EVM User's Guide: DAC81404EVM DAC81404 Evaluation Module

Description

The 16-bit, 4-channel DAC81404 and 12-bit, 4channel DAC61404 are a pin-compatible family of quad-channel, buffered, high-voltage-output digital-toanalog converters (DACs) with an integrated 2.5-V internal reference. These devices are specified monotonic and provide exceptional linearity of less than 1 LSB.

Get Started

- Order the EVM from the product folder (DAC81404EVM)
- 2. Configure EVM jumpers
- 3. Install DAC814xxEVM GUI from ti.com (DAC81404EVM tool folder)
- 4. Connect USB and external power supplies
- 5. Launch DAC814xxEVM GUI

Features

- Configurable circuit to evaluate DAC
- Onboard VDD and IOVDD (1.8-V or 3.3-V) support
- Trigger output is available for synchronous measurement
- FT4232 used to easily write to DAC using DAC814xxEVM GUI
- External SPI connections available

Applications

- Semiconductor test
- Lab and field instrumentation
- Analog output module
- Data acquisition
- LCD test
- Servo drive control module

1

1 Evaluation Module Overview

1.1 Introduction

The DACx1404 devices offer bipolar output voltages of ± 20 -V, ± 10 -V, ± 5 -V, and full-scale unipolar output voltages of 40-V, 10-V and 5-V. The DAC output range is programmable.

This user's guide describes the characteristics, operation, and recommended use cases of the DAC81404EVM. This document provides examples and instructions on how to use the DAC81404EVM board and included software. Throughout this document, the terms evaluation board, evaluation module, and EVM are synonymous with the DAC81404EVM. This document also includes a schematic, reference printed circuit board (PCB) layouts, and a complete bill of materials (BOM).

1.2 Kit Contents

Table 1-1 details the contents of the EVM kit. Contact the TI Product Information Center at (972) 644-5580 if any component is missing. Download the latest versions of the related software on the TI website, www.ti.com.

	Contenta
Item	Quantity
DAC81404EVM	1
USB-A to Micro-USB Cable	1

Table 1-1	DAC81404EVM	Kit Contents
		KIL COMEINS

1.3 Specification

Figure 1-1 shows the block diagram of the DAC81404EVM board. By default, the DAC81404EVM connects to a local machine USB port through a USB-A to micro-USB cable.

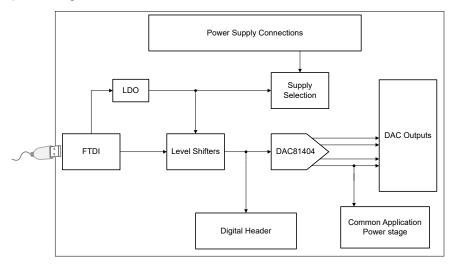


Figure 1-1. DAC81404EVM Functional Block Diagram

The USB provides the 5-V default VDD supply to the DAC81404. Voltage regulators generate 3.3-V and 1.8-V from USB 5 V supply. These 3.3 V and 1.8 V supplies are used to power the FTDI controller, level shifter, and IOVDD of DAC81404. IOVDD can be 3.3-V or 1.8-V depending on the jumper J5 setting. DVDD and IOVDD device supply inputs for the DAC81404 can be externally supplied through banana jacks. The AVDD and AVSS need external supply connections as well.

1.4 Device Information

The documents in Table 1-2 provide information regarding Texas Instruments integrated circuits used in the assembly of the DAC81404EVM. This user's guide is available from the TI web site under literature number SLAU912. Any letter appended to the literature number corresponds to the document revision that is current at the time of the writing of this document. Newer revisions are available from the TI web site at www.ti.com, or call the Texas Instruments Literature Response Center at (800) 477-8924 or the Product Information Center at (972) 644-5580. When ordering, identify the document by both title and literature number.

Table 1-2	. Related	Device	Documentation
-----------	-----------	--------	----------------------

Document	Literature Number	
DAC81404 product data sheet	SLAU912	

2 Hardware

2.1 Power Requirements

The USB connection at J15 provides 5-V to the EVM. This connection is necessary if using the DAC814xxEVM GUI, as the communication is done through the USB port and the FT4232 is powered by one of the LDOs on the board. On board supply for IOVDD is available (LDO generated 1.8-V or 3.3-V through J21). DVDD and IOVDD power supply of DAC81404 can be provided externally through J7 and J10 respectively. AVDD and AVSS power supply of DAC81404 need to connected externally through J8 and J9 respectively. AVSS can be connected to GND through J22.

- AVDD : 0 to 41.5 V (default + 15 V)
- AVSS : 0 to -21.5 V (default 15 V)
- DVDD : 4.5 V to 5.5 V (default + 5 V)
- IOVDD : 1.7 V to 5.5 V (default + 3.3 V)
- (AVDD AVSS) must not be greater than 43 V

Table 3-1 summarizes the external power connections.

|--|

Terminal	Name	Function
J8	AVDD	Positive supply voltage for the DAC81404 output buffers.
J9	AVSS	Negative supply voltage for DAC81404 output buffers.
J7	DVDD	Digital and analog supply voltage for the DAC81404.
J10	IOVDD	IO supply voltage for setting the digital I/O operating voltage for the DAC81404.
J3	GND	Ground connection.

2.2 Jumper Information

The jumpers must be connected properly to operate the DAC81404EVM for the intended operation. Table 3-2 provides the details of the configurable jumper settings on the EVM.

Table 2-2. DAC81404EVM Jumper Summary	Table 2-2.	DAC81404EVM	Jumper Summary
---------------------------------------	------------	-------------	----------------

Header	Name	Function
J15	VDD = USB5V	Short 1-2 – VDD = 5 V supplied through USB power (default) Open – VDD supplied through J7
J22	AVSS = GND	Short 1-2 – AVSS is grounded (default) Open – AVSS is supplied by J9
J21	IOVDD SEL	Short 1-2 – IOVDD = 3.3V supplied through LDO output (default) Short 2-3 – IOVDD = 1.8V supplied through LDO output Open – IOVDD is supplied through J10
J1, J16, J19, J24	DAC_ANALOG_X	 Short 1-2 – Sense pin for the positive voltage output load is shorted to the DAC output (default) Short 3-4 – Sense pin for the negative voltage output load is shorted to the ground (default)
J5	LEVEL SHIFT ENABLE	Short 1-2 - Enable voltage level shifters (default) Open -Disable voltage level shifters

2.3 Setup

After the power and jumper configurations are set up per Figure 3-1 or Figure 3-2, and the DAC814xxEVM GUI is fully installed, connect the USB cable from the DAC81404EVM USB port to the local machine.

Once all the connection is done, power up the DAC81404EVM hardware as described in the power requirement section 3-1.

For basic DAC81404 device check, use one of the following sequences in the DAC814xxEVM GUI:

From DAC81404 Register page

- Write 0x0A04 to the SPI CONFIG (0x03) register to power up the device
- Write 0x0000 to the GEN CONFIG (0x04) register to power up the internal reference
- Write 0x0000 to the DAC PWDWN (0x09) register to power up the DAC outputs
- Write 0x7FFF to the DACA (0x10) register to configure the DAC OUT to 2.5-V on DAC OUTA (TP5)

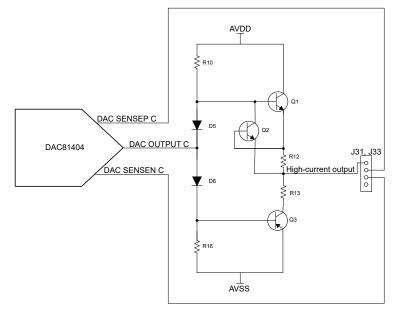
From DAC81404 High Level page

- Device Power Down: select Active mode to power up the device
- Reference Power-Down: select Activate internal ref to power up the internal reference
- DACA Channel Power-Down: select Activate channel to power up the DAC output
- DACA DATA: write 0x7FFF to get 2.5-V on DAC OUT (TP5)

The default voltage range for the DAC81404 is 0 V to 5 V. Configure the voltage range by modifying the "DACx Voltage Range" control on DAC814xxEVM GUI High Level page, or by writing to the "DACx_RANGE" register in the Low Level page as shown in section 2-2.

	2.4	Test	Points	
--	-----	------	--------	--

Test Point	Net	Description
TP1	VDD	DAC81404 VDD
TP2	AVDD	DAC81404 AVDD
ТР3	AVSS	DAC81404 AVSS
TP4	IOVDD	DAC81404 IOVDD
TP5	DAC_OUTA	DAC81404 output A
TP8	DAC_OUTB	DAC81404 output B
TP10	DAC_OUTC	DAC81404 output C
TP13	DAC_OUTC	DAC81404 output D
TP19, TP20, TP21,	GND	Ground connections
TP22		
TP17	HIGH CURRENT OUT	Output of a high current stage
TP23	3.3V	3.3-V LDO output
TP24	1.8V	1.8-V LDO output
TP6	TRIG	Trigger for FTDI
TP26	DAC_VREF	Reference voltage signal for DAC81404


Table 2-3. DAC81404EVM Test Points

2.5 High-Current Optional Stage

This output stage is designed to output high current (100-mA) for applications such as motor control. The design uses a class AB amplifier output with a diode-and-resistor-based constant current biasing.

Figure 2-1 shows the schematic of the stage.

Figure 2-1. DAC81404EVM High-current Output Stage Diagram

The power is disconnected to the high-current output stage by default. Refer to Table 2-4 for power connection information.

Header	Name	Function
J29	AVDD ON	Short 1-2 – Connect AVDD to the high-current output stage. Open – AVDD is disconnected from the high-current output stage (default).
J32	DAC VOUT ON	 Short 1-2 – Connect output of channel C of the DAC to the high-current output stage. Short 2-3 – Connect the high-current output stage input to the ground. Open – high-current output stage input is floating (default).
J35	AVSS ON	Short 1-2 – Connect AVSS to the system. Open – AVSS is disconnected from the high-current output stage (default).
J27	LOAD	Short 1-2 – Connect high current output of the system to the on-board resistive load. Open – The high current output stage is disconnected from the on-board resistive load (default).

Table 2-4.	DAC81404EVM	High-Current	Stage	Headers
		ingii eanoit	olugo	11044010

3 Software

3.1 GUI Installation

This section provides the procedure for EVM software installation.

The EVM software is compatible with the Windows[®] 10 operating system. Before installing the software, make sure that the DAC80404EVM is not connected to the local machine.

Download the latest version of the EVM graphical user interface (GUI) installer from the Order and start *development* subsection of the DAC81404EVM tool folder on TI.com. Run the GUI installer to install the DAC81404EVM GUI software on your local machine.

When the DAC804xxEVM GUI is launched, an installation dialog window opens and prompts the user to select an installation directory. If left unchanged, then Figure 3-1 shows that the software location defaults to *C:\Program Files (x86)\Texas Instruments\DAC814xxEVM*.

U DAC814xxEVM	-		×
Destination Directory Select the installation directories.			
All software will be installed in the following locations. To install software into a different location, click the Browse button and select another directory.			
Directory for DAC814xxEVM	-		
C:\Program Files (x86)\Texas Instruments\DAC814xxEVM\	Brow	se	
Directory for National Instruments products C:\Program Files (x86)\National Instruments\	Brow	ise	
<< Back Next	>>	Canc	el

Figure 3-1. Software Installation Path

7

The EVM software also installs the Future Technology Devices International Limited (FTDI) USB drivers using a separate executable file. Figure 3-2 shows the FTDI USB drivers installation window that is automatically launched after the DAC814xxEVM software installation is complete.

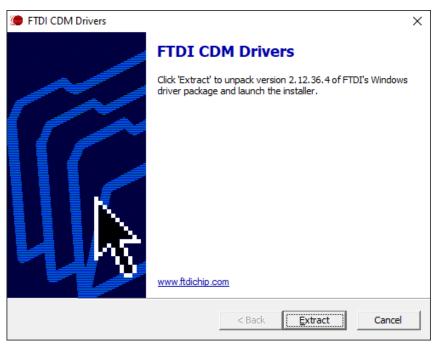


Figure 3-2. FTDI USB Drivers

3.2 Software Development

To launch the software, locate the *DAC814xxEVM* icon in the *Start Menu*, and select the *DAC814xxEVM* icon as shown in Figure 3-3.

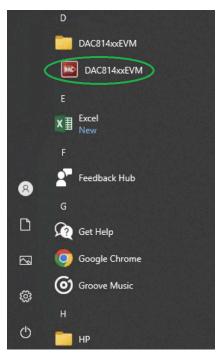


Figure 3-3. DAC814xxEVM Software Installation in Start Menu

Upon launching the software, a drop-down menu pops up. Select an appropriate device. For the scope of this EVM, select DAC81404 option.

Figure 3-4 shows that if the onboard FTDI controller is connected correctly, then the status bar at the bottom of the screen displays *CONNECTED*. If the controller is not properly connected or not connected at all, then the status displays *DEMO*. If the graphical user interface (GUI) does not display the *CONNECTED* status while the EVM is connected, then unplug and reconnect the EVM and relaunch the GUI software.

^	^
~	~
DEMO MODE 🛛 🐺 TEXAS INSTRUMENTS	😑 connected 🛛 🐺 Texas Instruments

Figure 3-4. DAC814xxEVM GUI Connection Detection

DAC81404 High Level page provides quick access to basic DAC81404 functionality as shown in Figure 3-5.

el Configuration		
	Device Centifyuration Down Pree Dram Monte Pree Dram Strip Link John main Y Strip Link Strip Link	
	Charact Configuration DeClaract Free One Person Person DeClaract DeClaract Free One Person Person DeClaract DeClar	
L		

Figure 3-5. DAC81404EVM High Level Page

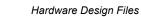
The *DAC81404 Registers* page allows the user to access low-level communication directly with the DAC81404 registers as shown in Figure 3-6. Selecting a register on the Register Map list shows a description of the values in that register, as well as information on the register address, default value, size, and current value. Values are read from and written to the registers by writing to the Value or bit field of the GUI.

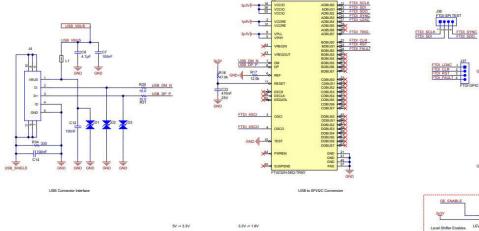
The *Register Map* page also provides the FTDI GPIO controls for DAC81404EVM. For example, OPE_EN, TRIG and FAULT pins, under the FTDI section.

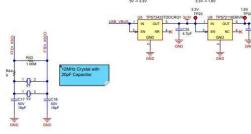
	· With Selected With Wells	ni immeres	Read Add		Update In	uia Imma	date		
Name Name Name Name Name V		and the second	- protocolaria		oposit of				
UPC UPC <thupc< th=""> <thupc< th=""> <thupc< th=""></thupc<></thupc<></thupc<>	Register Name	Address Deta	it Mode S	Ue Valu	e 15 14 13	12 11 10	0 8	Field Value	
Process Process <t< td=""><td>NOP</td><td>2400 0400</td><td>0 W</td><td>6 0.00</td><td>0 0 0 0</td><td>0 0 0</td><td>0 0</td><td></td><td></td></t<>	NOP	2400 0400	0 W	6 0.00	0 0 0 0	0 0 0	0 0		
PACOMP PACOMP<	DEVICED	0x01 0x043	0 8	6 De04					
NUMBER NUMBER<		9x02 0x000	0 R	6 0:00					
Image: Construction Mail Mail </td <td></td> <td>0403 0404</td> <td>4 KW</td> <td>6 0x04</td> <td></td> <td></td> <td></td> <td></td> <td></td>		0403 0404	4 KW	6 0x04					
Image: Mark Source Mark Source <td>BOD CONFIG</td> <td>0.05 0.00</td> <td>C DW</td> <td>0 0.00</td> <td>6 0 0 0</td> <td></td> <td></td> <td></td> <td></td>	BOD CONFIG	0.05 0.00	C DW	0 0.00	6 0 0 0				
Image: Constraint of the state of	SYNC CONFIG	9405 04000	0 RW	6 0.00	0 0 0				
Concernance Main Bit Main Bit Main Bit Main			0 R.W	6 0x30	0 0 0 0				
Income Add Max Max<	DAC_PRIDEN	0.000 0.000	F RW	IS DIPPI	E 1 1 1				
Bit Cort	DAC_RANGE	0x0A 0x000	0 W	6 0:00	0 0 0 0	0 0 0	0 0		
OCA OT W W W W V									
OCC OT	DACA	0x10 0x000	9 W	6 0x28		0 1 0	0 0		
Process Process <t< td=""><td>DACB</td><td>0x11 0x000</td><td>0 W 1</td><td>6 Dx20</td><td></td><td>0 0 0</td><td>0 0</td><td></td><td></td></t<>	DACB	0x11 0x000	0 W 1	6 Dx20		0 0 0	0 0		
Image: Property and P		0x12 0x000	0 W	6 0:00					
F15A 60 6 7 00 F26D 00 6 8 0 F26D 00 6 8 0 F26D 00 6 8 0 F26D 00 8 0 0 F26D 00 8 00 0 F26D 00 8 00 0 F26D 00 8 00 00		0x13 0x000	0 W	6 C+20	0 0 0 0	0 0 0	0 0		
P150 N0 N 1 0 P100 D0 D4 1 0 P100 D0 D4 0 0 P100 D0 D4 0 0 P100 D0 D4 0 0 P100 D0 D4 D4 D0 P100 D0 D4 D4 D4 P100 D0 D4 D4 D4 P100 D0 D4 D4 D4 P100 D4 D4 D4 D4	67 9/14232	200 00							
F / DPG B00 B B B B F / DPG B00 B0 B0 B	FT 901	9:00 0:0		1 00					
T C4614 D0 D0 RN T D0 T C600 D0 D0 N T D0 T C600 D0 D0 N T D0 T C600 D0 N T D0 D0 T C600 N T D0 D0 D0 T C600 N T D0 D0 D0 T C600 N T D0 D0 D0 D0 T C600 N T D0 D0 D0 D0 T C600 N T D0 D0 D0 D0 T C600 T D0 D0 D0 D0 D0 D0 D0 T C600 T D0	- FT_900	0.00 0.0							
- F_2CR055 B00 00 NN 1 00 - F_2CR055 B00 B00 NN 1 00 - F_2CR055 B00 B00 NN 1 00 - F_2CR055 B00 B00 NN 1 60 - F_2CR055 B00 B00 NN 1 60 - F_2CR055 B01 B00 NN 1 60	FT_SYNC	0x00 0x0	R	1 06					
- F1_2GU38 800 06 RW 1 00 - F1_506_100 600 RW 1 00 - F1_506_10 801 01 RW 1 0A/10 - F1_506_510 201 00 RW 1 0A/10 	FT_ADBUS4	0x00 0x0	RW	1 0.0					
F12R0 000 00 RW 1 000 -f12R4_D1 001 001 RW 1 04/0 F12R4_D1 00 RW 1 04/0 -f12R4_D1 00 RW 1 04/0	ET ADEUSS	200 00							
FT_BORIST 0x01 0x0 RW 1 0x470	FT_TRIG	0.00 0.0	RW	1 04					
	FT_OPA_EN	0x01 Or1	RW	1 2143	0				
	FT_BOBUS1	0x01 0x0	RW	1 0443	0				
	PT_PAULT	0x01 Ox1		1 0.40					
	•								
Repair Description	Register Description								

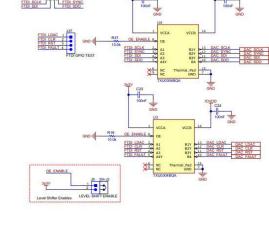
Figure 3-6. DAC81404EVM Registers Page

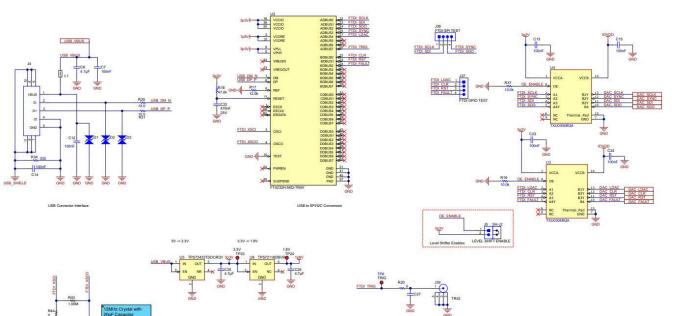
To store the values of the register map locally, select *Save Configuration* under the *File* menu option. The stored configuration files can be recalled and loaded by selecting *Open Configuration* as shown in Figure 3-7.


DAC814xxEVM				DAC814	xEVM						
File Script Debug Help)			File Script	Debug	Help					
Open Configuration	1			Open Con	figuratior	n)	1				
Save Configuration	L			Save Conf	iguration		L				
Preferences	on 🄺	Write Selected	Write Modified	Preference	25	•	on	*	Write Selected	Write Modifie	d
Exit	el	Register Map		Exit			el		Register Map		
		Register	Name		···· ·				Register	Name	A
		FUNCTION	JAL						FUNCTION	IAL	
		NOP		I					NOP		


Figure 3-7. DAC81404EVM Save/Open Configuration




4 Hardware Design Files


4.1 Schematics

0------

4.2 PCB Layouts

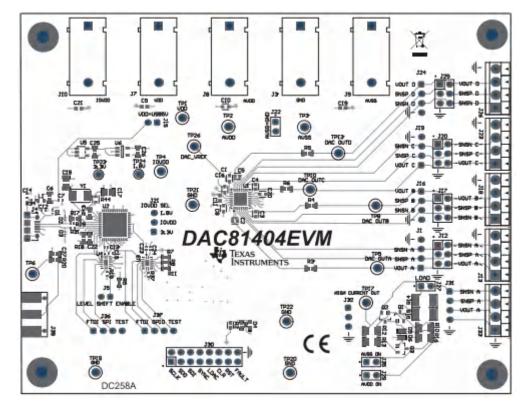


Figure 4-1. DAC81404EVM (Top View)

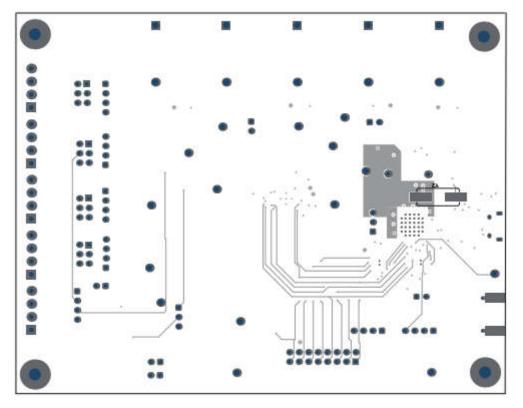


Figure 4-2. DAC81404EVM (Bottom View)

4.3 Bill of Materials (BOM)

Table 4-1. Bill of Materials

Designator	Qty	Value	Description	Package Reference	Part Number	Manufacturer
C1	1	100 nF	0.1 μF ±10% 25 V Ceramic Capacitor X7R 0603 (1608 Metric)	0603	GMC10X7R104K2 5NT	CAL-CHIP ELECTRONICS
C2, C3, C4, C5	4	470 pF	Cap Ceramic 470 pF 50 V C0G 1% SMD 0603 125°C Paper T/R	0603	C0603X471F5GA CTU	KEMET
C6	1	4.7uF	CAP, CERM, 4.7 uF, 10 V, +/- 20%, X7R, 0603	0603	GRM188Z71A475 ME15D	MuRata
C7, C12, C13, C14, C15, C23, C24	7	0.1uF	CAP, CERM, 0.1 μF, 25 V,+/- 10%, X7R, 0402	0402		Yageo
C8, C10, C16, C20	4	1 µF	1 μF ±10% 50 V Ceramic Capacitor X7R 0603 (1608 Metric)	0603	GMC10X7R105K5 0NT	Cal-Chip Electronics
C9, C11, C19, C21	4		CAP CER 0.1UF 50 V X7R 0603	0603	CL10B104KB8NN NC	Samsung
C17, C18	2	18 pF	CAP, CERM, 18 pF, 50 V, +/- 5%, C0G/NP0, 0805	0805	CC0805JRNP09B N180	Yageo America
C22	1	0.47uF	CAP, CERM, 0.47 uF, 25 V, +/- 10%, X7R, 0603	0603	GRM188R71E474 KA12D	MuRata
C25, C26	2	4.7uF	CAP, CERM, 4.7 uF, 16 V,+/- 10%, X7R, 0603	0603	GRM188Z71C475 KE21D	MuRata
D1, D2, D3	3		1-Channel ESD Protection Diode for USB Type-C and Thunderbolt 3, DPY0002A (X1SON-2)	DPY0002A	TPD1E01B04DPY R	Texas Instruments
D4	1	Super Red	LED, Super Red, SMD	LED, 1.6x.6x.8mm	SML-LX0603SRW- TR	Lumex
D5, D6	2	75 V	Diode, Switching, 75 V, 0.3 A, SOD-523	SOD-523	1N4148X-TP	Micro Commercial Components
H1, H2, H3, H4	4		Machine Screw, Round, #4-40 x 1/4, Nylon, Philips panhead	Screw	NY PMS 440 0025 PH	B&F Fastener Supply
H5, H6, H7, H8	4		Standoff, Hex, 0.5"L #4-40 Nylon	Standoff	1902C	Keystone
J1, J16, J19, J24, J31	5		Header, 100mil, 4x1, Gold, TH	4x1 Header	TSW-104-07-G-S	Samtec
J3	1		Standard Banana Jack, insulated, 10 A, black	571-0100	571-0100	DEM Manufacturing
J4	1		Receptacle, USB 2.0, Micro-USB Type B, R/A, SMT	USB-micro B USB 2.0, 0.65mm, 5 Pos, R/A, SMT	10118194-0001LF	FCI
J5	1		Header, 2.54mm, 2x1, Tin, TH	Header, 2.54mm, 2x1, TH	TSW-102-23-T-S	Samtec
J7, J8, J9, J10	4		Standard Banana Jack, insulated, 10 A, red	571-0500	571-0500	DEM Manufacturing
J12, J17, J20, J25	4		Header, 100mil, 3x2, Gold, TH	3x2 Header	TSW-103-07-G-D	Samtec
J13, J18, J23, J26, J33	5		Terminal Block, 3.5mm Pitch, 4x1, TH	14x8.2x6.5mm	ED555/4DS	On-Shore Technology

Table 4-1. Bill of Materials (continued)									
Designator	Qty	Value	Description	Package Reference	Part Number	Manufacturer			
J15	1		Header, 2.54 mm, 2x1, Gold, TH	Header, 2.54mm, 2x1, TH	61300211121	Wurth Elektronik			
J21	1		Header, 100mil, 3x1, Gold, TH	3x1 Header	TSW-103-07-G-S	Samtec			
J22, J27, J29, J35	4		Header, 100mil, 2x1, Gold, TH	2x1 Header	TSW-102-07-G-S	Samtec			
J30	1		Header, 100mil, 8x2, Gold, TH	8x2 Header	TSW-108-07-G-D	Samtec			
J32	1		Header, 2.54 mm, 3x1, Gold, TH	Header, 2.54mm, 3x1, TH	61300311121	Wurth Elektronik			
L1	1	600 ohm	Ferrite Bead, 600 ohm @ 100 MHz, 1 A, 0603	0603	782633601	Wurth Elektronik			
Q1, Q2	2	80 V	Transistor, NPN, 80 V, 0.5 A, SOT-23	SOT-23	MMBTA06-7-F	Diodes Inc.			
Q3	1	80 V	Transistor, PNP, 80 V, 0.5 A, SOT-23	SOT-23	MMBTA56LT1G	ON Semiconductor			
R1, R5, R7, R8, R11	5	10.0k	RES, 10.0 k, 1%, 0.1 W, 0402	0402	ERJ-2RKF1002X	Panasonic			
R2	1	200	200 Ohms ±0.1% 0.5W, 1/2W Chip Resistor 0603 (1608 Metric) Thin Film	0603	RA73F1J200RBT D	TE Connectivity			
R3, R4, R6, R9	4	0	RES, 0, 5%, 0.1 W, 0603	0603	RC0603JR-070RL	Yageo America			
R10, R16	2	4.7k	RES, 4.7 k, 5%, 0.25 W, AEC- Q200 Grade 0, 1206	1206	CRCW12064K70J NEA	Vishay-Dale			
R12, R13	2	4.99	RES, 4.99, 1%, 0.25 W, 1206	1206	RC1206FR-074R9 9L	Yageo America			
R14, R15	2	49.9	RES, 49.9, 1%, 0.75 W, AEC- Q200 Grade 0, 2010	2010	CRCW201049R9F KEF	Vishay-Dale			
R17	1	12.0k	RES, 12.0 k, 1%, 0.1 W, 0603	0603	RC0603FR-0712K L	Yageo			
R18	1	47.0k	RES, 47.0 k, 1%, 0.1 W, 0603	0603	RC0603FR-0747K L	Yageo			
R19, R37	2	10.0k	RES, 10.0 k, 1%, 0.063 W, AEC- Q200 Grade 0, 0402	0402	RMCF0402FT10K 0	Stackpole Electronics Inc			
R29, R31	2	10	RES, 10.0, 1%, 0.063 W, 0402	0402	RK73H1ETTP10R 0F	KOA Speer			
R34	1	330	RES, 330, 1%, 0.1 W, AEC-Q200 Grade 0, 0402	0402	ERJ-2RKF3300X	Panasonic			
R43	1	1.00Meg	RES, 1.00 M, 1%, 0.1 W, AEC- Q200 Grade 0, 0603	0603	CRCW06031M00F KEA	Vishay-Dale			
R44	1		0 Ohms Jumper 0.1W, 1/10W Chip Resistor 0603 (1608 Metric) Automotive AEC-Q200 Thick Film	0603	ERJ-3GEY0R00V	Panasonic			
SH-J1, SH-J4, SH- J5, SH-J6, SH-J8, SH-J9, SH-J10, SH-J11	8		Shunt, 2.54mm, Gold, Black	Shunt, 2.54mm, Black	60900213421	Wurth Elektronik			

Designator	Qty	Value	Table 4-1. Bill of Materials Description	Package Reference	Part Number	Manufacturer
SH-J2, SH-J12, SH-J30, SH-J31	4	1x2	Shunt, 100mil, Gold plated, Black	Shunt	SNT-100-BK-G	Samtec
TP1, TP2, TP3, TP4, TP17, TP26	6		Test Point, Multipurpose, Red, TH	Red Multipurpose Testpoint	5010	Keystone Electronics
TP5, TP8, TP10, TP13	4		Test Point, Multipurpose, White, TH	Multipurpose 5012		Keystone Electronics
TP19, TP20, TP21, TP22	4		Test Point, Multipurpose, Black, TH	Black Multipurpose Testpoint	5011	Keystone Electronics
TP23, TP24	2		Test Point, Miniature, Red, TH	Red Miniature Testpoint	5000	Keystone
U1	1		Quad, 16-Bit, High-Voltage- Output DACs With Internal Reference	VQFN32	DAC81404RHB	Texas Instruments
U2	1		Future Technology Devices International Ltd FT4232H Quad High Speed USB to Multipurpose UART/MPSSE IC, VQFN-56	VQFN-56	FT4232H-56Q- TRAY	FTDI
U3, U4	2		4-Bit Fixed Direction Voltage- Level Translator with Schmitt- Trigger Inputs, and Tri-State Outputs, WQFN14	WQFN14	TXU0304BQA	Texas Instruments
U5	1		Single Output High PSRR LDO, 250 mA, Fixed 3.3 V Output, 2.7 to 6.5 V Input, with Low IQ, 5-pin SOT (DDC), -40 to 105 degC, Green (RoHS & no Sb/Br)	DDC0005A	TPS73433TDDCR Q1	Texas Instruments
U6	1		Single Output Low Input Voltage Requirement LDO, 150 mA, Fixed 1.8 V Output, 1.8 to 5.5 V Input, with Low IQ, 5-pin SOT-23 (DBV), -40 to 125 degC, Green (RoHS & no Sb/Br)	DBV0005A	TPS72118DBVR	Texas Instruments
Y1	1		Crystal, 12 MHz, 18 pF, SMD	ABM3	ABM3-12.000MHZ -B2-T	Abracon Corporation
C27	0	4.7uF	CAP, CERM, 4.7 uF, 16 V,+/- 10%, X7R, 0603	0603	GRM188Z71C475 KE21D	MuRata
J36, J37	0		Header, 100mil, 4x1, Gold, TH	4x1 Header	TSW-104-07-G-S	Samtec
J39	0		Connector, End launch SMA, 50 ohm, SMT	End Launch SMA	142-0701-801	Cinch Connectivity
R20	0	0	RES, 0, 5%, 0.1 W, 0603	0603	RC0603JR-070RL	Yageo America
TP6	0		Test Point, Multipurpose, Red, TH	Red Multipurpose Testpoint	5010	Keystone Electronics
Y2	0		Crystal, 12 MHz, 30 ppm, 18 pF, SMD	11.4x4.7mm	ABLS2-12.000MH Z-D4Y-T	Abracon Corporation

Table 4-1. Bill of Materials (continued)

5 Additional Information

5.1 Trademarks

Windows[®] is a registered trademark of Microsoft. All trademarks are the property of their respective owners.

STANDARD TERMS FOR EVALUATION MODULES

- 1. Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components, and/or documentation which may be provided together or separately (collectively, an "EVM" or "EVMs") to the User ("User") in accordance with the terms set forth herein. User's acceptance of the EVM is expressly subject to the following terms.
 - 1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For clarification, any software or software tools provided with the EVM ("Software") shall not be subject to the terms and conditions set forth herein but rather shall be subject to the applicable terms that accompany such Software
 - 1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned, or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production system.
- 2 Limited Warranty and Related Remedies/Disclaimers:
 - 2.1 These terms do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License Agreement.
 - 2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM to User. Notwithstanding the foregoing, TI shall not be liable for a nonconforming EVM if (a) the nonconformity was caused by neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any way by an entity other than TI, (b) the nonconformity resulted from User's design, specifications or instructions for such EVMs or improper system design, or (c) User has not paid on time. Testing and other quality control techniques are used to the extent TI deems necessary. TI does not test all parameters of each EVM. User's claims against TI under this Section 2 are void if User fails to notify TI of any apparent defects in the EVMs within ten (10) business days after delivery, or of any hidden defects with ten (10) business days after the defect has been detected.
 - 2.3 TI's sole liability shall be at its option to repair or replace EVMs that fail to conform to the warranty set forth above, or credit User's account for such EVM. TI's liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by TI and that are determined by TI not to conform to such warranty. If TI elects to repair or replace such EVM, TI shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day warranty period.

WARNING

Evaluation Kits are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems.

User shall operate the Evaluation Kit within TI's recommended guidelines and any applicable legal or environmental requirements as well as reasonable and customary safeguards. Failure to set up and/or operate the Evaluation Kit within TI's recommended guidelines may result in personal injury or death or property damage. Proper set up entails following TI's instructions for electrical ratings of interface circuits such as input, output and electrical loads.

NOTE:

EXPOSURE TO ELECTROSTATIC DISCHARGE (ESD) MAY CAUSE DEGREDATION OR FAILURE OF THE EVALUATION KIT; TI RECOMMENDS STORAGE OF THE EVALUATION KIT IN A PROTECTIVE ESD BAG.

3 Regulatory Notices:

3.1 United States

3.1.1 Notice applicable to EVMs not FCC-Approved:

FCC NOTICE: This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product and software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.

3.1.2 For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:

CAUTION

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Interference Statement for Class B EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.
- 3.2 Canada

3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210 or RSS-247

Concerning EVMs Including Radio Transmitters:

This device complies with Industry Canada license-exempt RSSs. Operation is subject to the following two conditions:

(1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concernant les EVMs avec appareils radio:

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Concerning EVMs Including Detachable Antennas:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur

- 3.3 Japan
 - 3.3.1 Notice for EVMs delivered in Japan: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page 日本国内に 輸入される評価用キット、ボードについては、次のところをご覧ください。

https://www.ti.com/ja-jp/legal/notice-for-evaluation-kits-delivered-in-japan.html

3.3.2 Notice for Users of EVMs Considered "Radio Frequency Products" in Japan: EVMs entering Japan may not be certified by TI as conforming to Technical Regulations of Radio Law of Japan.

If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required to follow the instructions set forth by Radio Law of Japan, which includes, but is not limited to, the instructions below with respect to EVMs (which for the avoidance of doubt are stated strictly for convenience and should be verified by User):

- 1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry's Rule for Enforcement of Radio Law of Japan,
- 2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or
- 3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note that if User does not follow the instructions above, User will be subject to penalties of Radio Law of Japan.

【無線電波を送信する製品の開発キットをお使いになる際の注意事項】 開発キットの中には技術基準適合証明を受けて

いないものがあります。 技術適合証明を受けていないもののご使用に際しては、電波法遵守のため、以下のいずれかの 措置を取っていただく必要がありますのでご注意ください。

- 1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用 いただく。
- 2. 実験局の免許を取得後ご使用いただく。
- 3. 技術基準適合証明を取得後ご使用いただく。
- なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。 上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・イ

ンスツルメンツ株式会社

東京都新宿区西新宿6丁目24番1号

西新宿三井ビル

- 3.3.3 Notice for EVMs for Power Line Communication: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page 電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧くださ い。https://www.ti.com/ja-jp/legal/notice-for-evaluation-kits-for-power-line-communication.html
- 3.4 European Union
 - 3.4.1 For EVMs subject to EU Directive 2014/30/EU (Electromagnetic Compatibility Directive):

This is a class A product intended for use in environments other than domestic environments that are connected to a low-voltage power-supply network that supplies buildings used for domestic purposes. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

4 EVM Use Restrictions and Warnings:

- 4.1 EVMS ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS.
- 4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information related to, for example, temperatures and voltages.
- 4.3 Safety-Related Warnings and Restrictions:
 - 4.3.1 User shall operate the EVM within TI's recommended specifications and environmental considerations stated in the user guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or property damage. If there are questions concerning performance ratings and specifications, User should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit components may have elevated case temperatures. These components include but are not limited to linear regulators, switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the information in the associated documentation. When working with the EVM, please be aware that the EVM may become very warm.
 - 4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees, affiliates, contractors or designees. User assumes all responsibility and inability to ensure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or designees.
- 4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal, state, or local laws and regulations related to User's handling and use of the EVM and, if applicable, User assumes all responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local requirements.
- 5. Accuracy of Information: To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as accurate, complete, reliable, current, or error-free.
- 6. Disclaimers:
 - 6.1 EXCEPT AS SET FORTH ABOVE, EVMS AND ANY MATERIALS PROVIDED WITH THE EVM (INCLUDING, BUT NOT LIMITED TO, REFERENCE DESIGNS AND THE DESIGN OF THE EVM ITSELF) ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." TI DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT NOT LIMITED TO ANY EPIDEMIC FAILURE WARRANTY OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS.
 - 6.2 EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS SHALL BE CONSTRUED AS GRANTING OR CONFERRING ANY RIGHTS BY LICENSE, PATENT, OR ANY OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHT OF TI, ITS SUPPLIERS/LICENSORS OR ANY OTHER THIRD PARTY, TO USE THE EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY INVENTION, DISCOVERY OR IMPROVEMENT, REGARDLESS OF WHEN MADE, CONCEIVED OR ACQUIRED.
- 7. USER'S INDEMNITY OBLIGATIONS AND REPRESENTATIONS. USER WILL DEFEND, INDEMNIFY AND HOLD TI, ITS LICENSORS AND THEIR REPRESENTATIVES HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS, DAMAGES, LOSSES, EXPENSES, COSTS AND LIABILITIES (COLLECTIVELY, "CLAIMS") ARISING OUT OF OR IN CONNECTION WITH ANY HANDLING OR USE OF THE EVM THAT IS NOT IN ACCORDANCE WITH THESE TERMS. THIS OBLIGATION SHALL APPLY WHETHER CLAIMS ARISE UNDER STATUTE, REGULATION, OR THE LAW OF TORT, CONTRACT OR ANY OTHER LEGAL THEORY, AND EVEN IF THE EVM FAILS TO PERFORM AS DESCRIBED OR EXPECTED.

www.ti.com

- 8. Limitations on Damages and Liability:
 - 8.1 General Limitations. IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE TERMS OR THE USE OF THE EVMS, REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, RETESTING, OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, LOSS OF USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL BE BROUGHT AGAINST TI MORE THAN TWELVE (12) MONTHS AFTER THE EVENT THAT GAVE RISE TO THE CAUSE OF ACTION HAS OCCURRED.
 - 8.2 Specific Limitations. IN NO EVENT SHALL TI'S AGGREGATE LIABILITY FROM ANY USE OF AN EVM PROVIDED HEREUNDER, INCLUDING FROM ANY WARRANTY, INDEMITY OR OTHER OBLIGATION ARISING OUT OF OR IN CONNECTION WITH THESE TERMS, EXCEED THE TOTAL AMOUNT PAID TO TI BY USER FOR THE PARTICULAR EVM(S) AT ISSUE DURING THE PRIOR TWELVE (12) MONTHS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE OF MORE THAN ONE CLAIM SHALL NOT ENLARGE OR EXTEND THIS LIMIT.
- 9. Return Policy. Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s) will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the components(s), excluding any postage or packaging costs.
- 10. Governing Law: These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas, without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas. Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief in any United States or foreign court.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated