
TMS470M TI Flash EEPROM Emulation Driver

User's Guide

Literature Number: SPNU518

May 2012

Contents

Preface ... 5

1 TI FEE Driver Introduction .. 6
1.1 Overview ... 6

1.1.1 Functions Supported in the TI FEE Driver .. 7
1.1.2 Other Components ... 7
1.1.3 Development Platform ... 7

2 TI FEE Driver Design Overview ... 8
2.1 Flash EEPROM Emulation Methodology .. 8

2.1.1 Virtual Sector Organization ... 8
2.1.2 Data Block Organization ... 10
2.1.3 Supported Commands ... 12
2.1.4 Status Codes .. 12
2.1.5 Job Result ... 12

3 Installation Guide .. 13
3.1 List of Installable Components ... 13
3.2 Component Folder ... 13

4 Getting Started Guide .. 15
4.1 Build Procedure .. 15
4.2 Symbolic Constants and Enumerated Data Types .. 15
4.3 Data Structures .. 17
4.4 TI FEE Parameter Configuration .. 17

4.4.1 Maximum Number of Links .. 17
4.4.2 Job Error Notification ... 17
4.4.3 Job End Notification .. 18
4.4.4 Operating Frequency ... 18
4.4.5 Number of Blocks ... 18
4.4.6 Number of Virtual Sectors ... 18
4.4.7 TI FEE Virtual Sector Configuration .. 18
4.4.8 TI FEE Block Configuration ... 20
4.4.9 Block OverHead .. 22
4.4.10 Page OverHead ... 22
4.4.11 Virtual Sector OverHead .. 22
4.4.12 Virtual Sector Page Size ... 22
4.4.13 Driver Index .. 22
4.4.14 Read Cycle Count ... 22
4.4.15 Enable ECC Correction ... 23

4.5 API Classification .. 23
4.5.1 Initialization .. 23
4.5.2 Data Operations .. 23
4.5.3 Information .. 23
4.5.4 Internal Operations ... 24

4.6 FEE Operation Flow ... 25
4.7 API Specification ... 26

4.7.1 TI FEE Driver Functions ... 26

2 Contents SPNU518–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

www.ti.com

A Revision History .. 34

3SPNU518–May 2012 Contents
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

www.ti.com

List of Figures

2-1. Virtual Sector Organization .. 9

2-2. Virtual Sector Header ... 10

2-3. Data Block Structure .. 11

2-4. Data Block Header - Logical Structure ... 11

3-1. View Graph of TI FEE Driver Directory Tree... 13

4-1. Flow Chart of a Typical FEE Operation .. 25

List of Tables

0-1. Table of Abbreviations ... 5

2-1. Virtual Sector Header States... 10

2-2. Data Block Header Field Definitions .. 11

2-3. Data Block States ... 12

3-1. Installation Setup Files.. 13

3-2. TI FEE Driver File List .. 14

3-3. TI FEE HALCoGen File List.. 14

4-1. TI FEE Driver Symbolic Constants.. 15

4-2. TI FEE Driver Published Information Data Structure ... 17

4-3. TI FEE Driver General Configuration Data Structure ... 17

4-4. TI FEE Driver Initialization APIs ... 23

4-5. TI FEE Driver Data Operation APIs ... 23

4-6. TI FEE Driver Information APIs.. 23

4-7. TI FEE Driver Internal Operation APIs.. 24

A-1. Version History... 34

4 List of Figures SPNU518–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

Preface
SPNU518–May 2012

Read This First

About This Manual

This User’s Manual serves as a software programmer’s handbook for working with the TI FEE Driver. It
provides necessary information regarding how to effectively install, build and use TI FEE Driver in user
systems and applications.

It also provides details regarding the TI FEE Driver functionality, the requirements it places on the
hardware and software environment where it can be deployed, how to customize/configure it, etc. It also
provides supplementary information regarding steps to be followed for proper installation/un-installation of
the TI FEE Driver.

Abbreviations

Table 0-1. Table of Abbreviations

Abbreviation Description

TI FEE Driver TI coined name for the product.

FEE Flash EEPROM Emulation

5SPNU518–May 2012 Read This First
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

Chapter 1
SPNU518–May 2012

TI FEE Driver Introduction

This chapter introduces the TI FEE Driver to the user by providing a brief overview of the purpose and
construction of the TI FEE Driver along with hardware and software environment specifics in the context of
TI FEE Driver deployment.

1.1 Overview

This section describes the functional scope of the TI FEE Driver and its feature set. It introduces the TI
FEE Driver to the user along with the functional decomposition and run-time specifics regarding
deployment of TI FEE Driver in user’s application.

Many applications require storing small quantities of system related data (e.g., calibration values, device
configuration) in a non-volatile memory, so that it can be used, modified or reused even after power
cycling the system. EEPROMs are primarily used for this purpose. EEPROMs have the ability to erase
and write individual bytes of memory many times over and the programmed locations retain the data over
a long period even when the system is powered down.

The objective of TI FEE Driver is to provide a set of software functions intended to use a Sector of on-chip
Flash memory as the emulated EEPROM. These software functions are transparently used by the
application program for writing, reading and modifying the data.

A list of functions supported by the TI FEE Driver can be found in Section 1.1.1. The primary function
responsible for Fee management is the TI_FeeTask function. This function shall operate asynchronously
and with little or no user intervention after configuration, maintaining the Fee structures in Flash memory.
This function should be called on a cyclic basis when no other pending Fee operations are pending so that
it can perform internal operations.

6 TI FEE Driver Introduction SPNU518–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

www.ti.com Overview

1.1.1 Functions Supported in the TI FEE Driver

The TI FEE Driver provides the following functional services:

Initialization:

• TI_Fee_Start

Operations:

• TI_FEE_WriteAsync

• TI_FEE_WriteSync

• TI_FEE_Read

• TI_FEE_EraseBlock

• TI_FEE_InvalidateBlock

• TI_FEE_Shutdown

Information:

• TI_FEE_getStatus

• TI_FEE_getJobResult

• TI_FEE_getVersionInfo

• TI_FeeErrorCode

Internal Operations:

• TI_FeeTask

• TI_FEE_Format

• TI_FeeManager

1.1.2 Other Components

The TI FEE Driver requires the following components for complete deployment:

1. TI Fee Configuration Files: The user needs to generate the following two configuration files using
HALCoGen to deploy and use TI FEE Driver.

(a) fee_config.h

(b) fee_config.c
These two files define which Flash sectors to be used for EEPROM emulation, define Data Blocks,
Block Size and other configuration parameters.
HALCoGen also generates device specific files that defines the memory mapping for the Flash FEE
bank.

2. Flash API library: The TI FEE Driver uses the Flash API library for performing program/erase
operations. The apprioprate Flash API library depending on the type of Flash technology has to be
included in the application to deploy and use the TI FEE Driver.

1.1.3 Development Platform

The TI FEE Driver was developed and validated on a system with the following operating system and
software installed:

• Operating System : WinXP

• Codegeneration tools : TMS470 Code Generation tools 4.6.4

7SPNU518–May 2012 TI FEE Driver Introduction
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

Chapter 2
SPNU518–May 2012

TI FEE Driver Design Overview

This chapter describes the implementation method followed for Flash EEPROM emulation in the TI FEE
Driver.

2.1 Flash EEPROM Emulation Methodology

The EEPROM Emulation Flash bank is divided into two or more Virtual Sectors. Each Virtual Sector is
further partitioned into several Data Blocks. A minimum of two Virtual Sectors are required for Flash
EEPROM emulation.

The initialization routine (TI_Fee_Start) identifies which Virtual Sector to be used and marks it as Active.
The data is written to the first empty location in the Active Virtual Sector. Whenever a Data Block has to
be updated, it follows the link list concept wherein the previous Data block will be updated to point to the
new location of the data. If there is insufficient space in the current Virtual Sector to update the data, it
switches over to the next Virtual Sector and copies all the valid data from the other Data Blocks in the
current Virtual Sector to the new one. After copying all the valid data, the current Virtual Sector is erased
and the new one is marked as Active Virtual Sector. Any new data is now written into the new Active
Virtual Sector and the erased Virtual Sector is used again once this new Virtual Sector has insufficient
space.

Virtual Sectors and Data Blocks have certain space allocated to maintain the status information which is
described in more detail in the following sections.

2.1.1 Virtual Sector Organization

The Virtual Sector is the basic organizational unit used to partition the EEPROM Emulation Flash Bank.
This structure can contain one or more contiguous Flash Sectors contained within one Flash Bank. A
minimum of 2 Virtual Sectors are required to support the TI FEE Driver.

The internal structure of the Virtual Sector contains a Virtual Sector Header, a static Data Structure and
the remaining space is used for Data Blocks.

8 TI FEE Driver Design Overview SPNU518–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

Record 2 Record 1 Record 0

Record X

Record X

Record 0

Record n

Record X Record n

Record X

Record X

Record 2 Record X

Record 2

Record 0 Record 0 Record 1 Record 0 Record 0 Record 2

Record n

Record 0 Record 1 … Record n

Data

Structure

Record X

Record X

Record X

Record X

Record n Record 0 Record 1

Record n

Record n

Record 0 Record 1 … Record n

Data

Structure

Virtual Sector Header

Virtual Sector Header

Virtual

Sector

0

Virtual

Sector

1

www.ti.com Flash EEPROM Emulation Methodology

Figure 2-1. Virtual Sector Organization

9SPNU518–May 2012 TI FEE Driver Design Overview
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

40 bits Reserved Version Number

(4 Bits)

Erase Count

(20 bits)

64 bit Status Word

Flash EEPROM Emulation Methodology www.ti.com

2.1.1.1 Virtual Sector Header

The Virtual Sector Header consists of two 64bit words (16 bytes) that start at the first address of a Virtual
Sector Structure. The state of the Virtual Sector Structure is maintained in the Virtual Sector Header.

Figure 2-2. Virtual Sector Header

The Status Word is the first 64 bit word of the Virtual Sector Header and is used to indicate the current
state of the Virtual Sector.

The following table indicates the various states of a Virtual Sector.

Table 2-1. Virtual Sector Header States

State Value

Invalid Virtual Sector 0xFFFFFFFFFFFFFFFF

Empty Virtual Sector 0x0000FFFFFFFFFFFF

Copy Virtual Sector 0x00000000FFFFFFFF

Active Virtual Sector 0x000000000000FFFF

Ready for Erase 0x0000000000000000

Invalid Virtual Sector: This Virtual Sector is either in process of being erased or has not yet been
initialized.

Empty Virtual Sector: This indicates the Virtual Sector has been erased and can be used to store data.

Copy Virtual Sector: This indicates that the Data Block Structure is being moved from a full Virtual Sector
to this one to allow for moving of the Active Virtual Sector.

Active Virtual Sector: This Virtual Sector is the active one.

Ready for Erase: This Virtual Sector’s Data Block Structure has been correctly replicated to a new Virtual
Sector and is now ready to be erased and initialized for re-use.

Virtual Sector Information Record is the second 64 bit word in the Virtual Sector header. It is used to
record information needed by the Virtual Sector management algorithm. Currently the first 4 bits are used
to indicate the current version of the Virtual Sector and the next 20 bits are used to indicate the number of
times the Virtual Sector has been erased. The erase count is incremented each time the Virtual Sector is
erased. The remaining bits are reserved for future use

2.1.2 Data Block Organization

The Data Block is used to define where the data within a Virtual Sector is mapped. One or more variables
can be within a Data Block based on the user definition. The smallest amount of data that can be stored
within the Data Block is 64 bits. If the Data size exceeds 64 bits, the Data Packets are added in 64 bit
increments. The Data Block Structure is limited to the size of the Virtual Sector it resides in.

NOTE: The size of all the Data Blocks cannot exceed the Virtual Sector length.

When a Data Packet write exceeds the available space of the current Virtual Sector, the Data Block
structure is duplicated in the next Virtual Sector to be made active.

10 TI FEE Driver Design Overview SPNU518–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

Reser
ved

23 bit Address Offset 8 bit ECC Padding

23 bit Address Offset

32 bit Block Status

32 bit Block Status

Record 1

Data Packet 0

Record 0

Header

Record 1

Header

Record 1

Data Packet 1

Record 1

Data Packet 2

Record 2

Header

Record 2

Data Packet 0

Record 2

Data Packet 1

Record 2

Data Packet 2

Record 2

Data Packet 3

Record 2

Data Packet 4

Record 2

Data Packet 5

Record 2

Data Packet 6

Record 3

Header

Record 3

Data Packet 0

Record 3

Data Packet 1

Record n-1

Data Packet 2

Record n-1

Data Packet 3

Record n-1

Data Packet 4

Record n-1

Data Packet 6

Record n

Data Packet 0

Record n

Data Packet 1

Record n

Data Packet 2

Record n

Data Packet 3

Record n

Data Packet 4

Record n

Header

Record n

Data Packet 6

Record n

Data Packet 7

Record n-1

Data Packet 0

Record n-1

Data Packet 1

Record n-1

Data Packet 5

Record n

Data Packet 5

www.ti.com Flash EEPROM Emulation Methodology

Figure 2-3. Data Block Structure

2.1.2.1 Data Block Header

The Data Block Header is 8 bytes in length and is used to indicate the location information (address) of
valid data within a Virtual Sector.

Figure 2-4. Data Block Header - Logical Structure

A Standard Data Block Header has the following fields:

Table 2-2. Data Block Header Field Definitions

Bit(s) Field Description

63 Reserved This bit is reserved.

This field is used to indicate the address of the next data block that
62-40 23bit Address Offset replaces this one. This is only updated after the Status of the Data Block

Header that replaces this Data Block is marked as Valid.

This is used to allow writing of the 23bit Address Offset without creating39-32 8bit ECC Padding an ECC error using ECC progressive programming techniques.

These 32 bits indicate the Status of the Block. The following Table lists all31-0 Status of the Block the possible combinations for the Block Status.

11SPNU518–May 2012 TI FEE Driver Design Overview
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

Flash EEPROM Emulation Methodology www.ti.com

Table 2-3. Data Block States

State Value

Empty Block 0xFFFFFFFF

Start Program Block 0xFFFFFF00

Valid Block 0xFFFF0000

Invalid Block 0xFF000000

Corrupt Block 0x00000000

Block Status is used to ensure that data integrity is maintained even if the Block (data) update process is
interrupted by an uncontrolled event such as a power supply failure or reset.

Empty Block: New Data can be written to this Block.

Start Program Block: This indicates that the Data Block is in the progress of being programmed with
data.

Valid Block: This indicates that the Data Block is fully programmed and contains Valid Data.

Invalid Block: This indicates that the Data Block contains invalid or old data.

Corrupt Block: This indicates that the Data Block is corrupted and the Software should ignore this Block.

2.1.3 Supported Commands

The following list describes the supported commands:

1. WriteAsync: This command shall program a Flash Data block asynchronously.

2. WriteSync: This command shall program a Flash Data block synchronously.

3. Read: This command shall copy a continuous Flash Data block.

4. Erase: This command will erase a Flash Data block. It will update the address field in the Data Block
to point to a location which is blank (all 1’s).

5. Invalidate Block: This command shall mark the block as invalid in Data Block header.

2.1.4 Status Codes

This indicates the status of the Fee module. It can be in one of the following states:

1. Uninitialized: The Fee Module has not been initialized.

2. Idle: The Fee Module is currently idle.

3. Busy: The Fee Module is currently busy.

4. Busy Internal: The Fee Module is currently busy with internal management operations.

2.1.5 Job Result

This indicates the result of the last job. The job result can be any one of the following states:

1. OK: The last job has finished successfully.

2. Pending: The last job is waiting for execution or is currently being executed.

3. Failed: The last read/erase/write job failed.

4. Inconsistent: The requested block is inconsistent, it may contain corrupted data.

5. Invalid: The requested block has been invalidated. The requested read operation cannot be
performed.

12 TI FEE Driver Design Overview SPNU518–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

Chapter 3
SPNU518–May 2012

Installation Guide

This chapter discusses the TI FEE Driver installation, how and what software and hardware components
to be availed in order to complete a successful installation of TI FEE Driver.

3.1 List of Installable Components

The installation files are summarized in the table below.

Table 3-1. Installation Setup Files

File Name Description

TI FEE Driver 1.00.00 -Setup.exe This file should be executed to install the TI FEE Driver files.

HALCoGen This tool is used to configure the Fee module and also generate device specific files.

3.2 Component Folder

The files and directory structure of the installed TI FEE Driver in the system is described below. A
viewgraph of the actual directory tree (collapsed image of the recursive directories) as seen in the
deployed environment is depicted below.

Figure 3-1. View Graph of TI FEE Driver Directory Tree

13SPNU518–May 2012 Installation Guide
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

Component Folder www.ti.com

Files created after the successful installation of TI FEE Driver are listed in the table below.

Table 3-2. TI FEE Driver File List

File Name Destination Directory

ti_fee.h Include

ti_fee_Types.h Include

ti_fee_utils.c Source

ti_fee_EraseBlock.c Source

ti_fee_Format.c Source

ti_fee_Info.c Source

ti_fee_InvalidateBlock.c Source

ti_fee_Links.c Source

ti_fee_Manager.c Source

ti_fee_Read.c Source

ti_fee_Shutdown.c Source

ti_fee_Start.c Source

ti_fee_Task.c Source

ti_fee_WriteAsync.c Source

ti_fee_WriteSync.c Source

ti_fee_CalcEcc.c Source

M3_ECC_Enable_Disable.asm Source

Files generated using HALCoGen are listed in the table below.

Table 3-3. TI FEE HALCoGen File List

File Name Destination Directory

device_types.h Include

fee_device.h Include

fee_config.h Include

fee_config.c Source

fee_TMS470Mxx.h (1) Include

fee_TMS470Mxx.c (1) Source
(1) xx indicates device part number; e.g. if the target device chosen is TMS470MF066, then the device specific files generated are

fee_TMS470MF066.h and fee_TMS470MF066.c

14 Installation Guide SPNU518–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

Chapter 4
SPNU518–May 2012

Getting Started Guide

This chapter describes the steps for using the TI FEE Driver. This chapter also discusses the TI FEE
Driver run-time interfaces that comprise the API classification, usage scenarios and the API specification.
The entire source code to implement the TI FEE Driver is included in the delivered product.

4.1 Build Procedure

The build procedure mentions how to go about building the TI FEE Driver into systems and applications.

1. The files created after installation of TI FEE Driver (listed inTable 3-2) should be included in the
application.

2. The files listed in Table 3-3 (fee configuration files and device specific files) generated using
HALCoGen should be included in the application. The configuration files (fee_config.h & fee_config.c)
define which Flash sectors to be used for EEPROM emulation, define Data Blocks, Block Size and
other configuration parameters whereas the device specific files define the memory mapping for the
Flash FEE bank.

3. The appropriate Flash API library needs to be included in the application. The TI FEE Driver uses
these APIs for performing program/erase operations on the Flash memory. The appropriate F035
Flash API library needs to be included if the device Flash technology is F035.

4.2 Symbolic Constants and Enumerated Data Types

This section summarizes the symbolic constants specified as either #define macros and/or enumerated C
data types. Described alongside the macro or enumeration is the semantics or interpretation of the same
in terms of what value it stands for and what it means.

Table 4-1. TI FEE Driver Symbolic Constants

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

TI_FeeStatusType TI_FEE_OK Function returned no error

TI_FEE_ERROR Function returned an error

VirtualSectorStatesType VsState_Invalid =1 Virtual Sector is Invalid

VsState_Empty =2 Virtual Sector is Empty

VsState_Copy =3 Virtual Sector is Copy

VsState_Active =4 Virtual Sector is Active

VsState_ReadyForErase =5 Virtual Sector is Ready for Erase

BlockStatesType Block_Empty=1 Block is Empty

Block_StartProg=2 Write/Erase/Invalid operation is in
progress on this Block

Block_Valid=3 Block is Valid

Block_Invalid=4 Block is Invalid

Block_Corrupt=5 Block is Corrupt

15SPNU518–May 2012 Getting Started Guide
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

Symbolic Constants and Enumerated Data Types www.ti.com

Table 4-1. TI FEE Driver Symbolic Constants (continued)

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

Fee_ErrorCodeType Error_Nil=0

Error_TwoActiveVS=1

Error_TwoCopyVS=2

Error_MorethanOneBank=3

Error_SetupStateMachine=4

Error_CopyButNoActiveVS=5

Error_NoActiveVS=6

Error_BlockInvalid=7

Error_NullDataPtr=8

Error_NoVSFoundforCopy=9

Error_InvalidVirtualSectorParameter=10

Error_ExceedSectorOnBank=11

Error_WriteVSHeader=12

Error_CalculateECC=13

Error_EraseVS=14

Error_BlockOffsetGtBlockSize=15

Error_LengthParam=16

Error_FeeUninit=17

Error_Suspend=18

Error_InvalidBlockIndex=19

Error_NoErase=20

Error_CurrentAddress=21

TI_FeeStatusCodeType Uninitialized FEE Module is Uninitialized

Idle FEE Module is Idle

Busy FEE Module is Busy

BusyInternal FEE Module is performing internal
operations

Fee_StatusWordType_UN Read If set to ‘1’ indicates Read operation is in
progress

WriteAsync If set to ‘1’ indicates Async Write operation
is in progress

WriteSync If set to ‘1’ indicates Sync Write operation
is in progress

EraseBlock If set to ‘1’ indicates Erase operation is in
progress

InvalidateBlock If set to ‘1’ indicates Invalidate operation is
in progress

Copy If set to ‘1’ indicates Copy operation is in
progress

TI_FEE_SW_MAJOR_VERSION #define Macro which indicates the Major version of the FEE

TI_FEE_SW_MINOR_VERSION #define Macro which indicates the Minor version of the FEE

TI_FEE_SW_PATCH_VERSION #define Macro which indicates the Patch version of the FEE

16 Getting Started Guide SPNU518–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

www.ti.com Data Structures

4.3 Data Structures

This section summarizes the entire user visible data structure elements pertaining to the TI FEE Driver
run-time interfaces.

Table 4-2. TI FEE Driver Published Information Data Structure

Name Fee_PublishedInformationType

Description Used to contain Published Information

Fields Data type Range Description

TI_FEE_BLOCK_OVERHEAD uint8 0x8 Block OverHead in bytes

TI_FEE_VIRTUAL_PAGE_SIZE uint8 0x8 Virtual Page Size in bytes

TI_FEE_PAGE_OVERHEAD uint8 0x0 Page overhead in bytes

TI_FEE_VIRTUAL_SECTOR_OVERHEAD uint8 0x10 Virtual Sector overhead in bytes

Table 4-3. TI FEE Driver General Configuration Data Structure

Name Fee_GeneralConfigType

Description Used to contain General configuration information

Fields Data type Range Description

TI_FEE_INDEX uint32 0 Instance ID of this module. Should
always be 0

*TI_FEE_JOB_END_NOTIFICATION Fee_CallbackType - Mapping to upper level job end
notification

*TI_FEE_JOB_ERROR_NOTIFICATION Fee_CallbackType Mapping to upper level job error
notification

TI_FEE_MAXIMUM_NUMBER_OF_LINKS uint16 0-0xFFFE Defines the maximum number of
links allowed to maintain worst case
access time.

TI_FEE_OPERATING_FREQUENCY uint16 Refer Datasheet Device Operating Frequency in MHz

4.4 TI FEE Parameter Configuration

This section describes the parameters which are used to configure the TI FEE driver.

4.4.1 Maximum Number of Links

Parameter Name TI_FEE_MAXIMUM_NUMBER_OF_LINKS

Description Defines the maximum number of links allowed for each block before switching from
current Virtual Sector to a new Virtual Sector.

Default Value 0x100

Parameter Range 0x1 to 0xFFFE

Sample Configuration #define TI_FEE_MAXIMUM_NUMBER_OF_LINKS 0x100

4.4.2 Job Error Notification

Parameter Name TI_FEE_JOB_ERROR_NOTIFICATION

Description Call back function to notify a Job Error.

Default Value JobErrorNotification

Parameter Range User defined function name.

Sample Configuration #define TI_FEE_JOB_ERROR_NOTIFICATION JobErrorNotification

17SPNU518–May 2012 Getting Started Guide
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

TI FEE Parameter Configuration www.ti.com

4.4.3 Job End Notification

Parameter Name TI_FEE_JOB_END_NOTIFICATION

Description Call back function to notify end of a Job.

Default Value JobEndNotification

Parameter Range User defined function name.

Sample Configuration #define TI_FEE_JOB_END_NOTIFICATION JobEndNotification

4.4.4 Operating Frequency

Parameter Name TI_FEE_OPERATING_FREQUENCY

Description Device operating frequency in MHz. It is equivalent to the HCLK frequency in the
TMS5470M clock tree.

Default Value 80

Parameter Range Device dependent parameter. Refer to the device datasheet to know the range.

Sample Configuration #define TI_FEE_OPERATING_FREQUENCY 80.0

4.4.5 Number of Blocks

Parameter Name TI_FEE_NUMBER_OF_BLOCKS

Description Defines the number of Data Blocks used for EEPROM emulation.

Default Value 0x1

Parameter Range 0x1 to 0xFFFE

Sample Configuration #define TI_FEE_NUMBER_OF_BLOCKS 1

4.4.6 Number of Virtual Sectors

Parameter Name TI_FEE_NUMBER_OF_VIRTUAL_SECTORS

Description Defines the number of Virtual Sectors used for FEE.

Default Value 0x2

Parameter Range Min: 0x2; Max: 0x4

Sample Configuration #define TI_FEE_NUMBER_OF_VIRTUAL_SECTORS 2

4.4.7 TI FEE Virtual Sector Configuration

Array Name TI_FeeVirtualSectorConfiguration

Description Used to define a Virtual Sector.

Array Type TI_FeeVirtualSectorConfigType
This is a structure having the following members.

Members VirtualSectorNumber Virtual Sector's Number.

FlashBank Flash Bank to use for Virtual Sector.

StartSector Starting Sector in the Bank for this Virtual
Sector.

EndSector Ending Sector in the Bank for this Virtual
Sector.

18 Getting Started Guide SPNU518–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

www.ti.com TI FEE Parameter Configuration

The configurations described in the following section are repeated for each Virtual Sector.

4.4.7.1 Virtual Sector Number

Parameter Name VirtualSectorNumber

Description Each Virtual Sector is assigned a number starting from 0x1

Default Value 0x1

Parameter Range Min: 0x1; Max: 0x4

4.4.7.2 Flash Bank

Parameter Name FlashBank

Description Indicates the Flash Bank used by the Virtual Sector. All the Virtual Sectors should use
the same Flash Bank.

Default Value 0x1

Parameter Range Bank 0 is not supported for FEE. Any other Flash Bank on the device can be used.
Please refer to the device datasheet “Flash Memory Map” for more details.

4.4.7.3 Start Sector

Parameter Name StartSector

Description Indicates the Flash Sector in the Bank used by the Virtual Sector as the Start sector.

Default Value 0x0

Parameter Range Device specific, can use any Sector of the selected Flash Bank. Please refer to the
device datasheet “Flash Memory Map” for more details.

4.4.7.4 End Sector

Parameter Name EndSector

Description Indicates the Flash Sector in the Bank used by the Virtual Sector as the End sector.

Default Value 0x0

Parameter Range Device specific, can use any Flash Sector of the selected Flash Bank. It should be
greater than the FEE Start Sector. Please refer to the device datasheet “Flash Memory
Map” for more details.

19SPNU518–May 2012 Getting Started Guide
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

TI FEE Parameter Configuration www.ti.com

4.4.7.5 Sample Virtual Sector Configuration

The following code snippet indicates one of the possible configurations for the Virtual Sectors from the file
fee_config.c:
/* Virtual Sector Configuration */
const TI_FeeVirtualSectorConfigType TI_FeeVirtualSectorConfiguration[] =
{

/* Virtual Sector 1 */
{

1, /* Virtual sector number */
1, /* Bank */
0, /* Start Sector */
0 /* End Sector */

},
/* Virtual Sector 2 */
{

2, /* Virtual sector number */
1, /* Bank */
1, /* Start Sector */
1 /* End Sector */

},
};

4.4.8 TI FEE Block Configuration

Array Name TI_Fee_BlockConfiguration

Description Used to define a Data Block.

Array Type TI_ FeeBlockConfigType
This is a structure having the following members.

Members BlockNumber Indicates Block's Number.

BlockSize Defines Block's Size in bytes.

NumberOfWriteCycles Number of write cycles required for this block

DeviceIndex Indicates the device index.

The configurations described in the following section are repeated for each Data Block.

4.4.8.1 Block Number

Parameter Name BlockNumber

Description Each block is assigned a unique number starting from 0x1.

Default Value 0x1

Parameter Range Min: 0x1; Max: 0xFFFE

4.4.8.2 Block Size

Parameter Name BlockSize

Description Indicates the size of the Block in bytes.

Default Value 0x8

Parameter Range 0x8 to 0xFFFF (Multiples of 8)

20 Getting Started Guide SPNU518–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

www.ti.com TI FEE Parameter Configuration

4.4.8.3 Number of Write Cycles

Parameter Name NumberOfWriteCycles

Description Indicates the number of clock cycles required to write to a flash address location.

Default Value 0x10

Parameter Range Device or core/flash tech dependent parameter.

4.4.8.4 Device Index

Parameter Name DeviceIndex

Description Indicates the device index. This will always be 0.

Default Value 0x0

Parameter Range Fixed to 0x0

4.4.8.5 Sample Block Configuration

The following code snippet indicates one of the possible configurations for the Blocks from the file
fee_config.c:
/* Block Configuration */

const TI_FeeBlockConfigType TI_Fee_BlockConfiguration[] =

{
/* Block 1 */
{

0x01, /* Block number */
0x004, /* Block size */
0x10, /* Block number of write cycles */
0 /* Device Index */

},
/* Block 2 */
{

0x02, /* Block number */
0x008, /* Block size */
0x10, /* Block number of write cycles */
0 /* Device Index */

},
/* Block 3 */
{

0x03, /* Block number */
0x0004, /* Block size */
0x10, /* Block number of write cycles */
0 /* Device Index */

},

/* Block 4 */
{

0x04, /* Block number */
0x001A, /* Block size */
0x10, /* Block number of write cycles */
0 /* Device Index */

}

};

21SPNU518–May 2012 Getting Started Guide
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

TI FEE Parameter Configuration www.ti.com

4.4.9 Block OverHead

Parameter Name TI_FEE_BLOCK_OVERHEAD

Description Indicates the number of bytes used for Block Header.

Default Value 0x8

Parameter Range Fixed to 0x8

Sample Configuration #define TI_FEE_BLOCK_OVERHEAD 8

4.4.10 Page OverHead

Parameter Name TI_FEE_PAGE_OVERHEAD

Description Indicates the Page Overhead in bytes.

Default Value 0x0

Parameter Range Fixed to 0x0

Sample Configuration #define TI_FEE_PAGE_OVERHEAD 0

4.4.11 Virtual Sector OverHead

Parameter Name TI_FEE_VIRTUAL_SECTOR_OVERHEAD

Description Indicates the number of bytes used for Virtual Sector Header.

Default Value 0x10

Parameter Range Fixed to 0x10

Sample Configuration #define TI_FEE_VIRTUAL_SECTOR_OVERHEAD 16

4.4.12 Virtual Sector Page Size

Parameter Name TI_FEE_VIRTUAL_PAGE_SIZE

Description Indicates the virtual page size in bytes.

Default Value 0x8

Parameter Range Fixed to 0x8

Sample Configuration #define TI_FEE_VIRTUAL_PAGE_SIZE 8

4.4.13 Driver Index

Parameter Name TI_FEE_INDEX

Description Instance ID of TI FEE module. Should always be 0x0.

Default Value 0x0

Parameter Range Fixed to 0x0

Sample Configuration #define TI_FEE_INDEX 0

4.4.14 Read Cycle Count

Parameter Name TI_FEE_READ_CYCLE_COUNT

Description Indicates the number of clock cycles required to access a flash address location.

Default Value 0xA

Parameter Range Device or core/flash technology dependent parameter.

Sample Configuration #define TI_FEE_READ_CYCLE_COUNT 10

22 Getting Started Guide SPNU518–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

www.ti.com API Classification

4.4.15 Enable ECC Correction

Parameter Name TI_FEE_FLASH_ERROR_CORRECTION_ENABLE

Description Used to enable/disable Error Correction.

Default Value 0

Parameter Range 0 (FALSE) or 1 (TRUE)

Sample Configuration #define TI_FEE_FLASH_ERROR_CORRECTION_ENABLE 0

4.5 API Classification

This section introduces the application-programming interface for the TI FEE Driver by grouping them into
logical units. This is intended for the user to get a quick understanding of the TI FEE Driver APIs. For
detailed descriptions, please refer to the API specification in Section 4.7.

4.5.1 Initialization

The TI FEE Driver APIs that are intended for use in initialization of the FEE module are listed below.

Table 4-4. TI FEE Driver Initialization APIs

Name Description

TI_Fee_Start Used to initialize the FEE module

4.5.2 Data Operations

The TI FEE Driver APIs that are intended for performing Data operations on Data Blocks are listed below.

Table 4-5. TI FEE Driver Data Operation APIs

Name Description

Used to initiate an Asynchronous Write Operation to a Data Block. TI_FeeTask functionTI_FEE_WriteAsync should be called at regular intervals to finish the Async Write Operation.

TI_FEE_WriteSync Used to perform a Synchronous Write Operation to a Data Block.

TI_FEE_Read Used to read Data from a Data Block.

Used to initiate an Erase Operation of a Data Block. TI_FeeTask function should beTI_FEE_EraseBlock called at regular intervals to finish the Write Operation.

Used to initiate an Invalidate Operation on a Data Block. TI_FeeTask function shouldTI_FEE_InvalidateBlock be called at regular intervals to finish the Write Operation.

This function completes the Async jobs which are in progress by performing a bulkTI_FEE_Shutdown Data Write while shutting down the system synchronously.

4.5.3 Information

The TI FEE Driver APIs that are intended to get information about the status of the FEE Module are listed
below.

Table 4-6. TI FEE Driver Information APIs

Name Description

TI_FEE_getVersionInfo Used to get the Driver version.

TI_FEE_getStatus Used to get the status of the FEE module.

TI_FEE_getJobResult Used to get the job result of a Data Operation.

TI_FeeErrorCode Used to determine occurrence of an error.

23SPNU518–May 2012 Getting Started Guide
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

API Classification www.ti.com

4.5.4 Internal Operations

The TI FEE Driver APIs that are used to perform internal operations of the FEE Module are listed below.

Table 4-7. TI FEE Driver Internal Operation APIs

Name Description

TI_FeeTask Used to complete the Data Operations initiated by any of the Data Operation functions.

TI_FeeManager Used to perform internal operations (Copy, Erase Virtual Sector).

TI_FEE_Format Used to erase all the configured Virtual Sectors.

24 Getting Started Guide SPNU518–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

Schedule a Data Operation
TI_FEE_WriteAsync()
TI_FEE_WriteSync()
TI_FEE_EraseBlock()
TI_FEE_InvalidateBlock() /
TI_FEE_Read()

Schedule Other

Application Tasks

TI_Fee_getJobResult()

TI_FeeTask()

TI_FeeManager()

Initialization
TI_ Fee_Start()

TI_Fee_getStatus()

TI FEE is in IDLE state after

successful initialization

IDLE?

Yes

Call any one of the data
operation functions as required.
A new operation can be initiated
only when the module is in “Idle”
state.

To be called at regular
intervals to complete the Data
operation.

To be called only once at the
beginning to initialize the TI FEE
module.

Returns the Job result of the last
operation.

Called by TI_FeeTask () whenever in
“Idle” state to handle internal
operations.No

www.ti.com FEE Operation Flow

4.6 FEE Operation Flow

This section depicts a flow chart for a typical FEE operation.

Figure 4-1. Flow Chart of a Typical FEE Operation

25SPNU518–May 2012 Getting Started Guide
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

API Specification www.ti.com

4.7 API Specification

This section constitutes the detailed reference for the entire API set published to users of the TI FEE
Driver.

4.7.1 TI FEE Driver Functions

4.7.1.1 Initialization Function (TI_Fee_Start)

Function to initialize the TI Fee module.

Syntax
void TI_Fee_Start (void)

Sync/Async

Synchronous

Parameters (in)

None

Return Value

None

Description

This function provides functionality for initializing the TI FEE module. This routine must be called only once
at the beginning before commencing any data operation.

4.7.1.2 Async Write Function (TI_FEE_WriteAsync)

Function to initiate an Async Write job.

Syntax
Std_ReturnType TI_FEE_WriteAsync(

uint16 BlockNumber,
uint8* DataBufferPtr)

Sync/Async

Asynchronous

Parameters (in)

BlockNumber Number of logical block, also denoting start address of that block in
Flash memory.

DataBufferPtr Pointer to data buffer.

Return Value

Std_ReturnType

• E_OK: The write job was accepted by the TI Fee module.

• E_NOT_OK: The write job was not accepted by the TI Fee module.

Description

This function initiates an Asynchronous Write operation to a Data Block. TI_FEE_Task() function should
be called at regular intervals to finish the Async Write operation.

26 Getting Started Guide SPNU518–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

www.ti.com API Specification

4.7.1.3 Sync Write Function (TI_FEE_WriteSync)

Function to program Data to a Block synchronously.

Syntax
Std_ReturnType TI_FEE_WriteSync(

uint16 BlockNumber,
uint8* DataBufferPtr)

Sync/Async

Synchronous

Parameters (in)

BlockNumber Number of logical block, also denoting start address of that block in
Flash memory.

DataBufferPtr Pointer to data buffer.

Return Value

Std_ReturnType

• E_OK: The write job was accepted by the TI Fee module.

• E_NOT_OK: The write job was not accepted by the TI Fee module.

Description

This function provides the functionality to program data to a Block synchronously.

4.7.1.4 Read Function (TI_FEE_Read)

Function to read data from a Block.

Syntax
Std_ReturnType TI_FEE_Read(

uint16 BlockNumber,
uint16 BlockOffset,
uint8* DataBufferPtr,
uint16 Length)

Sync/Async

Synchronous

Parameters (in)

BlockNumber Number of logical block, also denoting start address of that block in
Flash memory.

BlockOffset Read address offset inside the block.
DataBufferPtr Pointer to data buffer.
Length Number of bytes to read.

Return Value

Std_ReturnType

• E_OK: The Read job was accepted by the TI Fee module.

• E_NOT_OK: The Read job was not accepted by the TI Fee module.

27SPNU518–May 2012 Getting Started Guide
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

API Specification www.ti.com

Description

This function provides functionality for reading of data from a Block.

4.7.1.5 Erase Function (TI_FEE_EraseBlock)

Function to initiate Erase operation on a Data Block.

Syntax
Std_ReturnType TI_FEE_EraseBlock(

uint16 BlockNumber)

Sync/Async

Asynchronous

Parameters (in)

BlockNumber Number of logical block, also denoting start address of that block in
Flash memory.

Return Value

Std_ReturnType

• E_OK: The Erase job was accepted by the TI Fee module.

• E_NOT_OK: The Erase job was not accepted by the TI Fee module.

Description

This function provides functionality for Erasing a Data Block asynchronously. TI_FEE_Task() function
should be called at regular intervals to finish the Erase operation.

4.7.1.6 Invalidate Function (TI_FEE_InvalidateBlock)

Function to initiate an Invalidate operation on a Data Block.

Syntax
Std_ReturnType TI_FEE_InvalidateBlock(

uint16 BlockNumber)

Sync/Async

Asynchronous

Parameters (in)

BlockNumber Number of logical block, also denoting start address of that block in
Flash memory.

Return Value

Std_ReturnType

• E_OK: The Invalidate Block job was accepted by the TI Fee module.

• E_NOT_OK: The Invalidate Block job was not accepted by the TI Fee module.

Description

This function provides functionality for invalidating a D ata Block asynchronously. TI_FEE_Task() function
should be called at regular intervals to finish the Invalidate Block operation.

28 Getting Started Guide SPNU518–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

www.ti.com API Specification

4.7.1.7 Shutdown Function (TI_FEE_Shutdown)

Function to perform bulk Data write prior to system shutdown.

Syntax
Std_ReturnType TI_FEE_Shutdown()

Sync/Async

Synchronous

Parameters (in)

None

Return Value

Std_ReturnType

• E_OK: The Async job was accepted by the TI Fee module.

• E_NOT_OK: The Async job was not accepted by the TI Fee module.

Description

This function provides functionality for performing a bulk data write when shutting down the system
synchronously. This function completes the Async jobs which are in progress by performing a bulk Data
Write while shutting down the system synchronously.

4.7.1.8 Get Version Info Function (TI_FEE_getVersionInfo)

Function to return the version information of the TI Fee module.

Syntax
void TI_FEE_getVersionInfo(

Std_VersionInfoType* VersionInfoPtr)

Sync/Async

Synchronous

Parameters (in)

None

Return Value

VersionInfoPtr

• Pointer to standard version information structure.

Description

This function returns the version information for the TI Fee module.

TI Fee specific version numbers MM.mm.rr

• MM – Major Version

• mm – Minor Version

• rr – Revision

29SPNU518–May 2012 Getting Started Guide
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

API Specification www.ti.com

4.7.1.9 Get Status Function (TI_FEE_getStatus)

Function gets the status of the TI Fee module.

Syntax
TI_FeeStatusCodeType TI_FEE_getStatus()

Sync/Async

Synchronous

Parameters (in)

None

Return Value

TI_FeeStatusCodeType

• UNINIT: TI Fee Module has not been initialized.

• IDLE: TI Fee Module is currently idle.

• BUSY: TI Fee Module is currently busy.

• BUSY_INTERNAL: TI Fee Module is currently busy with internal management operations.

Description

This function returns the status of the TI FEE module.

4.7.1.10 Get Job Result Function (TI_FEE_getJobResult)

Function gets the job result from the TI Fee module.

Syntax
TI_FeeJobResultType TI_FEE_getJobResult()

Sync/Async

Synchronous

Parameters (in)

None

Return Value

TI_FeeJobResultType

• JOB_OK: The last job has finished successfully.

• JOB_PENDING: The last job is waiting for execution or is currently being executed.

• JOB_CANCELLED: The last job has been cancelled.

• JOB_FAILED: The last job failed.

• BLOCK_INCONSISTENT: The requested block is inconsistent, it may contain corrupted data.

• BLOCK_INVALID: The requested block has been invalidated. The requested read operation cannot be
performed.

Description

This function returns the result of the last job synchronously.

30 Getting Started Guide SPNU518–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

www.ti.com API Specification

4.7.1.11 Get Error Code (TI_FeeErrorCode)

Returns ‘0’ if no error has occurred else it returns an Error code.

Syntax
TI_FeeErrorCodeType TI_FeeErrorCode()

Sync/Async

Synchronous

Parameters (in)

None

Return Value

TI_FeeErrorCodeType

• Returns an Error Code.

Description

This function provides functionality to identify occurrence of an error. It returns ‘0’ if no error has occurred
else it returns an Error code.

4.7.1.12 Task Function (TI_FeeTask)

Function to handle the requested Async data operations.

Syntax
void TI_FeeTask(void)

Sync/Async

Asynchronous

Parameters (in)

None

Return Value

None

Description

This function handles the Write/Erase/Invalidate asynchronous jobs initiated by
TI_Fee_WriteAsync()/TI_Fee_EraseBlock()/TI_Fee_InvalidateBlock() functions.

This function should be called at regular intervals by a scheduler. This function internally calls another
function “TI_FeeManager” whenever there is no other job pending (“IDLE” State). “TI_FeeManager”
function handles all the background tasks/internal operations to manage the TI FEE module.

NOTE: The user has to schedule the tasks/data operations such that the TI FEE module is in “IDLE”
state for some time so that the internal operations are handled correctly.

31SPNU518–May 2012 Getting Started Guide
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

API Specification www.ti.com

4.7.1.13 Manager Function (TI_FeeManager)

Function to handle the requested Async data operations.

Syntax
TI_FeeStatusType TI_FeeManager(void)

Sync/Async

Asynchronous

Parameters (in)

None

32 Getting Started Guide SPNU518–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

www.ti.com API Specification

Return Value

TI_FeeStatusType

• TI_FEE_OK: The job was completed.

• TI_FEE_ERROR: The job was not completed due to an error.

Description

The function TI_FeeManager() manages the Flash EEPROM Emulation and is called when no other job is
pending by the TI_FeeTask function. This function handles all the background tasks to manage the FEE.

This routine is responsible for:

• Determining whether a Virtual Sector Copy operation is in progress. If so, it should identify all the Valid
Data Blocks in the old Virtual Sector and copy them to the new Virtual Sector.

• Determining if any of the Virtual Sector needs to be erased. If so, it should erase that particular Virtual
Sector.

• This function is only called when the Fee module is in IDLE state. It should set the Fee module to
BUSY_INTERNAL state.

4.7.1.14 Format Function (TI_FEE_Format)

Function formats all the Virtual Sectors.

Syntax
void TI_FEE_Format(void)

Sync/Async

Synchronous

Parameters (in)

None

Return Value

None

Description

This function provides functionality for erasing all the Virtual Sectors synchronously.

NOTE: Calling this function will result in loss of data. This function should be called only if you want
to reconfigure the Data Blocks/Virtual Sectors or detect a serious error condition.

33SPNU518–May 2012 Getting Started Guide
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

Appendix A
SPNU518–May 2012

Revision History

Table A-1 lists the version history of this user's guide.

Table A-1. Version History

Version Additions/Modifications/Deletions

1.0 Initial version

1.1 Added description for Configuration parameters

34 Revision History SPNU518–May 2012
Submit Documentation Feedback

Copyright © 2012, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNU518

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://www.ti.com/wirelessconnectivity
http://e2e.ti.com

	Table of Contents
	Preface
	1 TI FEE Driver Introduction
	1.1 Overview
	1.1.1 Functions Supported in the TI FEE Driver
	1.1.2 Other Components
	1.1.3 Development Platform

	2 TI FEE Driver Design Overview
	2.1 Flash EEPROM Emulation Methodology
	2.1.1 Virtual Sector Organization
	2.1.1.1 Virtual Sector Header

	2.1.2 Data Block Organization
	2.1.2.1 Data Block Header

	2.1.3 Supported Commands
	2.1.4 Status Codes
	2.1.5 Job Result

	3 Installation Guide
	3.1 List of Installable Components
	3.2 Component Folder

	4 Getting Started Guide
	4.1 Build Procedure
	4.2 Symbolic Constants and Enumerated Data Types
	4.3 Data Structures
	4.4 TI FEE Parameter Configuration
	4.4.1 Maximum Number of Links
	4.4.2 Job Error Notification
	4.4.3 Job End Notification
	4.4.4 Operating Frequency
	4.4.5 Number of Blocks
	4.4.6 Number of Virtual Sectors
	4.4.7 TI FEE Virtual Sector Configuration
	4.4.7.1 Virtual Sector Number
	4.4.7.2 Flash Bank
	4.4.7.3 Start Sector
	4.4.7.4 End Sector
	4.4.7.5 Sample Virtual Sector Configuration

	4.4.8 TI FEE Block Configuration
	4.4.8.1 Block Number
	4.4.8.2 Block Size
	4.4.8.3 Number of Write Cycles
	4.4.8.4 Device Index
	4.4.8.5 Sample Block Configuration

	4.4.9 Block OverHead
	4.4.10 Page OverHead
	4.4.11 Virtual Sector OverHead
	4.4.12 Virtual Sector Page Size
	4.4.13 Driver Index
	4.4.14 Read Cycle Count
	4.4.15 Enable ECC Correction

	4.5 API Classification
	4.5.1 Initialization
	4.5.2 Data Operations
	4.5.3 Information
	4.5.4 Internal Operations

	4.6 FEE Operation Flow
	4.7 API Specification
	4.7.1 TI FEE Driver Functions
	4.7.1.1 Initialization Function (TI_Fee_Start)
	4.7.1.2 Async Write Function (TI_FEE_WriteAsync)
	4.7.1.3 Sync Write Function (TI_FEE_WriteSync)
	4.7.1.4 Read Function (TI_FEE_Read)
	4.7.1.5 Erase Function (TI_FEE_EraseBlock)
	4.7.1.6 Invalidate Function (TI_FEE_InvalidateBlock)
	4.7.1.7 Shutdown Function (TI_FEE_Shutdown)
	4.7.1.8 Get Version Info Function (TI_FEE_getVersionInfo)
	4.7.1.9 Get Status Function (TI_FEE_getStatus)
	4.7.1.10 Get Job Result Function (TI_FEE_getJobResult)
	4.7.1.11 Get Error Code (TI_FeeErrorCode)
	4.7.1.12 Task Function (TI_FeeTask)
	4.7.1.13 Manager Function (TI_FeeManager)
	4.7.1.14 Format Function (TI_FEE_Format)

	A Revision History

