Application Brief **Optimizing Micro Inverter Systems Using Logic and Translation**

TEXAS INSTRUMENTS

Functional Block Diagram

Figure 1 shows a simplified micro inverter block diagram to illustrate the logic and translation use cases. Each red block has an associated use-case document. Links are provided in Table 1 and Table 2. For a more complete block diagram, see the interactive online end equipment reference diagram for micro inverters.

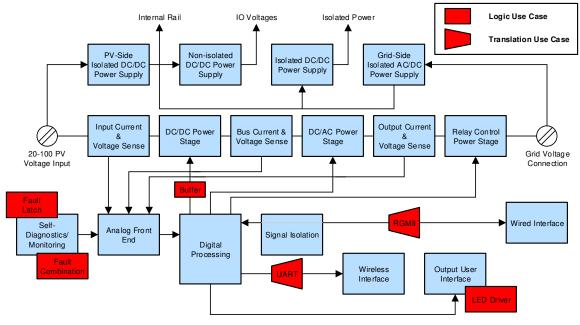


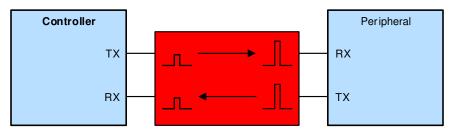
Figure 1. Simplified Block Diagram for Micro Inverters

Logic and Translation Use Cases

Each use case links to a separate document that provides additional details including a block diagram, design tips, and part recommendations. The nearest block and use-case identifiers are listed to match up exactly to the use cases shown in the provided *simplified block diagram*.

Table 4. Lawis Llas Cases

Nearest Block	Use-Case Identifier	Use Case
Self-Diagnostics/Monitoring	Fault Latch	Catch a Digital Pulse
	Fault Combination	Use Fewer Inputs to Monitor Error Signals
Digital Processing	Buffer	Redrive Digital Signals
Output User Interface	LED Driver	Drive Indicator LEDs


Table 2. Translation Use Cases					
Nearest Block	Use-Case Identifier	Use Case			
Wireless Interface	UART	Voltage Translation for Wireless Interface Modules			
Wired Interface	RGMII	Translate Voltages for RGMII			

1

Voltage Translation for Wireless Interface Modules

It is common to see micro inverters utilizing wireless interface modules to communicate due to their distributed nature. These modules often use UART for internal communication, and commonly are operating at a different logic voltage level from the primary system controller. The addition of a voltage level translator protects low-power system controllers and ensures accurate communication to the peripheral module.

See more about this use case in the Logic Minute video Voltage Level Translation for UART Interface

- Some devices support up to 5 Mbps UART communication; most are limited to 115 kbps or less
- Translators enable communication when devices have mismatched logic voltage levels
- · Prevent damage to devices that cannot support higher voltage inputs
- Improve data rates over discrete translation solutions
- Protect controller while peripheral is not connected
- [FAQ] How does a slow or floating input affect a CMOS device?
- Need additional assistance? Ask our engineers a question on the *TI E2E™ Logic Support Forum*

Part Number	Automotive Qualified	Voltage Translation Range	Features	
SN74AXC2T245-Q1	√		Glitch-free power supply sequencing	
SN74AXC2T245		0.65 V to 3.6 V	Outputs are disabled when either supply is 0 V Active translation architecture	
TXB0102		1.2 V to 3.6 V to 1.65 V to 5.5 V	Auto-bidirectional Active translation architecture	
TXS0102-Q1	✓	1.2 V to 3.6 V to 1.65 V to 5.5 V	Auto-bidirectional Internal pull-up resistors Passive translation architecture	

Table 3. Recommended Parts

For more devices, browse through the *online parametric tool* where you can sort by desired voltage, channel numbers, and other features.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated