User's Guide LMK5C33216EVM User's Guide

TEXAS INSTRUMENTS

ABSTRACT

The LMK5C33216EVM is an evaluation module for the LMK5C33216 Network Clock Generator and Synchronizer. The EVM can be used for device evaluation, compliance testing, and system prototyping.

Table of Contents

2 EVM Quick Start. 4 3 EVM Configuration. 7 3.1 Power Supply. 8 3.2 Logic Inputs and Outputs. 9 3.3 Switching Between I2C and SPI. 10 3.4 Generating SYSREF Request. 11 3.5 XO Input. 11 3.6 Reference Clock Inputs. 13 3.7 Clock Outputs 13 3.8 Status Outputs and LEDS. 13 3.9 Requirements for Making Measurements. 13 4.1 Power Supply Schematic. 14 4.2 Power Distribution Schematic. 15 4.3 LMKSC33216 and Input Reference Inputs IN0 to IN1 Schematic. 16 4.4 Clock Outputs OUT0 to OUT3 Schematic. 17 4.5 Clock Outputs OUT0 to OUT15 Schematic. 18 4.6 Clock Outputs OUT0 to OUT15 Schematic. 19 4.7 XO Schematic. 20 4.8 Logic I/O Interfaces Schematic. 21 4.9 USB2ANY Schematic. 22 5 EVM Bill of Materials 23 5.1 Loop Filter and Vibration Nonsensitive Capacitors. 27 6 Appendix A - TICS Pro LMK5C33216 Software 28 6.1 Using the Statr Page. 30 6.3 Us	1 Introduction	2
3 EVM Configuration 7 3.1 Power Supply. 8 3.2 Logic Inputs and Outputs. 9 3.3 Switching Between I2C and SPI. 10 3.4 Generating SYSREF Request. 11 3.5 XO Input. 11 3.6 Reference Clock Inputs. 13 3.7 Clock Outputs. 13 3.8 Status Outputs and LEDS. 13 3.9 Requirements for Making Measurements. 13 4 1.1 Power Supply Schematic. 14 4.1 Power Distribution Schematic. 14 4.2 Power Distribution Schematic. 15 4.3 LMK5C33216 and Input Reference Inputs IN0 to IN1 Schematic. 16 4.4 Clock Outputs OUT0 to OUT3 Schematic. 17 4.5 Clock Outputs OUT4 to OUT9 Schematic. 17 4.6 Clock Outputs OUT10 to OUT3 Schematic. 17 4.7 XO Schematic. 20 4.8 Logic I/O Interfaces Schematic. 20 4.8 Logic I/O Interfaces Schematic. 21 4.9 USB2ANY Schematic. 22 5 EVM Bill of Materials. 23 5.1 Loop Filter and Vibration Nonsensitive Capacitors. 27 6 A Using the Statt Page. 30	2 EVM Quick Start	4
3.1 Power Supply.	3 EVM Configuration	7
3.2 Logic Inputs and Outputs. 9 3.3 Switching Between 12C and SPI. 10 3.4 Generating SYSREF Request. 11 3.5 XO Input. 11 3.6 Reference Clock Inputs. 13 3.7 Clock Outputs. 13 3.8 Status Outputs and LEDS. 13 3.9 Requirements for Making Measurements. 13 4 EVM Schematics. 14 4.1 Power Supply Schematic. 14 4.2 Power Distribution Schematic. 16 4.3 LMKSC33216 and Input Reference Inputs IN0 to IN1 Schematic. 16 4.4 Clock Outputs OUT0 to OUT3 Schematic. 17 4.5 Clock Outputs OUT0 to OUT3 Schematic. 18 4.6 Clock Outputs OUT10 to OUT15 Schematic. 19 4.7 XO Schematic. 20 4.8 Logic I/O Interfaces Schematic. 20 4.9 USB2ANY Schematic. 21 4.9 USB2ANY Schematic. 23 5.1 Loop Filter and Vibration Nonsensitive Capacitors. 27 6 Auge. 30 6.1 Using the Start Page. 30 6.2 Using the Start Page. 30 6.3 Using the Input Page. 36 6.4 Using APLL1, 2, and 3 P	3.1 Power Supply	8
3.3 Switching Between I2C and SPI. 10 3.4 Generating SYSREF Request. 11 3.5 X0 Input. 11 3.6 Reference Clock Inputs. 13 3.7 Clock Outputs. 13 3.8 Status Outputs and LEDS. 13 3.9 Requirements for Making Measurements. 13 4 EVM Schematics. 13 4 1. Power Supply Schematic. 14 4. 1 Power Distribution Schematic. 14 4.1 Power Distribution Schematic. 15 4.3 LMK5C33216 and Input Reference Inputs IN0 to IN1 Schematic. 16 4.4 Clock Outputs OUT0 to OUT3 Schematic. 17 4.5 Clock Outputs OUT10 to OUT3 Schematic. 18 4.6 Clock Outputs OUT10 to OUT15 Schematic. 19 4.7 XO Schematic. 20 4.8 Logic // O Interfaces Schematic. 21 4.9 USBZANY Schematic. 22 5 EVM Bill of Materials. 23 5.1 Loop Filter and Vibration Nonsensitive Capacitors. 27 6 Appendix A - TICS Pro LMKSC33216 Software. 28 6.1 Using the Statu Page. 31 6.3 Using the Input Page. 36 6.4 Using APLL1, 2, and 3 Pages. 36	3.2 Logic Inputs and Outputs	9
3.4 Generating SYSREF Request. 11 3.5 XO Input. 11 3.6 Reference Clock Inputs. 13 3.7 Clock Outputs and LEDS. 13 3.8 Status Outputs and LEDS. 13 3.9 Requirements for Making Measurements. 13 4 EVM Schematics. 14 4.1 Power Supply Schematic. 14 4.2 Power Distribution Schematic. 15 4.3 LMK5C33216 and Input Reference Inputs IN0 to IN1 Schematic. 16 4.4 Clock Outputs OUT10 to OUT3 Schematic. 17 4.5 Clock Outputs OUT10 to OUT3 Schematic. 17 4.5 Clock Outputs OUT10 to OUT3 Schematic. 18 4.6 Clock Outputs OUT10 to OUT3 Schematic. 17 4.5 Clock Outputs OUT10 to OUT15 Schematic. 18 4.6 Clock Outputs OUT10 to OUT15 Schematic. 20 4.7 XO Schematic. 20 4.8 Logic I/O Interfaces Schematic. 21 4.9 USB2ANY Schematic. 22 5 Th Loop Filter and Vibration Nonsensitive Capacitors. 27 6 Appendix A - TICS Pro LMK5C33216 Software. 28 6.1 Using the Statt Page. 30 6.3 Using the Input Page. 31 6.4 Using APL	3.3 Switching Between I2C and SPI	10
3.5 XO Input. 11 3.6 Reference Clock Inputs 13 3.7 Clock Outputs 13 3.8 Status Outputs and LEDS 13 3.8 Status Outputs and LEDS 13 3.9 Requirements for Making Measurements. 13 4 EVM Schematics. 13 4 1.1 Power Supply Schematic. 14 4.2 Power Distribution Schematic. 14 4.2 Power Distribution Schematic. 15 4.3 LMKSC33216 and Input Reference Inputs IN0 to IN1 Schematic. 16 4.4 Clock Outputs OUT0 to OUT3 Schematic. 17 4.5 Clock Outputs OUT1 to OUT15 Schematic. 19 4.6 Clock Outputs OUT10 to OUT15 Schematic. 19 4.7 XO Schematic. 20 4.8 Logic I/O Interfaces Schematic. 21 4.9 USB2ANY Schematic. 21 4.9 USB2ANY Schematic. 23 5.1 Loop Filter and Vibration Nonsensitive Capacitors. 27 6 Appendix A - TICS Pro LMK5C33216 Software. 28 6.1 Using the Status Page. 30 6.3 Using the Input Page. 31 6.4 Using APLL1, 2, and 3 Pages. 36 6.6 Using the DPLL1, 2, and 3 Pages. 36 <td>3.4 Generating SYSREF Request</td> <td>. 11</td>	3.4 Generating SYSREF Request	. 11
3.6 Reference Clock Inputs. 13 3.7 Clock Outputs. 13 3.8 Status Outputs and LEDS. 13 3.8 Requirements for Making Measurements. 13 4 EVM Schematics. 14 4.1 Power Supply Schematic. 14 4.2 Power Distribution Schematic. 14 4.2 Power Distribution Schematic. 16 4.4 Clock Outputs OUT0 to OUT3 Schematic. 16 4.4 Clock Outputs OUT0 to OUT3 Schematic. 17 4.5 Clock Outputs OUT10 to OUT15 Schematic. 18 4.6 Clock Outputs OUT10 to OUT15 Schematic. 19 4.7 XO Schematic. 20 4.8 Logic I/O Interfaces Schematic. 20 4.8 Logic I/O Interfaces Schematic. 21 4.9 USB2ANY Schematic. 22 5 EVM Bill of Materials. 23 5.1 Loop Filter and Vibration Nonsensitive Capacitors. 27 6 Appendix A - TICS Pro LMK5C33216 Software. 28 6.1 Using the Start Page. 31 6.3 Using the Input Page. 31 6.4 Using APLL1, 2, and 3 Pages. 34 6.5 Using the DPLL1, 2, and 3 Pages. 36 6.6 Using the PUpt Page. 37 <td>3.5 XO Input</td> <td>. 11</td>	3.5 XO Input	. 11
3.7 Clock Outputs. 13 3.8 Status Outputs and LEDS. 13 3.9 Requirements for Making Measurements. 13 4 EVM Schematics. 14 4.1 Power Supply Schematic. 14 4.2 Power Distribution Schematic. 15 4.3 LMK5C33216 and Input Reference Inputs IN0 to IN1 Schematic. 16 4.4 Clock Outputs OUT0 to OUT3 Schematic. 17 4.5 Clock Outputs OUT14 to OUT9 Schematic. 18 4.6 Clock Outputs OUT10 to OUT15 Schematic. 19 4.7 XO Schematic. 20 4.8 Logic I/O Interfaces Schematic. 20 4.9 USB2ANY Schematic. 21 4.9 USB2ANY Schematic. 23 5.1 Loop Filter and Vibration Nonsensitive Capacitors. 27 6 Appendix A - TICS Pro LMK5C33216 Software. 28 6.1 Using the Start Page. 30 6.2 Using the Status Page. 31 6.4 Using APLL1, 2, and 3 Pages. 34 6.5 Using the OPLL1, 2, and 3 Pages. 36 6.6 Using the Validation Page. 36 6.7 Using the GPIO Page. 37 7 Revision History. 38	3.6 Reference Clock Inputs	.13
3.8 Status Outputs and LEDS. 13 3.9 Requirements for Making Measurements. 13 4 EVM Schematics. 14 4.1 Power Supply Schematic. 14 4.2 Power Distribution Schematic. 15 4.3 LMK5C33216 and Input Reference Inputs IN0 to IN1 Schematic. 16 4.4 Clock Outputs OUT0 to OUT3 Schematic. 17 4.5 Clock Outputs OUT4 to OUT9 Schematic. 17 4.6 Clock Outputs OUT10 to OUT15 Schematic. 19 4.7 XO Schematic. 20 4.8 Logic I/O Interfaces Schematic. 20 4.9 USB2ANY Schematic. 21 4.9 USB2ANY Schematic. 23 5.1 Loop Filter and Vibration Nonsensitive Capacitors. 27 6 Appendix A - TICS Pro LMK5C33216 Software 28 6.1 Using the Start Page. 30 6.3 Using the Input Page. 31 6.4 Using APLL1, 2, and 3 Pages. 34 6.5 Using the OPL1, 2, and 3 Pages. 36 6.6 Using the Validation Page. 36 6.7 Using the GPIO Page. 37 6.8 Using the Outputs Page. 37 6.8 Using the Outputs Page. 37 6.8 Using the Outputs Page. 3	3.7 Clock Outputs	.13
3.9 Requirements for Making Measurements. 13 4 EVM Schematics. 14 4.1 Power Supply Schematic. 14 4.2 Power Distribution Schematic. 14 4.2 Power Distribution Schematic. 15 4.3 LMK5C33216 and Input Reference Inputs IN0 to IN1 Schematic. 16 4.4 Clock Outputs OUT0 to OUT3 Schematic. 17 4.5 Clock Outputs OUT0 to OUT9 Schematic. 18 4.6 Clock Outputs OUT10 to OUT15 Schematic. 19 4.7 XO Schematic. 20 4.8 Logic I/O Interfaces Schematic. 20 4.9 USB2ANY Schematic. 21 4.9 USB2ANY Schematic. 22 5 EVM Bill of Materials. 23 5.1 Loop Filter and Vibration Nonsensitive Capacitors. 27 6 Appendix A - TICS Pro LMK5C33216 Software. 28 6.1 Using the Start Page. 30 6.3 Using the Input Page. 31 6.4 Using APLL1, 2, and 3 Pages. 36 6.4 Using the DPLL1, 2, and 3 Pages. 36 6.6 Using the Validation Page. 37 6.8 Using the Outputs Page. 37 6.8 Using the Outputs Page. 37 6.8 Using the Outputs Page.	3.8 Status Outputs and LEDS	.13
4 EVM Schematics 14 4.1 Power Supply Schematic. 14 4.2 Power Distribution Schematic. 15 4.3 LMK5C33216 and Input Reference Inputs IN0 to IN1 Schematic. 16 4.4 Clock Outputs OUT0 to OUT3 Schematic. 17 4.5 Clock Outputs OUT4 to OUT9 Schematic. 18 4.6 Clock Outputs OUT10 to OUT15 Schematic. 19 4.7 XO Schematic. 20 4.8 Logic I/O Interfaces Schematic. 20 4.9 USB2ANY Schematic. 22 5 EVM Bill of Materials 23 5.1 Loop Filter and Vibration Nonsensitive Capacitors. 27 6 Appendix A - TICS Pro LMK5C33216 Software. 28 6.1 Using the Start Page. 30 6.3 Using the Input Page. 31 6.4 Using APLL1, 2, and 3 Pages. 34 6.5 Using the DPLL1, 2, and 3 Pages. 36 6.6 Using the Validation Page. 36 6.7 Using the GPIO Page. 37 7 Revision History. 38	3.9 Requirements for Making Measurements	13
4.1 Power Supply Schematic. 14 4.2 Power Distribution Schematic. 15 4.3 LMK5C33216 and Input Reference Inputs IN0 to IN1 Schematic. 16 4.4 Clock Outputs OUT0 to OUT3 Schematic. 17 4.5 Clock Outputs OUT1 to OUT15 Schematic. 18 4.6 Clock Outputs OUT10 to OUT15 Schematic. 19 4.7 XO Schematic. 20 4.8 Logic I/O Interfaces Schematic. 20 4.9 USB2ANY Schematic. 21 4.9 USB2ANY Schematic. 22 5 EVM Bill of Materials 23 5.1 Loop Filter and Vibration Nonsensitive Capacitors. 27 6 Appendix A - TICS Pro LMK5C33216 Software. 28 6.1 Using the Start Page. 30 6.3 Using the Input Page. 30 6.4 Using APLL1, 2, and 3 Pages. 34 6.5 Using the OPLL1, 2, and 3 Pages. 36 6.6 Using the GPIO Page. 37 6.8 Using the Outputs Page. 36 6.7 Using the GPIO Page. 37 7 Revision History. 38	4 EVM Schematics	.14
4.2 Power Distribution Schematic. 15 4.3 LMK5C33216 and Input Reference Inputs IN0 to IN1 Schematic. 16 4.4 Clock Outputs OUT0 to OUT3 Schematic. 17 4.5 Clock Outputs OUT4 to OUT9 Schematic. 18 4.6 Clock Outputs OUT10 to OUT15 Schematic. 19 4.7 XO Schematic. 20 4.8 Logic I/O Interfaces Schematic. 21 4.9 USB2ANY Schematic. 22 5 EVM Bill of Materials. 23 5.1 Loop Filter and Vibration Nonsensitive Capacitors. 27 6 Appendix A - TICS Pro LMK5C33216 Software. 28 6.1 Using the Start Page. 30 6.3 Using the Input Page. 31 6.4 Using APLL1, 2, and 3 Pages. 36 6.6 Using the OPLL1, 2, and 3 Pages. 36 6.7 Using the GPIO Page. 36 6.7 Using the GPIO Page. 37 6.8 Using the Outputs Page. 37 6.8 Using the Outputs Page. 37 7 7 7 88	4.1 Power Supply Schematic	14
4.3 LMK5C33216 and Input Reference Inputs IN0 to IN1 Schematic. 16 4.4 Clock Outputs OUT0 to OUT3 Schematic. 17 4.5 Clock Outputs OUT10 to OUT9 Schematic. 18 4.6 Clock Outputs OUT10 to OUT15 Schematic. 19 4.7 XO Schematic. 20 4.8 Logic I/O Interfaces Schematic. 21 4.9 USB2ANY Schematic. 22 5 EVM Bill of Materials. 23 5.1 Loop Filter and Vibration Nonsensitive Capacitors. 27 6 Appendix A - TICS Pro LMK5C33216 Software. 28 6.1 Using the Start Page. 30 6.3 Using the Input Page. 30 6.4 Using APLL1, 2, and 3 Pages. 34 6.5 Using the OPLL1, 2, and 3 Pages. 36 6.6 Using the Validation Page. 36 6.7 Using the GPIO Page. 37 6.8 Using the Outputs Page. 37 7 7 Revision History. 38	4.2 Power Distribution Schematic	15
4.4 Clock Outputs OUT0 to OUT3 Schematic. 17 4.5 Clock Outputs OUT4 to OUT9 Schematic. 18 4.6 Clock Outputs OUT10 to OUT15 Schematic. 19 4.7 XO Schematic. 20 4.8 Logic I/O Interfaces Schematic. 21 4.9 USB2ANY Schematic. 22 5 EVM Bill of Materials 23 5.1 Loop Filter and Vibration Nonsensitive Capacitors. 27 6 Appendix A - TICS Pro LMK5C33216 Software 28 6.1 Using the Start Page. 28 6.2 Using the Status Page. 30 6.3 Using the Input Page. 31 6.4 Using APLL1, 2, and 3 Pages. 34 6.5 Using the DPLL1, 2, and 3 Pages. 36 6.6 Using the Validation Page. 36 6.7 Using the GPIO Page. 37 6.8 Using the Outputs Page. 37 7 Revision History. 38	4.3 LMK5C33216 and Input Reference Inputs IN0 to IN1 Schematic	.16
4.5 Clock Outputs OUT4 to OUT9 Schematic. 18 4.6 Clock Outputs OUT10 to OUT15 Schematic. 19 4.7 XO Schematic. 20 4.8 Logic I/O Interfaces Schematic. 21 4.9 USB2ANY Schematic. 22 5 EVM Bill of Materials. 23 5.1 Loop Filter and Vibration Nonsensitive Capacitors. 27 6 Appendix A - TICS Pro LMK5C33216 Software. 28 6.1 Using the Start Page. 28 6.2 Using the Input Page. 30 6.3 Using the Input Page. 31 6.4 Using APLL1, 2, and 3 Pages. 34 6.5 Using the Validation Page. 36 6.6 Using the Validation Page. 36 6.7 Using the GPIO Page. 37 6.8 Using the Outputs Page. 37 7 Revision History. 38	4.4 Clock Outputs OUT0 to OUT3 Schematic	.17
4.6 Clock Outputs OUT10 to OUT15 Schematic. 19 4.7 XO Schematic. 20 4.8 Logic I/O Interfaces Schematic. 21 4.9 USB2ANY Schematic. 22 5 EVM Bill of Materials. 23 5.1 Loop Filter and Vibration Nonsensitive Capacitors. 27 6 Appendix A - TICS Pro LMK5C33216 Software. 28 6.1 Using the Start Page. 28 6.2 Using the Status Page. 30 6.3 Using the Input Page. 31 6.4 Using APLL1, 2, and 3 Pages. 36 6.5 Using the DPLL1, 2, and 3 Pages. 36 6.6 Using the Validation Page. 36 6.7 Using the GPIO Page. 37 6.8 Using the Outputs Page. 37 7 Revision History. 38	4.5 Clock Outputs OUT4 to OUT9 Schematic	.18
4.7 XO Schematic. 20 4.8 Logic I/O Interfaces Schematic. 21 4.9 USB2ANY Schematic. 22 5 EVM Bill of Materials. 23 5.1 Loop Filter and Vibration Nonsensitive Capacitors. 27 6 Appendix A - TICS Pro LMK5C33216 Software 28 6.1 Using the Start Page. 28 6.2 Using the Status Page. 28 6.3 Using the Input Page. 30 6.4 Using APLL1, 2, and 3 Pages. 34 6.5 Using the DPLL1, 2, and 3 Pages. 36 6.6 Using the Validation Page. 36 6.7 Using the GPIO Page. 37 6.8 Using the Outputs Page. 37 7 Revision History. 38	4.6 Clock Outputs OUT10 to OUT15 Schematic	.19
4.8 Logic I/O Interfaces Schematic.214.9 USB2ANY Schematic.225 EVM Bill of Materials235.1 Loop Filter and Vibration Nonsensitive Capacitors.276 Appendix A - TICS Pro LMK5C33216 Software286.1 Using the Start Page.286.2 Using the Status Page.306.3 Using the Input Page.316.4 Using APLL1, 2, and 3 Pages.346.5 Using the OPLL1, 2, and 3 Pages.366.6 Using the GPIO Page.366.7 Using the GPIO Page.377 Revision History.38	4.7 XO Schematic	20
4.9 USB2ANY Schematic.225 EVM Bill of Materials.235.1 Loop Filter and Vibration Nonsensitive Capacitors.276 Appendix A - TICS Pro LMK5C33216 Software.286.1 Using the Start Page.286.2 Using the Status Page.286.3 Using the Input Page.306.4 Using APLL1, 2, and 3 Pages.346.5 Using the OPLL1, 2, and 3 Pages.366.6 Using the Validation Page.366.7 Using the GPIO Page.376.8 Using the Outputs Page.377 Revision History.38	4.8 Logic I/O Interfaces Schematic	21
5 EVM Bill of Materials235.1 Loop Filter and Vibration Nonsensitive Capacitors276 Appendix A - TICS Pro LMK5C33216 Software286.1 Using the Start Page286.2 Using the Status Page306.3 Using the Input Page306.4 Using APLL1, 2, and 3 Pages346.5 Using the DPLL1, 2, and 3 Pages366.6 Using the Validation Page366.7 Using the GPIO Page376.8 Using the Outputs Page377 Revision History38	4.9 USB2ANY Schematic	.22
5.1 Loop Filter and Vibration Nonsensitive Capacitors.276 Appendix A - TICS Pro LMK5C33216 Software.286.1 Using the Start Page.286.2 Using the Status Page.306.3 Using the Input Page.316.4 Using APLL1, 2, and 3 Pages.346.5 Using the DPLL1, 2, and 3 Pages.366.6 Using the Validation Page.366.7 Using the GPIO Page.376.8 Using the Outputs Page.377 Revision History.38	5 EVM Bill of Materials	.23
6 Appendix A - TICS Pro LMK5C33216 Software 28 6.1 Using the Start Page 28 6.2 Using the Status Page 30 6.3 Using the Input Page 31 6.4 Using APLL1, 2, and 3 Pages 34 6.5 Using the DPLL1, 2, and 3 Pages 36 6.6 Using the Validation Page 36 6.7 Using the GPIO Page 37 6.8 Using the Outputs Page 37 7 Revision History 38	5.1 Loop Filter and Vibration Nonsensitive Capacitors	27
6.1 Using the Start Page	6 Appendix A - TICS Pro LMK5C33216 Software	.28
6.2 Using the Status Page	6.1 Using the Start Page	.28
6.3 Using the Input Page	6.2 Using the Status Page	30
6.4 Using APLL1, 2, and 3 Pages	6.3 Using the Input Page	.31
6.5 Using the DPLL1, 2, and 3 Pages	6.4 Using APLL1, 2, and 3 Pages	.34
6.6 Using the Validation Page	6.5 Using the DPLL1, 2, and 3 Pages	.36
6.7 Using the GPIO Page	6.6 Using the Validation Page	36
6.8 Using the Outputs Page	6.7 Using the GPIO Page	.37
7 Revision History	6.8 Using the Outputs Page	.37
	7 Revision History	38

Trademarks

All trademarks are the property of their respective owners.

1

ADVANCE INFORMATION

1 Introduction

Overview

The LMK5C33216EVM is an evaluation module for the LMK5C33216 Network Clock Generator and Synchronizer. The EVM can be used for device evaluation, compliance testing, and system prototyping. The LMK5C33216 integrates three Analog PLLs (APLL) and three Digital PLLs (DPLL) with programmable loop bandwidth. The EVM includes SMA connectors for clock inputs, oscillator inputs, and clock outputs to interface the device with $50-\Omega$ test equipment.

The onboard TCXO allows the LMK5C33216 to be evaluated in free-running, locked, or holdover mode of operation. The EVM can be configured through the onboard USB microcontroller (MCU) interface using a PC with TI's TICS Pro software graphical user interface (GUI). TICS Pro can be used to program the LMK5C33216 registers.

Features

• LMK5C33216 DUT

What is Included

• LMK5C33216EVM

What is Needed

- Windows PC with TICS Pro Software GUI
- Test Equipment
 - DC power supply (5 V, 2 A)
 - Real-time oscilloscope
 - Source signal analyzer
 - Precision frequency counter
 - Signal generator / reference clock

In Figure 1-1, jumper position is shown by the red markings. Dip switch positions are shown be either a green box (for ON) or red box (for OFF) in the appropriate location.

Figure 1-1. LMK5C33216EVM Default Setting of Jumpers and Dip Switches

2 EVM Quick Start

Table 2-1 describes the default jumper positions for the EVM to power the device from a single 4.5 V supply provided to VIN1. In positional information about jumpers, *adj des* means jumper is placed adjacent to designator. *Opp des* means jumper is placed opposite designator.

			j-
CATEGORY	REF DES	POSITION	DESCRIPTION
Power	JP1	1-2 (adj des)	DUT VDD = 3.3 V from LDO1 provided by U3.
	JP2	1-2 (adj des)	DUT VDDO = 3.3 V from LDO2 rail provided by U3.
	JP3	1-2 (adj des)	LDO3 IN powered from VIN1 external supply.
	JP4	1-2 (adj des)	XO VCC = 3.3 V from LDO3.
Communication	JP5	1-2, 3-4	Connect I2C from onboard USB2ANY to DUT
LMK5C33216 Control Pins	S3	S5[1:2] = OFF	SCS_ADD = no pull-up or pull-down.
	S1, S2, S4	Sx[1,2] = OFF Sx[3,4] = ON	Enable 3.9k pull-down on GPIO0, GPIO1, and GPIO2

Table 2-1. Default Jumper and DIP Switch Settings

To begin using the LMK5C33216, follow the steps below.

Hardware Setup

- 1. Verify the EVM default jumper and DIP switch settings shown in Table 3-1.
- 2. Connect Power, +4.5 V from an external DC power supply (2-A limit), see Figure 3-2.
 - a. To VIN1 & GND terminals on header J1 (pins 1 and 4), or
 - b. To VIN1 SMA connector J2.
- 3. Connect references.
 - a. 156.25 MHz reference clock to IN0_P/N and/or,
 - b. 10 MHz reference clock to IN1_P/N
- 4. Connect USB cable to USB port at J41.

Software Setup

- 1. If not already installed, install TICS Pro software from TI website:
- 2. If the MATLAB R2015b (9.0)* 64-bit runtime is not already installed, download and install from MathWorks website. While optional for programming and evaluating the default profile settings, the Matlab Runtime is necessary for any application that needs to modify the DPLL loop filter settings. See
- 3. Start TICS Pro software
- 4. Select the LMK5C33216 profile from Select Device → Network Synchronizer Clock (Digital PLLs) → LMK5C33216
- 5. Confirm communications with board by
 - a. From the menu bar, click USB communications.
 - b. Click Interface
 - c. In Communication Setup pop-up window.
 - i. Ensure USB2ANY is selected as the interface.
 - ii. In case of multiple USB2ANY, select desired interface. If a USB2ANY is currently in use in another TICS Pro, you must release that interface by changing its interface setting to *DemoMode*
 - iii. Click identify to blink LED illustrated in Figure 2-1. This confirms you are connected to the board you expect.

Figure 2-1. USB LED

Program LMK5C33216

- 1. Toggle switch S5 (PDN/RESET).
- 2. Program all the registers by...
 - a. Pressing Write All Regs button in toolbar
 - b. From the menu bar click USB Communications then click Write All Registers, or
 - c. Pressing Ctrl + L.
- 3. Current consumption should be approximately 1.15 A.
- 4. Check LMK5C33216 Status
 - a. Status Page of GUI
 - b. Click Read Status Bits
 - c. To clear latched bits.
 - i. Press Clear Latched Bits button
 - ii. Read Status Bits
 - d. It may take some time for the DPLL status bits to reflect lock.

1		INTR Source	INTR Flag Polarity	INTR Latched Bits	INTR Status Mask	INT_EN OR V
Ν	Read Statu	(read only)	1 = Normal Polarity	Clear Latched Bits	0 = Route to Interrupt 1 = Mask (ignore)	Apply AND or OR operator to
L		LOL_PLL1	LOL_PLL1_POL	LOL_PLL1_INTR	LOL_PLL1_MASK	for output to pin.
L	APLLS	LOL_PLL2	LOL_PLL2_POL	LOL_PLL2_INTR	LOL_PLL2_MASK	Active Reference/Holdover
L	xo	LOL_PLL3	LOL_PLL3_POL	LOL_PLL3_INTR	LOL_PLL3_MASK	O: Holdover
L		LOS_FDET_XO	LOS_FDET_XO_POL	LOS_FDET_XO_INTR	LOS_FDET_XO_MASK	0: Holdover
L		LOR MISSCLK1	LOR_MISSCLK1_POL	LOR_MISSCLK1_INTR	LOR_MISSCLK1_MASK	0: Holdover
L		LOR_FREQ1	LOR_FREQ1_POL	LOR_FREQ1_INTR	LOR_FREQ1_MASK	Poforonce Validated
L		LOR PH1	LOR PH1 POL	LOR PH1 INTR	LOR PH1 MASK	
L		REFSWITCH1	REFSWITCH1_POL	REFSWITCH1_INTR	REFSWITCH1_MASK	REF1_VALID_STATUS
L	DPLL1	LOPL_DPLL1	LOPL_DPLL1_POL	LOPL_DPLL1_INTR	LOPL_DPLL1_MASK	
L		LOFL_DPLL1	LOFL_DPLL1_POL	LOFL_DPLL1_INTR	LOFL_DPLL1_MASK	
L		HLDOVR1	HLDOVR1_POL	HLDOVR1_INTR	HLDOVR1_MASK	REF0_FDET_STATUS
L			HIST1_POL	HIST1_INTR	HIST1_MASK	REF0_PH_STATUS
L		LOR_MISSCLK2	LOR_MISSCLK2_POL	LOR_MISSCLK2_INTR	LOR_MISSCLK2_MASK	REF1_FDET_STATUS
L		LOR_FREQ2	LOR_FREQ2_POL	LOR_FREQ2_INTR	LOR_FREQ2_MASK	REF1_MISSCLK_STATU:
L		LOR_PH2	LOR_PH2_POL	LOR_PH2_INTR	LOR_PH2_MASK	
L		REFSWITCH2	REFSWITCH2_POL	REFSWITCH2_INTR	REFSWITCH2_MASK	
L	DPLL2	LOPL_DPLL2	LOPL_DPLL2_POL	LOPL_DPLL2_INTR	LOPL_DPLL2_MASK	
L		LOFL_DPLL2	LOFL_DPLL2_POL	LOFL_DPLL2_INTR	LOFL_DPLL2_MASK	
L		HLDOVR2	HLDOVR2_POL	HLDOVR2_INTR	HLDOVR2_MASK	
L			HIST2_POL	HIST2_INTR	HIST2_MASK	
L		LOR_MISSCLK3	LOR_MISSCLK3_POL	LOR_MISSCLK3_INTR	LOR_MISSCLK3_MASK	Other Status Registers
L		LOR_FREQ3	LOR_FREQ3_POL	LOR_FREQ3_INTR	LOR_FREQ3_MASK	PLL1_VM_INSIDE
L		LOR_PH3	LOR_PH3_POL	LOR_PH3_INTR	LOR_PH3_MASK	PLL2_VM_INSIDE
	DBUIS	REFSWITCH3	REFSWITCH3_POL	REFSWITCH3_INTR	REFSWITCH3_MASK	
	DPLLS	LOPL_DPLL3	LOPL_DPLL3_POL	LOPL_DPLL3_INTR	LOPL_DPLL3_MASK	SYNC_CH_STOPPED
		LOFL_DPLL3	LOFL_DPLL3_POL	LOFL_DPLL3_INTR	LOFL_DPLL3_MASK	
		HLDOVR3	HLDOVR3_POL	HLDOVR3_INTR	HLDOVR3_MASK	Bypass Status Controls
			HIST3_POL	HIST3_INTR	HIST3_MASK	

Figure 2-2. Read Status Bits

Measure

Measurements may now be made at the clock outputs.

3 EVM Configuration

The LMK5C33216 is a highly configurable clock chip with multiple power domains, PLL domains, and clock input and output domains. To support a wide range of LMK5C33216 use cases, the EVM was designed with more flexibility and functionality than needed to implement the chip in a customer system application.

This section describes the power, logic, and clock input and output interfaces on the EVM, as well as how to connect, set up, and operate the EVM. Refer to Figure 4-1.

ITEM NO.		REF DES	DESCRIPTION
1		U1	LMK5C33216 DUT
2	A	J1 (VIN1 terminal block header), or	External Supply +5 V using default configuration
2	В	J2 (VIN1 SMA) Not populated by default	
2	A	Y1, or	
3	В	J8	
4	•	J4/5, J6/7	SMA Ports for DUT Clock Inputs (IN0_P/N and IN1_P/N)
5		J9/11, J10/12, J13/15, J14/16, J17/19, J18/20, J21/J23, J22/24, J25/27, J26/28, J29/31, J30/32, J33/35, J34/36, J37/39, J38/40	SMA Ports for DUT Clock Outputs
6		S5	Normally open. Push button for DUT power down (PDN pin). Connect R76 to enable control of the PDN pin through the GUI
7		JP5	Jumper Header for I ² C/SPI interface (MCU to DUT)
8		D6	SCL or SCK busy indication LED.
9		J41	USB Port for MCU

Table 3-1. Key Components REF DES and Descriptions

7

Figure 3-1. Key Components - EVM Top Side

3.1 Power Supply

The LMK5C33216 has VDD and VDDO supply pins that operate from 3.3 V \pm 5%.

J1 is the main power terminal to the external power supply. Power SMA port VIN1 (J2) provides an alternative connector style to apply power through coax cable. By default this SMA connector is not populated.

On the EVM, the default power configuration uses the onboard LDO regulators to power all VDD and VDDO pins from an external 5-V supply input VIN1 to J1 (or J2). A Dual LDO regulator (U3) is used to power the VDD and VDDO rails of the DUT and its peripheral circuitry. A separate LDO regulator (U4), also supplied from VIN1, is used to power the onboard XO circuits.

Note

Not every power connection is used or required to operate the EVM. Other power configurations are possible. See the power schematics in Figure 4-1 and Figure 4-2.

Figure 3-2. Default Power Jumper Configuration

Figure 3-2 shows the default power jumper locations and setting	ngs. Table 3-2 shows the suggested power
configurations for the DUT.	

CONNECTION	NAME	ONBOARD LDO REGULATORS (DEFAULT)	DIRECT EXTERNAL SUPPLIES
		VD = 3.3 V (LDO1) VDDO = 3.3 V (LDO2)	VDD = 3.3 V (EXT. VIN1) VDDO = 3.3 V (EXT. VIN2)
J1	PWR	Pin 1 (VIN1): Connect to external 5-V supply Pin 2 (VIN2): n/a Pin 3 (VIN3): n/a Pin 4 (GND): Connect to supply ground	Pin 1 (VIN1): Connect to external 3.3-V supply Pin 2 (VIN2): Connect to external 3.3-V supply Pin 3 (VIN3): n/a Pin 4 (GND): Connect to supply ground
JP1	VDD	Tie pins 1-2 (adjacent to designator) to select 3.3 V from LDO1 to VDD Plane	Tie pins 2-3 (opposite to designator) to select external VIN1 to VDD Plane
JP2	VDDO	Tie pins 1-2 (adjacent to designator) to select 3.3 V from LDO2 to VDDO Plane	Tie pins 2-3 (opposite to designator) to select external VIN2 to VDDO Plane

0.0. Our mante al Devue a Configuration

3.2 Logic Inputs and Outputs

The logic I/O pins of the DUT support different functions depending on the device start-up mode chosen by the GPIO1 input level upon POR.

The default logic input pin states are determined by onboard pullup or pulldown resistors, but some input pins can be driven to high or low state by the MCU output or DIP switch control. The MCU can be controlled from a PC running TICS Pro software to program the device registers through I2C or SPI and also drive the DUT logic inputs. To allow the MCU to control the pin input, SW[2] must be set to on.

See Table 3-3 for the logic pin mapping tables for the device start-up modes.

Table 3	-3. Device	Start-Up	Modes
	0. 001100	otant op	moaoo

GPIO1 Input Level1	Start-up Mode
0	l ² C Mode
1	SPI Mode

1. The input levels on these pins are sampled only during POR.

3.3 Switching Between I2C and SPI

To switch the EVM between I2C and SPI modes, the switches and jumpers must be configured as follows:

Figure 3-3. I2C Mode Jumper Configuration

Figure 3-4. SPI Mode Jumper Configuration

In SPI mode, GPIO2 must also be configured as *STATUS or INT* and *SPI Readback Data (SDO)* to support SPI readback.

GPI	O Controls				
GRION	GPIO0_IN_FLT_EN	Active High	~	CMOS	~
GPIOU	SYSREF_REQ, Can requ	est SYSREF pul 👒	XO Loss of S	Signal (LOS)	v
CRIOI	GPIO1_IN_FLT_EN	Active High	~	CMOS	Ŷ
GPIOT	STATUS or INT, Acts as s	tatus or interrupt 🖂	XO Loss of S	Signal (LOS)	Ŷ
00100	GPIO2_IN_FLT_EN	Active High	~	CMOS	¥
GPIOZ	STATUS or INT, Acts as s	tatus or interrupt 👻	SPI Readba	ck Data (SDO)	ý

Figure 3-5. GPIO2 Setting for SPI Mode

Communication Setu	р				-	-	×
USB2ANY		v	Identify		Protocol	I2C	
	DemoMode	В	it Rate (kbps)		Sca	in I2C Bu	s
DemoMode	Bennomous		400	~	Set I2C A	ddress	0x 0

Figure 3-6. Communication Setup Window (Changing from I2C to SPI)

3.4 Generating SYSREF Request

GPIO0 and GPIO1 can be used to generate a SYSREF request. The TICS Pro software + EVM is designed to use GPIO2 for SPI readback (SDO). Accordingly, GPIO2 is not listed in the pins as it is dedicated for SPI readback. In user application, any GPIO pin may be used.

Connect the desired GPIO pin to the MCU by setting S2 as ON on the switch block for the desired GPIO. Then, make sure the GPIO pin is configured for SYSREF_REQ on the GPIO tab of the GUI. A SYSREF Request can now be issued by toggling the GPIO buttons in the *Pins* section of the *User Controls* tab.

GPIC	O Controls				
CRION	GPIO0 IN FLT EN	Active High	~	CMOS	~
GPIOU	SYSREF_REQ, Can requ	est SYSREF pul 👒	XO Loss of S	Signal (LOS)	Ŷ
0004	GPIO1_IN_FLT_EN	Active High	*	CMOS	~
GPIOT	STATUS or INT, Acts as st	tatus or interrupt 🖂	XO Loss of S	Signal (LOS)	~
-	GPIO2_IN_FLT_EN	Active High	÷	CMOS	~
GPIOZ	STATUS or INT, Acts as s	tatus or interrupt v	XO Loss of S	Signal (LOS)	

Figure 3-7. GPIO Setting for SYSREF Request

SYSREE REQ MODE	=
GPIO input pin w/o re	•
SYSREF_REQ_SEL	
SYSREF1_CLK	
SYSPEE REO SW	1

Pins	
Program Pins	
PDN#	
GPIO0	
GPIO1	

Figure 3-9. GPIO Pin Selection for SYSREF

3.5 XO Input

The LMK5C33216 has an XO input (XO_P pin) to accept a reference clock for the Fractional-N APLLs. The XO input determines the output frequency accuracy and stability in free-run or holdover modes. For synchronization applications like SyncE or IEEE 1588, the XO input would typically be driven by a low frequency TCXO, OCXO, or external traceable clock that conforms to the frequency accuracy and holdover stability requirements of the application. For DPLL mode, the XO frequency must have a non-integer frequency relationship with the VCO frequency of any APLLs which utilize XO input as their reference. For APLL only mode (DPLL not used), the XO

frequency can have an integer relationship with the VCO to avoid fractional spurs. Any APLL may accept any other APLL as a reference instead of the XO. The BAW on APLL3 provides a good option for a high frequency cascaded referenced.

The XO input of the LMK5C33216 has programmable on-chip input termination and AC-coupled input biasing options to support any clock interface type.

For flexibility, the EVM provides the XO input options (use one at a time). C70 allows an external reference to be provided at SMA connector XO_P (J8). C71 allows one of the on board XO/TCXO/OCXO footprints to be used. By default Y1 is populated with a 38.88 MHz TCXO and selected with the populated R43. Other XO/TCXO/ OCXO may be installed and connected using the appropriate resistor. Care should be taken if more than one device is installed to remove resistors for isolation.

Figure 3-10. XO Input

3.5.1 38.88-MHz TCXO (Default)

By default, the EVM is populated with a 38.88-MHz, 3.3-V LVCMOS, low-jitter TCXO (Y1) to drive the XO_P input of the DUT with the onboard termination and AC coupling. See Figure 3-10. Y1 can be used to evaluate various frequency configurations.

3.5.2 External Clock Input

Another option is to feed an external clock to the SMA ports (J8) to drive the XO_P input. See Figure 3-10. This path can be connected to the XO_P input pins. Y1 should be powered down when using the external XO input path.

3.6 Reference Clock Inputs

The LMK5C33216 has two DPLL reference clock input pairs (IN0_P/N and IN1_P/N) with configurable input priority and input selection modes. The inputs have programmable input type, termination, and biasing options to support any clock interface type.

External LVCMOS or Differential reference clock inputs can be applied to the SMA ports, labeled IN0_P/N and IN1_P/N. All SMA inputs are routed through $50-\Omega$ single-ended traces and DC coupled to the corresponding IN0_P/N and IN1_P/N pins of the DUT. Single ended singles should be connected to the non-inverting input, IN0_P or IN1_P.

3.7 Clock Outputs

The LMK5C33216 has 16 clock output pairs (OUT[0:15]_P/N).

Output clocks are AC-coupled to the SMA ports labeled OUT[0:15]_P/N.

3.8 Status Outputs and LEDS

Status outputs signals can be configured on the GPIO0, GPIO1, and GPIO2 pins. The status output signal, output type (3.3-V LVCMOS or NMOS open-drain).

3.9 Requirements for Making Measurements

When performing measurements with the LMK5C33216EVM, the following procedures must be completed:

1. Ensure all required outputs have proper termination components installed to match the desired output types. Recommended output terminations for each output type are shown in Figure 3-11.

Figure 3-11. Output Termination Recommendations

2. Ensure all enabled outputs that are not connected to any test equipment have a 50 Ω SMA termination. An example of a 50 Ω SMA termination is shown in Figure 3-12.

Figure 3-12. 50 Ω SMA Termination

4 EVM Schematics

4.1 Power Supply Schematic

4.2 Power Distribution Schematic

Figure 4-2. Power Distribution

4.3 LMK5C33216 and Input Reference Inputs IN0 to IN1 Schematic

4.4 Clock Outputs OUT0 to OUT3 Schematic

OUT0-OUT3 CLOCK OUTPUTS

Figure 4-4. Clock Outputs OUT0 to OUT3

4.5 Clock Outputs OUT4 to OUT9 Schematic

OUT4 to OUT9 CLOCK OUTPUTS

Figure 4-5. Clock Outputs OUT4 to OUT9

4.6 Clock Outputs OUT10 to OUT15 Schematic

Figure 4-6. Clock Outputs OUT10 to OUT15

4.7 XO Schematic

4.8 Logic I/O Interfaces Schematic

Figure 4-8. Logic I/O Interfaces

4.9 USB2ANY Schematic USB MINI-B CONNECTOR 3.3V, 150mA REGULATOR J41 USB VBU VBUS_FILT TP41 MCU_3V3 U2A_3V3 FB13 VBUS VBUS VIN vou R144 33 D_N e Bead C129 10uF R145 33k C130 D C131 22uF R146 33 D DΡ 7.5 R147 1.5k 0402 NC NC 2 4 ID C132 0.1uF ~~~ C133 0.1uF PUR GNE GND PAD <u>õ</u> Ő S6 VUSB R148 2 4 BSL C134 220pF R149 1.2Meg 8₫ GND 4 v v

MSP430 MCU -- "USB2ANY" (U2A) CONTROLLER

Figure 4-9. USB MCU

5 EVM Bill of Materials

Table 5-1. EVM BOM

Designator	QTY	Value	Description	PartNumber	Manufacturer
!PCB1	1		Printed Circuit Board	HSDC102	Any
C1, C14, C24, C90	4	0.01uF	CAP, CERM, 0.01 uF, 50 V, +/- 5%, X7R, 0603	C0603C103J5RACTU	Kemet
C2, C7, C13, C15, C23, C25, C32, C38, C44, C47, C50, C53, C56, C59, C62, C63, C64, C65, C66, C79, C129, C130	22	10uF	CAP, CERM, 10 uF, 10 V, +/- 20%, X5R, 0603	C1608X5R1A106M080A C	TDK
C3, C11, C18, C131	4	22uF	CAP, CERM, 22 uF, 10 V, +/- 20%, X5R, 0805	LMK212BJ226MG-T	Taiyo Yuden
C4, C19	2	10uF	CAP, CERM, 10 uF, 10 V, +/- 20%, X7R, 1206	C3216X7R1A106M160A C	TDK
C5, C6, C20, C21, C41	5	1uF	CAP, CERM, 1 uF, 10 V, +/- 10%, X5R, 0603	C0603C105K8PACTU	Kemet
C9, C16, C28, C31, C34, C37, C40, C43, C46, C49, C52, C55, C58, C67, C70, C71, C72, C78, C80, C96, C97, C98, C99, C100, C101, C102, C103, C104, C105, C106, C107, C108, C109, C110, C111, C112, C113, C114, C115, C116, C117, C118, C119, C120, C121, C122, C123, C124, C125, C126, C127, C128, R40	53	0.1uF	CAP, CERM, 0.1 uF, 25 V, +/- 5%, X7R, 0603	C0603C104J3RACTU	Kemet
C10, C27	2	47uF	CAP, CERM, 47 µF, 10 V,+/- 20%, X5R, 0805	GRM21BR61A476ME15L	MuRata
C12, C89, C132, C133, C137, C138, C142, C143, C144	9	0.1uF	CAP, CERM, 0.1 uF, 16 V, +/- 5%, X7R, 0603	C0603C104J4RACTU	Kemet
C22, C26	2	0.47uF	CAP, CERM, 0.47 uF, 10 V, +/- 10%, X7R, 0603	C0603C474K8RACTU	Kemet
C30, C33, C36, C39, C42, C45, C48, C51, C54, C57, C60	11	0.1uF	CAP, CERM, 0.1 uF, 10 V, +/- 10%, X5R, 0402	C1005X5R1A104K050BA	ТDК
C61	1	0.1uF	CAP, CERM, 0.1 uF, 50 V, +/- 10%, X7R, 0603	C1608X7R1H104K080AA	TDK
C75, C141	2	0.47uF	CAP, CERM, 0.47 uF, 10 V, +/- 10%, X7R, 0603	GRM188R71A474KA61D	MuRata
C134, C140	2	220pF	CAP, CERM, 220 pF, 50 V, +/- 1%, C0G/NP0, 0603	06035A221FAT2A	AVX
C135, C136	2	30pF	CAP, CERM, 30 pF, 100 V, +/- 5%, C0G/NP0, 0603	GRM1885C2A300JA01D	MuRata
C139	1	2200pF	CAP, CERM, 2200 pF, 50 V, +/- 10%, X7R, 0603	C0603C222K5RACTU	Kemet
D1, D2	2	20V	Diode, Schottky, 20 V, 2 A, SMA	B220A-13-F	Diodes Inc.
D3, D4, D5, D12	4	Green	LED, Green, SMD	LTST-C190GKT	Lite-On
D6	1	Red	LED, Red, SMD	LTST-C170KRKT	Lite-On
D7, D9, D10	3	Yellow	LED, Yellow , SMD	LTST-C170KSKT	Lite-On
D8	1	30V	Diode, Schottky, 30 V, 0.2 A, SOT-23	BAT54-7-F	Diodes Inc.
D11	1	7.5V	Diode, Zener, 7.5 V, 550 mW, SMB	1SMB5922BT3G	ON Semiconductor

Table 5-1. EVM BOM (continued)							
Designator	QTY	Value	Description	PartNumber	Manufacturer		
FB1, FB2, FB3, FB4, FB5, FB6, FB7, FB8, FB9, FB10, FB11	11	220 ohm	Ferrite Bead, 220 ohm @ 100 MHz, 2.5 A, 0603	BLM18SG221TN1D	MuRata		
FB12	1	300 ohm	Ferrite Bead, 300 ohm @ 100 MHz, 0.4 A, 1.6x0.8x0.95mm	LI0603D301R-10	Laird-Signal Integrity Products		
FB13	1	60 ohm	Ferrite Bead, 60 ohm @ 100 MHz, 3.5 A, 0603	MPZ1608S600ATAH0	TDK		
FID1, FID2, FID3, FID4, FID5, FID6	6		Fiducial mark. There is nothing to buy or mount.	N/A	N/A		
H1, H2, H3, H4, H5, H6	6		BUMPER CYLIN 0.312" DIA	SJ61A6	3M		
J1	1		Terminal Block, 4x1, 5.08mm, TH	39544-3004	Molex		
J4, J6, J7, J9, J10, J11, J12, J13, J14, J15, J16, J17, J18, J19, J20, J21, J22, J23, J24, J25, J26, J27, J28, J29, J30, J31, J32, J33, J34, J35, J36, J37, J38, J39, J40	35		CONN SMA JACK STR EDGE MNT	CON-SMA-EDGE-S	RF Solutions Ltd.		
J8	1		Connector, SMA, TH	142-0701-201	Cinch Connectivity		
J41	1		Connector, Receptacle, Mini-USB Type B, R/A, Top Mount SMT	1734035-2	TE Connectivity		
JP1, JP2, JP3, JP4	4		Header, 2.54mm, 3x1, Gold, SMT	M20-8770342	Harwin		
JP5	1		Connector Header Surface Mount 14 position 0.100" (2.54mm)	54202-G0807LF	Amphenol ICC		
L1, L2	2	68nH	Inductor, Multilayer, Composite, 68 nH, 0.15 A, 1.5 ohm, AEC-Q200 Grade 1, SMD	MLK1005S68NJTD25	ТDК		
LBL1	1		Thermal Transfer Printable Labels, 0.650" W x 0.200" H - 10,000 per roll	THT-14-423-10	Brady		
Q1, Q3, Q4, Q5	4	50V	MOSFET, N-CH, 50 V, 0.22 A, SOT-23	BSS138	Fairchild Semiconductor		
Q2	1	25V	MOSFET, N-CH, 25 V, 0.22 A, SOT-23	FDV301N	Fairchild Semiconductor		
R1, R6	2	3.57k	RES, 3.57 k, 1%, 0.1 W, 0603	RC0603FR-073K57L	Yageo		
R2, R5, R8	3	47k	RES, 47 k, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW060347K0JNEA	Vishay-Dale		
R3, R7	2	1.15k	RES, 1.15 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW06031K15FKEA	Vishay-Dale		
R4	1	0	RES, 0, 5%, 0.25 W, AEC-Q200 Grade 0, 1206	CRCW12060000Z0EA	Vishay-Dale		
R9	1	30.9k	RES, 30.9 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW060330K9FKEA	Vishay-Dale		
R10	1	10.0k	RES, 10.0 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW060310K0FKEA	Vishay-Dale		
R11, R12, R16, R17, R18, R19, R20, R21, R22, R23, R25, R41, R52, R55, R61, R64, R66, R71, R73, R150, R151, R152, R153, R154, R155, R156, R157, R158, R163, R164	30	0	RES, 0, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW06030000Z0EA	Vishay-Dale		
R13, R14, R15, R54, R56, R67, R74	7	470	RES, 470, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW0603470RJNEA	Vishay-Dale		

Table 5-1. EVM BOM (continued)						
Designator	QTY	Value	Description	PartNumber	Manufacturer	
R26, R27, R30, R31, R33, R34, R37, R38	8	0	RES, 0, 0%, 0.2 W, AEC-Q200 Grade 0, 0402	CRCW04020000Z0EDHP	Vishay-Dale	
R32	1	51	RES, 51, 5%, 0.0625 W, 0402	RC0402JR-0751RL	Yageo America	
R42	1	49.9	RES, 49.9, 1%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW060349R9FKEA	Vishay-Dale	
R43	1	0	RES, 0, 5%, 0.063 W, AEC-Q200 Grade 0, 0402	CRCW04020000Z0ED	Vishay-Dale	
R44, R51, R63, R68, R70	5	10k	RES, 10 k, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW060310K0JNEA	Vishay-Dale	
R53, R65, R69, R72	4	3.9k	RES, 3.9 k, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW06033K90JNEA	Vishay-Dale	
R57, R58	2	1.5k	RES, 1.5 k, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW06031K50JNEA	Vishay-Dale	
R62	1	100k	RES, 100 k, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW0603100KJNEA	Vishay-Dale	
R76, R159, R160	3	1.0k	RES, 1.0 k, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW06031K00JNEA	Vishay-Dale	
R77	1	100	RES, 100, 5%, 0.25 W, AEC-Q200 Grade 0, 0603	ESR03EZPJ101	Rohm	
R97	1	20	RES, 20, 5%, 0.063 W, AEC-Q200 Grade 0, 0402	CRCW040220R0JNED	Vishay-Dale	
R144, R146	2	33	RES, 33, 5%, 0.063 W, AEC-Q200 Grade 0, 0402	CRCW040233R0JNED	Vishay-Dale	
R145, R148, R165	3	33k	RES, 33 k, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW060333K0JNEA	Vishay-Dale	
R147	1	1.5k	RES, 1.5 k, 5%, 0.063 W, AEC-Q200 Grade 0, 0402	CRCW04021K50JNED	Vishay-Dale	
R149	1	1.2Meg	RES, 1.2 M, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW06031M20JNEA	Vishay-Dale	
R161, R162, R166	3	510	RES, 510, 5%, 0.1 W, AEC-Q200 Grade 0, 0603	CRCW0603510RJNEA	Vishay-Dale	
S1, S2, S4	3		Switch, SPST 4 Pos, Top Actuated, SMT	219-4LPST	CTS Electrocomponents	
S3	1		Switch, Slide, SPST 2 poles, SMT	219-2LPST	CTS Electrocomponents	
S5, S6	2		Switch, Tactile, SPST-NO, 0.05A, 12V, SMT	FSM4JSMA	TE Connectivity	
SH1, SH2, SH3, SH4, SH5, SH6	6	1x2	Shunt, 100mil, Gold plated, Black	SNT-100-BK-G	Samtec	
TP2, TP5, TP41	3		Test Point, Miniature, Red, TH	5000	Keystone	
TP19, TP20, TP21, TP22, TP23, TP24, TP25, TP26	8		Test Point, Miniature, Black, TH	5001	Keystone	
TP31, TP32, TP33, TP34, TP35, TP36, TP37, TP38, TP39, TP40	10		Test Point, Miniature, SMT	5019	Keystone	
U1	1		Ultra-Low Jitter Clock Synchronizer with JESD204B for Wireless Communications	LMK5C33216RGCR	Texas Instruments	
U2	1		Dual 1A Low-Noise (3.8µVRMS) LDO Voltage Regulator, RTJ0020D (WQFN-20)	TPS7A8801RTJR	Texas Instruments	
U3	1		Low-Noise, High-Bandwidth PSRR, Low- Dropout 1-A Linear Regulator, DRB0008A (VSON-8)	TPS7A8101DRBR	Texas Instruments	
U5	1		Single 2-Input Exclusive-OR Gate, DBV0005A (SOT-23-5)	SN74LVC1G86DBVR	Texas Instruments	

Table 5-1. EVM BOM (continued)						
Designator	QTY	Value	Description	PartNumber	Manufacturer	
U6	1		150-mA Ultra-Low Noise LDO for RF and Analog Circuits Requires No Bypass Capacitor, NGF0006A (WSON-6)	LP5900SD-3.3/NOPB	Texas Instruments	
U7	1		4-Channel ESD Protection Array for High- Speed Data Interfaces, DRY0006A (USON-6)	TPD4E004DRYR	Texas Instruments	
U8	1		25 MHz Mixed Signal Microcontroller with 128 KB Flash, 8192 B SRAM and 63 GPIOs, -40 to 85 degC, 80-pin QFP (PN), Green (RoHS & no Sb/Br)	MSP430F5529IPN	Texas Instruments	
Y1	1		Quartz Crystal Controlled Oscillators	ENA5591A	NDK	
Y6	1		Crystal, 24.000 MHz, 20pF, SMD	ECS-240-20-5PX-TR	ECS Inc.	

5.1 Loop Filter and Vibration Nonsensitive Capacitors

The capacitors used on the EVM use are X7R which are ferromagnetic and therefore sensitive to vibration due to the piezoelectric effect. It is recommended to use non-ferromagnetic capacitors such as NP0, C0G, or Tantalum for applications in which optimal performance is required in the presence of vibration.

At and below 47 nF, C0G/NP0 capacitors are available in 0805 sized packages. For values 0.1 uF and above Tantalum capacitors may be considered for vibration immune loop filter components.

Table 5-2. Examples of Substitute Capacitors Which are Vibration Immune

CAPACITOR VALUE	VIBRATION SENSITIVE, X7R	VIBRATION IMMUNE
3.3 nF	C0603C332K5RACTU, 0603	GRM1885C1H332JA01D, C0G/NP0, 0603
33 nF	C0603C333J3RACTU, 0603	C2012C0G1H333J125AA, C0G/NP0, 0805
47 nF	06035C473JAT2A, 0603	C0805X473G3GEC7800, C0G/NP0, 0805 C0805C473J3GACTU, C0G/NP0, 0805
0.1 uF	C0603C104J3RACTU, 0603	GRM31C5C1E104JA01L, C0G/NP0, 1206 TAJR104K020RNJ, Tantalum, 0805
0.47 uF	GRM188R71A474KA61D, 0603	F921C474MPA, Tantalum, 0805

6 Appendix A - TICS Pro LMK5C33216 Software

6.1 Using the Start Page

The Start Page can be used to configure the PLLs for specific VCO frequencies and DPLL operation.

Figure 6-1. Start Page Location

6.1.1 Step 1

Setup the XO_P input frequency and interface type. Setup the input to the APLL by specifying the reference to each PLL and associated settings for PLL phase detector frequency.

6.1.2 Step 2

In Step 2, setup the clock input frequencies and the interface type. Cascaded APLLs can also be assigned from this page using the PLL R-divider and phase detector preview to the right.

Step 1:	XO Input		Note: VCO Foodbook from upping		
XO_P	Freq. (MHz) 38.88	Interface Type 8: CMOS v	may not be properly updated until after VCO frequencies are calcualted.	R Divider & Doubler	APLL Phase Detector Frequency
Ra	inge: 10 to 100		PLL1	13 🚔	~94.523076 MHz
Step 2:	Clock Inputs Freg. (MHz)	Interface Type	~1228.800000 MHz	Bypass DBLR	
REF0 REF1	156.25 10.0	12: S-E (int. 50 ohm) ~ 12: S-E (int. 50 ohm) ~	PLL2 XO ~	3 *	77.76 MHz
			38.88 MHz	DBLR	
a) i b) i	Range: Up to 750e6 Enter '0' when the input i	is never used.	PLL3 XO ~ 38.88 MHz	2 ↓ ✓ Bypass ✓ DBLR	77.76 MHz

Figure 6-2. Step 1 and 2: XO Input and Clock Inputs

6.1.3 Step 3

Set the clock input select mode for the DPLLs, input priority, and maximum TDC frequency.

DPLL1				DPLL2			DPLL3		
Input 8	Select Mode	Auto Non-I	evertive ~	Input Select Mo	Manual H	foldover ~	Input Select Mode	Auto non-	revertive ~
Manu	ual Selection	REF0	~	Manual Select	REF1	~	Manual Selection	REF0	~
Pin / Reg	gister Select	Register	~	Pin / Register Sele	ct Pin	~	Pin / Register Select	Register	~
	Auto Select I	Priority	Doubler	Auto Se	ect Priority	Doubler	Auto Select	Priority	Doubler
REF0	Not available	for s v	Enable	REF0 4th	*	Enable	REF0 Not availabl	e for s v	Enable
REF1	Not available	for s v	Enable	REF1 Not avail	ble for s v	Enable	REF1 Not availabl	e for s v	Enable
law.									
				REF4 7th	Ŷ	n/a (from PLL1)	REF4 Not availabl	e for ⊱ ∽	n/a (from PLL
REF5	Not available	for s	n/a (from PLL3)	REF4 7th REF5 7th	>	n/a (from PLL1) n/a (from PLL3)	REF4 Not availabl	e for s v	n/a (from PLL
REF5	Not available	for s v	n/a (from PLL3)	REF4 7th REF5 7th	•	n/a (from PLL1) n/a (from PLL3)	REF4 Not availabl	e for s v	n/a (from PLL
REF5 Maxi	Not available simum TDC ency (MHz)	for s v	n/a (from PLL3)	REF4 7th REF5 7th Maximum TD Frequency (MH	~ ~	n/a (from PLL1) n/a (from PLL3)	REF4 Not availabl Maximum TDC Frequency (MHz)	e for ٤ v	n/a (from PLL

Figure 6-3. Step 3: DPLL Clock Input Selection

6.1.4 Step 4

Step 4 is currently not implemented for 0-Delay setup.

6.1.5 Step 5

Enter desired target frequencies for each of the outputs as well as desired output format, output source, whether the output is SYSREF, and whether the output is being used or not.

Press the Calculate VCO Frequency Options to generate a list of possible VCO frequency combinations.

Figure 6-4. Step 5: Clock Outputs

Select a desired combination of VCO frequencies from the list of calculated values. If a specific VCO frequency is not in this list, a manual override can occur by selecting the *Enable User Override* check box and typing in the desired VCO frequencies. The *Copy to Selected VCO Frequency* box can also be used to copy the VCO frequency in the list selections to the VCO overrides.

Press the Assign Selected VCO Settings to Device to update the VCO frequencies. Press the Apply Output Clock Settings to Device button. By default, the analog PLL frequencies are shown; however the DPLL calculated frequency from step 6 will result in exact output frequencies.

6.1.6 Step 6

For step 6, enter the desired DPLL loop bandwidth.

Note: Any time an approximate symbol is shown, a tool tip will allow exact output frequency to be seen by mousing over the control.

Update red fields to control the DPLL characteristics.	DPLL1		DPLL2		DPLL3		
The transfer function and error function allowed	VCO1 Fre	eq. (MHz)	VCO2 Freq. (MHz)		VCO3 Freq. (MHz)		
peaking can be left at the default values, if there is	~5000.0	00000	~5625.000000		~2457.600000		
no application requirement specifying these values.	Range: 4.8	le9 to 5.4e9	Range: 5.6e (PG1p0: 5.	9 to 6.0e9 625 e9 to 6.3e9)	Range: 245	7.6 MHz +/- 50 ppn	
Running the script will yield attenuation values (in dB) for the specified transfer/error function offsets.	Target	Actual	Target	Actual	Target	Actual	
DPLL LBW (Hz)	1	1.015	100	101.428	100	101.428	
DPLL Transfer Function Allowed Peaking (dB)	0.1	—	0.1	1 —	0.1	—	
DPLL Error Function Allowed Peaking (dB)	1	—	1	—	1	—	
DCO Step Size (ppb)	0.1	n/a	0.1	n/a	0.1	n/a	
	Offset (Hz)						
Transfer Function Attenuation	100	-79.46 dB	100	-3.03 dB	100	-3.03 dB	
Error Function Attenuation	100	-6.0 dB	100	-1.49 dB	100	-1.49 dB	

Figure 6-5. Step 6: PLLs

6.1.7 Step 7

To calculate the DPLL divider settings, select which DPLL loop filters and dividers to calculate and press the Run Script button. The software will now run and calculate the necessary settings.

When red fields are changed, cli for selected DPLLs below.	ck Calculate DPLL Settings to generate updated DPLL setting
Calc DPLL1	Run Script
Galc DPLL2	Bypass Bun Script warning
Calc DPLL3	_ ofpuss that coupt warning

Figure 6-6. Step 7: Run Script

6.2 Using the Status Page

The status page shows fields pertaining to the current status of the device. The update these fields click the *Read Status Bits* button or the *Read RO Regs* button in the tool bar. The Read RO Regs button will read all read only registers which provides more information on other pages including the status fields but can take longer to read back. The read status bits just reads the status bits for this page.

For the DPLL to lock, a reference must be validated and selected as shown in the Active Reference/Holdover and Reference Validated portion of the window, as seen in the circled portion of Figure 6-7.

As the DPLL locks, it is expected to see the LOPL_DPLLx as the last bit to become clear when the phase lock is acquired.

When INT_EN = 1, any live status flag which occurs will latch to the INTR Latched bit columns. These will remain asserted until the *Clear Latched Bits* button is selected. This gives additional insight into the behavior of the device.

Pressing the Soft-chip reset button in the toolbar will cause the device to reset and re-start lock.

Read Statu	s INTR Source Live Status (read only)	INTR Flag Polarity 0 = Inverted Polarity 1 = Normal Polarity	INTR Latched Bits Clear Latched Bits	INTR Status Mask 0 = Route to Interrupt 1 = Mask (ignore)	Apply AND or OR operator to
APLLs XO DPLL1	(read only) LOL_PLL1 LOL_PLL2 LOL_PLL3 LOS_FDET_XO LOR_MISSCLK1 LOR_FREQ1 LOR_PH1 REFSWITCH1 LOPL_DPLL1 LOFL_DPLL1 HLDOVR1	1 = Normal Polarity LOL_PLL1_POL LOL_PLL2_POL LOS_FDET_XO_POL LOS_FDET_XO_POL LOR_FREQ1_POL LOR_PH1_POL REFSWITCH1_POL LOPL_DPLL1_POL LOFL_DPLL1_POL HLDOVR1_POL	LOL_PLL1_INTR LOL_PLL2_INTR LOL_PLL3_INTR LOS_FDET_XO_INTR LOS_FDET_XO_INTR LOR_FREQ1_INTR LOR_FREQ1_INTR LOR_PH1_INTR REFSWITCH1_INTR LOPL_DPLL1_INTR LOFL_DPLL1_INTR HLDOVR1_INTR	1 = Mask (ignore) LOL_PLL1_MASK LOL_PLL2_MASK LOL_PLL3_MASK LOS_FDET_XO_MASK LOR_FREQ1_MASK LOR_FREQ1_MASK LOR_PH1_MASK REFSWITCH1_MASK LOPL_DPLL1_MASK LOFL_DPLL1_MASK HLDOVR1_MASK	Active Reference/Holdover
DPLL2	 HIST1 LOR_MISSCLK2 LOR_FREQ2 LOR_PH2 REFSWITCH2 LOPL_DPLL2 LOFL_DPLL2 HLDOVR2 HIST2 	 HIST1_POL LOR_MISSCLK2_POL LOR_FREQ2_POL LOR_PH2_POL REFSWITCH2_POL LOPL_DPLL2_POL LOFL_DPLL2_POL HLDOVR2_POL HIST2_POL 	HIST1_INTR LOR_MISSCLK2_INTR LOR_FREQ2_INTR LOR_PH2_INTR REFSWITCH2_INTR LOPL_DPLL2_INTR LOFL_DPLL2_INTR HLDOVR2_INTR HIST2_INTR	HIST1_MASK LOR_MISSCLK2_MASK LOR_FREQ2_MASK LOR_PH2_MASK REFSWITCH2_MASK LOPL_DPLL2_MASK LOFL_DPLL2_MASK HLDOVR2_MASK HIST2_MASK	REF0_MISSCL4_STATUS REF1_FDET_STATUS REF1_FDET_STATUS REF1_MISSCLK_STATUV REF1_PH_STATUS
DPLL3	 LOR_MISSCLK3 LOR_FREQ3 LOR_PH3 REFSWITCH3 LOPL_DPLL3 LOFL_DPLL3 HLDOVR3 HIST3 	 LOR_MISSCLK3_POL LOR_FREQ3_POL LOR_PH3_POL REFSWITCH3_POL LOPL_DPLL3_POL LOFL_DPLL3_POL HLDOVR3_POL HIST3_POL 	LOR_MISSCLK3_INTR LOR_FREQ3_INTR LOR_PH3_INTR REFSWITCH3_INTR LOPL_DPLL3_INTR LOFL_DPLL3_INTR HLDOVR3_INTR HIST3_INTR	LOR_MISSCLK3_MASK LOR_FREQ3_MASK LOR_PH3_MASK REFSWITCH3_MASK LOPL_DPLL3_MASK LOFL_DPLL3_MASK HLDOVR3_MASK HIST3_MASK	Other Status Registers PLL1_VM_INSIDE PLL2_VM_INSIDE PLL3_VM_INSIDE TOD_HOLD SYNC_CH_STOPPED Bypass Status Controls XO_FDET_BYP

Figure 6-7. Status Page

6.3 Using the Input Page

The Input Page provides a high level view of all the inputs for the device, the APLL frequency, and DPLL frequency of the device.

Figure 6-8. Inputs Location

Once the DPLL dividers and loop filter have been calculated by running the script in step 7 on the start page, this page displays the DPLL divider values which set the DPLL frequency. Here it is shown that the DPLL frequency is the exact desired frequency.

Each DPLL supports two sets of DPLL dividers which can be selected. At this time, the tool calculates the divider for FB Config 1 only. Div #1 settings may be copied into Div #2 settings and selected for use by the DPLL Div Select control.

On this page, it is possible to select the APLL frequency or DPLL frequency to propagate through to the outputs by changing APLL frequency to DPLL frequency.

Figure 6-9. APLL or DPLL Frequency Selection

Figure 6-10. PLL3 Input

6.3.1 Cascaded Configurations

Cascaded configurations can be created using the input page, where the relevant VCO buffers and dividers will automatically be enabled by inferring the state of source selection registers.

At least one PLL must always be active and set to XO reference source for cascaded configurations to be valid. APLL start-up priority will automatically choose XO-source APLLs to start up before all other PLLs whenever possible. If in pin-selection mode, since start-up priority cannot be properly inferred, users must set this priority themselves in the User Controls page. In the example image below, APLL2 and APLL3 are referenced to XO input and APLL1 reference is from APLL3. Priority is controlled in ascending order, with 0 first and 2 last. APLLs can share priorities; if all APLL priorities are set to 0, all APLLs will startup simultaneously.

Figure 6-11. Cascade APLL Start Priorities

6.3.1.1 Cascade VCO to APLL Reference

Cascading APLLs is controlled by the APLL source box, circled in Figure 6-12. This box is programmed bitwise and is automatically set when generating a frequency plan. The XO_OUT_BUF_EN register in the *Input Control* section of the *User Controls* tab is automatically set to enable or disable the XO Output Buffer. The PLLx_RDIV_XO_EN is automatically checked/unchecked in each APLLx tab depending on whether each APLL is using the XO input.

Figure 6-12. APLL Source Box

6.4 Using APLL1, 2, and 3 Pages

The APLL pages can be used to see detailed information on APLL behavior including the output dividers. It is possible to select between APLL frequency and DPLL frequency from this page to cascade to the output frequency boxes. By leaving **APLL frequency** (as shown in blue circle) selected, it is possible to type a VCO frequency into the PLL1 VCO frequency box (as shown in red circle) to have the fractional N value re-calculated.

When the DPLL is not used, the APLLs support an APLL only mode with a programmable 24-bit denominator. Support for this mode is currently not implemented in the TICS Pro software.

Figure 6-14 below shows the post dividers for PLL2 which includes PLL2 P2 for high speed open collector CML output, and below right shows the post dividers for PLL3 which includes PLL3 P1 with a CML MUX for bypassing BAW frequency directly to CML outputs or to be used with the PLL3 P1 divider for other outputs.

Figure 6-15. PLL3 Dividers

6.5 Using the DPLL1, 2, and 3 Pages

The DPLL pages contain many advanced controls that are normally set during the *Run Script* calculation. They also contain the DCO Shift control in the top left.

	Auto Select Priority	1	
DPLL1	REF0 2nd V		
DPLL1 Enable 🔽 DPLL1_EN	REF1 1st v		
Input Select Mode Auto Revertive ~		Inne	
Pin/Register Mode Register ~		DPLL1 FB FDEV EN	REF FB DIV
	REF4 Not avail ~	DPLL1_FB_FDEV	500
DCO Shift Controls (ppb)	REF5 Not avail v	5217000	DPLL1_FB_NUM
DPLL1_MAN_REFSEL	REF0 ~	DPLL1_FB_FDEV_UPDATE	DPLL1_FB_DEN
DPLL1_REFSEL_STAT	2: REF1 ~	0	1099511627775

Figure 6-16. Primary DPLL Controls

6.5.1 DPLL DCO

To use the DCO shift controls on a given DPLL, enter the DCO ppb step value into the DCO Shift Controls (ppb) box shown above.

6.6 Using the Validation Page

The validation page allows the user to enable/disable different detectors for reference validation along with DPLL frequency and phase lock requirements.

Clock Input Validation (LOS) for input	clock validation Reassign All	Tranue < Period of Referen	ce < Ture
Validation Timer Enable Valid. time Enable Valid* (ppm)	Frequency Detect Threshold Ear Invalid Accuracy Average Meas time (ppm) (ppm)	rly Clk Window Detector le Margin T _{EARLY} Enable	Missing Clk Window Detector Missing Margin T _{LATE} Clocks
REF0 ☑ 1.6 s □ 100	150 10 1 2.57 ms	1 -4.80 ns	1 24.00 ns
REF1 1.6 s V 1 100	150 10 1 2.57 ms	1 🔹 88.80 ns 🕢	1 • 3 • 211.20 ns
*The mi 1 PPS Phase Detector Enable Threshold T _{PMASE-VALID}	DPLL1 Frequency Lock Detect	old = maximum X0 ppm error + maxi DPLL1_LOCKDET_PPM_EN	DPLL1 Phase Lock Detect Threshold T _{MEAS}
REF0 0 n/a; REF0 > 2 kHz REF1 0 n/a; REF1 > 2 kHz	Lock (ppm) Unlock (ppm) Average (count) 90 120 1	Accuracy (ppm) T _{MEAS}	Lock 39 + 458.90 ns Unlock 40 + 917.79 ns
	DPLL2 Frequency Lock Detect Lock (ppm) Unlock (ppm) Average (count) 90 120 1 +	DPLL2_LOCKDET_PPM_EN Accuracy (ppm) T _{MEAS} 10 n/a	DPLL2 Phase Lock Detect Threshold T _{MEAS} Lock 40 764.83 ns Unlock 41 1.53 us
The 1 PPS Phase Detector requires ≤ 2 kHz reference frequency. Threshold is set to accomodate the jitter of the 1 PPS reference clock in periods of the XO reference clock.	DPLL3 Frequency Lock Detect Lock (ppm) Unlock (ppm) Average (count) 90 120 1 1	DPLL3_LOCKDET_PPM_EN Accuracy (ppm) T _{MEAS} 10 n/a	DPLL3 Phase Lock Detect Threshold T _{MEAS} Lock 38 + 1.38 us Unlock 39 + 2.75 us

6.7 Using the GPIO Page

Allows configuring GPIO0, 1, and 2.

When using SPI readback on the EVM, GPIO2 must be configured as *STATUS or INT...* and *SDO output*. Refer to Section 3.3.

CRICO IN FLT EN	A set of a state of a			
GPIOU_IN_FLI_EN	Active High	~	CMOS	¥
STATUS or INT, Acts as st	tatus or interrupt 🔍 X	O Loss of S	Signal (LOS)	Ŷ
GPIO1_IN_FLT_EN	Active High	~	CMOS	Ŷ
STATUS or INT, Acts as st	tatus or interrupt 🗸	O Loss of S	lignal (LOS)	Ŷ
GPIO2_IN_FLT_EN	Active High	×	CMOS	~
	STATUS or INT, Acts as st GPIO1_IN_FLT_EN STATUS or INT, Acts as st GPIO2_IN_FLT_EN	STATUS or INT, Acts as status or interrupt Xi GPIO1_IN_FLT_EN Active High STATUS or INT, Acts as status or interrupt Xi GPIO2_IN_FLT_EN Active High	STATUS or INT, Acts as status or interrupt XO Loss of S GPIO1_IN_FLT_EN Active High STATUS or INT, Acts as status or interrupt XO Loss of S GPIO2_IN_FLT_EN Active High	STATUS or INT, Acts as status or interrupt XO Loss of Signal (LOS) GPIO1_IN_FLT_EN Active High CMOS STATUS or INT, Acts as status or interrupt XO Loss of Signal (LOS) GPIO2_IN_FLT_EN Active High CMOS

Figure 6-18. GPIO Page

6.8 Using the Outputs Page

The outputs page shows all the possible source frequencies to the output channels. To simplify settings fields necessary to providing an output frequency, a source mux lists all possible sources for each output. Be sure to enable/disable desired outputs at right hand side.

There are many detailed output pages beneath the Outputs page illustrated below showing individual controls for each set of outputs.

The black line between OUT2 to OUT3, OUT4 to OUT7,OUT8 to OUT13, and OUT14 to OUT15 signifies that all these outputs should source from the same VCO.

Outputs Reference Inputs	Source/Channel Muxes	Digital/Analog Delay	Channel Dividers	Output Drivers	Set/Clear Low-Power Disable
INO 156.25	PLL2 v - 0:CH0/2 v -	0	10 🔺	LVDS V	~312.500000 OUT0
			0		-212 500000 OUT1
	PLLI_PRI + 20.CHDIVI +		•	HSDS V	~312.500000 MHz
	ChanDiv i 🗸 SYSREF 0	0	2		
0: OFF 🗸	2:PLL1_PRI v 3:CHDIV v	- 0 -	10 🔺	DISABLED V	0.0 OUT2 MHz
Selected Ref Frequency	2:PLL1_PRI v 3:CHDIV v	0	16 🌲	LVDS V	~156.250000 OUT3 MHz
X0 Frequency	(2.010))/	0	5 4		o o OUT4
38.88	PLL2 V CML: PLL3 P1 V		3 • •	DISABLED	0.0 MHz
PLL1	12:CHDIV v		L	LVDS ~	~125.000000 OUT5 MHz
~5000.000000	SYSREF 0		250 🔹		
PLL1 P1	12:CHDIV V	- 0 -	5 🛖 🕈	DISABLED V	0.0 OUT6
2 •	PLL2 V CML: PLL3 P1 V				MIT12
PLL1 P2	12:CHDIV V		L	DISABLED V	0.0 OUT7 MHz
	SYSREF 0	0	250 🔶		
~5625.000000	16:BYPASS V		5 🛟	LVDS ~	~491.520000 OUT8 MHz
PLL2 P1	PLL3 -				7.60 00179
9 ~	SYSREF 0	0	64	LVDS V	~7.00 MHz
PLL2 P2 (CML MODE ONLY)			•		
3	PIL3 -	0-	•₹	HSDS V	~491.520000 MHz
PLL3	9:SYSREF V		L	LVDS -	~7.68 OUT11 MHz
PLL3 P1	SYSREF 0		64 🜩		
5 ~	16:BYPASS -	- 0 -	64 🔹	HSDS ~	~491.520000 OUT12 MHz
PLL3 CML MUX (CML MODE ONLY)	PLL3 -				
VCO3 Direc V	16:BYPASS -			LVDS ~	~491.520000 OUT13
	SYSREF 0	· · · ·	04 😴		
'∔⇒	2:VCO1_PRI ~ 3:CHDIV ~	0	25 🔹	LVDS V	~100.0 OUT14 MHz
	2:VC01_PRI v 3:CHDIV v	0	25 🔹	HSDS V	~100.0 OUT15 MHz

Figure 6-19. Outputs Page

7 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision * (October 2020) to Revision A (February 2021)	Page
Updated Power Supplies image	
Updated Power Distribution image	
Updated LMK5C33216 and Input Reference Inputs IN0 to IN1 image	16
Updated Clock Outputs OUT0 to OUT3 image	17
Updated Clock Outputs OUT4 to OUT9 image	
Updated Clock Outputs OUT10 to OUT15 image	19
Updated XO Schematic image	
Updated Logic I/O Interfaces image	21
Updated USB MCU image	22

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated