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The Analog Applications Journal is a digest of technical analog articles 
published quarterly by Texas Instruments. Written with design engineers, 
engineering managers, system designers and technicians in mind, these “how-
to” articles offer a basic understanding of how TI analog products can be used 
to solve various design issues and requirements. Readers will find tutorial 
information as well as practical engineering designs and detailed mathematical 
solutions as they apply to the following product categories:

• Data Converters

• Power Management

• Interface (Data Transmission)

• Amplifiers: Audio

• Amplifiers: Op Amps

• Low-Power RF

• General Interest

Analog Applications Journal articles include many helpful hints and rules of 
thumb to guide readers who are new to engineering, or engineers who are just 
new to analog, as well as the advanced analog engineer. Where applicable, 
readers will also find software routines and program structures.

Introduction
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Grounding in mixed-signal systems  
demystified, Part 1

Introduction
Every signal-processing system 
requires mixed-signal devices,  
such as analog-to-digital converters 
(ADCs) and/or digital-to-analog con-
verters (DACs). The need for proc-
essing analog signals with a wide 
dynamic range imposes the require-
ment to use high-performance ADCs 
and DACs. Maintaining performance 
in a noisy digital environment is 
dependent upon using good circuit-
design techniques like proper signal 
routing, decoupling, and grounding.

Undoubtedly, grounding is one of 
the most discussed subjects in system 
design. Though the basic concepts are 
relatively simple, the implementation 
is difficult. For linear systems, the 
ground is the reference against which 
the signal is based; and, unfortunately, 
it also becomes the return path for the power-supply 
 current in unipolar supply systems. An improper applica-
tion of grounding strategies can degrade the performance 
in high-accuracy linear systems. There is no “cookbook” 
that guarantees good results, but there are a few things 
that, if not done properly, can cause issues.

This article is the first of a two-part series that looks 
closely at the grounding techniques used in mixed-signal 
systems. Part 1 explains typical terminologies and ground 
planes and introduces partitioning methods. Part 2 explores 
techniques for splitting the ground planes, including pros 
and cons. It also explains grounding in systems with multi-
ple converters and multiple boards. Part 2 will appear in a 
future issue of Analog Applications Journal.

A term often used in system design is star ground. This 
term builds on the theory that all voltages in a circuit are 
referred to as a single ground point, or star ground point. 
The key feature is that all voltages are measured with 
respect to a particular point in the ground network, not 
just to an undefined ground wherever one can clip a probe. 
Practically, it is difficult to implement. For example, in a 
star ground system, drawing out all signal paths to mini-
mize signal inter action and the effects of high-impedance 
signal or ground paths causes implementation problems to 
arise. When power supplies are added to the circuit, either 
they add unwanted ground paths or their supply currents 
flowing in the existing ground paths are large enough or 
noisy enough to corrupt the signal transmission.

Interpretation of AGND and DGND pins  
in mixed-signal devices
Digital- and analog-design engineers tend to view mixed-
signal devices from different perspectives, but every engi-
neer who uses a mixed-signal device is aware of analog 
ground (AGND) and digital ground (DGND). Many are 
confused about how to deal with these grounds; and, yes, 
much of the confusion comes from how the ADC ground 
pins are labeled. Note that the pin names, AGND and 
DGND, refer to what’s going on inside the component and 
do not necessarily imply what one should do with the 
grounds externally. Data-converter datasheets usually sug-
gest tying the analog and digital grounds together at the 
device. However, the designer may or may not want the 
data converter to become the system’s star ground point. 
What should be done?

As illustrated in Figure 1, the grounds inside a mixed-
signal IC are typically kept separate to avoid coupling digi-
tal signals into the analog circuits. An IC designer cannot 
do anything about the internal inductance and resistance 
(negligible compared to the inductance) associated with 
connecting the pads on the chip to the package pins. The 
rapidly changing digital currents produce a voltage (di/dt) 
in digital circuits, which inevitably couples into the analog 
circuits through the stray capacitance.

The IC works well in spite of such coupling. However, in 
order to prevent further coupling, the AGND and DGND 

Data Converters

By Sanjay Pithadia, Analog Applications Engineer,
and Shridhar More, Senior Analog Applications Engineer
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Figure 1. AGND and DGND pins in a data converter
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pins should be joined together externally to the same low-
impedance ground plane with minimum lead lengths. Any 
extra external impedance in the DGND connection can 
cause more digital noise and, in turn, can couple more 
digital noise into the analog circuit through the stray 
capacitance.

Analog or digital ground plane, or both?
Why is a ground plane needed? If a bus wire is used as a 
ground instead of a plane, calculations must be done to 
determine the bus wire’s voltage drop because of its imped-
ance at the equivalent frequency of most logic transitions. 
This voltage drop creates an error in the final accuracy of 
the system. To implement a ground plane, one side of a 
double-sided PCB is made of continuous copper and is 
used as a ground. The large amount of metal has the low-
est possible resistance and lowest possible inductance 
because of the large, flattened conductor pattern.

The ground plane acts as a low-impedance return path 
for decoupling high-frequency currents caused by fast  
digital logic. It also minimizes emissions from electromag-
netic interference/radio-frequency interference (EMI/RFI). 
Because of the ground plane’s shielding action, the circuit’s 
susceptibility to external EMI/RFI is reduced. Ground 
planes also permit high-speed digital or analog signals to be 
transmitted via transmission-line (microstrip or stripline) 
techniques, where controlled impedances are required.

As mentioned earlier, the AGND and DGND pins must 
be joined together at the device. If the analog and digital 
grounds have to be separated, should both be tied to the 
analog ground plane, the digital ground plane, or both?

Remember that a data converter is analog! Thus, the 
AGND and DGND pins should be connected to the analog 
ground plane. If they are connected to the digital ground 

plane, the analog input signal is going to have digital noise 
summed with it, because it is probably single-ended and 
referenced to the analog ground plane. Connecting the 
pins to a quiet analog ground plane can inject a small 
amount of digital noise into it and degrade the noise mar-
gin of the output logic. This is because the output logic is 
now referenced to the analog ground plane and all the 
other logic is referenced to the digital ground plane. 
However, these currents should be quite small and can be 
minimized by ensuring that the converter output does not 
drive a large fan-out.

It is possible that the devices used in a design have 
either low digital currents or high digital currents. The 
grounding scheme is different for both cases. Traditionally, 
data converters may be thought of as low-current devices 
(such as flash ADC). But today’s data converters with on-
chip analog functions are becoming more and more digi-
tally intensive. Along with the additional digital circuitry 
come larger digital currents and noise. For example, a 
sigma-delta ADC contains a complex digital filter that adds 
considerably to the digital current in the device.

Grounding data converters with  
low digital currents
As mentioned, a data converter (or any mixed-signal 
device) is analog. In any system, the analog signal plane is 
where all the analog circuitry and mixed-signal devices are 
placed. Similarly, the digital signal plane has all the digital 
data-processing circuits. The analog and digital ground 
planes should have the same size and shape as the respec-
tive signal planes.

Figure 2 summarizes the approach for grounding a 
mixed-signal device with low digital currents. The analog 
ground plane is not corrupted because the small digital 

Analog ground plane’s shape and size
same as for analog signal plane
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Digital ground plane’s
shape and size same as
for digital signal plane
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Figure 2. Grounding data converters with low internal digital currents
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transient currents flow in the small loop between VDig, the 
local decoupling capacitor, and DGND (the green line). 
Figure 2 also shows a filter between the analog and digital 
power supplies. There are two types of ferrite beads: high-Q 
resonant beads and low-Q nonresonant beads. Low-Q 
beads are commonly used for power-supply filtering in 
series with the power connection.

Grounding data converters with  
high digital currents
The circuit in Figure 2 depends on the decoupling capaci-
tor between VDig and DGND to keep the digital transient 
currents isolated in a small loop. However, if the digital 
currents are significant enough and have components at 
DC or low frequencies, the decoupling capacitor may have 
to be so large that it is impractical. Any digital current 
that flows outside the loop between VDig and DGND must 
flow through the analog ground plane. This may degrade 
performance, especially in high-resolution systems. An 
alternative grounding method for a mixed-signal device 
with high levels of digital currents is shown in Figure 3. 
The AGND pin of the data converter is connected to the 
analog ground plane, and the DGND pin is connected to 
the digital ground plane. The digital currents are isolated 
from the analog ground plane, but the noise between the 
two ground planes is applied directly between the 
device’s AGND and DGND pins. The analog and digital 
circuits must be well isolated. The noise between AGND 
and DGND pins must not be large enough to reduce 
 internal noise margins or cause corruption of the internal 
 analog circuits.

Connecting analog and digital ground planes
Figures 2 and 3 show optional back-to-back Schottky 
diodes connecting the analog and digital ground planes. 

The Schottky diodes prevent large DC voltages or low- 
frequency voltage spikes from developing across the two 
planes. These voltages can potentially damage the mixed-
signal IC if they exceed 0.3 V, because they appear directly 
between the AGND and DGND pins.

As an alternative to the back-to-back Schottky diodes, a 
ferrite bead can provide a DC connection between the two 
planes but isolate them at frequencies above a few mega-
hertz where the ferrite bead becomes resistive. This pro-
tects the IC from DC voltages between AGND and DGND, 
but the DC connection provided by the ferrite bead can 
introduce unwanted DC ground loops and may not be suit-
able for high-resolution systems. Whenever AGND and 
DGND pins are separated in the special case of ICs with 
high digital currents, provisions should be made to con-
nect them together if necessary.

Jumpers and/or strap options allow both methods to  
be tried to verify which gives the best overall system  
performance.

Isolation or partitioning: Which is important  
for ground planes?
A common concern is how to isolate the grounds so that 
the analog circuit does not interfere with the digital circuit. 
It is a well-known fact that digital circuitry is noisy. 
Saturating logic draws large, fast current spikes from its 
supply during switching. Conversely, analog circuitry is 
quite vulnerable to noise. It is not that the analog circuit 
might interfere with the digital logic. Rather, it is possible 
that the high-speed digital logic might interfere with the 
low-level analog circuits. So the concern should be how to 
prevent digital-logic ground currents from contaminating 
the low-level analog circuitry on a mixed-signal PCB. The 
first thought might be to split the ground planes to isolate 
DGND from AGND. Although the split-plane approach can 

Analog ground plane’s shape
same as for analog signal plane

VD

AGND

Digital ground plane’s shape
same as for digital signal plane

DGND

Back-to-back
Schottky diodes

between AGND and
DGND keep maximum

ground-potential
difference at < 0.3 V.

To System Star Ground

Digital
Data

Processing

VD

VA

Analog
Supply

Digital
Supply

Data
Converter

Analog
Signal

Conditioning

VA VA VD
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Figure 3. Grounding data converters with high internal digital currents
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be made to work, it has many problems--especially in 
large, complex systems.

There are two basic principles of electromagnetic com-
patibility (EMC):

1. Currents should be returned to their sources locally and 
as compactly as possible. If not, a loop antenna should 
be created.

2. A system should have only one reference plane, as two 
references create a dipole antenna.

During EMC tests, most problems are observed when 
traces are routed across a slot or a split in a ground or 
power plane. Since this routing causes both radiation and 
crosstalk issues, it is not recommended.

It is important to understand how and where the ground 
currents in a split plane actually flow. Most designers think 
only about where the signal current flows and ignore the 
path taken by the return current. The high-frequency sig-
nals have a characteristic of following the path of least 
impedance (inductance). The path’s inductance is deter-
mined by the loop area that the path encloses. The larger 
the area that the current has to travel to return to the 
source, the larger the inductance will be. The smallest 
inductance path is directly next to the trace. So, regard-
less of the plane--power or ground--the return current 
flows on the plane adjacent to the trace. The current 
spreads out slightly in the plane but otherwise stays under 
the trace. The actual distribution is similar to a Gaussian 
curve in nature. Figure 4 illustrates that the return-current 
flow is directly below the signal trace. This creates the 
path of least impedance.

The current-distribution curve for the return path is 
defined by

O
2

I 1
i (A/cm) ,

h D
1

h

= ×
π  +   

where IO is the total signal current (A), h is the height of 
the trace (cm), and D is the distance from the trace (cm). 
From this equation it can be concluded that digital ground 
currents resist flowing through the analog portion of the 
ground plane and so will not corrupt the analog signal.

For reference planes, it is important that the clearance 
sections of vias do not interfere with the return current’s 
path. In the case of an obstacle, the return current finds a 
way around it, as shown in Figure 5. However, this rerout-
ing will most likely cause the current’s electromagnetic 
fields to interfere with the fields of other signal traces, 
introducing crosstalk. Moreover, this obstacle adversely 
affects the impedance of the traces passing over it, leading 
to discontinuities and increased EMI.

Part 2 of this two-part article series will discuss the pros 
and cons involved in splitting the ground planes and will 
also explain grounding in systems with multiple converters 
and multiple boards.
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Add a digitally controlled PGA with noise 
filter to an ADC

Introduction
In some applications, a signal with high dynamic range 
needs to be digitized. A common method of digitization is 
to add an external programmable gain amplifier (PGA) in 
front of the analog-to-digital converter (ADC). Only a few 
microcontrollers have internal PGAs. However, nowadays 
PGAs are available in a single chip with one or multiple 
input channels. Such PGAs add additional costs to the  
system and usually consume more power as a fixed-gain 
solution.

This article describes how to implement a PGA by using 
just a single resettable integrator, with the following  
benefits:

• The solution is economical and easy to design.

• Gain can be digitally controlled and calibrated.

• Signal noise is reduced with a low-pass filter, which is 
especially useful in noisy microcontroller environments 
and for small analog signals. The cutoff frequency auto-
matically adjusts with the chosen sample rate.

• The zero-level voltage reference can be controlled 
externally, which makes it handy for single-supply  
circuits where the zero level usually is set to VREF/2.

The basic circuit
Figure 1 shows the basic circuit, where an integrator is 
added in front of the ADC. The integrator can be reset 
with the signal fRES (1 = integrator is reset). The ADC is 
controlled with the signal fSH, which connects to the ADC’s 
sample-and-hold (SH) unit (1 = sample, 0 = hold). A falling 
edge starts the analog-to-digital conversion cycle.

Figure 2 shows a single analog-to-digital (A/D) conver-
sion cycle with the circuit from Figure 1. The cycle is split 
into four periods:

1. Integrator reset period: Resets the integrator to “0.”

2. Integration period: The integrator reset signal is 
released and the integrator starts to integrate.

3. Sample period: The ADC’s sample-and-hold unit 
samples the integrator output, VINT.

4. A/D conversion period: The sample-and-hold unit 
holds the voltage, and the ADC starts to convert.

Data Converters

By Kai Gossner
Field Application Engineer

∫
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Output
VINT

Figure 1. Basic block diagram of the PGA
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Figure 2. Single A/D cycle with gain = 1
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The duration of the integration period defines the PGA’s 
gain, as the voltage on its input influences the slope lin-
early: A doubling of the integration time doubles the gain. 
Figure 3 demonstrates this influence. The integration 
period is doubled and the voltages VSH are increased by a 
factor of two.

A nice benefit from this integration scheme is that the 
input signal is averaged during the integration period, 
which reduces out-of-band noise from the input signal, 
VIN. The filter’s impulse response is of finite duration and 
is comparable to the behavior of a digital FIR filter rather 
than to that of a standard low-pass filter.

Integrator
Reset Period

Integration
Period

Sample
Period

Start of
A/D Conversion
Period

Undefined (previous value)

fRES

fSH

VIN

VINT

VSH

Figure 3. Single A/D cycle with PGA gain = 2

Practical configuration of a PGA
An inverting amplifier can be built with a single opera-
tional amplifier (Figure 4). The integrator can be reset by 
short-circuiting the capacitor, C, with the switch element, S. 
The components R and C influence the integrator’s gain.

The signal VCOM defines the integrator’s zero-level volt-
age and can be set, for example, to VREF/2, where VREF is 
the ADC’s reference voltage. The integrator is reset to this 
voltage when the capacitor is discharged. Usually a VCOM 
signal is present in the system anyway. Often it is used as 
a virtual ground or bias voltage for single-supply analog 
signal chains.

MCU/ADC

fSH

A/D

fRES

–

VCOM

VIN VINT

VSH

R

C

S

Op Amp

–

+

+

Figure 4. Practical configuration of the PGA
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Figure 5 shows SPICE-simulation results of the circuit 
in Figure 4. The blue dots mark the sample moments of 
the ADC. As shown, the signal VIN is amplified by a factor 
of about –8. The red signal is inverted to the green due to 
the integrator’s inverting behavior.

How it works
The sample rate, the maximum desired gain, and the A/D 
conversion time influence the selection of the integration 
constant defined by the components R and C. As shown in 
Figures 2 and 3, the integrator needs enough time to reach 
the gain, G, within the duration of the integration period, t. 
The dependency of G and t can be calculated as

t
G .

R C

−=
×

The close time (integrator reset period) of the switch 
(S) depends on the impedance of the switch and the value 
of the capacitor (C).

Calibration
Tolerances of R and C lead to modification of the gain 
 factor. The capacitor should have a very small piezo effect 
to get a very linear integration. Capacitors can have an 
especially large tolerance--for example, 20%. This is just 
the initial tolerance, which can be calibrated once. 
Tolerances due to aging effects are very small (less than 
1% per year).

The gain and offset can be calibrated in the same way as 
with a standard ADC by applying known voltages to the 
input and calculating correction values for offset and gain 
based on expected and actual values. The calibration can 
be done for each gain factor used in the application.

Circuit variations
Using the PGA as a low-pass filter only (gain = 1)
In case input-signal amplification is not wanted, it is possi-
ble to use the PGA circuit only as a noise filter. The inte-
grator constant can be set to a value that leads to a fixed 
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Figure 5. SPICE-simulation results of circuit in Figure 4
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gain of 1. In this case the integration phase can start 
immediately after the sample, and the hold stage can be 
set to hold mode (Figure 6).

Non-inverting integration
The circuit in Figure 4 uses an inverting integrator. When 
this inversion is not acceptable, it is possible to use a non-
inverting integrator by adding a single-supply inverting 
buffer in front of the integrator.

Conclusion
This article has presented a cost-effective and simple way 
to implement PGA functionality in cost- and power-driven 
applications. Its filtering properties also reduce costs by 
eliminating the need for an external filter, which is often 

present in front of ADCs. Nevertheless, this method can-
not replace a PGA in all cases; for example, high sample 
rates or very large gain variations make such a solution 
difficult to realize.
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Figure 6. PGA circuit used as a filter only (gain = 1)
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Design of a 60-A interleaved active-clamp 
forward converter

Introduction
In 48-V-input telecommunications systems, power supplies 
with a capacity of 100 to 250 W are sufficient to cover many 
applications. Forward converters are a good choice for 
these applications. At lower output voltages, synchronous 
rectification in the secondary circuitry improves efficiency 
and simplifies system thermal design. Active-clamp forward 
converters work well in these applications because of the 
ease of implementing synchronous rectification.

In most cases, the output currents of forward converters 
are commonly limited to around 30 A. Beyond this current, 
the inductor design and conduction losses in the second-
ary circuitry become difficult to manage. From a power 
standpoint, the primary circuitry (number of parallel 
FETs) becomes a limiting factor for power ratings above 
250 W. In systems with higher power, it is necessary to 
move to a different topology like the full bridge, or operate 
two or more forward converters in parallel to increase the 
output power.

Load-share ICs work great for paralleling supplies that 
use diodes to rectify their outputs. Diode-rectified supplies 
allow current to be sourced only from the power supply. 
Power supplies with synchronous rectifiers, however, can 
both source and sink power, which can wreak havoc with 
some load-share controllers. This is particularly true at 
start-up, where the feedback loop is overridden by the  
primary controller’s slow-start circuit, and the two paral-
leled supplies could attempt to regulate the output to  
different voltage levels. These issues can be circumvented 
by interleaving two separate power stages. This article 
pre sents the design of a 5-V, 300-W interleaved isolated 
supply that is powered from a standard 36- to 72-V tele-
com input.

Designing the interleaved power stage
In this design example, splitting the power into two inter-
leaved power stages reduces the current in the secondary 
of each phase to 30 A. This is much more manageable than 
the 60 A that would be required in a single-phase supply. 
Both phases actually need to be designed to carry a little 
more than 30 A to account for phase imbalances. Design-
ing the power stage begins by selecting the turns ratio and 
inductance for the power transformers. A feature of the 
active-clamp forward converter is its ability to run at duty 

cycles of over 50%. It is best to design for a maximum duty 
cycle of no greater than 75% so that the transformer’s 
reset voltage does not become excessive. In this example, 
a turns ratio of 4.5:1 results in a duty cycle of around 63% 
at a 36-V input. Switching each phase at 200 kHz provides 
a good balance between size and efficiency. Setting the 
primary inductance at 100 µH ensures that sufficient mag-
netizing current is flowing to drive the commutation of the 
power MOSFETs during the switching transitions. The pri-
mary inductance and switching frequency determine the 
value of the resonant capacitor in the clamp. In this case, 
a 0.1-µF capacitor sets the resonant frequency at 50 kHz.

The output inductors are determined just as in any 
buck-derived topology. An inductance of 2 µH is used, 
resulting in 8.5 A of peak-to-peak ripple current in each 
phase with a worst-case input of 72 V. Accounting for a 
20% phase imbalance, the inductor must be able to carry 
at least 41 A of peak current without saturating.

The output capacitors are selected to meet the require-
ments for output ripple voltage and for voltage excursions 
due to load transients. Interleaving the power stages results 
in some cancellation of the ripple current seen by the out-
put capacitors. The amount of ripple-current can cel lation 
is dependent on the duty cycle and the phase angle 
between the two phases. Total cancellation occurs with a 
50% duty cycle only when the two phases are synchro-
nized 180° out of phase. This reduction in ripple current 
reduces the number of capacitors required based on the 
ripple-voltage requirements and the RMS current ratings of 
the capacitors. For this design, four 180-µF polymer capac-
itors rated for 4-A RMS each are sufficient to keep the 
peak-to-peak ripple voltage below 50 mV. More capacitance 
can be added to support large load transients if necessary.

Selecting the primary MOSFETs is also straightforward. 
The peak drain voltage is the sum of the input voltage and 
the resonant transformer’s reset voltage. The RMS primary 
current comprises the reflected load current and the trans-
former magnetizing current. It is important to select a 
minimal number of cost-effective transistors and to keep 
the power loss in each transistor manageable. For this 
design, each phase uses two 150-V, 50-mW MOSFETs in 
parallel, with a worst-case loss per FET of approximately 
700 mW.

By Brian King
Applications Engineer, Member Group Technical Staff
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Figure 1 shows how self-driven synchronous rectifiers 
are implemented in each phase of the active-clamp for-
ward converter. One set of synchronous rectifiers (Q4, Q5, 
and Q6) sees the input voltage reflected through the 
transformer, while the other set (Q1, Q2, and Q3) sees the 
transformer’s reset voltage reflected to the secondary side. 
With the selected turns ratio, MOSFETs rated at 30 V are 
sufficient for this design. Most of the power loss in these 
components is due to conduction loss. Paralleling multiple 
7-mW MOSFETs for each phase results in a worst-case loss 

per FET of around 800 mW. This ensures that the junction 
temperatures are reasonable, even with a 20% phase 
imbalance. The gate-drive components Q12, Q13, Q15, and 
Q16 serve two functions. First, they protect the MOSFET 
gates from voltage spikes on the switching waveforms. 
Second, they provide a buffer so that the transformer’s 
secondary windings are not directly connected to a large 
amount of gate capacitance. This is important to ensure 
that the power MOSFETs commutate quickly during the 
switching transitions.

+ +

Ω

Ω

Figure 1. Gate-drive conditioning circuitry for a self-drive synchronous rectifier
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Figure 2 shows how two controllers can be 
connected in parallel so that they share a 
common feedback signal and soft-start circuit. 
With peak-current-mode control, each power 
stage behaves as a current source that is con-
trolled by the voltage at the feedback pin. A 
single error amplifier regulates the output volt-
age by simultaneously controlling the feedback 
pins of the two controllers. Current imbalance 
between the two phases is mostly determined 
by variations of the offsets inside the control-
lers and by the tolerances of the current sense 
and slope compensation. Figure 3 plots the 
current in each phase versus the feedback 
voltage for a total tolerance resulting in the 
maximum error between phases. This is not of 
much concern at high load levels, as one stage 
will just carry a heavier burden. At light loads, 
however, the error can allow one phase to sink 
current, forcing the other phase to source 
extra current. This leads to increased losses at 

Ω

Ω

Master Controller

Slave Controller

Figure 2. Interleaved controllers sharing feedback network and soft-start circuit
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light loads. The phase imbalance must also be considered 
when the current limit is programmed.

Synchronization is implemented by designating one con-
troller as the master and the other as the slave. The clock 
frequency of the slave controller is set 10% slower than 
that of the master clock to ensure synchronization. The 
gate-drive signal of the master is used as the clock for the 
slave. Some conditioning components are needed to shape 
the magnitude and duration of the synchronization pulse.

For proper start-up, timing is critical. Start-up must be 
completed before the VDD voltage on either chip falls 
below the UVLO OFF level, or neither controller will be 
able to start. Tying the two soft-start pins together ensures 
that both converters initiate the start-up sequence at the 
same time. In case of a fault, this also allows both control-
lers to be disabled by discharging the soft-start capacitance.

The efficiency of this power supply is shown in Figure 4. 
With a nominal 48-V input and a load current of 60 A, the 
supply’s efficiency is over 92%. The converter’s ability to 
convert to an isolated and regulated 5-V output with no 
intermediate bus and minimal power loss simplifies the 
system design and reduces the power demand on the 
upstream AC/DC rectifier.

Conclusion
In summary, interleaving active-clamp forward power 
stages can result in a cost-effective and efficient design. 
The design must account for current imbalances between 
the phases and ensure proper synchronization and start-
up. If properly designed, interleaving extends the practical 
power range of the active-clamp forward converter to 
around 500 W and easily supports load currents of up  
to 60 A.

Please visit www.ti.com/tool/PMP2214 for more informa-
tion on this design, including the complete schematic, bill 
of materials, and test results.
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Power MOSFET failures in mobile PMUs: 
Causes and design precautions

Introduction
Power MOSFETs in automotive systems and in mobile 
devices being charged or operated in automobiles may be 
subjected to harsh operating environments and intense 
transients from power equipment and transmitters. 
Moreover, caustic contaminants in the atmosphere and on 
exposed conductive surfaces of circuit boards 
can induce low-impedance paths. Over time, 
these low-impedance paths and transient 
events like overloading, electromagnetic cou-
pling, and inductively induced spikes from 
the operating environment can cause destruc-
tive electrical overstress (EOS) conditions. 
Such conditions may cause a large current to 
flow across a MOSFET power switch in a very 
short time.

This article addresses special design consid-
erations and failure analysis of high-frequency 
switchers and regulators employing external 
feedback components for mobile and automo-
tive applications. The goal is to help familiar-
ize designers with various mechanisms and 
circumstances that may lead to destruction of 
on-chip power switches. Techniques for avert-
ing and eliminating the effects of EOS condi-
tions are discussed to help improve end-user 
products and PCB designs. This article also 
presents tips for conducting lab tests and sug-
gests good engineering practices to obviate 
potential problems from occurring in high-
density/ultracompact mobile designs.1, 2

Case studies
In 2011, a designer reported a shorted NMOS 
switch in the step-down DC/DC converter of 
the Texas Instruments (TI) LM26484 PMU 
during in-house testing. This regulator was 
designed into a new instrumentation panel. 
The banks of LEDs powered by a buck con-
verter were operating in light-load conditions. 
TI asked the designers to monitor the voltage 
at the supply pins around the clock for tran-
sients above 6 V. They confirmed that tran-
sient spikes were peaking at over 8 V for 
 hundreds of nanoseconds, which occurred 
 frequently. The device’s absolute maximum 
limit on the supply pin is VIN = 6 V!

It was suspected that a parasitic NPN (formed by n+ (S), 
p– (well), and n+ (D) as shown in Figure 1) may have 
turned on hard when the p– (well) base biased up the 
emitter from n+ (S), a classic EOS scenario in power 
devices. Figure 2 shows an equivalent-circuit model of a 
MOSFET device with parasitic components.

Power Management

By Kern Wong
Principal Applications Engineer
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Figure 2. Model of a typical MOSFET with 
associated parasitic elements

p– (Well)

Poly

n+ n+

D G S BB_sub

CGD
CDB

CGS

RG

RDS(on)

n+ (Substrate)

n– (Epitaxial)

Rb

Parasitic
NPN

e

c

b
Diode

Figure 1. Cross-section of a typical MOSFET 
structure and relevant parasitic elements
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Examining the PCB layout (Figure 3) revealed that the 
top traces of the power pins had a single via tapped into 
the power plane, and their longer tracks made the bypass 
capacitors ineffective. To prevent this situation from aris-
ing again, TI has suggested improved design guidelines. 
For example, adequately large bulk capacitors need to be 
added between the VIN and ground planes. Also, local 
bypassing needs to be augmented with additional capaci-
tors covering broader frequency bands. These precautions, 
shown implemented in Figure 4, will keep large transients 
from stressing the PMU’s integrated circuit.

A more involved solution for eliminating EOS is to place 
the bypass capacitors closer to the power and ground 
pins, as shown in Figure 5. Note that the power-ground 
tracks have been widened and include liberal use of larger 
vias. This recommendation became a viable solution for 
the customer.

In 2012, another customer reported experiencing some 
failures with another PMU of the same family that had 
dual buck converters and dual LDOs. The 
buck-converter switches either shorted out or 
opened soon after the system left the factory. 
This PMU was powered from a stepped-down 
supply in an automotive application. With 
many infotainment and safety systems 
becoming standard equipment in cars starting 
in 2014, the PMU production rate is projected 
to increase by approximately tenfold, creating 
a concern for all parties involved. Although no 
anomalies have been discovered in the cus-
tomer’s rigorous testing for device- and board-
level stress, some infrequent failures have 
occurred. In general, there are many known 
mechanisms and opportunities involved in 
vehicular applications that potentially could 
induce abnormal input-voltage transients, 
leading to device damage.

Common causes of EOS
Many EOS conditions on PMUs arise from 
inadequate design considerations or overlook-
ing subtle parasitics in some systems. This is 
especially true in industrial/automotive appli-
cations, wherein unusual ambient conditions 
or differences in the electromechanical layout 
can manifest reliability issues. EOS can also 
be related to the manufacturing process, test-
ing, and component aging.

The following discussion presents some of 
the most common EOS culprits. Appropriate 
design tips and suggestions are included to 
help designers eliminate EOS problems. A 
typical means of identifying failure mechanisms is well-
documented. It is strongly suggested that readers seeking 
more information also study the physics of failure via 
 failure-mode mechanisms and effects analysis (FMMEA).

Figure 3. PCB with two LM26484s provides four 
buck converters and two LDOs
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EOS caused by battery and wiring in automotive 
applications
Whenever a vehicle’s 12-V battery voltage falls too low, as 
in cold weather and cranking operations, the onboard 
PMU’s control, timing, and decision-making circuits may 
malfunction before undervoltage lockout (UVLO) comes 
to its rescue. As a result, undesirable effects  such as 
shoot-through and disengaged clamping can stress the 
MOS switches and cause permanent damage over time.

High-voltage, fast edge-rate transients are another com-
monly encountered cause of instantaneous device damage. 
Another example, load dumping, is when the 12-V battery 
is momentarily removed from the alternator connection. 
Due to the inductive effect from the long wirings involved, 
the loads can experience a sudden increase in potential at 
over 100 V, which may last for hundreds of milliseconds 
before it decays to normal levels.

High-voltage spikes in fast transients can propagate 
from the MOSFET’s drain terminal to the gate via terminal 
capacitance. This can rapidly bias up the gate, potentially 
leading to runaway conditions. Normally, slightly exceed-
ing the recommended maximum operating supply voltage 
might not be a destructive event. However, when the 
suppply voltage exceeds the maximum level and sustains 
sufficient energy, it can cause the device to short-circuit in 
a few nanoseconds or lead to an avalanche breakdown. 
Moreover, loose or poorly secured battery-cable connec-
tions can manifest similar high-voltage transients if sub-
jected to strong and abrupt mechanical vibrations.

Inadequate or poor power-supply bypassing
Inadequate supply bypassing can cause abnormal opera-
tion that may lead to shoot-through stress from timing 
issues. A proper bypass capacitor must have a voltage 
 rating that adequately covers peak voltage transients. 
Leakage and parasitic inductance from traces are among 
the sources that cause the largest, most severe L(di/dt) 
overstress pulses created at the pulsing terminal of a 
switcher. These high-energy pulses can lead to device 
breakdown as previously described. Hence, taking proper 
precautions to eliminate unwanted inductive paths is 
imperative. For example, bypass capacitors should be 
placed as close as possible to the device rail pins. A thick 
metal trace should be used as much as is allowable on all 
high-transient paths to further cut down parasitic induc-
tance. Finally, transient-suppressing elements or similar 
techniques should be used as appropriate to attenuate 
potentially destructive high-voltage spikes.

Shorted output from overloading and/or a defective load 
capacitor
When a switcher’s output current (IOUT load) exceeds the 
rated limit, built-in protection circuits usually prevent any 
immediate damage to the device. However, frequent over-
current events can lead to accumulated EOS conditions, 
which over time may cause permanent device damage. 
Such damage is associated with the finite delay time, typi-
cally in the range of microseconds, required before the 
protection circuit kicks into action. Other than true loading 

shorts, a defective output capacitor can effect a low-
impedance path that creates a dynamic short-circuit 
 current in parallel with the maximum loading—thus pro-
ducing another continuous EOS condition.

Temporary high-overcurrent operation with synchronous 
switches
The MOSFET body diode generally has a long reverse 
recovery time compared to that of the MOSFET switch 
itself. If the body diode of one MOSFET is still conducting 
when the opposing complementary device has switched 
on, then a short-circuit condition similar to shoot-through 
occurs. This can happen due to timing issues from parasit-
ics or from the circuit or device design (see Figures 1 and 
2). Furthermore, internal parasitic inductance and capaci-
tance can store energy that, under certain conditions, 
additional current may freewheel through the body diodes 
of the FET switches as one turns off and the other turns 
on. This is the classic parasitic-capacitance mechanism, 
C(dv/dt), with high-speed switching that can lead to con-
tinuous high-peak-current transients with no dependence 
on load conditions.

This type of EOS increases dramatically when coupled 
with power-rail integrity issues as discussed before. The 
circumstance can be improved or eliminated with more 
accurate design and simulation of the power-train circuitry 
and/or by augmenting protective devices, such as a 
Schottky diode across the drain and source of the 
MOSFET. Using a Schottky diode is a proven technique to 
prevent the body diode from being turned on by the free-
wheeling current. Eliminating excessive undershooting 
below ground that could cause noise and turning on para-
sitic pn junctions also lends another benefit—the Schottky 
diodes may moderately increase switcher efficiency.

Device-failure verification and analysis
Failure analysis (FA) utilizes visual inspection, impedance 
measurements, X-rays, SAT.Sam, emission hot-spot 
OBIRCH analysis, SEM, and SCM tools and techniques, 
etc., to identify failure-mode mechanisms and root causes 
of device failure. Failure analysis also examines whether 
general oversights in a customer’s design or manufacturing 
process may be the cause. When the cause is identified, TI 
issues relevant advisory and containment actions to inter-
nal and external customers to help prevent failure from 
reoccurring.

Failure-mode mechanisms

1. Electrostatic-discharge (ESD) destruction or gate surge:
Device-junction or oxide-rupture damage (a short or 
leakage) can occur as a result of improper handling dur-
ing assembly and testing of the device and system. 
These mechanisms introduce electrostatic charges onto 
the device and/or create external high-voltage surge 
events that reach the switch circuit.

For example, an ESD event between a fingertip and 
the communication-port connectors of a cell phone or 
tablet may cause permanent system damage. As process-
technology nodes continue to shrink, device-level ESD 
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protection becomes inadequate on a system level. A 
transorb, or a transient-voltage suppressor such as TI’s 
TPD1E10B06 protection diode, is a good  remedy.

2. Wear-and-tear mechanisms:
• A die fracture may occur in extreme temperature cycling

• Over time, high-voltage stress may induce dielectric 
breakdown that will become a gate-oxide short circuit

• Wire bond and metal routes can open due to EOS from 
current overload, etc.

• A voltage transient on the supply lines can cause 
 damage to passive and active devices on the die

3. PCB elements and environment:
• A circuit failure may occur due to humidity, presence  

of a contaminant, or filaments becoming conductive

• A die fracture may occur due to shock, vibration, 
 material fatigue, etc.

• Loss of polymer strength, known as glass transition 
 failure, may occur under high-temperature stress

• Bypass and load capacitors may be leaky or shorted

• Inductor windings may short-circuit due to wear and 
tear of insulation under high-temperature stress or 
mechanical vibration

4. Component aging and inadequacy:
Because aging components may contribute to MOSFET 
failures even if they initially meet datasheet specifica-
tions,1 manufacturing and product-engineering depart-
ments are encouraged to perform testing and burn-in of 
parts at ratings slightly above datasheet limits. This 
ensures that marginal devices with inherent wafer-
defect density and random process-related issues are 
weeded out. It may be better to lose some yield at pro-
duction than to be accountable for and spend valuable 
resources on field failures later on.

Failure-analysis results
In the 2012 case study mentioned earlier, where the 
switch’s drain and source channels were fused together in 
an automotive application, the customer could not deter-
mine that the PMU IC, the circuit board, or the subsystem 
had a reliability problem. Each was rigorously tested and 
stressed beyond specification limits, and no failure ever 
surfaced. The culprit might have been the layout; the elec-
trical plumbing; the system installation; and/or the operat-
ing conditions, such as cold cranking, a weak battery, or 
intermittent connection of long/loose power cabling.

Because the customer and its subcontractors were 
unable to reproduce the initial failure in their lab, they 
needed confirmation and sought assistance from TI. 
Examples of in-house failure-analysis results are depicted 
in Figures 6 and 7.

Figure 6. High-side pFET shorted to the VIN rails

Figure 7. Low-side nFET shorted to ground

Failure analysis suggested that the burn marks reflected 
in the deprocessed dies were likely the consequence of 
EOS conditions. To validate this assumption, it was dem-
onstrated that the failures could be induced in lab setups 
for (1) 5-V operation and (2) start-up conditions. By using 
a Keithley 2420 3-A source meter—a versatile power sup-
ply whose amplitude, frequency, and on/off times can be 
programmed—VIN was programmed at 5 V and injected 
with a 50-ms pulse that repeated at 100-ms intervals. With 
loading at 200 mA and above, the pulse amplitude was 
increased at 0.5-V increments at 5-minute intervals until 
abnormal current was observed. The part was then 
decapped to visually confirm EOS. The results revealed 
that when the peak-to-peak pulse voltage reached approx-
imately 7.5 V or more, the switches shorted out. Moreover, 
if pulses were to peak further to 9 V, the ESD structure 
might also be damaged.
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Reproducing a short circuit from the switches during 
start-up was more challenging, however. With a bench 
supply cycling the buck converters on and off, VIN issued 
relatively slow and smooth start-up transients and settled 
in at about 6 ms (Figure 8). Even with the supply set to 
slightly over 7 V, the switchers did not fail over days of 
stress testing.

In order to make the operation mimic in-vehicular con-
ditions more closely, the cable length between the supply 
and the device was increased from about 30 cm to about 
1.5 m. These longer wires, typically routed from the 12-V 
battery to the device, created more inductance. Further-
more, the soft power cycling from the power supply was 
replaced with a mechanical toggle switch such that the 
mechanical bounce and chatter behaved more like tran-
sients introduced by mechanical relay contacts (Figure 9).

The tests were conducted with the power-supply output 
set at 5.0 V, then the toggle switch was flip-flopped 20 
times. If no overcurrent failure was detected, the supply 
voltage was increased by 0.2 V, the switch was again tog-
gled on and off 20 times, and the process repeated until 
the part failed. The result was a stunning success! The 
buck converter’s high- or low-side switch became shorted 
with the power-supply output at about 7.5 VDC. The VIN 
pins monitored with a 10-pF probe exhibited faster turn-
on transients, which caused an overshoot above 11 V in  
20 µs. The actual L(di/dt) could have been a lot higher, 
creating a repeatable destructive EOS condition. The 
 customer was elated that this bench setup replicated the 
same failures as in the field.

Conclusion
This article has discussed common device-failure mecha-
nisms related to MOSFET transistors in integrated power-
management and voltage-regulator circuits. General pre-
cautions, specific PCB layout techniques, and component-
selection tips have been presented to help mitigate and 
eliminate EOS concerns. It is hoped that this article will 
help system and PCB designers be aware of the EOS 
effects of seemingly benign parasitic elements that can be 
subjected to transients in the PMU operating environment. 
Product and field support personnel may also find this 
article useful for understanding the cause and effect of 
EOS to facilitate their interface with customers.
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35-V, single-channel gate drivers for IGBT and 
MOSFET renewable-energy applications

Introduction
The electronics market segment labeled as renewable 
energy is a complex and diverse arena for electric power 
conversion. In point-of-load applications, the switching 
power converter typically is non-isolated; power levels are 
fairly low (<200 W); and the power is usually converted 
from one DC voltage to another, such as from 12 V to 3.3 V. 
Further, the power-stage switches are integrated or capable 
of being driven by low-current controllers or transistors. 
Integration between the controller and power stage is 
being realized today. Silicon (Si) MOSFETs dominate this 
arena, where higher switching frequencies are preferred 
and can reach speeds of greater than 1 MHz. These power 
switches generally are driven by a 5- or 12-V IC gate driver 
or similar solution.

Challenges to efficiently managing renewable-
energy systems
In the electronic power train from a wind or photovoltaic 
power generator, there are some unique performance 
challenges. Typical power levels for renewable energy can 
range from 1 to 3 kW for micro-inverters, 3 to 10 kW for 
string inverters, and 10 kW to 1 MW for large central-
inverter stations. In addition to DC-to-DC conversion, 
DC-to-AC and AC-to-DC conversion can also be used, and 
sometimes a combination of the two.

Older wind turbines were tied directly to the power grid 
but had to run at the power-line frequency. This made 
them inefficient across the many operating points they 
experienced. Newer wind turbines (Figure 1) often con-
vert AC to DC and then DC back to AC so that the wind-
driven generator can run at variable speeds for maximum 
efficiency.

Conversely, photovoltaic cells produce  
DC voltage/current. Generally, the voltage is 
boosted higher and then sent through a 
DC-to-AC inverter before being tied to  
the grid.

Renewable-energy trends
For most countries, generating renewable 
energy from sources such as wind and solar 
power makes up only a small percentage of 
their total power portfolio. In recent history, 
growth has been consistent year by year. 
There are places where renewable energy 
makes up a large share of the available power. 
Denmark, for example, generated nearly 34% 
of its total electricity from wind power alone 

By John Stevens
Systems Engineer, High-Performance Isolated Power

Generator Grid
AC
to
DC

DC
to
AC

Gearbox

Figure 1. Simplified power flow from wind 
turbine to grid

in the first half of 2012, according to the Danish Energy 
Agency. According to its parent agency, the Danish 
Ministry of Climate, Energy and Building, Denmark has 
committed to having 50% of its total power supply come 
from wind by 2020. When wind energy makes up that 
large a portion of a country’s total power, reliability of the 
conversion system becomes critical. This—together with 
the high-power connection to the grid, isolation safety 
requirements, and the cost of large renewable-energy con-
version systems—means that system reliability is always 
the design priority, followed by efficiency. Therefore, pro-
tection features and reliability are preferred at all levels, 
from the controller all the way down to the FET/IGBT 
driver itself.

Typical power-management configuration
High power levels lead to higher system voltages, and 

therefore higher standoff voltages, for the components 
used within the converter. For lower power loss at greater 
than 400 V, most circuit designers prefer to use insulated-
gate bipolar transistors (IGBTs) or the latest silicon carbide 
(SiC) FETs. These devices can have standoff voltages of 
up to 1200 V, with lower ON resistance than equivalent Si 
MOSFETs. These complex power systems often are man-
aged by a digital signal processor, a microcontroller, or a 
dedicated digital power controller. Thus, they usually 
require both power and signal isolation from the noisy 
switching environment of the power stage. Even during 
steady-state switching cycles, the circuit can see massive 
changes in both voltage and current that can create signif-
icant ground bouncing.
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Figure 2 shows that even for a single-phase 
DC-to-AC inverter, there are many gate 
 drivers needed to properly switch the IGBTs 
in the power stage. As a single-channel gate 
driver, the Texas Instruments UCC27531 can 
drive any of the switches in the switch bridge 
if it has the necessary signal and bias isolation. 
Signal isolation is achieved by using an opto-
coupler or digital isolator. For bias isolation, 
the designer can use a bootstrap circuit with 
a diode and a  capacitor, or an isolated-bias 
supply. Another option is to connect the gate 
driver on the same side of the isolation as the 
controller, then drive the switch through a 
gate transformer after the gate driver itself. 
This option allows the driver to be biased with 
a non-isolated supply on the control side.

Gate drivers in renewable energy
As a small, non-isolated gate driver, the single-
channel UCC27531 is a good fit for the envi-
ronment described. Its input signals to the IC are provided 
by an optocoupler or digital isolator. Its high supply/output-
drive voltage range of 10 to 35 V makes it ideal for 12-V Si 
MOSFET applications as well as for IGBT/SiC FET applica-
tions. Here, a higher positive gate drive is typical, as well 
as a negative voltage pull-down on shutoff to  prevent the 
power switch from false turn-on. Typically, SiC FETs are 
driven by a +20/–5-V gate driver relative to the source. 
Similarly, for IGBTs, system designers may use a +18/–13-V 
gate drive, for example (see Figure 3).

E/2

E/2

Isolator

Isolator

Isolator

Isolator

+

+

–

–

Gate
Driver

Gate
Driver

Gate
Driver

Gate
Driver

Controller

Figure 2. Basic structure of single-phase inverter

OUTH
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GND

EN –

+
VDD
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UCC27531

18 V

13 V

+

+

–

–

Figure 3. Driving a power switch with FET/IGBT 
single-gate drivers

Since the UCC27531 is a rail-to-rail driver, OUTH pulls 
up the power-switch gate to its VDD of 18 V relative to the 
emitter. OUTL pulls down the gate to the driver’s GND of 
–13 V relative to the emitter. The driver effectively sees 
+18 to –13 V, or 31 V from VDD relative to its own GND. 
Further, the 35-V rating provides a margin to prevent 
overvoltage failure of the IC due to noise and ringing.

The split output with both OUTH and OUTL permits the 
user to control the turn-on (sourcing) current and turn-off 
(sinking) current separately. This helps to maximize 
 efficiency and maintain control of the switching times to 
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comply with requirements for noise and electromagnetic 
interference. Further, even with a split output, the single-
gate driver maintains a minimum inductance on the out-
put stage, preventing excessive ringing and overshoot. By 
 having an asymmetrical drive (2.5-A turn-on and 5-A  
turn-off), the UCC27531 is optimized for average switch 
timing in high-power renewable-energy applications. 
Further, with the low pull-down impedance, this driver 
increases reliability by ensuring that the gate does not 
experience voltage spikes that could lead to false turn-on 
from the parasitic Miller-effect capacitance between the 
collector and gate for IGBTs and between the drain and 
gate for FETs. This internal capacitance can lead the gate 
to exceed the turn-on threshold voltage by pulling up on 
the gate when the collector/drain voltage rapidly increases 
during turn-off of the switch.

The input stage of the UCC27531 is also designed for 
high-reliability systems like renewable energy. It has a so-
called TTL/CMOS input that is independent of the supply 
voltage, allowing for compatibility with standard TTL-level 
signals. It provides a higher hysteresis of about 1 V when 
compared to the usual 0.5-V hysteresis seen in classic 
TTL. If the input signal is lost and becomes floating for 
any reason, the output is pulled low. Also, with the large 
changes in voltage on the GND of the driver IC, it is possi-
ble for the input signals to appear negative if the GND 
bounces high during a switching edge. This driver addresses 
this concern by handling up to –5 V continuously on the 
input (IN) or enable (EN) during these events.

The UCC27531 comes in a 3 x 3-mm, industry-standard 
SOT-23 package, which is very competitive with a discrete 
two-transistor solution that has a discrete level shifter 
without negative-input capability or added protections. 
Beyond the obvious space savings, integrating the 
UCC27531’s functions into a single IC package increases 
the system’s overall reliability.

This single-channel driver is an attractive option 
because it can be located very close to the power-switch 
gate. Placement is more flexible than for a combination 
high-side/low-side gate driver in a single IC. This flexibility 
helps minimize the inductance between the driver and 

power switch and gives the designer better control of the 
switch’s gate. Figure 2 shows how many high-power 
switches are in just a single phase of a DC-to-AC stage. 
Over a complete three-phase system with multiple conver-
sions between DC and AC and back, and with boost stages 
of DC-to-DC conversion also needed in some applications, 
there becomes a need for many gate drivers. Each one 
must be strategically placed on the PCB to ensure a 
proper design.

Conclusion
In renewable-energy applications, conversion of power 
generated from solar arrays and wind turbines presents 
unique challenges to the system designer. These chal-
lenges include high voltages and power levels, meeting 
safety and reliability requirements, and the overall com-
plexity of the completely interconnected system. Although 
gate drivers for power switches seem like a small part of 
the total system control and power flow, they are actually 
very important to the overall design performance.
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How to pick a linear regulator for  
noise-sensitive applications

Noise-sensitive applications require a power supply that 
generates low internal noise and rejects noise from the 
power source. These applications include test and 
 measurement applications, medical equipment, communi-
cation equipment, base stations, and many others. A low-
noise power supply is used to power a signal chain that 
includes data converters, amplifiers, clocks, jitter cleaners, 
PLLs, analog front ends and many other devices. A low-
noise power solution is essential to preserving signal 
 accuracy and integrity. This article addresses criteria and 
parameters to consider in designing such a power solution, 
including important specifications for picking a linear 
 regulator.

The terms “power supply ripple rejection” (PSRR) and 
“linear regulator” often are used together. The linear regu-
lator’s high ripple rejection makes it an integral part of a 
power solution. PSRR is a measure of how well the regula-
tor filters a circuit by rejecting noise or ripple coming from 
the power-supply input at various frequencies. In both 
low-dropout regulators (LDOs) and linear regulators, 
PSRR is a measure of output ripple compared to the input 
ripple over a frequency range.

Since PSRR is calculated as ripple rejection, it is 
expected to be a negative number. However, it is repre-
sented as a positive number in the datasheet so that a 
higher number denotes higher noise rejection. 
Mathematically, it is expressed in decibels as

 

IN _ ripple

OUT _ ripple

V
PSRR 20 log .

V

 
= ×  
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The PSRR of a linear regulator can be divided into three 
frequency-range regions. The first region extends from DC 
to the roll-off frequency. The ripple rejection in this region 
is mostly dominated by open-loop gain and the bandgap 
reference. The second region extends from the roll-off fre-
quency to the unity-gain frequency. The PSRR in this 
region is usually higher than in the first region and is 
mainly dominated by the open-loop gain of the regulator. 
The third region’s frequency range is above that of the 
unity-gain frequency. The output capacitor, along with the 
linear regulator’s parasitics (in the VIN-to-VOUT path), 
dominates this region. Therefore, the values of the 
selected output capacitor and its equivalent series resis-
tance are quite important. This information can be found 
in any datasheet.

In addition to VIN, VOUT, and system load requirements, 
an engineer needs to know the frequency range of ripple 
and noise in the system or power supply in order to select 
linear regulators with a good PSRR in that frequency 
range. For example, a switcher that switches at a fre-
quency of 2 MHz may require a linear regulator that has a 
high PSRR at around 2 MHz. Figure 1 shows a linear regu-
lator’s high PSRR of about 55 dB at 2 MHz that helps to 
remove input noise. Also, when PSRR graphs in the regu-
lator datasheets are evaluated, it is always good to note 
the dropout voltage at which the PSRR is measured. High 
dropout voltage leads to better PSRR but reduces the 
device’s efficiency.
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Figure 2 shows a switching regulator’s spectral noise 
that is fed to a linear regulator. It can be seen that the 
switcher is operating at 500 kHz. Figure 3 shows the 
 output spectrum of the Texas Instruments TPS7A4700 
 linear regulator. The spike caused by the switcher at  
500 kHz has been attenuated. If the power solution is not 
designed for noise attenuation with high-PSRR linear 
 regulators, the spike may show up at the output of the RF 
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Figure 2. Typical noise spectrum from a 
switching regulator
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Figure 3. Output noise spectrum of TPS7A4700 
linear regulator with attenuated 500-kHz spike

voltage- controlled oscillators, which after mixing affect 
the PA performance. The spike may also fold back into 
the audio band and create noise in an audio application.

Usually, noise and PSRR parameters are lumped 
together in a linear regulator’s datasheet, which causes a 
lot of confusion because noise and PSRR are two very 
different characteristics. Noise is purely a physical 
 phenomenon that occurs with transistors and resistors 
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inside the linear regulator on a very fundamental level. 
This type of noise may include thermal, flicker, and shot 
noise. Noise is usually indicated as a curve showing spec-
tral noise density (in µV/√Hz) versus frequency (Figure 4). 
Noise can also be indicated as integrated output noise (in 
µVRMS), listed under the electrical characteristics table in 
the datasheet (Figure 5). The output noise (in µVRMS) is 
the spectral noise density integrated over a certain fre-
quency range and can be seen as the total noise in a speci-
fied frequency range.

The next obvious question is whether an engineer 
should look at spectral noise density or integrated output 
noise, or both. The answer depends purely on the engi-
neer’s application. For example, in RF applications where 
the signal does not have any dependency on the frequency, 
it makes more sense to look at the linear regulator’s spec-
tral noise density. However, in applications where the 
noise will be integrated by the system, such as powering 
DACs and ADCs, the engineer should look at the linear 
regulator’s integrated output noise instead.
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Figure 4. Spectral noise density for the TPS7A4700

VIN = 3 V, VOUT(NOM) = 1.4 V, COUT = 50 µF,
4.17 µVRMS

CNR = 1 µF, BW = 10 Hz to 100 kHz
VNOISE Output noise voltage

PARAMETER TEST CONDITIONS TYP UNIT

VIN = 6 V, VOUT(NOM) = 5 V, COUT = 50 µF,
4.67 µVRMS

CNR = 1 µF, BW = 10 Hz to 100 kHz

Figure 5. Excerpt from TPS7A4700 datasheet showing integrated output noise voltage

Conclusion
This article has discussed the important specifications that 
design engineers need to consider when picking a linear 
regulator. It has also covered the criteria and parameters 
to consider in designing a power solution for low-noise 
applications. Given these guidelines, engineers should be 
able to preserve signal accuracy and integrity in their 
applications.
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IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
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