Application Note Clocking Configuration of Device and Flexible Clocking For TAx5x1x Family

Sanjay Dixit, Saikiran Kurba

ABSTRACT

This document applies to the following part numbers:

TAC5212, TAC5112, TAC5211, TAC5111, TAA5212, TAD5212, TAD5112, TAC5412-Q1, TAC5411-Q1, TAC5312-Q1, TAC5311-Q1, TAC5212-Q1, TAC5211-Q1, TAC5112-Q1, TAC5111-Q1, TAA5412-Q1, TAD5212-Q1, TAD5112-Q1

These devices have a smart auto-configuration block to generate all necessary internal clocks required for the ADC and DAC Circuitry as well as the digital filter engine used for signal processing. This configuration is done by monitoring the frequency of the FSYNC and BCLK signal on the audio buses. The device supports the various data sample rates (of the FSYNC signal frequency) and the BCLK to FSYNC ratio to configure all clock dividers, including the PLL configuration, internally without host programming.

Table of Contents

3
3
5
5
6
7
8
9
1
2

Trademarks

All trademarks are the property of their respective owners.

1 Introduction

The Device Supports a Primary as well as Secondary ASI. There are several automatic modes of operation described where either the primary BCLK /FYSNC or Secondary BCLK/FSYNC can be used for determination of the incoming timing modes.

In addition, the MCLK / FSYNC can also be used to do the timing determination.

The device has the following interfaces that setup the clocking.

Interface	Setup
MCLK	Master Clock
FSYNC	Primary FSYNC/ Secondary SYNC
PASI BCLK	Primary BCLK
PASI FSYNC	Primary FSYNC
SASI BCLK	Secondary BCLK
SASI FSYNC	Secondary SYNC

The BCLK and FSYNC Pins as well as the GPIO/GPI/GPO pins can be configured to setup the Primary and Secondary ASI.

The timings must lie within the limits described in the following tables.

Pins	Timings	
Fs	3 KHz-768 KHz	
BCLK	256 KHz - 24.576 MHz	
MCLK	256 KHz - 49.152 MHz	

Table 1-1. Multiples of 48 Khz

Table 1-2. Multiples of 44.1 Khz

Pins	Timings
Fs	2.75 KHz-705.6 KHz
BCLK	235.2 KHz – 22.57 MHz
MCLK	235.1 KHz - 45.15 MHz

Note

The nomenclature of *Target* is used to indicate Slave Mode of Operation. The nomenclature of *Controller* is used to indicate Master Mode of operation.

2 Operating Modes for the Clocking

Internally, the modes of operation are categorized as the following:

Auto Mode of Operation: Based on the CLK_SRC_SEL configuration **B0_P0_R52[3:1]**, the mode can be further divided as follows:

- 1. Auto Primary BCLK Ratio Mode (3'd0) Primary ASI BCLK is selected to be the audio source clock by the user.
- 2. Auto Secondary BCLK Ratio Mode (3'd2) Secondary ASI BCLK is selected to be the audio source clock by the user.
- 3. Auto MCLK Ratio Mode (3'd1 or 3'd3) MCLK supplied at the input Pad to be user as audio source, Frequency of MCLK is Integer multiple of Fsync frequency.
- 4. Auto MCLK Fixed Mode (3'd4) MCLK supplied at the input Pad to be user as audio source, MCLK frequency has no integral relation with the Fsync frequency (PLL use is mandatory).
- 5. **Custom Mode of Operation** CUSTOM_CLK_CFG register to 1'b1 (B0_P0_R50[0]). User Configures all the Dividers manually in this mode.
- 6. Semi-Automatic mode: This is used to detect Non-audio timings automatically.

2.1 Automatic Modes of Operation

The Fsync and BCLK-to-Fsync-Ratio of the Primary ASI Interface are auto detected by the device.Based on the device configuration (number of channels, signal processing configuration, and so on.), all clock dividers/mux selects are auto inferred.

PLL Enablement is auto Inferred based upon the MIPS Required and highest Clock Frequency available in the system.

Table 2-1 shows the different sample rates that are recognized by the automatic configuration module. Incoming timings are split into several buckets of frequency. Please note that for automatic modes the incoming FSYNC must be within one of the frequency buckets

Table 2-1. Sample Rales Accepted in the Automatic Mode				
Fs Min (KHz)	Fs Typ (KHz)	Fs Max (KHz)		
698.54	768	775.68		
349.27	384	387.84		
174.64	192	193.92		
87.32	96	96.96		
43.66	48	48.48		
29.11	32	32.32		
21.83	24	24.24		
14.55	16	16.16		
10.91	12	12.12		
7.28	8	8.08		
4.37	4.8	4.85		
2.73	3	3.03		

Table 2-1. Sample Rates Accepted in the Automatic Mode

Table 2-2 shows the BCLK to FSYNC Ratios that are recognized by the automatic clocking mechanism.

			Та	able 2-2. E	BCLK to F	SYNC Rat	io			
			Expa	nded List of	BCLK to Fa	Ratio Supp	orted			
16	20	24	32	40	48	60	64	72	80	96
100	112	120	128	140	144	160	168	176	180	192
200	208	216	220	224	240	256	260	264	272	280
288	300	304	312	320	336	340	352	360	368	380
384	400	408	416	420	432	440	448	456	460	464
480	496	500	504	512	520	528	540	544	552	560
576	580	592	600	608	620	624	640	648	656	660
672	680	688	696	700	704	720	736	740	744	752
760	768	780	784	792	800	816	820	832	840	848
860	864	880	888	896	900	912	920	928	936	940
944	960	976	980	984	992	1000	1008	1020	1024	1032
1040	1056	1060	1080	1088	1100	1104	1120	1128	1140	1152
1160	1176	1180	1184	1200	1216	1220	1224	1240	1248	1260
1272	1280	1296	1312	1320	1344	1368	1376	1392	1408	1416
1440	1464	1472	1488	1504	1512	1536	1568	1600	1632	1664
1696	1728	1760	1792	1824	1856	1888	1920	1952	1984	2016
2048										

Note

In Automatic clocking the device recognizes integer ratios of BCLK/FSYNC. However, figure 2 shows some ratios of BCLK/FSYNC where optimum SNR and lowest power consumption is obtained. Therefore, these timings are preferred.

Refer to the Table 2-1 and Table 2-2 above. If the incoming frequency is 43.66 Mhz and the Incoming BCLK is 873.2 Khz then the automatic configuration shall recognize the BCLK/Fs ratio as 20 and shall setup the internal clocking accordingly.

Clocking Modes

3 Clocking Modes

3.1 Auto Primary BCLK Ratio

Primary ASI should be Target, Secondary ASI can be either Controller, Target or disabled Primary ASI BCLK provided by user is used as *Reference clock for the PLL* or *Audio Root Source clock*.

I2C Bits	
CLK_SRC_SEL	(B0_P0_R52[3:1]) – must be 3'd0
CUSTOM_CLK_CFG register	(B0_P0_R50[0]) – must be 1'b0
PASI_SAMP_RATE	(B0_P0_R50[7:2])
PASI_FS_BCLK_RATIO	{B0_P0_R56[5:0], B0_P0_R57
Mu	ist be configured as 0 for the device to auto detect
PASI_MST_CFG	B0_P0_R55[4]
	0 to operate Primary ASI as Target(Default)

Table 3-1. Register Settings to Setup Mode

To operate Secondary ASI as Controller Mode, we need to specify the Fs Rate as well as the BCLK to Fs ration

Table 3-2. Register Setting to Setup as Controller

Mode	Controller	
SASI_MST_CFG	B0_P0_R55[3]	
1 to operate Seconda	ary ASI as Controller, 0 to operate Secondary ASI as Target(Default)	
SASI_FS_BCLK_RATIO	B0_P0_R58[5:0], B0_P0_R59	
SASI_SAMP_RATE	B0_P0_R51[7:2]	
FS_MODE	B0_P0_R55[0]	
1 to generate Fsync frequency as a multiple of 44.1 KHz , 0 to generate Fsync frequency as a multiple of 48 KHz (Default)		

3.2 Auto Secondary BCLK Ratio

Secondary ASI needs to be Target, Primary ASI can be either Controller, Target, or disabled Secondary ASI BCLK provided by user is used as *Reference clock for the PLL* or *Audio Root Source clock*.

Configurations to enter this mode include

Mode	Configuration		
CLK_SRC_SEL	(B0_P0_R52[3:1]) – must be 3'd0		
CUSTOM_CLK_CFG register	(B0_P0_R50[0]) – must be 1'b0		
SASI_SAMP_RATE	(B0_P0_R51[7:2])		
SASI_FS_BCLK_RATIO	{B0_P0_R58[5:0], B0_P0_R59		
Mu	Must be configured as 0 for the device to auto detect		

Controller Mode: To operate primary ASI as Controller Mode, specify the Fs Rate as well as the BCLK to Fs ratio.

Mode	Configuration	
PASI_MST_CFG	B0_P0_R55[4]	
1 to operate Primary ASI as	Controller 0 to operate Primary ASI as Target (Default)	
PASI_FS_BCLK_RATIO	B0_P0_R56[5:0], B0_P0_R57	
PASI_SAMP_RATE	B0_P0_R50[7:2]	
FS_MODE	B0_P0_R55[0]	
Must be configured as 0 for the device to auto detect		

Table 3-4. Register Setting to Setup as Controller

3.3 Auto MCLK Ratio

MCLK supplied at the input Pad is to be user as audio source, Frequency of MCLK is Integer multiple of Fsync frequency. Both the Primary FSYNC can be used as timing reference. Auto detection is enabled in this mode.

Both Primary and Secondary ASI's can be configured either Controller or Target. At least one can be enabled. MCLK provided by the user is used as *Reference clock for the PLL* or *Audio Root Source clock*

Table 5-6. Register bettings to betup mode			
Mode	Configuration		
CLK_SRC_SEL	(B0_P0_R52[3:1]) – must be 3'd1 or 3d3		
	tiple of PASI Fsync, when CLK_SRC_SEL is configured as 3'd1. tiple of SASI Fsync, when CLK_SRC_SEL is configured as 3'd3.		
CUSTOM_CLK_CFG register	(_CFG (B0_P0_R50[0]) – must be 1'b0		
PASI/SASI_SAMP_RATE	(B0_P0_R50[7:2] B0_P0_R51[7:2])		
FS_MCLK_RATIO {B0_P0_R53[5:0], B0_P0_R54}			
Must be configured as 0 for the device to auto detect			

Table 3-5. Register Settings to Setup Mode

Controller Mode: To operate primary ASI as Controller Mode, we need to specify the Fs Rate as well as the BCLK to Fs ration

Mode Configuration			
PASI_MST_CFG	B0_P0_R55[4]		
1 to operate Primary ASI as Controller, 0 to operate Primary ASI as Target (Default)			
SASI_MST_CFG B0_P0_R55[3]			
1 to operate Secondary ASI as Controller , 0 to operate Secondary ASI as Target(Default)			
FS_MCLK_RATIO	B0_P0_R53[5:0], B0_P0_R54		
PASI_SAMP_RATE	B0_P0_R50[7:2]		
SASI_SAMP_RATE	B0_P0_R51[7:2]		
FS_MODE B0_P0_R55[0]			
1 to generate Fsync frequency as a multiple of 44.1 KHz , 0 to generate Fsync frequency as a multiple of 48 KHz (Default)			

Table 3-6. Register Setting to Setup as Controller

3.4 Auto MCLK Fixed

MCLK supplied at the input Pad to be user as audio source, MCLK frequency has no integral relation with the Fsync frequency (PLL use is mandatory) Both Primary and Secondary ASI's can be only configured as Controller.

Only certain combinations of MCLK Frequencies as given in MCLK_FREQ_SEL register are allowed. The following frequencies for MCLK are allowed.

Table 0-1. Anowed moent requencies				
MCLK_FREQ_SEL	Frequency to be provided (MHz)			
3'd0	12			
3'd1	12.288			
3'd2	13			
3'd3	16			
3'd4	19.2			
3'd5	19.68			
3'd6	24			
3'd7	24.576			

Table 3-7. Allowed MCLK Frequencies

Table 3-8. Register Settings to Setup Mode

Mode Configuration	
CLK_SRC_SEL	(B0_P0_R52[3:1]) – needs to be 3'd4
CUSTOM_CLK_CFG register	(B0_P0_R50[0]) – needs to be 1'b0
MCLK_FREQ_SEL register	(B0_P0_R55[7:5])
FS_MODE register	(B0_P0_R55[0])

Table 3-9. Primary as Controller

Mode Configuration		Configuration
	PASI_MST_CFG	B0_P0_R50[7:2]
	PASI_FS_BCLK_RATIO	B0_P0_R56[5:0], B0_P0_R57

Table 3-10. Secondary as Controller

Mode	Configuration
SASI_SAMP_RATE	B0_P0_R51[7:2]
PASI_FS_BCLK_RATIO	{B0_P0_R58[5:0], B0_P0_R59}

The following menus from Pure Path Console 3 Show this mode.

The MCLK input is setup for a input frequency of 13 Mhz on GPIO1 pin.

The Primary ASI is a Controller. This creates a FSYNC of 48 Khz and BCLK of 6.144 Mhz.

3.5 Custom Mode and Semi Automatic Mode of Operation

CUSTOM_CLK_CFG register to 1'b1 (B0_P0_R50[0]). User Configures all the Dividers manually in this mode

(PLL Description not given)

Semi-Automatic Mode

At times there is a need to work with Non-Standard Clock Rates. Please refer to Table 3-11 and Table 3-12. to enable detection of a nonstandard clock rate, the frequency range has to be specified. This specification can be done by setting the following registers.

- PASI_SAMP_RATE(5..0) in Register 0x32
- SASI_SAMP_RATE(5..0) in Register 0x33

After defining the settings, the automatic configuration functions if the incoming FSYNC frequency is matching with the sample rate setup in 0x32 and 0x33.

S.No		Fs Bin (Hz)			Oscillator Count Range	
	Min	Typical	Max	Min	Max	
1	670320	768000	806400	12	21	
2	536256	614400	645120	15	26	
3	446880	512000	537600	18	30	
4	383040	438857.14	460800	22	35	
5	335160	384000	403200	25	40	
6	297920	341333.33	358400	28	45	
7	268128	307200	322560	32	50	
8	223440	256000	268800	38	59	
9	191520	219428.57	230400	45	69	
10	167580	192000	201600	52	78	
11	148960	170666.67	179200	58	88	
12	134064	153600	161280	65	98	
13	111720	128000	134400	78	117	
14	95760	109714.29	115200	92	136	
15	83790	96000	100800	105	155	
16	74480	85333.33	89600	118	175	
17	67032	76800	80640	132	194	
18	55860	64000	67200	158	232	
19	47880	54857.14	57600	185	271	
20	41895	48000	50400	211	309	

Table 3-11. Frequency Ranges

S.No		Fs Bin (Hz)	Fs Bin (Hz)		Oscillator Count Range	
	Min	Typical	Max	Min	Max	
21	37240	42666.67	44800	238	348	
22	33516	38400	40320	265	386	
23	27930	32000	33600	318	463	
24	23940	27428.57	28800	371	540	
25	20947.50	24000	25200	424	617	
26	18620	21333.33	22400	478	694	
27	16758	19200	20160	531	771	
28	13965	16000	16800	637	925	
29	11970	13714.29	14400	744	1079	
30	10473.75	12000	12600	850	1233	
31	9310	10666.67	11200	957	1387	
32	8379	9600	10080	1063	1541	
33	6982.50	8000	8400	1276	1849	
34	5985	6857.14	7200	1489	2157	
35	5236.88	6000	6300	1702	2465	
36	4655	5333.33	5600	1915	2773	
37	4189.50	4800	5040	2127	3081	
38	3491.25	4000	4200	2553	3696	
39	2992.50	3428.57	3600	2979	4312	
40	2618.44	3000	3150	3405	4928	

Clocking Modes

3.6 Additional Clocks

3.6.1 PDM Clocks

The PDM Clock frequency for the Digital Mic is programmable The Frequency can be selected using PDM_CLK_CFG Register(B0_P0_R53[7:6])

Frequencies programmable are 768 KHz, 1.536 MHz, 3.072 MHz, 6.144 MHz.

3.6.2 Boost Clock

By default, Boost clock is generated to be 6.144 MHz.

BST_CLK_FREQ_SEL(B0_P3_R72[6]) - 6 Mhz or 3 MHz (further division of 2).

3.6.3 SAR Clock

By default, SAR clock is generated to be 6.144 MHz

SAR_CLK_FREQ_SEL(B0_P3_R73[7:6])

Frequencies Programmable : 6 Mhz, 3 MHz (further division of 2), 1.5 MHz (further division of 4)

3.6.4 CLKOUT

Internal clocks can be routed externally to a GPIO/GPO. The following registers are used to select the clock source as well as the divider ratio.

The possible input sources that can be routed to CLKOUT include:

• DSP_CLK,SASI_BCLK,PASI_BCLK,OSC_CLK,MCLK,CLK_SYS.

Note that OSC_CLK is 12.288Mhz.

Table 3-13. Register Settings for CLKOUT

Mode	Configuration
CLKOUT_CLK_SEL	(B0_P3_R70[2:0]),
CLKOUT_DIV_EN	(B0_P3_R71[7])
CLKOUT_DIV	(B0_P3_R71[6:0])

4 Summary

These devices have a smart auto-configuration block to generate all necessary internal clocks required for the ADC and DAC Circuitry as well as the digital filter engine used for signal processing. This configuration is done by monitoring the frequency of the FSYNC and BCLK signal on the audio buses. The device supports the various data sample rates (of the FSYNC signal frequency) and the BCLK to FSYNC ratio to configure all clock dividers, including the PLL configuration, internally without host programming.

A wide range of timings are supported with the clocking feature.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated