

Texas Instruments Robotics System Learning Kit

 Module 20
Lab: Wi-Fi

 Lab: Wi-Fi

 2 Texas Instruments Robotics System Learning Kit: The MAZE Edition
SEKP160

20.0 Objectives

The purpose of this lab is to interface a Wi-Fi radio to the microcontroller and
connect the robot to cloud services.

1. You will interface a CC3100 to the MSP432 using SPI communications
2. You will configure the combo to connect to the internet via Wi-Fi
3. You will create a place in the cloud to log data
4. Your running robot will log data onto your cloud

Good to Know: There are many possible applications you can implement once
your system is connected to the internet. Your robot could receive data or
commands from the internet, or your robot can send data to the internet.
Combining receiving and transmitting allows you to develop a remote controller.

20.1 Getting Started
20.1.1 Software Starter Projects
Look at these projects:
 CC3100_GetWeather (fetches weather from openweathermap.org)
 Lab20_CC3100 (starter project for this lab)

20.1.2 Student Resources (in datasheets directory-Links)
 CC3100.pdf (SimpleLink Wi-Fi Wireless Network Processor)
 swru371b.pdf CC3100 BoosterPack Hardware
 swru368b.pdf CC3100 SimpleLink Wi-Fi Internet-on-a-Chip

20.1.3 Reading Materials

Chapter 20, “Embedded Systems: Introduction to Robotics"

Figure 1. CC3100 Wi-Fi BoosterPack.

20.1.4 Components needed for this lab
All components needed for this lab are included in the TI-RSLK Max kit (TIRSLK-
EVM), for this lab you will need to purchase the CC3100BOOST. Batteries will be
needed to power your robot.

Quantity Description Manufacturer Mfg P/N

1

TI-RSLK MAX kit

Texas
Instruments

TIRSLK-EVM

1

SimpleLink™ Wi-
Fi® CC3100
wireless network
processor
BoosterPack™
plug-in module

TI CC3100BOOST

20.1.5 Lab equipment needed
Wi-Fi router (with internet connection) or cellular hotspot

20.2 System Design Requirements

The overall goal of this lab is to interface a Wi-Fi radio to the microcontroller and
use it to connect to the local Wi-Fi router and then interact with a cloud service.

A Wi-Fi device can operate in many modes. Station mode allows it connect to a
local access point (AP). For example, your smart home device connects to your
house Wi-Fi router or your cell phone connects to the airport Wi-Fi network. AP
mode lets the device act as an access point with a broadcast SSID that other
devices can connect to. This is most commonly used by your local router but can
also be used by a device if we need to do some first time setup or if we only need
local WAN information and no internet access is required. An AP has a limited
number of connections it can service at any given time. High end routers can
handle hundreds of connections. In this lab, the MSP432/CC3100 device will run
in station mode, and the router will run in AP mode. The CC3100 can also run in
Peer-to-peer mode (P2P), allowing it to connect directly to other nearby devices,
without using an access point.

 Lab: Wi-Fi

 3 Texas Instruments Robotics System Learning Kit: The MAZE Edition
SEKP160

TI provides a SimpleLink SDK (software development kit) to enable development
with the MSP432 and provide many additional options for the software
development of the microcontroller. Using SimpleLink Wi-Fi is a more complex
operation than what we have done in previous labs. To use SimpleLink Wi-Fi to
its full ability, we will make use of a two software libraries available from TI.
These libraries were designed for general use. In other words, they were not
designed specifically for the TI-RSLK MAX curriculum

driverlib, MSP432 SimpleLink SDK, I/O on the MSP432
cc3100-sdk, implement SimpleLink Wi-Fi using the CC3100

Please notice the difference in software style between TI-RSLK MAX software
and the rest of TI software. TI-RSLK MAX is an educational platform. Software
within the TI-RSLK MAX curriculum was designed to solve very simple and
specific problems. E.g., activate PWM output on P2.6 with a fixed frequency of
100 Hz and variable duty cycle. The goal was to create software solutions so
simple, that students could understand everything. On the other hand,
commercial software like driverlib and cc3100-sdk were designed to solve all
problems. The goals were functionality, reliability, code reuse, legacy, stability,
evolution, abstraction, and portability. When using commercial software, one
rarely looks at the .c source files to see how they work (in fact, many commercial
products don’t give you .c source files, just compiled libraries), but rather, one
looks at the .h header files or software documentation to see what the software
does and how to use it. As a user of commercial software one is most interested
in time to project completion, reliability, and functionality. One is interested in
long-term profits, which will require code reuse, evolution, stability, abstraction,
and portability. As a student of the art of embedded systems, one is most
interested in understanding, which requires exposing how it works and seeing the
engineering tradeoffs. Code reuse, stability, evolution, and portability are not
usually important a student engineer. With TI-RSLK our goal was to make it so
simple you understand it all.

20.3 Experiment set-up

The original installer for TI-RSLK MAX included a copy of the driverlib and
cc3100-sdk libraries into your workspace. These two libraries will allow you to
complete Lab 20. Note that the TI documentation references the
CC31XXEMUBOOST for updating firmware, but you will not need
CC31XXEMUBOOST to complete the activities in TI-RSLK. You will use the
CC3100 with the preloaded software, as described in swru371b.pdf and
swru368b.pdf.

Warning: Please ensure the +5V jumper on the MSP432 LaunchPad is
disconnected or removed. Not removing this jumper will cause permanent
damage to the LaunchPad and the TI-RSLK chassis board.

The SimpleLink Wi-Fi SDK Plugin is designed for development on the CC3100
Network Processor and MSP432 Host MCU. The CC3100 and MSP432 could
communicate over SPI or UART, but we will use SPI. The CC3100 requires an
external host MCU for the user application.
First, we will set up the hardware. You will implement this lab using the MSP432
LaunchPad and the CC3100 Wi-Fi BoosterPack. You do not need to disconnect
your MSP432 from the TI-RSLK MAX robot. However, you cannot run both the
CC2650 and the CC3100 at the same time. In other words, please remove any
BoosterPacks from previous modules.

1. Mount the CC3100 BoosterPack on top of a MSP432 LaunchPad so the
pins align so the silkscreens on both boards are facing the same
direction. Be careful not to bend any pins.

Figure 2. Wi-Fi BoosterPack positioned on top of MSP432 with all 40 pins
aligned. Notice we placed insulating tape between the MSP432 LaunchPad and
the CC3100 BoosterPack because the three pins on each side are very close.

2. You will power the system in the usual manner. You should not plug in
to the USB connector on the BoosterPack, this USB is used for

 Lab: Wi-Fi

 4 Texas Instruments Robotics System Learning Kit: The MAZE Edition
SEKP160

reprogramming the CC3100, and but not needed in this lab. You just
want one USB cable to the MSP432 LaunchPad like the previous labs.

The pins used for CC3100 do not overlap with any of the TI-RSLK MAX
functions. There are six pins connecting the MSP432 and the CC3100
 P2.5 IRQ input causes edge interrupts, CC3100 -> MSP432
 P3.0 SPI_CS (GPIO output, active low), MSP432 -> CC3100
 P1.5 SPI_CLK (UCB0, 12 MHz), MSP432 -> CC3100
 P1.6 SPI_MOSI (UCB0), MSP432 -> CC3100
 P1.7 SPI_MISO (UCB0), CC3100 -> MSP432
 P4.1 nHIB (GPIO output to hibernate), MSP432 -> CC3100
Six additional pins are allocated for the CC3100 but not used. Even though these
pins do not participate in the MSP432-CC3100 communication you will not be
able to use these pins for other TI-RSLK MAX functions because they may be
driven by the CC3100, or they may cause action in CC3100 if you drive them:
 P5.1 WLAN_LOG_TX UART log data arrives from CC3100 into MSP432,
 P2.3 NWP_LOG_TX UART log data arrives into MSP432
 P3.3 UART1_RX UART from MSP432 to CC3100 with weak pullup
 P3.2 UART1_TX UART from CC3100 into MSP432
 P5.6 UART1_CTS from MSP432 to CC3100
 P6.6 UART1_RTS from CC3100 to MSP432

Good to Know: For security reasons, you may consider creating a new and
separate Google account with its own email and googledocs. This way, your
robot need not have access to any actual information you have on Google.

20.4 System Development Plan

20.4.1 Get weather
In order to test the Wi-Fi functionality we will use the MSP432-CC3100
combination to fetch weather from the internet, using the CC3100_GetWeather
project. Run a terminal program like TExaSdisplay so you can observe the
interactions between the MSP432 and CC3100. The first step is to determine the
SSID and password for your Wi-Fi access point or hot spot that you will use to
provide access to the internet. You will edit the sl_common.h file with this
access point information. You will find this file in \cc3100-sdk\examples\common.
In particular, you will edit the following three lines with specifications of your
access point.
#define SSID_NAME "your_ap_name"
#define SEC_TYPE SL_SEC_TYPE_WPA
#define PASSKEY "your_password"

The system will operate with three possible security types

OPEN (SL_SEC_TYPE_OPEN),
WPA/WPA2 (SL_SEC_TYPE_WPA), or
WEP (SL_SEC_TYPE_WEP)

The second step is to create a user account on openweathermap.org, with
which you can fetch weather information from the server.

1) go to http://openweathermap.org/appid#use
2) Register on the Sign up page
3) get an API key (APPID)

You will replace the APPID=1234567890abcdef1234567890abcdef with your
APPID. In particular, you should edit the line that begins with

#define REQUEST "GET /data/2.5/weather?q=Austin&APPID=

As an option, you can change the city. Refer to the openweathermap.org site
for other options for this request. Run a terminal program like TExaSdisplay and
open the appropriate COM port (115200 baud). Build and debug this project.
After connecting to the hot spot it will fetch the weather and output the response
to the COM port. The following is a typical response. This is the TCP packet
from MSP432 to openweathermap.org, where <X> will be your APPID

GET /data/2.5/weather?q=Austin&APPID=<X>&units=metric
HTTP/1.1
Host:api.openweathermap.org
Accept: */*

The following is a typical TCP packet response from the server, where <X> will
be your APPID.

HTTP/1.1 200 OK
Server: openresty
Date: Fri, 21 Jun 2019 17:21:21 GMT
Content-Type: application/json; charset=utf-8
Content-Length: 465
Connection: keep-alive
X-Cache-Key:
/data/2.5/weather?APPID=<X>&q=austin&units=metric
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true
Access-Control-Allow-Methods: GET, POST

 Lab: Wi-Fi

 5 Texas Instruments Robotics System Learning Kit: The MAZE Edition
SEKP160

{"coord":{"lon":-
97.74,"lat":30.27},"weather":[{"id":803,"main":"Clouds","de
scription":"broken
clouds","icon":"04d"}],"base":"stations","main":{"temp":31.
87,"pressure":1012,"humidity":59,"temp_min":30.56,"temp_max
":33.33},"visibility":16093,"wind":{"speed":3.6,"deg":170},
"clouds":{"all":75},"dt":1561137681,"sys":{"type":1,"id":33
44,"message":0.0104,"country":"US","sunrise":1561116583,"su
nset":1561167340},"timezone":-
18000,"id":4671654,"name":"Austin","cod":200}

Use this project to verify your MSP432, CC3100, and hot spot are operational.

20.4.2 Send an email with IFTTT

There are many options for create services in the cloud with which your robot
could interact. One easy-to-use cloud service called If This Then That. IFTTT
is a website that lets us set up rules and triggers to automate a process. For
example, we will configure the robot so that if we push a button on the
LaunchPad, it will send us an email.

1. Sign up for an IFTTT account at ifttt.com and associate it with an email
address for testing your LaunchPad. Again, for security reasons, feel free to
create a new google account and email just for this robot. Create a new applet
from the interface. An applet is a logical connection between two web services
supported in IFTTT.

2. Click New Applet” and choose a service by clicking “this” highlighted in blue
and pointed to by the arrow.

Figure 3. IFTTT new applet this.

3. Choose the trigger service by typing “webhooks” and select Webhooks which
is also called the maker service. Enable the Webhooks service if prompted.

Figure 4. IFTTT choose service.

4. Click “Receive a web request” and call the event name “button_pressed”. Click
“Create trigger”.

 Lab: Wi-Fi

 6 Texas Instruments Robotics System Learning Kit: The MAZE Edition
SEKP160

Figure 5. IFTTT complete trigger fields.

5. Specify an action by clicking “that” highlighted in blue.

Figure 6. IFTTT new applet that.

6. Choose the action service by typing “email” and select email. You will have to
connect your email to IFTTT by receiving a PIN via the email and typing it back
into IFTTT.

Figure 7. IFTTT choose action service.

7. Choose an action “send me an email”.

 Lab: Wi-Fi

 7 Texas Instruments Robotics System Learning Kit: The MAZE Edition
SEKP160

Figure 8. IFTTT choose action email.

8. Set your subject to “MSP432 LaunchPad Email” and leave the body with the
default values. Value1 Value2 and Value3 will be data fields you could use to
send information about the robot in the email body.

Figure 9. IFTTT action setup

9. Click “Create action” and then your applet is complete.

10. Now we need to go into the settings of the Webhooks service. Go into the
settings from my applets menu.

 Lab: Wi-Fi

 8 Texas Instruments Robotics System Learning Kit: The MAZE Edition
SEKP160

Figure 10. IFTTT Webhooks settings

Here you will see the URL you need to navigate to with your unique IFTTT key
after https://maker.ifttt.com/user/{key}. Save a copy of this key.

Figure 11. IFTTT webhooks account information with key highlighted in yellow.

11. If you go to this URL, it will trigger a Webhooks evebt and send you an email.

https://maker.ifttt.com/trigger/button_pressed/with/key/{key}

where {key} is your key. For the robot to send an email through IFTTT the robot
will need send a POST TCP packet to IFTTT. You can try it out in your web
browser first to verify the email sends correctly. In other words, if you enter the
above URL into a browser and type enter, IFTTT will send you an email and
show a response similar to Figure 12.

Figure 12. IFTTT web page response to triggering an event with Webhooks.

12. Now you can test this feature with CCS code running on your robot. You can
easily convert the CC3100_GetWeather project to post a message to IFTTT,
triggering a Webhooks event. Comment out the three lines for getting weather

//#define WELCOME "\nFetching weather from openweathermap.org"
//#define WEBPAGE "api.openweathermap.org"
//#define REQUEST "GET /data/2.5/weather?q=Austin&APPID= 123456

and uncomment the corresponding three lines for IFTTT

#define WELCOME "\nIFTTT trigger email"
#define WEBPAGE "maker.ifttt.com"
#define REQUEST "POST /trigger/button_pressed/with/key/123

You will replace the 1234567890abcdef1234567890abcdef with your IFTTT key.
Run this code to verify it will send an email from your RSLK robot. You will get
an email similar to Figure 13.

 Lab: Wi-Fi

 9 Texas Instruments Robotics System Learning Kit: The MAZE Edition
SEKP160

Figure 13. Typical email received from IFTTT.

20.4.3 Log sensor data

The overall goal of this lab is to combine the features you have developed in
previous labs, so that the robot performs some complex task. For example, the
robot could follow a line, solve a maze, or race around a track. The starter code
for Lab 20 will operate the robot to move in a square using odometry from the
tachometers. Feel free to establish any complex task for your robot. Periodically
the robot should log data onto a server. This provides real-time debugging as
your robot solves a challenge.

Create another applet on your IFTTT account. Similar to the email example, this
applet will be triggered by a Webhooks event. Give it a different name from
button_pressed, such as log_data. However, the action event will be to add a row
to a spreadsheet on your GoogleDrive.

Within your Lab20 code, you will pass robot data in the three fields Value1
Value2 and Value3. For example, the starter code logs the robot position as x, y,
and theta. In particular, you will need to populate the fields with debugging
information as appropriate for your task. However, since there are limits to how
often you can trigger Webhooks events, you should consider aggregating
multiple recordings while running the robot, and then send large log packets to
IFTTT. For the starter code, a typical TCP packet looks like this with nine data
recordings aggregated into one log packet.

POST /trigger/log_data/with/key/<X> HTTP/1.1
Host: maker.ifttt.com
User-Agent: CCS/9.0.1
Connection: close
Content-Type: application/json
Content-Length: 165

{"value1" : "0, -23, -96, -393, -470, -435, -363, -7, 74",
"value2" : "0, 391, 471, 432, 360, 3, -78, -50, 20",
"value3" : "90, 98, -179, -169, -89, -83, 0, 6, 89" }

The IFTTT server response should be something like this
HTTP/1.1 200 OK
Date: Sat, 22 Jun 2019 17:29:36 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 48
Connection: close
X-Top-SecreTTT: <X>
Server: web_server
Congratulations! You've fired the log_data event

And the recording on GoggleSheets is shown as the last row

20.5 Troubleshooting

The Wi-Fi can’t connect to the router:

• Check all the connections between LaunchPad and the BoosterPack
and make sure the pins are lined up.

• Make sure the LaunchPad is connected via USB and powered on.
Check the voltages on the robot and the MSP432.

 Lab: Wi-Fi

 10 Texas Instruments Robotics System Learning Kit: The MAZE Edition
SEKP160

• Make sure the Wi-Fi BoosterPack power LED is on when connected to
LaunchPad.

• Verify the SSID and password of the router you are connecting to in the
code

• Make sure the router does not have a splash screen for logging in. The
CC3100 is not able to know what to do with that.

Cloud issues:

• Make sure the router has an internet connection
• Check your activity log on IFTTT to make sure you have not exceeded

your usage limit. There is a limit to both the number and rate of
Webhooks you can trigger.

20.6 Things to think about

In this section, we list thought questions to consider after completing this lab.
These questions are meant to test your understanding of the concepts in this lab.

• What does it mean that this interface is serial? Why is serial important?
• What does it mean that this interface is synchronous? Why is

synchronous important?

20.7 Additional challenges

In this section, we list additional activities you could do to further explore the
concepts of this module. The RSLK projects used CC3100 SDK v1.3.0 release. If
you plan to use the MSP432/CC3100 combination for projects beyond RSLK,
you could download and install the newest versions of the drivers on the TI web
site

SimpleLink MSP432P4 SDK http://www.ti.com/tool/SIMPLELINK-MSP432-SDK
SimpleLink CC3100 SDK http://www.ti.com/tool/CC3100SDK

You could extend the system or propose something completely different. For
example,

• Connect your robot to the Dweet.io service and then use the
visualization tool freeboard.io to display the data coming from Dweets

• Connect your robot to the Temboo service (www.temboo.com)
• Connect your robot to the Blynk service to enable Wi-Fi mobile app

(www.blynk.cc)
• Connect your robot to move based on changes in the stock market
• Set your robot as an AP to transmit diagnostics and sensor data to a

connected web client

20.8 Which modules are next?

Modules 1-20 have introduced the basics of the microcontroller and advanced
functionality to add to the robot. You should have most of the ground work to
complete the robot challenge. Additional supplemental modules are available for
study on other techniques and concepts.

20.9 Things you should have learned

In this section, we review the important concepts you should have learned in this
module:

• Understand basic procedure of Wi-Fi connections
• Utilize the SimpleLink SDK to get started quickly with Wi-Fi

development

http://www.ti.com/tool/SIMPLELINK-MSP432-SDK
http://www.ti.com/tool/CC3100SDK
http://www.temboo.com/
http://www.blynk.cc/

ti.com/rslk

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	RSLK MAX_20_WiFi_Lab_NEW
	20.0 Objectives
	20.1 Getting Started
	20.1.1 Software Starter Projects
	20.1.2 Student Resources (in datasheets directory-Links)
	20.1.3 Reading Materials
	20.1.4 Components needed for this lab
	20.1.5 Lab equipment needed

	20.2 System Design Requirements
	20.3 Experiment set-up
	20.4 System Development Plan
	20.4.1 Get weather
	20.4.2 Send an email with IFTTT
	20.4.3 Log sensor data

	20.5 Troubleshooting
	20.6 Things to think about
	20.7 Additional challenges
	20.8 Which modules are next?
	20.9 Things you should have learned

	TI-RSLKMax_Cover

