 3 : $$R_{ISET} = 2342 / (I_{OUT} - 2.5)$$ (3) #### where - R_{ISET} is current setting resistor, $k\Omega$ - I_{LED} is output current per output, mA #### 7.3.3.3 Brightness Control TPS61193 controls the brightness of the display with conventional PWM. Output PWM directly follows the input PWM. Input PWM frequency can be in the range of 100 Hz to 20 kHz. #### 7.3.4 Protection and Fault Detections The TPS61193 has fault detection for LED open and short, VIN input overvoltage protection (VIN_OVP), VIN undervoltage lockout (VIN_UVLO), and thermal shutdown (TSD). #### 7.3.4.1 Adaptive DC-DC Voltage Control and Functionality of LED Fault Comparators Adaptive voltage control function adjusts the DC-DC output voltage to the minimum sufficient voltage for proper LED current sink operation. The current sink with highest V_F LED string is detected and DC-DC output voltage adjusted accordingly. DC-DC adaptive control voltage step size is defined by maximum voltage setting, $V_{STEP} = (V_{OUT_MAX} - V_{OUT_MIN}) / 256$. Periodic down pressure is applied to the target voltage to achieve better system efficiency. Every LED current sink has 3 comparators for the adaptive DC-DC control and LED fault detections. Comparator outputs are filtered, filtering time is 1 µs. 図 7-3. Comparators for Adaptive Voltage Control and LED Fault Detection \boxtimes 7-4 shows different cases which cause DC-DC voltage increase, decrease, or generate faults. In normal operation voltage at all the OUT# pins is between LOW_COMP and MID_COMP levels, and boost voltage stays constant. LOW_COMP level is the minimum for proper LED current sink operation, 1.1 × V_{SAT} + 0.2 V (typical). MID_COMP level is 1.1 × V_{SAT} + 1.2 V (typical) so typical headroom window is 1 V. When voltage at all the OUT# pins increases above MID_COMP level, DC-DC voltage adapts downwards. When voltage at any of the OUT# pins falls below LOW_COMP threshold, DC-DC voltage adapts upwards. In the condition where DC-DC voltage reaches the maximum and there are one or more outputs still below LOW_COMP level, an open LED fault is detected. HIGH_COMP level, 6-V typical, is the threshold for shorted LED detection. When the voltage of one or more of the OUT# pins increases above HIGH_COMP level and at least one of the other outputs is within the normal headroom window, shorted LED fault is detected. 図 7-4. Protection and DC-DC Voltage Adaptation Algorithms Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback #### 7.3.4.2 Overview of the Fault/Protection Schemes A summary of the TPS61193 fault detection behavior is shown in 表 7-3. Detected faults (excluding LED open or short) cause device to enter FAULT_RECOVERY state. In FAULT_RECOVERY the DC-DC and LED current sinks of the device are disabled, and the FAULT pin is pulled low. The device recovers automatically and enters normal operating mode (ACTIVE) after a recovery time of 100 ms if the fault condition has disappeared. When recovery is successful, FAULT pin is released. If a LED fault is detected, the device continues normal operation and only the faulty string is disabled. The fault is indicated via the FAULT pin which can be released by toggling VDDIO/EN pin low for a short period of 2 μ s to 20 μ s. LEDs are turned off for this period but the device stays in ACTIVE mode. If VDDIO/EN is low longer, the device goes to STANDBY and restarts when EN goes high again. 表 7-3. Fault Detections | 表 /-3. Fault Detections | | | | | | | | | | | | |---|-----------|--|--------------|-----------------------------|---|--|--|--|--|--|--| | FAULT/
PROTECTION FAULT NAME THRESHO | | | FAULT
PIN | FAULT_
RECOVERY
STATE | ACTION | | | | | | | | VIN overvoltage protection | VIN_OVP | 1. V _{IN} > 42 V
2. V _{OUT} >
V _{SET_DCDC} + 610 V.
V _{SET_DCDC} is
voltage value
defined by logic
during adaptation | Yes | Yes | 1. Overvoltage is monitored from the beginning of soft start. Fault is detected if the duration of overvoltage condition is 100-µs minimum. 2. Overvoltage is monitored from the beginning of normal operation (ACTIVE mode). Fault is detected if over-voltage condition duration is 560-ms minimum (t _{filter}). After the first fault, detection filter time is reduced to 50 ms for following recovery cycles. When the device recovers and has been in ACTIVE mode for 160 ms, filter time is increased back to 560 ms. | | | | | | | | VIN
undervoltage
lockout | VIN_UVLO | Falling 3.9 V
Rising 4 V | Yes | Yes | Detects undervoltage condition at VIN pin. Sensed in all operating modes. Fault is detected if undervoltage condition duration is 100-µs minimum. | | | | | | | | Open LED fault | OPEN_LED | LOW_COMP
threshold | Yes | No | Detected if the voltage of one or more current sinks is below threshold level, and DC-DC adaptive control has reached maximum voltage. Open string is removed from the DC-DC voltage control loop and current sink is
disabled. Fault pin is released by toggling VDDIO/EN pin. If VDDIO/EN is low for a period of 2 µs to 20 µs, LEDs are turned off for this period but device stays ACTIVE. If VDDIO/EN is low longer, device goes to STANDBY and restarts when EN goes high again. | | | | | | | | Shorted LED fault | SHORT_LED | Shorted string detection level 6 V | Yes | No | Detected if the voltage of one or more current sinks is above shorted string detection level and at least one OUTx voltage is within headroom window. Shorted string is removed from the DC-DC voltage control loop and current sink is disabled. Fault pin is released by toggling VDDIO/EN pin. If VDDIO/EN is low for a period of 220 µs, LEDs are turned off for this period but device stays ACTIVE. If VDDIO/EN is low longer, device goes to STANDBY and restarts when EN goes high again. | | | | | | | | Thermal protection | TSD | 165°C
Thermal shutdown
hysteresis 20°C | Yes | Yes | Thermal shutdown is monitored from the beginning of soft start. Die temperature must decrease by 20°C for device to recover. | | | | | | | Product Folder Links: TPS61193 図 7-5. V_{IN} Overvoltage Protection (DC-DC OVP) 図 7-6. V_{IN} Overvoltage Protection (V_{IN} OVP) 図 7-7. V_{IN} Undervoltage Lockout 図 7-8. LED Open Fault 図 7-9. LED Short Fault #### 7.4 Device Functional Modes #### 7.4.1 Device States The TPS61193 enters STANDBY mode when the internal LDO output rises above the power-on reset level, $V_{LDO} > V_{POR}$. In STANDBY mode the device is able to detect VDDIO/EN signal. When VDDIO/EN is pulled high, the device powers up. After start LED outputs are sensed to detect grounded outputs. Grounded outputs are disabled and excluded from the adaptive voltage control loop of the DC-DC. Please note that the input transient current would be maximum 1.2 mA while VDDIO/EN is powering up. If a fault condition is detected, the device enters FAULT_RECOVERY state. Faults that cause the device to enter FAULT_RECOVERY are listed in 表 7-3. When LED open or short is detected, the faulty string is disabled, but device stays in ACTIVE mode. 図 7-10. State Diagram Submit Document Feedback 図 7-11. Timing Diagram for the Typical Start-Up and Shutdown ## 8 Application and Implementation 注 以下のアプリケーション情報は、TIの製品仕様に含まれるものではなく、TIではその正確性または完全性を保証いたしません。個々の目的に対する製品の適合性については、お客様の責任で判断していただくことになります。また、お客様は自身の設計実装を検証しテストすることで、システムの機能を確認する必要があります。 ## 8.1 Application Information The TPS61193 supports input voltage range from 4.5 V to 40 V. Device internal circuitry is powered from the integrated LDO. The TPS61193 uses a simple four-wire control: - VDDIO/EN for enable - · PWM input for brightness control - SYNC pin for boost synchronisation (optional) - · FAULT output to indicate fault condition (optional) ## 8.2 Typical Applications ### 8.2.1 Typical Application for 3 LED Strings ☑ 8-1 shows the typical application for TPS61193 which supports 3 LED strings with maximum current 100 mA, with a boost switching frequency of 300 kHz. 図 8-1. Three Strings 100-mA/String Configuration Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated #### 8.2.1.1 Design Requirements | DESIGN PARAMETER | VALUE | |-------------------------------|--| | V _{IN} voltage range | 4.5 V – 28 V | | LED string | 3P8S LEDs (30 V) | | LED string current | 100 mA | | Maximum boost voltage | 37 V | | Boost switching frequency | 300 kHz | | External boost sync | not used | | Boost spread spectrum | enabled | | L1 | 33 μH | | C _{IN} | 100 μF, 50 V | | C _{IN BOOST} | 2 × (10-μF, 50-V ceramic) + 33-μF, 50-V electrolytic | | C _{OUT} | 2 × (10-μF, 50-V ceramic) + 33-μF, 50-V electrolytic | | C _{FB} | 15 pF | | C _{LDO} | 1 μF, 10 V | | R _{ISET} | 24 kΩ | | R _{FSET} | 210 kΩ | | R1 | 750 kΩ | | R2 | 130 kΩ | | R3 | 10 kΩ | #### 8.2.1.2 Detailed Design Procedure #### 8.2.1.2.1 Inductor Selection There are two main considerations when choosing an inductor; the inductor must not saturate, and the inductor current ripple must be small enough to achieve the desired output voltage ripple. Different saturation current rating specifications are followed by different manufacturers so attention must be given to details. Saturation current ratings are typically specified at 25°C. However, ratings at the maximum ambient temperature of application should be requested from the manufacturer. Shielded inductors radiate less noise and are preferred. The saturation current must be greater than the sum of the maximum load current, and the worst case average-to-peak inductor current. 3 4 shows the worst case conditions $$I_{SAT} > \frac{I_{OUTMAX}}{D'} + I_{RIPPLE} \quad \text{for Boost}$$ $$Where I_{RIPPLE} = \frac{(V_{OUT} - V_{IN})}{(2 \times L \times f)} \times \frac{V_{IN}}{V_{OUT}}$$ $$Where D = \frac{(V_{OUT} - V_{IN})}{(V_{OUT})} \text{ and } D' = (1 - D)$$ $$(4)$$ - I_{RIPPLE} peak inductor current - I_{OUTMAX} maximum load current - V_{IN} minimum input voltage in application - L min inductor value including worst case tolerances - f minimum switching frequency - V_{OUT} output voltage - D Duty Cycle for CCM Operation As a result, the inductor should be selected according to the I_{SAT} . A more conservative and recommended approach is to choose an inductor that has a saturation current rating greater than the maximum current limit. A saturation current rating of at least 2.5 A is recommended for most applications. See $\frac{1}{8}$ 7-2 for recommended inductance value for the different switching frequency ranges. The inductor's resistance should be less than 300 m Ω for good efficiency. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback See detailed information in *Understanding Boost Power Stages in Switch Mode Power Supplies*. *Power Stage Designer™ Tool* can be used for the boost calculation: http://www.ti.com/tool/powerstage-designer. #### 8.2.1.2.2 Output Capacitor Selection A ceramic capacitor with 2 \times V_{MAX BOOST} or more voltage rating is recommended for the output capacitor. The DC-bias effect can reduce the effective capacitance by up to 80%, which needs to be considered in capacitance value selection. Capacitance recommendations for different switching frequencies are shown in $\frac{1}{2}$ 7-2. To minimize audible noise of ceramic capacitors their physical size should typically be minimized. #### 8.2.1.2.3 Input Capacitor Selection A ceramic capacitor with 2 \times V_{IN MAX} or more voltage rating is recommended for the input capacitor. The DC-bias effect can reduce the effective capacitance by up to 80%, which needs to be considered in capacitance value selection. Capacitance recommendations for different boost switching frequencies are shown in $\frac{1}{8}$ 7-2. #### 8.2.1.2.4 LDO Output Capacitor A ceramic capacitor with at least 10-V voltage rating is recommended for the output capacitor of the LDO. The DC-bias effect can reduce the effective capacitance by up to 80%, which needs to be considered in capacitance value selection. Typically a 1-µF capacitor is sufficient. #### 8.2.1.2.5 Diode A Schottky diode should be used for the boost output diode. Do not use ordinary rectifier diodes because slow switching speeds and long recovery times degrade the efficiency and the load regulation. Diode rating for peak repetitive current should be greater than inductor peak current (up to 3 A) to ensure reliable operation in boost mode. Average current rating should be greater than the maximum output current. Schottky diodes with a low forward drop and fast switching speeds are ideal for increasing efficiency. Choose a reverse breakdown voltage of the Schottky diode significantly larger than the output voltage. #### 8.2.1.3 Application Curves Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated ### 8.2.2 SEPIC Mode Application When LED string voltage can be above or below V_{IN} voltage, SEPIC configuration can be used. In this example, two separate coils are used for SEPIC. This can enable lower height external components to be used, compared to a coupled coil solution. On the other hand, coupled coil typically maximizes the efficiency. Also, in this example, an external clock is used to synchronize SEPIC switching frequency. External clock input can be modulated to spread switching frequency spectrum. 図 8-6. SEPIC Mode, 3 Strings, 100-mA/String Configuration #### 8.2.2.1 Design Requirements | DESIGN PARAMETER | VALUE | |-------------------------------|--| | V _{IN} voltage range | 4.5 V – 30 V | | LED string | 3P2S LEDs (7.2 V) | | LED string current | 100 mA | | Maxmum output voltage | 10 V | | SEPIC switching frequency | 2.2 MHz | | External sync for SEPIC | used | | Spread spectrum | Internal spread spectrum disabled (external sync used) | | L1, L2 | 10 µH | | C _{IN} | 10 μF 50 V | | C _{IN SEPIC} | 2 × 10-μF, 50-V ceramic + 33 μF 50-V electrolytic | | C1 | 10-µF 50-V ceramic | | Соит | 2 × 10-μF, 50-V ceramic + 33 μF 50-V electrolytic | | C _{LDO} | 1 μF, 10 V | | R _{ISET} | 24 kΩ | | R _{FSET} | 24 kΩ | | R1 | 184 kΩ | | R2 | 130 kΩ | | R3 | 10 kΩ | ### 8.2.2.2 Detailed Design Procedure In SEPIC mode the maximum voltage at the SW pin is equal to the sum of the input voltage and the output voltage. Because of this, the maximum sum of input and output voltage must be limited below 50 V. See 27/23 28.2.1.2 for general external component guidelines. Main differences of SEPIC compared to boost are described below. Power Stage Designer™ Tool can be used for modeling SEPIC behavior: http://www.ti.com/tool/powerstage-designer. For detailed explanation on SEPIC see Texas Instruments Analog Applications Journal Designing DC/DC Converters Based on SEPIC Topology. #### 8.2.2.2.1 Inductor In SEPIC mode, currents flowing through the coupled inductors or the two separate inductors L1 and L2 are the input current and output current, respectively. Values can be
calculated using *Power Stage Designer™ Tool* or using equations in *Designing DC/DC Converters Based on SEPIC Topology*. #### 8.2.2.2.2 Diode In SEPIC mode diode peak current is equal to the sum of input and output currents. Diode rating for peak repetitive current should be greater than SW pin current limit (up to 3 A for transients) to ensure reliable operation in boost mode. Average current rating should be greater than the maximum output current. Diode voltage rating must be higher than sum of input and output voltages. ### 8.2.2.2.3 Capacitor C1 Ti recommends a ceramic capacitor with low ESR. Diode voltage rating must be higher than maximum input voltage. Product Folder Links: TPS61193 ## 8.2.2.3 Application Curves ## 9 Power Supply Recommendations The resistance of the input supply rail must be low enough so that the input current transient does not cause too high drop at TPS61193 VIN pin. If the input supply is connected by using long wires additional bulk capacitance may be required in addition to the ceramic bypass capacitors in the $V_{\rm IN}$ line. ## 10 Layout ## 10.1 Layout Guidelines ☑ 10-1 is a layout recommendation for TPS61193 used to demonstrate the principles of a good layout. This layout can be adapted to the actual application layout if or where possible. It is important that all boost components are close to the chip, and the high current traces must be wide enough. By placing boost components on one side of the chip it is easy to keep the ground plane intact below the high current paths. This way other chip pins can be routed more easily without splitting the ground plane. Bypass LDO capacitor must as close as possible to the device. Here are some main points to help the PCB layout work: - · Current loops need to be minimized: - For low frequency the minimal current loop can be achieved by placing the boost components as close as possible to the SW and PGND pins. Input and output capacitor grounds must be close to each other to minimize current loop size. - Minimal current loops for high frequencies can be achieved by making sure that the ground plane is intact under the current traces. High-frequency return currents find a route with minimum impedance, which is the route with minimum loop area, not necessarily the shortest path. Minimum loop area is formed when return current flows just under the *positive* current route in the ground plane, if the ground plane is intact under the route. - The GND plane must be intact under the high current boost traces to provide shortest possible return path and smallest possible current loops for high frequencies. - Current loops when the boost switch is conducting and not conducting must be on the same direction in optimal case. - Inductors must be placed so that the current flows in the same direction as in the current loops. Rotating inductor 180° changes current direction. - Use separate power and noise-free grounds. Power ground is used for boost converter return current and noise-free ground for more sensitive signals, such as LDO bypass capacitor grounding as well as grounding the GND pin of the device. - Boost output feedback voltage to LEDs must be taken out after the output capacitors, not straight from the diode cathode. - Place LDO 1-µF bypass capacitor as close as possible to the LDO pin. - Input and output capacitors require strong grounding (wide traces, many vias to GND plane). - If two output capacitors are used they must have symmetrical layout to get both capacitors working ideally. - Output ceramic capacitors have a DC-bias effect. If the output capacitance is too low, it can cause boost to become unstable on some loads, and this increases EMI. DC-bias characteristics should be obtained from the component manufacturer; they are not taken into account on component tolerance. TI recommends X5R/X7R capacitors. Product Folder Links: TPS61193 ## 10.2 Layout Example 図 10-1. TPS61193 Boost Layout ## 11 Device and Documentation Support ## 11.1 Device Support ### 11.1.1 Development Support Power Stage Designer™ Tool can be used for both boost and SEPIC: http://www.ti.com/tool/powerstage-designer #### 11.2 Documentation Support #### 11.2.1 Related Documentation For related documentation see the following: - SNVU491 - PowerPAD™ Thermally Enhanced Package - Understanding Boost Power Stages in Switch Mode Power Supplies - Designing DC-DC Converters Based on SEPIC Topology ## 11.3 ドキュメントの更新通知を受け取る方法 ドキュメントの更新についての通知を受け取るには、ti.com のデバイス製品フォルダを開いてください。「更新の通知を受け取る」をクリックして登録すると、変更されたすべての製品情報に関するダイジェストを毎週受け取れます。変更の詳細については、修正されたドキュメントに含まれている改訂履歴をご覧ください。 #### 11.4 サポート・リソース TI E2E[™] サポート・フォーラムは、エンジニアが検証済みの回答と設計に関するヒントをエキスパートから迅速かつ直接得ることができる場所です。既存の回答を検索したり、独自の質問をしたりすることで、設計で必要な支援を迅速に得ることができます。 リンクされているコンテンツは、該当する貢献者により、現状のまま提供されるものです。これらは TI の仕様を構成するものではなく、必ずしも TI の見解を反映したものではありません。TI の使用条件を参照してください。 #### 11.5 Trademarks Power Stage Designer[™] is a trademark of TI. TI E2E[™] is a trademark of Texas Instruments. すべての商標は、それぞれの所有者に帰属します。 #### 11.6 静電気放電に関する注意事項 この IC は、ESD によって破損する可能性があります。テキサス・インスツルメンツは、IC を取り扱う際には常に適切な注意を払うことを推奨します。正しい ESD 対策をとらないと、デバイスを破損するおそれがあります。 ESD による破損は、わずかな性能低下からデバイスの完全な故障まで多岐にわたります。精密な IC の場合、パラメータがわずかに変化するだけで公表されている仕様から外れる可能性があるため、破損が発生しやすくなっています。 #### 11.7 用語集 TI 用語集 この用語集には、用語や略語の一覧および定義が記載されています。 ## 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Product Folder Links: TPS61193 ## PACKAGE OPTION ADDENDUM 25-Feb-2021 #### PACKAGING INFORMATION | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |------------------|--------|--------------|--------------------|------|----------------|--------------|-------------------------------|---------------------|--------------|-------------------------|---------| | | | | | | | | (6) | | | | | | TPS61193PWPR | ACTIVE | HTSSOP | PWP | 20 | 2000 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -40 to 85 | TPS61193 | Samples | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ## **PACKAGE MATERIALS INFORMATION** www.ti.com 5-Dec-2023 ## TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | | | | | | | |----|---|--|--|--|--|--|--| | В0 | Dimension designed to accommodate the component length | | | | | | | | K0 | Dimension designed to accommodate the component thickness | | | | | | | | W | Overall width of the carrier tape | | | | | | | | P1 | Pitch between successive cavity centers | | | | | | | #### QUADRANT ASSIGNMENTS
FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |--------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | TPS61193PWPR | HTSSOP | PWP | 20 | 2000 | 330.0 | 16.4 | 6.95 | 7.1 | 1.6 | 8.0 | 16.0 | Q1 | ## **PACKAGE MATERIALS INFORMATION** www.ti.com 5-Dec-2023 ### *All dimensions are nominal | | Device Package Ty | | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |---|-------------------|--------|-----------------|------|------|-------------|------------|-------------| | I | TPS61193PWPR | HTSSOP | PWP | 20 | 2000 | 350.0 | 350.0 | 43.0 | # PWP (R-PDSO-G20) PowerPAD™ SMALL PLASTIC OUTLINE #### THERMAL INFORMATION This PowerPADTM package incorporates an exposed thermal pad that is designed to be attached to a printed circuit board (PCB). The thermal pad must be soldered directly to the PCB. After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC). For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com. The exposed thermal pad dimensions for this package are shown in the following illustration. Top View Exposed Thermal Pad Dimensions 4206332-15/AO 01/16 NOTE: A. All linear dimensions are in millimeters Exposed tie strap features may not be present. PowerPAD is a trademark of Texas Instruments ## PWP (R-PDSO-G20) ## PowerPAD™ PLASTIC SMALL OUTLINE #### NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad. - D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002, SLMA004, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com http://www.ti.com. Publication IPC-7351 is recommended for alternate designs. - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations. - F. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. ## 重要なお知らせと免責事項 TI は、技術データと信頼性データ (データシートを含みます)、設計リソース (リファレンス・デザインを含みます)、アプリケーションや設計に関する各種アドバイス、Web ツール、安全性情報、その他のリソースを、欠陥が存在する可能性のある「現状のまま」提供しており、商品性および特定目的に対する適合性の黙示保証、第三者の知的財産権の非侵害保証を含むいかなる保証も、明示的または黙示的にかかわらず拒否します。 これらのリソースは、TI 製品を使用する設計の経験を積んだ開発者への提供を意図したものです。(1) お客様のアプリケーションに適した TI 製品の選定、(2) お客様のアプリケーションの設計、検証、試験、(3) お客様のアプリケーションに該当する各種規格や、その他のあらゆる安全性、セキュリティ、規制、または他の要件への確実な適合に関する責任を、お客様のみが単独で負うものとします。 上記の各種リソースは、予告なく変更される可能性があります。これらのリソースは、リソースで説明されている TI 製品を使用するアプリケーションの開発の目的でのみ、TI はその使用をお客様に許諾します。これらのリソースに関して、他の目的で複製することや掲載することは禁止されています。TI や第三者の知的財産権のライセンスが付与されている訳ではありません。お客様は、これらのリソースを自身で使用した結果発生するあらゆる申し立て、損害、費用、損失、責任について、TI およびその代理人を完全に補償するものとし、TI は一切の責任を拒否します。 TI の製品は、TI の販売条件、または ti.com やかかる TI 製品の関連資料などのいずれかを通じて提供する適用可能な条項の下で提供されています。TI がこれらのリソースを提供することは、適用される TI の保証または他の保証の放棄の拡大や変更を意味するものではありません。 お客様がいかなる追加条項または代替条項を提案した場合でも、TIはそれらに異議を唱え、拒否します。 郵送先住所:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated