
Application Report
SLAA682–November 2015

Secure In-Field Firmware Updates for MSP MCUs

.. MSPMCUs

ABSTRACT
In-field firmware update is a feature that is increasingly used in microcontroller-based applications today
and important benefits include service and support to products that are already deployed in the field (for
example, being able to correct bugs or add new functionalities). As common as in-field firmware updates
are in embedded systems, this feature is also commonly exploited by attackers; if the update process is
vulnerable, it can compromise the security of the system. This application report discusses the various
security issues and respective measures to implement secure in-field firmware updates through the
firmware transport and download process. This includes securing firmware image against reverse
engineering and making sure that only authentic firmware from a trusted party whose integrity has not
been compromised is allowed to be uploaded to the microcontroller.

The measures discussed in this document are general security measures to address the security threats
involved with the in-field firmware updates process. The actual security solution proposal for a specific
MSP product family may differ in their implementation and in the security feature set that is offered. Any
specific solution is dependent on various factors including the default bootloader offerings, nonvolatile
memory type, and hardware security features available on the MCU. Refer to the in-field firmware updates
security solution specific to each MSP family for more details.

Contents
1 Introduction ... 2
2 In-Field Firmware Updates ... 3
3 Custom MSP Bootloader Solutions for Enabling Increased Security in In-Field Firmware Updates 11
4 References .. 12

List of Figures

1 Typical In-Field Firmware Update Process ... 2

List of Tables

1 Security Assets in In-Field Firmware Updates .. 4
2 Security Threats for New Firmware Image (AST-01) During In-Field Firmware Updates 4
3 Mapping Security Attributes to Security Threats... 5
4 Mapping Security Primitives to Security Attributes .. 6

All trademarks are the property of their respective owners.

1SLAA682–November 2015 Secure In-Field Firmware Updates for MSP MCUs
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA682

Introduction www.ti.com

1 Introduction
In-field firmware updates are commonly used in microcontroller-based products and have many benefits
including:
• Add new features and functionalities to products that are already deployed in the field.
• Enable and disable product features or functionality in the field (without having to update the complete

firmware on the MCU)
• Fix bugs in firmware after a product has been released.
• Reduce the need for high-tech support as problems are often solved by instructing users to upgrade

firmware. This, in turn, reduces the number of product returns to be handled and enables a more
positive experience with the product for end users.

Figure 1 shows a typical in-field firmware update process.

A For information on typical MSP applications, see Applications for Low-power MCUs.

Figure 1. Typical In-Field Firmware Update Process

The steps include:
1. The product manufacturer first creates and loads an "initial" firmware image into the MCU in a product

in a trusted environment.
2. The product manufacturer then deploys the product with the "initial" firmware to the field.
3. When a firmware update is required, the product manufacturer creates a "new" firmware image at his

end.
4. The product manufacturer sends the "new" firmware image to the customer or product in field through

an untrusted communication channel.
5. The "new" firmware is loaded on to the MCU with or without the use of external programming tools in

the field. In many cases, a host processor in the system downloads the "new" firmware image onto the
MCU.

In this typical in-field firmware update process, it is evident that the security concerns can arise during the
"transport" phase, where the new firmware is transferred through an untrusted communication channel or
during the "firmware loading" phase, where the new firmware is downloaded onto the MCU in field.

2 Secure In-Field Firmware Updates for MSP MCUs SLAA682–November 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/msp/applications.page
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA682

www.ti.com In-Field Firmware Updates

The following sections elaborate on the security concerns in the in-field firmware update process by first
identifying the security assets and threats in the system, and then discussing general security measures to
address the concerns.

2 In-Field Firmware Updates
Programming an MSP microcontroller on bench or in a trusted production environment has many options
including a variety of hardware programming tools and debug access through JTAG or Spy-Bi-Wire
interface. However, for MCUs deployed in the field, the MCU debug interface is commonly locked for
security reasons and in such cases, the bootloader on the MCU is the only way to access MCU memory.

2.1 Bootloader (BSL)
The bootloader (previously knows as the bootstrap loader and referred to as the BSL in this and other
MSP documents) is code that resides in the MCU memory and can reprogram the application memory
space on the MCU. The bootloader code is usually placed in protected MCU memory (for example, write
protected memory region) and is used for in-field firmware updates. It uses on-chip communication
channels such as UART, I2C, SPI, or USB for interfacing to the host processor, a firmware update tool, or
a PC. The bootloader should be able to operate without any external programming hardware or tools.
Remember, the end-user doing the firmware update may not be technically skilled to do the update or
end-product may be in an environment where external hardware tools for firmware update cannot be
accommodated.

Most MSP MCUs have a default BSL available on-chip. Depending on the type of nonvolatile memory
offered in the MCUs, the BSL may be in protected flash or on-chip ROM. Refer to the device-specific data
sheet for default BSL offerings and what serial communication interfaces are supported by the respective
BSLs.

If additional functionality beyond what the default BSL offers is needed, the application designer can
develop a custom BSL that can be loaded on to the MCU. On MSP MCUs where the BSL is in protected
flash memory area, there are options to reprogram the BSL memory area on-chip; as long as the custom
BSL firmware fits the BSL memory area on the MCU. [4] On MSP MCUs with the default BSL in ROM, the
custom BSL is programmed into the user application area with proper write protection or IP encapsulation
or protection enabled. IP encapsulation or IP protection is not available on all of the MSP MCUs (see the
device-specific data sheet).

To invoke the bootloader mode of operation on the MCU, a predefined bootloader invoke sequence or
option must be triggered. The MSP MCUs offer multiple BSL invoke options that are device family
dependent. Some invoke options include entering bootloader mode upon blank device detection, upon
receiving a predefined boot-sequence (for example, after device reset), or upon application firmware
jumping to bootloader function during MCU operation. At an application level, custom invoke options such
as external triggers (for example, button push) or commands from host processor can be used to trigger
the BSL mode of operation.

The typical in-field firmware update process using a bootloader includes the following steps:
1. Product is deployed to field with bootloader present on the MCU.
2. Product manufacturer releases a "new" firmware for the MCU.
3. New firmware is sent to the end-product environment (either to the end-user or service agent or to the

host processor in the system).
4. The bootloader is invoked. Options to invoke the BSL include:

(a) Reset the blank MCU (it is possible that the blank MCU was deployed to the field, and it is being
programmed for first time in the field).

(b) The end user or service agent invokes the BSL by a button push.
(c) The host processor invokes the BSL by generating the predefined bootloader invoke sequence.

5. The BSL on the MCU uses the supported communication interface to communicate with the host
processor or external bootloading tool (for example, to validate a password, send the BSL version
number, or receive the new firmware).

6. The new firmware is downloaded onto the MCU through supported BSL commands.
7. The existing application on the MCU is replaced.

3SLAA682–November 2015 Secure In-Field Firmware Updates for MSP MCUs
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA682

In-Field Firmware Updates www.ti.com

8. The MCU is reset, or the BSL exits to the user application to start or continue application execution.

Refer to MSP430 Programming With the Bootloader (BSL) (SLAU319) for details of the MSP BSL
commands and invoke options.

2.2 Understanding Security Issues
To define the security requirements or measures for in-field firmware updates using the MCU bootloader,
it is necessary to first understand the security assets in this process and the security threats that are of
concern.

2.2.1 Security Assets
The application firmware to be downloaded to the MCU corresponds to the "intellectual property" of the
product manufacturer and, therefore, the main asset to protect. Table 1 describes the security asset and
the need for protection during in-field firmware updates.

Table 1. Security Assets in In-Field Firmware Updates

Asset ID Name Description Protection Need
The binary image distributed by the product In the case of in-field firmware updates, themanufacturer that is to be downloaded onto the firmware image should be protected during theFirmware microcontroller device deployed in field. MayAST-01 transportation and firmware loading phases.image include code, data, calibration values, Note: The firmware within the device is assumed toauthentication secrets, and other intellectual be secure.property.

2.2.2 Security Threats
A security threat consists of a threat agent, an asset, and an adverse action of that threat agent on that
asset. When executed, the threat can possibly compromise the security of the asset. Table 2 describes
the possible threats associated with the in-field firmware update process as related to asset AST-01.

Table 2. Security Threats for New Firmware Image (AST-01) During In-Field Firmware Updates

Threat ID Name Description
T-01 Firmware alteration Partial modification to the firmware image distributed by the product manufacturer.

Firmware reverse Reverse engineering the firmware image (binary code) into assembly or a higher levelT-02 engineering language to analyze the functionality and contents of firmware image.
Loading an unauthorized firmware image into a device. The unauthorized firmwareLoading unauthorizedT-03 image may correspond to code created by an unauthorized third party or firmware notfirmware intended for the specific device.

Loading firmware onto Loading the firmware image generated by the product manufacturer into a device thatT-04 unauthorized device is not authorized.

Other threats to the system can involve making the device unavailable for service by interrupting the
firmware update process (for example, interrupt the firmware update process such that firmware is only
partially updated on the device and device does not start application firmware execution, because the
integrity of the firmware on the chip is compromised) (see Section 2.3.4).

2.2.3 Attackers and Security Boundary
Two types of attackers are considered for in-field firmware updates.
• Attacker on the untrusted communication channel, who can access the firmware image during the

firmware transport phase.
• Attacker in the field who has access to the firmware image during the actual firmware loading process.

It is assumed that both attackers have equal capabilities; that is, they are capable of performing either
passive (for example, eavesdropping) or active (for example, man-in-the-middle) attacks during firmware
transport and loading phases. Therefore, both attackers are capable of executing the threats listed in
Table 2.

4 Secure In-Field Firmware Updates for MSP MCUs SLAA682–November 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SLAU319
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA682

www.ti.com In-Field Firmware Updates

NOTE: The scope of this in-field firmware update use-case considers the security boundary at the
physical enclosure of the end-product. That is, software and hardware attacks on the device
itself are not considered here.

NOTE: It is assumed that the bootloader code is always functional and cannot be altered or modified
on the device.

2.3 Security Measures
This section discusses general security measures for in-field firmware updates to be considered by the
device bootloader such that they address the security threats discussed in Table 2.

2.3.1 Security Attributes
Identifying the security attributes of an asset help define the security measures for the associated threats.
In a specific application, not all of the attributes discussed below might be relevant to a given asset, and
the application designer should evaluate what is needed or not.

General security attributes for an asset (also known as the CIA triad) include:
• Confidentiality: Ensures that an asset is not made available or disclosed to unauthorized entities. In

case of in-field firmware updates, this security attribute helps keep the firmware image (AST-01)
confidential and ensures that the firmware image cannot be read by unauthorized parties.

• Authenticity: Ensures that assets are genuine and authorized to perform a task or be used as they
are intended to be. That is, authenticity validates that all of the parties involved are who they claim to
be. In case of in-field firmware updates, this security attribute enables verifying that the firmware image
(AST-01) comes from an authorized source (that is, the product manufacturer). Authenticity also
verifies the validity of the device onto which the firmware image is loaded.

• Integrity: Ensures protection of assets from unauthorized modification. In case of in-field firmware
updates, this security attribute makes sure that the firmware image (AST-01) generated by the product
manufacturer has not been altered or modified when it is received by the device in-field.

Table 3 maps the security attributes against the security threats identified for the in-field firmware update
process.

Table 3. Mapping Security Attributes to Security
Threats

Security Attributes
Threat ID

Confidentiality Authenticity Integrity
T-01 ✔
T-02 ✔
T-03 ✔
T-04 ✔

The next sections discuss the security measures that correspond to the above mentioned attributes to
provide required protection against these threats.

2.3.2 Cryptography for Secure In-field Firmware Updates
The bootloader and the in-field updates process should use suitable cryptographic algorithms for reliable
security in in-field firmware update process.

Table 4 lists the cryptographic primitives applicable for the CIA (confidentiality, integrity, authenticity) triad.
Combining multiple cryptographic primitives together makes a secure cryptographic system.

5SLAA682–November 2015 Secure In-Field Firmware Updates for MSP MCUs
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA682

In-Field Firmware Updates www.ti.com

Table 4. Mapping Security Primitives to Security Attributes

Security Attributes
Cryptographic Primitives

Confidentiality Authenticity Integrity
Encryption and Decryption ✔ ✔
One-way Functions (Hash, Digest) ✔
Message Authentication Code (MAC) ✔ ✔
Digital Signatures ✔ ✔

Cryptographic algorithms are based on the basic cryptographic primitives and there are various
cryptographic algorithms from each primitive to choose from. There are multiple factors to consider when
picking an algorithm from any primitive and some of these factors have been discussed below:
• How well does the algorithm fit the security needs in the system? For example, can symmetric

cryptography be accommodated (system consists of small number of users who can all share the
same keys), or is asymmetric cryptography needed for the system (system consists of large number of
users where any arbitrary pair of users want to communicate privately without any other user being
able to read the message, or system has challenges securely distributing or handling large number of
secret keys or need benefits of digital signatures)?

• How proven is the cryptographic algorithm in the industry; are there any known vulnerabilities?
One should select an algorithm that is widely used and accepted by the security community.

Cryptography is a constantly changing field. As new discoveries in cryptanalysis are made, older
algorithms will be found unsafe. In addition, as computing power increases, the feasibility of brute force
attacks will render known cryptosystems or the use of certain key lengths unsafe. Standard bodies such
as NIST should be monitored for recommendations.

NOTE: TI recommends using proven cryptographic algorithms rather than developing proprietary
algorithms. Proprietary algorithms are extremely difficult to get right as it most often not
disclosed and this prevents peer reviews and analysis from the cryptographic community.
Also, proprietary algorithms that rely on ‘security through obscurity’ (and not sound
mathematics) should be avoided if possible.

• Performance requirements: If the system requires cryptographic functions to be fast, then symmetric
cryptographic algorithms which tend to be comparatively faster should be considered; however,
symmetric cryptography cannot be used unless involved parties have already exchanged keys. See
Section 2.3.2.1 for further discussion on this topic.

• Memory requirements: In microcontroller systems that do not offer hardware accelerators for
cryptographic functions, the cryptographic algorithms are implemented in software. In such cases,
memory requirements (both RAM and nonvolatile memory) of the cryptographic algorithm may play a
critical role in the algorithm selection (for example, consider memory limitations in wireless sensor
node applications). [1]

• Energy Consumption: In applications that are energy constrained and need to extend their battery life
or network connected life, energy efficiency of the cryptographic algorithms can play a critical role in
algorithm selection. Higher security levels usually consume more energy for cryptographic functions.
The energy consumption of the cryptographic algorithm depends on the average power dissipation of
the microcontroller and the total running time for the algorithm. The former depends on a number of
factors including the supply voltage, the clock frequency, and the average current drawn by the
microcontroller when executing cryptographic code (or average current drawn by the hardware
cryptographic accelerator when operational). In addition, the computational complexity of an algorithm
translates directly to its energy consumption.

Because firmware updates are typically not expected to occur often in most systems, energy efficiency of
the cryptographic algorithm may not be a significant factor for consideration in the case of in-field firmware
updates. However, if the cryptographic algorithm is used for regular data transmission, then application
designer should consider this factor more carefully.

6 Secure In-Field Firmware Updates for MSP MCUs SLAA682–November 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA682

www.ti.com In-Field Firmware Updates

2.3.2.1 Symmetric and Asymmetric Cryptography
Symmetric ciphers are used for encryption, decryption, and computing MACs; thus, they are important
candidates to consider for in-field firmware update security.

In a symmetric cryptosystem, the involved parties share a common secret (also known as secret key).It
uses a single key for both encryption and decryption. And, this key must be kept secret or confidential.
Any party possessing the specific secret key can create encrypted messages using that key and can also
decrypt any message that is encrypted with the key. The key length used by a symmetric algorithm is
important, particularly if brute-force attacks (that is, trying all possible keys until one works) are relevant.
And, as computing power increases, longer keys are required.

Symmetric algorithms tend to be faster (compared to asymmetric cryptographic algorithms), but they
cannot be used unless the involved parties have already exchanged the secret keys. The challenge with
this approach is the secure distribution and handling of the keys. And, in systems involving a number of
users who each need to set up independent and secure communication channels, symmetric
cryptosystems can have practical limitations due to the requirement to securely distribute and manage
large numbers of keys.

Asymmetric cryptography (also called public-key cryptography) solves this problem as it uses different
keys to encrypt and decrypt message. Data is encrypted with a public key (that is available to everyone),
and decrypted only with a private key (kept secret within the device). Asymmetric algorithms are incredibly
slow for most MCUs and usually not practical to use to encrypt large amounts of data.

In many cases, a combination of symmetric and asymmetric cryptography is used whereby an
authenticated connection between the two parties is first established using asymmetric cryptography and
secret keys for the session (also called session keys) are generated and exchanged through this trusted
connection. After session keys are in place, symmetric cryptography is used for encrypting and decrypting
the actual transmission data between the two parties, as it is much faster.

2.3.2.2 Data Confidentiality: Encryption and Decryption
Encryption is the process in which data (plaintext) is translated into something that appears to be random
and meaningless (ciphertext). Decryption is the process in which the ciphertext is converted back to
plaintext.

Encryption and decryption provides data privacy and enables only parties with valid key to decrypt the
ciphertext and retrieve the original message. It is required if threat T-02 in Table 2 is relevant to the in-field
firmware update system. If using symmetric key cryptography, then, the device should securely store the
decryption-key that is used by the bootloader to decrypt the received message to retrieve the firmware
image sent by the product manufacturer.

Triple-DES and Advanced Encryption Standard (AES) are examples of symmetric key algorithms for
encryption and decryption. See Reference [2] for comparative analysis of symmetric encryption algorithms
based on key length, block size, computational speed, throughput, power consumption, memory usage,
security against attacks. Refer to the application report C Implementation of Cryptographic Algorithms
(SLAA547) for code size and performance benchmarks of C implementation of cryptographic algorithms.

2.3.2.3 Data Integrity
Data integrity ensures being able to detect any alteration of the security asset and in case of in-field
firmware updates, this attribute helps device bootloader ensure the firmware image generated by the
product manufacturer has not been altered or modified during the firmware transport or loading process.

Data integrity check for indicating transmission errors is addressed using CRC check codes (see
Section 2.3.4 for more details).

Data integrity check for security reasons is different from transmission errors, as in this case, attacker can
alter the firmware image and re-compute a new CRC value and append to the message. Therefore, data
integrity for security should consider cryptographic algorithms. It can be handled by multiple cryptographic
primitives, including the following:

7SLAA682–November 2015 Secure In-Field Firmware Updates for MSP MCUs
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SLAA547
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA682

In-Field Firmware Updates www.ti.com

Hash Functions
Cryptographic hash functions are used as digital fingerprints of the digital data to ensure integrity. Hash
functions are one-way functions designed to take digital data of any length and map it to a digital data of
fixed size (called hash or message digest). Given the hash value, it is impossible to derive the original
message, and the mathematical properties of the hash functions make it infeasible to find two different
messages with the same hash. See the application report C Implementation of Cryptographic Algorithms
(SLAA547) for C implementation of SHA-256 and SHA-224.

In the case of in-field firmware updates, a hash is generated for the "new" firmware image and appended
to the firmware image before transporting to field. During the in-field firmware update process, after
receiving the firmware image, the bootloader computes the hash value for the received image and
compares it against the hash value embedded with the firmware image. If the values match, the integrity
of the received firmware image is validated.

Unlike symmetric ciphers, the hash functions do not use a secret key; that is, anybody can generate a
hash given the input message. Therefore, just hashing the firmware image may not be very valuable to
determine data integrity as an attacker can alter the image and compute new hash value for the altered
image and replace the original hash value appended to the firmware image. In this case, the party
receiving the altered firmware image with new hash value does not detect any message alteration.

Digital Signatures
Digital signatures serve the purpose of detecting if the message was altered after it was digitally signed;
thus, providing data integrity. Digital signatures overcome the issue of just hashing the firmware
(discussed under "Hash Functions" above) by encrypting the hash value to generate the digital signature
for the message. Digital signatures use public-key cryptography; wherein the product manufacturer
digitally signs the hash value of the firmware image using a private key and appends the signature to the
message. During in-field firmware update process, the bootloader decrypts the digital signature using the
product manufacturer’s public key to retrieve the hash value of the original image, and then compares this
with the hash value computed for the message received to determine if the message was altered during
firmware transport or download phase.

Message authentication enabled by digital signatures is discussed in Section 2.3.2.4.

Message Authentication Code (MAC)
MAC is similar to digital signatures, except that it uses symmetric keys to encrypt and decrypt the hash
value. Because digital signatures are based on public-key cryptography and use relatively longer key
lengths, they take much longer to compute compared to MAC.

In the case of in-field firmware update process, if the hash value decrypted by the device bootloader using
the secret MAC key matches the MAC value computed for the received message, this validates the data
integrity (that is, data is not altered en route) and the data authenticity (that is, data is originated from a
party with the secret key) attributes of the firmware image.

Message authentication enabled by MAC is discussed in Section 2.3.2.4.

2.3.2.4 Message Authentication
Message authentication is needed to ensure the validity of the message origin. Message authentication
ensures both message integrity (that is, message is not tampered or altered) and authenticity (ensuring
message is from the authorized party). In the case of in-field firmware updates, message authentication
addresses threats T-01, T-03, and T-04 described in Table 2.

Message authentication does not provide data confidentiality; in many systems, in-field updates with only
the need for authentication (with integrity implied) is required, and there is no need for data secrecy.

Different types of message authentication include digital signatures and message authentication code
(MAC). These cryptographic primitives are discussed in Section 2.3.2.3 with data integrity in in-field
firmware updates as the focus. Here, they are considered from the message authentication perspective.

8 Secure In-Field Firmware Updates for MSP MCUs SLAA682–November 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SLAA547
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA682

www.ti.com In-Field Firmware Updates

Digital Signatures
Digital signatures use public key cryptography and in the case of in-field firmware updates, the product
manufacturer that generates the "new" firmware image, also generates the digital signature for the image
by using its private key (typically stored and accessible only by the product manufacturer) to encrypt the
hash value of the firmware image and appends it to the firmware image that is transported to the devices
in field.

When the device in field receives the image with the digital signature, the bootloader decrypts the
signature using the product manufacturer’s public key (available to everyone), to retrieve the hash value
signed by the product manufacturer and if it matches the hash value computed for the image received, this
assures valid data origin and data integrity.

In this case, anyone can use the product manufacturer’s public key (this is not a secret and is available to
all) to decrypt the signature to gain access to hash value of the firmware image. However, because the
cryptographic hash functions are based on strong collision resistance property, it is infeasible for an
attacker to generate another firmware image with the same hash value.

Message Authentication Code (MAC)
MAC uses symmetric key cryptography and, in the case of in-field firmware updates, the product
manufacturer and all of the devices deployed by the product manufacturer in the field should share the
same secret key used for generating the MAC (also called the secret MAC-key). The product
manufacturer generates the MAC for the "new" firmware image using the secret MAC-key and appends it
to the firmware before transporting it to the devices in field.

When the device in field receives the image with the MAC, the bootloader decrypts the MAC using the
shared secret MAC-key to retrieve the hash value of the firmware image generated by the product
manufacturer and if it matches the hash value computed for the image received, this assures data integrity
and data origin (that is, firmware image originated from an authorized party with the secret key).

Because the secret key is shared between all of the parties using MAC, anyone with the secret key can
generate a MAC and transmit data. And, unlike digital signatures, the MAC does not provide any means to
bind the message to the specific data originator. In the case of in-field firmware updates, as long as it is
ensured that only the product manufacturer with the secret MAC-key generates the "new" firmware image
for firmware updates, this should not be a concern. That is, it should be ensured that the privacy of the
secret MAC-key within the devices deployed in-field or at the product manufacturer should not be
compromised. However, if the secret MAC-key in the system is compromised, then the attacker can
generate fake firmware with a valid MAC value appended and enable loading unauthorized firmware (fake
firmware) onto devices in-field (or can alter the firmware image and update its MAC value), and this
compromises the data authenticity in the system.

2.3.3 Key Storage and Management
Cryptography is only a component of the larger security solution related to in-field firmware updates. A
secure system is only as strong as its weakest link. If in-field firmware update system uses cryptographic
algorithms that are widely accepted in the security industry, cryptography is usually not the weakest link.
Application designers must pay close attention to other pieces of the solution including implementation
(cryptographic algorithm implementation, bugs, side channels, back doors, protocol usage) and keys
handling.

This section discusses keys storage and handling, which is another important piece of the overall security
solution.

The heart of cryptography lies in securing the keys, so special consideration should be taken to ensure
keys within the device are secure. Secret keys should be kept confidential within the device, and public
keys (used in asymmetric cryptography), although not needed to be kept secret, should be protected from
being modified.

Based on the security features provided in hardware, secure keys storage within the device should be
enabled. Some examples of hardware security features on-chip includes debug lock, restricted access to
key storage area (for example, key storage area accessible only by the cryptographic hardware or only in
bootloader mode when executing cryptographic functions). On more secure microcontrollers, a dedicated
keys storage area with restricted access may be provided.

9SLAA682–November 2015 Secure In-Field Firmware Updates for MSP MCUs
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA682

In-Field Firmware Updates www.ti.com

Key management functions should be considered for transferring keys in field and for managing keys
on-chip. Key encryption typically uses a separate secret key (called key-encryption key) for encrypting the
other keys on-chip (for example, data encryption keys, data authentication keys). This provides integrity
and authenticity for the secret keys on-chip and is especially valuable if the in-field firmware update
system supports updating keys. Using counters for tracking keys version should be considered to prevent
any key downgrade attacks.

Also, it is imperative to use the right keys for the different cryptographic functions. This can be handled in
software by using an appropriate data-structure for the keys.

2.3.4 Additional Measures for In-Field Firmware Updates
Additional concerns with in-field firmware update process include:
• transmission error (for example, bits flipped during transmission)
• transmission failure (for example, losing device power or losing connection with host during the

firmware update process leads to transmission failure)
• Information loss (for example, parts of the data lost during firmware update process)

These issues lead to interrupted firmware update process and can render the device unavailable or
nonresponsive. The bootloader within the device needs to detect these issues during the in-field firmware
update process and to the device bootloader, these issues can correspond to intended or unintended
occurrences in the system. Intended occurrences of these issues should be addressed as security threats
in in-field firmware update process and the respective measures are discussed in previous sections.

If firmware integrity is not addressed by the cryptographic algorithms implemented as part of the
bootloader security measures, then the bootloader should implement Error Detection as part of the
bootloader protocol (for example, CRC checksum) to detect unintended transmission errors in the
firmware update process.

Packet numbering and packet acknowledgment as part of the bootloader protocol should be
considered for tracking transmission failure or information loss. This is recommended for firmware update
processes that divide the firmware image into blocks or chunks and transmit over multiple packets.

The device behavior upon detecting these issues is application dependent:
• Upon starting the firmware update process in-field, if it is required that the new firmware is completely

downloaded onto the device before executing application firmware again, then bootloader should be
able to identify incomplete or interrupted firmware updates (even upon device power-up or reset) and
accordingly request for missing packets or trigger the complete firmware update process again.
If feasible, the bootloader should consider storing the packet counter (used for tracking packets
received) and firmware update complete or not complete information in the nonvolatile memory, such
that the bootloader can reference this information to check for progress in the firmware update process
to take actions accordingly.

• Upon starting the firmware update process in-field, if it is required that the device be functional even
though the firmware update process was incomplete or interrupted, then, the application should
consider having a copy of the functional firmware in the device memory "always" and allocate a
firmware update buffer zone large enough to hold the "complete" incoming new firmware
during in-field firmware update process. If the firmware update process is interrupted, then the
device can default to running the functional firmware on the device at any time. And, only when the
firmware update process is deemed complete by the bootloader (that is, firmware authenticity and
integrity confirmed valid after receiving all of the firmware image blocks), the device should switch to
using the new firmware image downloaded into the firmware update buffer zone as the new functional
firmware.

This approach doubles the application firmware memory requirement; however, it should be considered if
denial-of-service attacks are relevant.

Additionally, the bootloader protocol should consider implementing firmware version numbering to
ensure an attacker is not re-sending older or current firmware versions to be downloaded onto the device
(replay attacks). The firmware version number should be stored in the nonvolatile memory and the
bootloader should reference the version number during firmware updates.

10 Secure In-Field Firmware Updates for MSP MCUs SLAA682–November 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA682

www.ti.com Custom MSP Bootloader Solutions for Enabling Increased Security in In-Field Firmware Updates

Custom Bootloader Considerations
Most MSP devices come with a factory-provided bootloader; also referred to as the default bootloader or
BSL on the device. Because this default bootloader code is not the primary application necessary for
device operation, it is considered "overhead" code and so, the bootloader code footprint is typically
designed to be as small as possible.

With the focus to keep the code footprint small, the security measures discussed in this document may not
be implemented in the default bootloader. In such cases, application designer should evaluate the security
concerns in their system and accordingly consider developing a custom bootloader with appropriate
security measures incorporated.

Memory map: Some MSP devices enable re-programming the default bootloader memory area with
custom bootloader code and can be used as long as the custom bootloader code fits the default
bootloader memory area. Some other devices have default bootloader in ROM and in such cases, custom
bootloader has to be placed in the application firmware area. If placing custom bootloader in application
memory region, special considerations should be taken to ensure the bootloader itself cannot be re-
programmed or modified by the in-field firmware update process (for example, use MPU IP encapsulation
or IP protection (on respective devices that offer these features) to enable respective access restrictions).

Secure keys storage: Application designers should use available hardware security features on-chip to
enable secure keys storage area on-chip. This is especially needed if placing custom bootloader code in
application memory region or when custom bootloader is programmed into default bootloader memory
space which has no special secure keys storage support. Mechanisms include - locking debug access,
placing the keys in memory protected regions with IP encapsulation or IP protection (on respective
devices that offer these features), ensuring custom bootloader does not enable reading or modifying
cryptographic keys on the device.

Bootloader invoke options: Custom bootloader should define invoke options based on application
requirements and resources available. For example, using specific GPIO pins with predefined states to
provide bootloader invoke indication, or enabling bootloader invoke from the user application.

Bootloader exit considerations: The custom bootloader exit options should be decided based on the
application requirements. Options include:

(a) Exiting bootloader operation to execute user-application code.
(b) Upon exiting bootloader operation, the device waits until the next device reset event to execute
user-application code.
(c) Verify the integrity of the user application code in device memory as part of the bootloader exit
routine.

3 Custom MSP Bootloader Solutions for Enabling Increased Security in In-Field
Firmware Updates
The MSP MCUs are ultra-low-power microcontrollers that offer multiple product families to cater to
different application and market needs. The default bootloader and hardware security features offered in
these different product families are not the same and so the approach for enabling increased security in
in-field firmware updates is also different. Also, the custom bootloader solution recommended for each
product family may not accommodate all of the security measures discussed in this document.

Refer to product family specific custom bootloader solutions to evaluate what security measures are
accommodated as part of the security solution for in-field firmware updates. For example,
• Crypto-Bootloader (Crypto-BSL) for MSP430FR5xx/FR6xx Family User's Guide (SLAU657)

For an overview of security features offered in various MSP bootloader (or BSL) solutions, refer to the
"BSL Overview" table in MSP430 Programming With the Bootloader (BSL) (SLAU319).

11SLAA682–November 2015 Secure In-Field Firmware Updates for MSP MCUs
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SLAU657
http://www.ti.com/lit/pdf/SLAU319
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA682

References www.ti.com

4 References
1. IEEE, Performance Trade-offs of Encryption Algorithms For Wireless Sensor Networks
2. IJARCSSE, Comparative Analysis of Symmetric Key Encryption Algorithms
3. C Implementation of Cryptographic Algorithms (SLAA547)
4. Creating a Custom Flash-Based Bootstrap Loader (BSL) (SLAA450)
5. MSP430 Programming With the Bootloader (BSL) (SLAU319)
6. Crypto-Bootloader (Crypto-BSL) for MSP430FR5xx/FR6xx Family User's Guide (SLAU657)

12 Secure In-Field Firmware Updates for MSP MCUs SLAA682–November 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6916625
https://www.academia.edu/8488948/Comparison_of_symmetric_encryption_algorithms_PDF
http://www.ti.com/lit/pdf/SLAA547
http://www.ti.com/lit/pdf/SLAA450
http://www.ti.com/lit/pdf/SLAU319
http://www.ti.com/lit/pdf/SLAU657
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA682

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Secure In-Field Firmware Updates for MSP MCUs
	1 Introduction
	2 In-Field Firmware Updates
	2.1 Bootloader (BSL)
	2.2 Understanding Security Issues
	2.2.1 Security Assets
	2.2.2 Security Threats
	2.2.3 Attackers and Security Boundary

	2.3 Security Measures
	2.3.1 Security Attributes
	2.3.2 Cryptography for Secure In-field Firmware Updates
	2.3.2.1 Symmetric and Asymmetric Cryptography
	2.3.2.2 Data Confidentiality: Encryption and Decryption
	2.3.2.3 Data Integrity
	2.3.2.4 Message Authentication

	2.3.3 Key Storage and Management
	2.3.4 Additional Measures for In-Field Firmware Updates

	3 Custom MSP Bootloader Solutions for Enabling Increased Security in In-Field Firmware Updates
	4 References

	Important Notice

