

1 2

AN-1475 DP83847 to DP83848M/T/H PHYTER Mini System Rollover Document

ABSTRACT

This application note discusses the process to update DP83847 to the new DP83848M/T/H PHYTER minisystem.

Contents

Package Differences

.....

	2.2	I mout	•
	2.3	PCB Modification	3
3	Potent	tial Changes	5
	3.1	TX_ER	5
	3.2	MII Interface	5
	3.3	PHY Address	6
	3.4	Flow Control	
	3.5	Physical Layer ID Register	
	3.6	Software Reset	
4		ational Changes	
	4.1	Auto-Negotiation and LED Pins	
	4.2	Auto_MDIX Setting	
	4.3	Energy Detect	
	4.4	CLK_to_MAC Output	
Apper			
Apper	idix B		11
		List of Figures	
1	Specia	al Connection in DP83848M/T/H	3
2	DP838	348M/T/H PMD Connections (Termination & Biasing)	2
3	DP838	347 PMD Connections (Termination & Biasing)	Ę
4		al Connection in DP83848M/T/H	
		List of Tables	
1	Packa	ging Differences	3
2	Bias R	tesistor Values	2
3	Termin	nation and Biasing Differences	2
4	Regist	er Change for Vendor Model Numbers	6
5	New F	eatures of DP83848M/T/H	6
6	DP838	348M/T/H Pin for Auto-Negotiation and LED	7
7	DP838	348M/T/H Auto-Negotiation Modes	7

Texas Instruments is a trademark of Texas Instruments. PHYTER is a registered trademark of Texas Instruments. All other trademarks are the property of their respective owners.

www.ti.com

8	Pin Map	ç
9	Register Bit Definitions	11

www.ti.com Purpose

1 Purpose

This is an informational document detailing points to be considered when updating an existing 10/100 Mb/s Ethernet design, using the Texas Instruments™ DP83847 Ethernet Physical Layer (PHY) product, to the new DP83848M/T/H PHYTER® Mini product. Although the basic functions of the device are similar, differences include feature set, pin functions, package and pinout, and possibly register operation. The impact to a design is dependant on which, and how, features of the previous device are used or implemented.

2 Required Changes

This section documents the hardware changes required to transition to DP83848M/T/H. There are three minor but required circuit changes, which are required for proper operation of the device.

2.1 Package Differences

DP83848M/T/H uses the 40LLP package. The differences between DP83848M/T/H and DP83847 packages are shown in Table 1. For more information on the 40LLP package please visit www.ti.com/packaging.

	DP83848M/T/H	DP83847
Package	40-LLP	56-LLP
Footprint	6x6mm	9x9mm
Package Drawing	SQA40A	LQA56A

Table 1. Packaging Differences

2.2 Pinout

DP83847 has 56 pins while DP83848M/T/H has 40 pins. Please see Appendix A for the list of pins not applicable in DP83848M/T/H and the pinmap from DP83847 to DP83848M/T/H.

2.3 PCB Modification

This section describes the DP83847 circuit design modification required to use the DP83848M/T/H in a similar PCB.

2.3.1 **PFBOUT**

Parallel capacitors (10uF Tantalum capacitor and 0.1uF) should be placed close to pin 19 (PFBOUT, the output of the regulator) in DP83848M/T/H and pin 42 (C1, the output of the regulator) in DP83847. In DP83848M/T/H, Pin 16 (PFBIN1) and 30 (PFBIN2) should be externally connected to pin 19 as shown in Figure 1. A small 0.1uF capacitor should be placed close to pin 16 and pin 30. DP83847 does not require a similar connection.

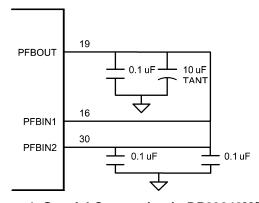


Figure 1. Special Connection in DP83848M/T/H

Required Changes www.ti.com

2.3.2 Bias Resistor

Internal circuitry biasing of the DP83848M/T/H has changed from previous devices.

Table 2. Bias Resistor Values

	DP83848M/T/H	DP83847	
Bias Resistor Value	4.87K Ohm	10K Ohm	

2.3.3 Termination and PMD Biasing

Termination of the PMD receive pair (TPRD+/-) on previous Physical Layer devices consisted of a pair of 54.9 Ohms, AC biased to GND. This value, when seen in parallel with the internal receiver circuitry, provided an equivalent of 100 Ohms impedance. In DP83848M/T/H the internal receiver circuitry has changed and now requires a pair of 49.9 Ohm resistors, biased to VDD of the device. This matching of the termination resistors and common biasing between the receiver and transmitter of the DP83848M/T/H allows the addition of the Auto-MDIX feature to the device.

Table 3. Termination and Biasing Differences

	DP83848M/T/H	DP83847
TX Termination	49.9 Ohms	49.9 Ohms
TX Bias	3.3V	3.3V
RX Termination	49.9 Ohms	54.9 Ohms
RX Bias	3.3V	AC to GND

Refer to the next set of figures for a graphic explanation of this.

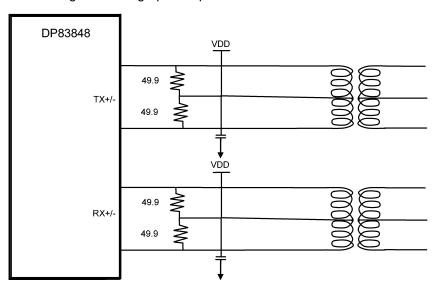


Figure 2. DP83848M/T/H PMD Connections (Termination & Biasing)

www.ti.com Potential Changes

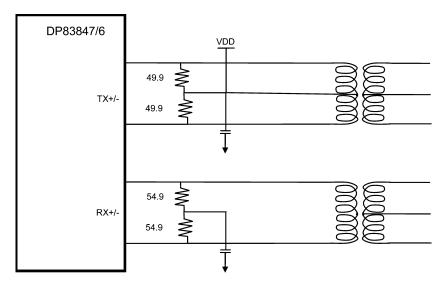


Figure 3. DP83847 PMD Connections (Termination & Biasing)

3 Potential Changes

The following section describes the specific changes that may be implemented in DP83848M/T/H depending on the application.

3.1 TX_ER

Older designs using the DP83847 may use the TX_ER pin. This signal allows the system MAC to force DP83847 to deliberately corrupt the transmitted packet by inserting bad symbol codes. A similar function can be accomplished by having the MAC signal the PHY to stop transmission mid-packet. By stopping mid-packet, the receiving node will interpret the packet as having a bad CRC. Upper layers can then decide to receive or reject the packet in question. Since the function on the TX_ER pin can be more easily attained with the latter method, the TX_ER pin was not included on the DP83848M/T/H. If the TX_ER pin is used as an input to any device, the pin should be pulled low to ensure that it does not float.

3.2 MII Interface

The MII interface is used to connect the PHY to the MAC in 10/100 Mbps systems. For a 5V MII application, it is recommended to use 33 Ohm series resistor between the MAC and receive interface of DP83848M/T/H and 47 Ohm series resistor between the MAC and transmit interface of DP83848M/T/H. The MII interface is a nibble-wide interface which consists of a transmit interface, receive interface and control signals. The transmit interface is comprised of the following signals:

- Transmit data bus, TXD[0:3] (pins 4,5,6 and 7 in DP83848M/T/H)
- Transmit enable signal, TX_EN (pin 3 in DP83848M/T/H)
- Transmit clock , TX_CLK (pin 2 in DP83848M/T/H) which runs at 2.5MHz in 10Mbps mode and 25MHz in 100Mbps mode

The receive interface is comprised of the following signals:

- Receive data bus, RXD[0:3] (pin 36,37,38 and 39 in DP83848M/T/H)
- Receive error signal, RX_ER (pin 34 in DP83848M/T/H)
- Receive data valid, RX_DV (pin 32 in DP83848M/T/H)
- Receive clock, RX_CLK (pin 31 in DP83848M/T/H) for synchronous data transfer which runs at 2.5MHz in 10Mbps mode and 25MHz in 100Mbps mode

Informational Changes www.ti.com

3.3 PHY Address

In a given system, multiple PHYs may be controlled by a single MII management interface. In order to support this, each PHY must have a unique address. DP83848M/T/H facilitates this with PHY address strap options.

In DP83848M/T/H, RXD0:3 and COL are used to set the PHY address. While DP83847 requires external 5K Ohm pull-ups or pull-downs to set the PHY address, pin COL has a weak internal pullup and RXD0:3 have weak internal pull_downs in DP83848M/T/H. Hence, the default setting for PHY address in DP83848M/T/H is 01h. External 2.2K Ohm pull_ups and pull_downs can be added to change the PHY address from the default.

3.4 Flow Control

In DP83847, pin RX_ER may be strapped low to indicate Full Duplex Flow control support and left floating otherwise. Since flow control is a function of MAC layer, the MAC must set the bit in ANAR register in order to indicate Full Duplex Flow Control support in DP83848M/T/H.

3.5 Physical Layer ID Register

The PHYsical Layer ID (PHYID) register allows system software to determine applicability of device specific software based on the vendor model number. The vendor model number is represented by bits 9 to 4 in PHYIDR2. The vendor model number in DP83848M/T/H is 001001b. In DP83847, the vendor model number is 000011b.

 Register Address
 Register Name
 Register Description
 Device

 Hex
 DP83848M/T/H
 DP83847

 03h
 PHYIDR2
 PHY ID 2
 5C90h
 5C30h

Table 4. Register Change for Vendor Model Numbers

3.6 Software Reset

A soft reset in the DP83848M/T/H by setting bit 15 in the BMCR, will reset the device and set all the registers to their default or strapped settings. This includes Power Down, bit 11 in the BMCR, unless the PWR_DOWN/INT pin is externally strapped. For previous National devices, such as the DP83847 and DP83846, asserting software reset, by setting BMCR, bit 15, the Power Down register setting, BMCR, bit 11, does not get reset.

4 Informational Changes

This section describes the new features offered in DP83848M/T/H and the changes required to implement them.

	DP83848M/T/H	DP83847
System_Interfaces		
Auto-MDIX	Yes	No
Energy Detect	Yes	No
LED Outputs	1	6
CLK-to-MAC Output	Yes	No
Temperature Range		
0_to_70°C	Available in DP83848M	Yes
-40_to_85°C	Available in DP83848T	No
-40_to_125°C	Available in DP83848H	No
Power Consumption		
Active Power (Typ)	264mW	351mW

Table 5. New Features of DP83848M/T/H

www.ti.com Informational Changes

4.1 Auto-Negotiation and LED Pins

DP83847 has dedicated AN0, AN1 and AN_EN (pins 15, 16 and 17) for enabling and configuring Auto_Negotiation. In addition, LED pins 18 to 23 were used to indicate Speed, Receive, Transmit, Link, Collision and Duplex status. DP83848M/T/H has only 1 pin (Pin 22) multiplexed for link status indication and controlling the advertised and forced mode (AN0). DP83848M/T/H does not have separate pins to indicate transmit/receive activity status, activity/collision status and speed status.

Table 6. DP83848M/T/H Pin for Auto-Negotiation and LED

DP83848	8M/T/H Pin Number	Auto-Negotiation function	LED function
	22	Controls the advertised and forced mode (AN0)	Link status

Table 7. DP83848M/T/H Auto-Negotiation Modes

AN0	Advertised mode	
0	10 Base-T, Half-Duplex	
U	100 Base-TX, Half-Duplex	
1	10 Base-T, Half/Full-Duplex	
I	100 Base-TX, Half/Full-Duplex	

4.2 Auto_MDIX Setting

Auto_MDIX removes cabling complications and simplifies end customer applications by allowing either a straight or a cross-over cable to be used without changing the system configuration. Auto_MDIX is enabled by default in the DP83848M/T/H. In order to disable Auto_MDIX, pin 34 (RX_ER) should be pulled to ground using a 2.2 K Ohm resistor. When enabled, this function utilizes Auto_Negotiation to determine the proper configuration for transmission and reception of data and subsequently selects the appropriate MDI pair for MDI/MDIX operation.

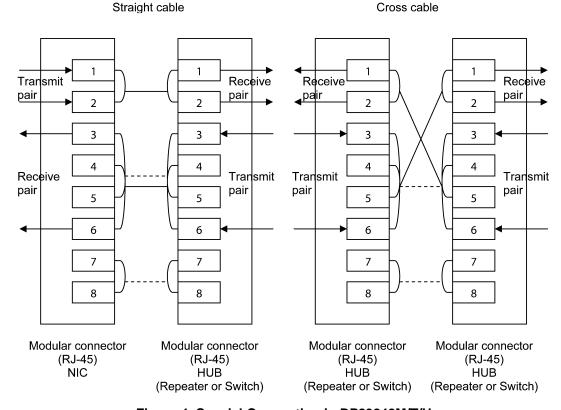


Figure 4. Special Connection in DP83848M/T/H

Informational Changes www.ti.com

4.3 Energy Detect

Energy Detect facilitates flexible and automatic power management based on detection of a signal on the cable. This enables an application to use an absolute minimum amount of power over time. Energy Detect functionality is controlled via the Energy Detect Control Register (EDCR), address 0x1Dh. When Energy detect is enabled and there is no activity on the cable, DP83848M/T/H will remain in a low power mode while monitoring the receive pair in the transmission line. Activity on the line will cause the DP83848M/T/H to return to the normal power mode

4.4 CLK_to_MAC Output

DP83848M/T/H offers a clock output of 25 MHz that can be routed directly to the MAC and act as the MAC reference clock, eliminating the need, and hence space and cost, of an additional MAC clock source.

8

Appendix A

A.1 Pin Maps

The pin maps are shown in Table 8.

Table 8. Pin Map

Table 8. Pin Map					
DP83848M/T/H Signal Name	DP83848M/T/H Pin #	DP83847 Pin #	Description		
MII Interface Pins					
MDC	25	25	MGMT DATA CLOCK		
MDIO	24	24	MGMT DATA I/O		
RXD0:3/PHYAD1:4	36,37,38,39	30,29,27,26	MII RX DATA		
RX_CLK	31	32	MII RX CLOCK		
RX_ER/MDIX_EN	34	33	MII RX ERROR		
RX_DV/MII_MODE	32	31	MII RX DATA VALID		
TXD0:3	4,5,6,7	38,39,40,41	MII TX DATA		
TX_CLK	2	36	MII TX CLOCK		
TX_EN	3	37	MII TX ENABLE		
TX_ER	n/a	35	MII TX ERROR		
COL/PHYAD0	35	43	MII COL DETECT		
CRS/LED_CFG	33	45	MII CARRIER SENSE		
PMD Interface Pins			•		
RD-/+	11,12	6,7	RX DATA		
TD-/+	14,15	11,10	TX DATA		
Clock Interface Pins					
X1	28	49	XTAL/OSC INPUT		
X2	27	48	XTAL OUTPUT		
LED Interface Pins					
LED_ACT/COL/AN_EN	n/a	22	COL LED STATUS		
LED_ACT/COL/AN_EN	n/a	23	DUPLEX LED STATUS		
LED_LINK/AN_0	22	21	LINK LED STATUS		
LED_SPEED/AN_1	n/a	18	SPEED LED STATUS		
LED_ACT/COL/AN_EN	n/a	n/a	ACT LED STATUS		
LED_RX/PHYAD4	n/a	19	RX ACTIVITY LED		
LED_TX/PHYAD3	n/a	20	TX ACTIVITY LED		
Reset Function Pin					
RESET_N	23	46	RESET		
Strap Pins					
PHYAD0:4	35,36,37,38,39	23,22,21,20,19	PHY ADDRESS		
MDIX_EN/RX_ER	34	n/a	AUTO MDIX ENABLE		
MII_MODE/RX_DV	32	n/a	MII MODE SELECT		
SNI_MODE	n/a	n/a	MII MODE SELECT		
LED_CFG/CRS	33	45	LED CONFIGURATION		
PAUSE_EN/RX_ER	n/a	33	PAUSE ENABLE		
Bias Function Pins			·		
RBIAS	20	3	BIAS RES CONNECTION		
C1	n/a	42	REF BYPASS CAP		
Test Mode Pins			1		
AN_0/LED_LINK	22	15	TEST MODE SELECT		
AN_1/LED_SPEED	n/a	16	TEST MODE SELECT		

Pin Maps www.ti.com

Table 8. Pin Map (continued)

DP83848M/T/H Signal Name	DP83848M/T/H Pin #	DP83847 Pin #	Description		
AN_EN/LED_ACT/COL	n/a	17	TEST MODE SELECT		
Special Function Pins	Special Function Pins				
25MHz_OUT	21	n/a	25 MHz CLOCK OUTPUT		
PWR_DOWN/INT	n/a	n/a	POWER DOWN/INT		
PFBIN1:2	16,30	n/a	POWER FEEDBACK IN		
PFBOUT	19	n/a	POWER FEEDBACK OUT		
Supply Pins					
VDD	1,18,26	14,28,56, 57,59,63	3.3V		
GND	13,17,29,40	58,60,62,64,65	GROUND		
Reserved Pins	Reserved Pins				
RESERVED	8,9,10	1,2,4, 5,8,9, 12,13,34, 44,47,50, 51,52,53, 54,55, 61	RES		

Appendix B

B.1 Register Differences

This section covers differences between the registers in DP83848M/T/H and DP83847 applicable to software configuration of these devices.

All the IEEE specified registers of National Semiconductor Physical Layer devices comply with the respective IEEE standards. Only vendor specific registers have functions that may vary from device to device. If none of the vendor specific registers are modified for operation in the system application, the devices will have similar operation. In designs that do access or adjust any of these optional registers, the system may use the PHY_ID register, offset 03h, to detect which device is being used and make the appropriate changes in settings of device registers. Specific functions of these vendor defined registers, may be available in another register, or possibly in a different bit within the same register location. For additional information, or more specific definitions, please refer to the applicable datasheet(s).

DP83848M PHYTER Mini - Commercial Temperature Single 10/100 Ethernet Transceiver (SNLS227)

DP83848H PHYTER Mini - Extreme Temperature Single 10/100 Ethernet Transceiver (SNLS229)

DP83848T PHYTER Mini and DP83848K PHYTER Mini LS Industrial Temperature Single Port (SNLS251)

DP83847 DsPHYTER II - Single 10/100 Ethernet Transceiver Data Sheet (SNLA081)

Table 9. Register Bit Definitions

Register Address	Register Name	Register Description	Device		
Hex			DP83848M/T/H	DP83847	
00h	BMCR	Basic Mode Control	Bit 15 – Reset (See Section Section 3.6 for the difference in software reset)	Bit 15 – Reset (See Section Section 3.6 for the difference in software reset)	
03h	PHYIDR2	PHY ID 2	5C90h	5C30h	
04h	ANAR	Auto-Neg Adv	Bit 11 - ASM_DIR	Bit 11 - Res	
05h	ANII DAD	Auto-Neg Link Partner Ability	Bit 11 - ASM_DIR	D'. 40 144 D	
บอก	ANLPAR		Bit 10 - Pause	Bit 10 and 11 - Res	
10h	n PHYSTS	DINOTO DIN OLIVI	Bit 14 MDI-X mode	Bit 14 Res	
TON		PHY Status	Bit 7 MII Interrupt	Bit 7 - Res	
	PCSR	16h PCSR PCS Sub-Layer cfg an		Bit 12 Res	Bit 12 BYP_4B5B
				Bit 11 Res	But 11 FREE_CLK
16h			, ,	Bit 7 DESC_TIME	Bit 7 Res
				Bit 1 Res	Bit 1 SCRAM_BYPASS
				Bit 0 Res	Bit 0 DESCRAM_BYPASS
18h	LEDCR	LED Direct Control	Control LED outputs	Res	
19h	PHYCR	PHY Control	Register changes (See datasheet)	Register changes (See datasheet	
	10BTSCR	10BTSCR 10 Base-T Status/Control	Bit 15 10BT serial	Bit 15 10BT serial	
1Ah			Bits 14 to 12 Res	Bit 15:9 - Res	
			Bits 11:9 - SQUELCH		
1Bh	CDCTRL1	CD Test Control	Register changes (See datasheet) Register changes (See dat		
1Dh	EDCR	Energy Detect Control	ol Enable and control Energy Detect Res		

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>