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ABSTRACT
The DRV421 is a signal-conditioning integrated circuit for use in closed-loop magnetic current sensor
modules. The DRV421 is designed with an internal fluxgate sensor to provide superior performance and
simplify system design. The DRV421 contains all the necessary excitation and signal-conditioning circuitry
to drive the current-sensing feedback loop. This application note discusses how to ensure that the system
control loop is stable under all conditions, how to select the proper gain setting on DRV421 for stable
operation, and what properties the magnetic core should have to ensure stable operation.
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1 Introduction
Closed-loop current transducers measure currents over wide frequency ranges, including dc currents.
Their measurement range is dependent on the ratio of primary current conductor windings (NP) to the
number of secondary or compensation coil windings (NS) and the value of a shunt resistor (RSHUNT) placed
in series with the compensation coil. These types of closed-loop modules offer a contact-free current-
sensing method, as well as excellent galvanic isolation combined with high resolution, accuracy, and
reliability.

At dc and in low-frequency ranges, the magnetic field induced from the current in the primary winding
(IPRIM) is compensated by a current driven through a compensation coil wound on a ferro-magnetic core
which acts as a field concentrator. A magnetic sensor (integrated fluxgate) located within a gap in the
magnetic core detects the magnetic flux created by current flowing through the primary winding. This
probe delivers a feedback signal to the signal conditioning circuitry block which in turn drives a current
(ISEC) through the compensation coil. The compensation current creates a flux equal in magnitude but in
the opposite direction to the flux created by the primary, bringing the magnetic flux back to zero.

The compensation current is also passed through a shunt resistor (RSHUNT) creating a voltage drop which is
passed to a differential amplifier. The differential amplifier provides a gain of 4 V / V which is delivered to
the DRV421 output stage. The resulting output voltage is proportional to the current flowing through the
primary winding as shown in the transfer function defined in Equation 1. Figure 1 shows the principle of a
closed-loop current sensor using the DRV421.

Figure 1. Closed-Loop Current Sensor Module

(1)
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2 Control Loop Stability in Normal Operation

2.1 DRV421 Control Loop Block Diagram
A block diagram of the current sensing control loop around DRV421 and a magnetic core is depicted in
Figure 2.

Figure 2. Current-Sensing Control Loop Comprising DRV421 and Magnetic Core

As can be seen in Figure 2 the loop comprises both the DRV421 and the magnetic core, and therefore,
stable operation depends on properties of both these elements. First, there are a number of variables in
the loop that are to first order constant with frequency. The magnetic core gain, defined as how much
magnetic field a given amount of current through the compensation coil produces, is a factor in the overall
loop gain. Similarly, the number of compensation coil windings influences the loop gain. Furthermore, in
order to assess the stability of the loop, the gain vs frequency (and thus, any poles and zeroes) of each
block in the loop needs to be determined. Starting with DRV421, the output of the fluxgate is fed to an
analog filter that serves as an integrator at low frequencies, and has a flat-band region between
frequencies fc and fs, as shown in Figure 3. The corner frequency fc, as well as the flat band gain of the
filter, depend on GSEL1/0 pin logic levels (see data sheet) and enable a stable compensation loop for a
wide range of magnetic cores, as will be explained later. Frequency ƒs is at approximately 250 kHz, and
reflects the fact that both the sensor and the filter are sampled.

The output of the filter is applied across the magnetic core’s compensation coil. This applied voltage
results in a current through the compensation coil that generates a magnetic field. This voltage/current
conversion forms a second pole in the control loop, which is determined by the series connection of the
resistance and inductance connected to the compensation driver. The corner frequency is therefore
determined by:

(2)

Here, the resistance R comprises both the shunt resistor as well as the ohmic resistance of the
compensation coil, while L is the inductance of the compensation coil. It can be shown that this corner
frequency ftf also equals the corner frequency from which the magnetic core starts to operate as a current
transformer.
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2.2 Control Loop Bode Diagram
By combining the frequency transfer of the DRV421 filter and the magnetic core, a complete Bode
diagram of the control loop can be obtained, as shown in Figure 3.

Figure 3. Bode Diagram of the Current-Sensing Loop

From control theory, it is well known that a 20 db/decade roll-off is needed at the zero crossing frequency
fzc of the loop in order to ensure stability. In this case, fzc must therefore be somewhere between the filter
corner frequency fc and sampling frequency fs. Since fc is 1.9 kHz or 3.8 kHz, and fs is about 250 kHz, this
zero crossing can fall inside relatively large frequency span of nearly 2 decades. Therefore, even without
adjusting the gain settings of DRV421, the control loop will usually be stable. Nonetheless, it is a good
design target for fzc to be close to 20 kHz. This allows about a 10x variation in crossing frequency in both
directions, and ensures maximum robustness against tolerances in both the DRV421 and the magnetic
core.

The zero-crossing frequency fzc is determined by both the filter gain of DRV421 in its flat-band region, as
well as the amount of compensation current a given amount of voltage at the filter output is producing.
The latter is determined by the compensation coil inductance, since its impedance dominates the load of
the filter at higher frequencies. Therefore, a larger compensation coil inductance shifts the pole to lower
frequencies and thus pushes the zero crossing down as well, as illustrated in Figure 4.

Figure 4. Effect of Inductance Change on Zero Crossing Frequency

In order to ensure stable operation for a wide range of compensation coil inductances and thus a wide
range of magnetic cores, the change in the pole ftf can be counteracted by adjusting flat-band gain of the
filter using the gain select pins GSEL0 and GSEL1.
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2.3 Recommended Filter Gain Settings
A key question is what filter gain setting is optimal for a given core design. In the previous sections, it was
shown that the following magnetic core parameters are of importance:
• Magnetic core gain (magnetic field / primary transfer function, [uT/mA])
• Number of compensation coil windings (NS)
• Compensation coil inductance

As mentioned in the previous sections, the magnetic core gain and number of compensation coil windings
have a constant effect on loop gain over frequency, whereas the compensation coil inductance influences
the loop properties at frequencies around the zero crossing. While the exact value of GCORE will depend on
the particular core design, the typical values range from 0.4mT/A to 1mT/A.

To properly select the gain it is useful to combine these 3 parameters into a gain factor, GMOD, as follows:

(3)

This gain factor should simply be understood as being a portion of the overall loop gain equation, with
frequency dependencies removed, which is why we are using the coil inductance L instead of its
impedance at a certain frequency. This provides a great simplification over a full gain equation that needs
to include frequency-dependent factors. Both core gain and number of compensation windings increase
the loop gain, while compensation coil inductance reduces it. Table 1 then relates the found core gain
factor GMOD to the optimal gain setting.

Table 1. DRV421 Loop Gain Filter Settings and Relation to Core Parameters

DRV421 Loop Filter Properties
Core Gain Factor Core Inductance Range forIntegrator CornerGSEL1 GSEL0 Flat-Band Gain GMOD Range NS = 1000, Gcore = 0.6 mT/AFrequency (V/mT)(kHz)

0 0 3.8 10 3 < GMOD < 12 100 mH < L < 200 mH
0 1 3.8 50 1 < GMOD < 3 200 mH < L < 600 mH *
1 0 1.9 35 1 < GMOD < 3 200 mH < L < 600 mH
1 1 1.9 100 0.3 < GMOD < 1 600 mH < L < 2 H

From Table 1, it can be noted that gain setting ‘01’ and ‘10’ overlap; the difference is mainly in the
integrator corner frequency. For most normal sensors, setting ‘10’ is recommended. For fault current
sensors however, ‘01’ can be better, as it features a higher integrator/flat-band cross-over frequency of 3.8
kHz. Due to the typically much lower current levels to be measured, fault current sensors will have a
higher shunt resistor and thus a higher transformer pole frequency ftf. This can cause problems, as it
reduces the frequency overlap between the active compensation loop and the transformer effect. See also
Designing with the DRV421: Closed-Loop Current Sensor Specifications (SLOA223). The larger
integrator/flat-band cross over frequency counteracts this problem.

To aid the designer in choosing the right gain settings, as well as evaluate the needed shunt resistance for
a desired current measurement range, please refer to the Designing with the DRV421: System Parameter
Calculator (SLOA225) application note and its associated Microsoft® Excel® spreadsheet. BothTable 1 and
the Excel spreadsheet should be understood as an initial gain setting recommendation, based on a first-
order model of the magnetic core. Second order magnetic effects can play a significant role in actual loop
stability as outlined in the next section.

2.4 Second-Order Magnetic Effects
An important assumption in the previous section that was implicitly made is that both the compensation
coil inductance and the magnetic core gain remain constant with frequency. However, there are several
magnetic effects that can lead to significant deviations. Most importantly, in magnetic cores that have a
significant conductivity (such as mu metal cores), significant eddy currents occur. These can affect both
the core gain and the compensation coil inductance significantly, leading to different outcomes than
predicted in Table 1. Other effects can include the proximity effect in the coil winding, leading to an
increase in ohmic resistance, and magnetic hysteresis.
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Some simulations and measurements have suggested that mu-metal based cores need a lower gain
setting than predicted by Table 1, although at the same time the eddy current losses actually help to make
the loop more stable. In contrast, ferrite cores, due to their low conductivity, more closely follow the
predicted gain settings due to their superior high-frequency properties.

Due to the second order effects, experimental verification by checking the response of the loop to a
current step is always strongly recommended, as outlined in the DRV421 data sheet (SBOS704). An
example of such a current step is shown in Figure 5 for the case of a magnetic core with 300mH
inductance and 1000 compensation coil windings. For this core, an optimum gain setting of GSEL[1:0] =
10 was found. If the ICOMP1 and ICOMP2 pins show significant ringing, a different gain setting or change
to the core design is needed. In case multiple gain settings yield stable results, the lowest gain setting is
preferred.

Figure 5. Settling of ICOMP1 and ICOMP2 with GSEL[1:0] = 10

3 Summary
The stability of the control-loop in a closed-loop current sensor depends on both the magnetic core and
DRV421 properties. In order to enable the use of a wide range of magnetic cores, DRV421 features 4
different gain settings. In order to determine the correct gain settings for a particular magnetic core, an
initial setting can be calculated from the magnetic core gain, the number of windings, and the
compensation coil inductance. Due to second-order magnetic effects, however, experimental verification of
the correct setting using step responses are highly recommended.

6 Designing With the DRV421: Control Loop Stability SLOA224–August 2015
Submit Documentation Feedback

Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SBOS704
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLOA224


IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Designing With the DRV421: Control Loop Stability
	1 Introduction
	2 Control Loop Stability in Normal Operation
	2.1 DRV421 Control Loop Block Diagram
	2.2 Control Loop Bode Diagram
	2.3 Recommended Filter Gain Settings
	2.4 Second-Order Magnetic Effects

	3 Summary

	Important Notice

