
TMS570LS31x/21x Microcontroller
Silicon Revision C

Silicon Errata

Literature Number: SPNZ195G
February 2013–Revised May 2016

2 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

Table of Contents

Contents

1 Device Nomenclature.. 4
2 Revision Identification .. 5
3 Known Design Exceptions to Functional Specifications .. 6
4 Revision History... 72

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com

3SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

List of Figures

List of Figures
1 Device Revision Code Identification... 5
2 Shared Input Channel in "Open" State.. 9
3 Example ADC1/ADC2 Channel Connection .. 10
4 First Fail Mode .. 44
5 Second Fail Mode .. 45
6 Workarounds.. 45

List of Tables
1 Known Design Exceptions to Functional Specifications ... 6
2 Revision History from Errata Document Revision F to Revision G .. 72

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

4 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

Silicon Errata
SPNZ195G–February 2013–Revised May 2016

TMS570LS31x/21x Microcontroller

This document describes the known exceptions to the functional specifications for the device.

1 Device Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
devices. Each commercial family member has one of three prefixes: TMX, TMP, or TMS (for example,
TMS570LS3137). These prefixes represent evolutionary stages of product development from engineering
prototypes (TMX) through fully qualified production devices/tools (TMS).

Device development evolutionary flow:

TMX — Experimental device that is not necessarily representative of the final device's electrical
specifications.

TMP — Final silicon die that conforms to the device's electrical specifications but has not completed
quality and reliability verification.

TMS — Fully-qualified production device.

TMX and TMP devices are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

TMS devices have been characterized fully, and the quality and reliability of the device have been
demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard
production devices. Texas Instruments recommends that these devices not be used in any production
system because their expected end-use failure rate still is undefined. Only qualified production devices are
to be used.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

Device Revision Code

3137xZWTQQ1

#######

TMS570LS

Device Revision Code

3137xPGEQQ1

#######

TMS570LS

G1
__

G4
__

www.ti.com Revision Identification

5SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

2 Revision Identification
Figure 1 provides examples of the TMS570LSx device markings. The device revision can be determined
by the symbols marked on the top of the device.

Figure 1. Device Revision Code Identification

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

Known Design Exceptions to Functional Specifications www.ti.com

6 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

3 Known Design Exceptions to Functional Specifications
The following table lists the known exceptions to the functional specifications for the device.

Table 1. Known Design Exceptions to Functional Specifications
Title .. Page

ADC#1 —Injecting current into an input channel shared between the two ADCs causes a DC offset in conversion
results of other channels ... 9

AHB_ACCES_PORT#3 (ARM ID-529470) — Debugger may display unpredictable data in the memory browser
window if a system reset occurs .. 12

CORTEX-R4#26 (ARM ID-577077) — Thumb STREXD Treated As NOP If Same Register Used For Both Source
Operands ... 13

CORTEX-R4#27 (ARM ID-412027) — Debug Reset Does Not Reset DBGDSCR When In Standby Mode 14
CORTEX-R4#33 (ARM ID-452032) — Processor Can Deadlock When Debug Mode Enables Cleared 15
CORTEX-R4#46 (ARM ID-599517) — CP15 Auxiliary ID And Prefetch Instruction Accesses Are UNDEFINED 16
CORTEX-R4#54 (ARM ID-639819) — An instruction which causes a data watchpoint to match is incorrectly traced

when Debugging mode is set to Monitor-mode. .. 17
CORTEX-R4#55 (ARM ID-722412) — CPACR.ASEDIS and CPACR.D32DIS return incorrect value when

implementation includes floating point unit. ... 18
CORTEX-R4#56 (ARM ID-736960) — Debug Halt Exceptions Always Shown As Cancelling On ETM Interface 19
CORTEX-R4#57 (ARM ID-737195) — Conditional VMRS APSR_Nzcv, FPSCR May Evaluate With Incorrect Flags ... 20
CORTEX-R4#58 (ARM ID-726554) — DBGDSCR.Adadiscard Is Wrong When DBGDSCR.Dbgack Set 21
CORTEX-R4#59 (ARM ID-748619) — Missing Reset Exception On ETM Interface .. 22
CORTEX-R4#61 (ARM ID-720270) — Latched DTR-Full Flags Not Updated Correctly On DTR Access. 23
CORTEX-R4#66 (ARM ID-754269) — Register Corruption During a Load-Multiple Instruction at an Exception Vector . 24
CORTEX-R4#67 (ARM ID-758269) — Watchpoint On A Load Or Store Multiple May Be Missed. 25
DCC#24 — Single Shot Mode Count may be Incorrect ... 26
DEVICE#142 —CPU Abort Not Generated on Write to Unimplemented MCRC Space 27
DEVICE#B053 — CPU code execution could be halted on a device warm reset if the core power domain # 2 is

disabled by software. ... 28
DEVICE#B063 —Incorrect PSCON Compare Error .. 29
DEVICE#B064 — Incorrect Write to External Memory using Store-Multiple (STMxx) CPU instruction 30
DEVICE#B065 — RTP does not automatically restart transmitting trace data after an overflow condition is corrected. . 31
DEVICE#B066 — HCLK Stops Prematurely when Executing from Flash .. 32
DEVICE#B071 — CPU write to peripheral or external memory may be lost ... 33
DEVICE#B074 — Internal pull on MibSPI3_nCS[1] gets disabled when ECLK is made an output 34
DMA#27 — DMA Requests Lost During Suspend Mode ... 35
DMM#16 — BUSY Flag Not Set When DMM Starts Receiving A Packet .. 36
EMIF#3 — EMIF generates data abort on register read after time-out error ... 37
EMIF#4 — Write to external asynchronous memory configured as “normal” causes extra WE pulses 38
ERAY#52 (FLEXRAY#52) — Wakeup Symbol (WUS) Generates Redundant Wakeup Interrupts (SIR.WUPA/B) 39
ERAY#58 (FLEXRAY#58) — Erroneous Cycle Offset During Startup after abort of startup or normal operation 40
ERAY#59 (FLEXRAY#59) — First Wakeup Symbol (WUS) Following Received Valid Wakeup Pattern (WUP) May Be

Ignored ... 41
ERAY#60 (FLEXRAY#60) — READY Command Accepted In READY State .. 42
ERAY#61 (FLEXRAY#61) — The Transmission Slot Mode Bit Is Reset Immediately When Entering HALT State 43
ERAY#68 (FLEXRAY#68) —Data transfer overrun for message transfers Message RAM to Output Buffer (OBF) or

from Input Buffer (IBF) to Message RAM... 44
ERAY#69 (FLEXRAY#69) — Missing startup frame in cycle 0 at coldstart after FREEZE or READY command 46
ETM_R4#16 — ETM-R4 Fails To Trace VNT Packet For The Second Half Of SWP Instruction 47
FMC#67 (FLASH WRAPPER#67) — Error Status Register Bit B2_COR_ERR Set Erroneously during error profiling

mode .. 48
FMC#79 — Abort on Unaligned Access at End of Bank .. 49
FMC#80 — Abort on Accesses Switching Between two Banks .. 50

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com Known Design Exceptions to Functional Specifications

7SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

Table 1. Known Design Exceptions to Functional Specifications (continued)

FTU#08 — FlexRay Transfer Unit Not Disabled On Memory Protection Violation (MPV) Error 51
FTU#19 — TCCOx Flag Clearing Masked .. 52
GCM#59 — Oscillator can be disabled while PLL is running ... 53
MCRC#18 — CPU Abort Generated on Write to Implemented CRC Space After Write to Unimplemented CRC Space 54
MIBSPI#110 — Multibuffered SPI in Slave Mode In 3- or 4-Pin Communication Transmits Data Incorrectly for Slow

SPICLK Frequencies and for Clock Phase = 1 ... 55
MIBSPI#111 — Data Length Error Is Generated Repeatedly In Slave Mode when I/O Loopback is Enabled 56
MIBSPI#137 — Spurious RX DMA REQ from a Slave mode MIBSPI .. 57
MIBSPI#139 — Mibspi RX RAM RXEMPTY bit does not get cleared after reading ... 58
NHET#54 — PCNT incorrect when low phase is less than one loop resolution ... 59
NHET#55 —More than one PCNT instruction on the same pin results in measurement error 60
PBIST#4 — PBIST ROM Algorithm Doesn't Execute ... 62
SSWF021#35 — Potential clock glitch when switching PLL clock divider from divide-by-1. 63
SSWF021#44 — Change to PLL Lock Time .. 64
SSWF021#45 — PLL Fails to Start .. 65
STC#26 — The value programmed into the Self Test Controller (STC) Self-Test Run Timeout Counter Preload

Register (STCTPR) is restored to its reset value at the end of each self test run. 66
STC#29 — Inadvertent Performance Monitoring Unit (PMU) interrupt request generated if a system reset [internal or

external] occurs while a CPU Self-Test is executing. .. 67
STC#31 — Self Test Controller Returns a False Failure .. 68
SYS#046 — Clock Source Switching Not Qualified With Clock Source Enable And Clock Source Valid 69
SYS#102 — Bit field EFUSE_Abort[4:0] in SYSTASR register is read-clear instead of write-clear 70
VIM#27 — Unexpected phantom interrupt .. 71

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

Known Design Exceptions to Functional Specifications www.ti.com

8 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

PMOS

NMOS

PMOS

NMOS

VCCAD

VSSAD

Shared Input Channel

To ADC2

To ADC1

www.ti.com ADC#1 — Injecting current into an input channel shared between the two ADCs causes a DC offset in
conversion results of other channels

9SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

ADC#1 Injecting current into an input channel shared between the two ADCs causes a DC
offset in conversion results of other channels

Severity 3 - Medium

Expected Behavior External circuit connected to one channel must not affect the conversion result of
another channel.

Issue This microcontroller (MCU) has two Analog-to-Digital Converters (ADCs). Some of the
input channels are unique to ADC1 while some are shared between ADC1 and ADC2.
Figure 2 shows a block diagram of an input channel shared between ADC1 and ADC2.

Figure 2. Shared Input Channel in "Open" State

The PMOS and NMOS switches are open indicating that this shared input channel is not
currently being sampled either by ADC1 or by ADC2. Also, there are switches to VCCAD
and VSSAD that are closed. If any current is injected into this analog input, any leakage
through the open PMOS switch will be shunted to VSSAD. These switches to VSSAD
and VCCAD are opened as soon as this shared input channel is being sampled by either
ADC1 or ADC2.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

ADC1 Inputs

ADC2 Inputs

PMOS

x
x

NMOS

PMOS

NMOS

VCCAD

VSSAD

Shared Input Channel C

PMOS

x

NMOS

PMOS

NMOS

VCCAD

VSSAD

Shared Input Channel B

ON, Selected in
ADC2

OFF, Not
Selected

PMOS

x

NMOS

Unique Input Channel A

PMOS

NMOS

ON, Selected in
ADC1

VSSAD

VCCAD

220

2.5k

10k
25V

2mA

~2mA

ADC#1 — Injecting current into an input channel shared between the two ADCs causes a DC offset in conversion results of
other channels www.ti.com

10 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

Figure 3. Example ADC1/ADC2 Channel Connection

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com ADC#1 — Injecting current into an input channel shared between the two ADCs causes a DC offset in
conversion results of other channels

11SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

Figure 3 shows an example where a ADC1 is sampling input channel A which is unique
to ADC1, and ADC2 is sampling input channel B, which is a shared-input channel. This
is shown by the dashed green and light blue current paths.

Another current path is shown in dashed dark red. This is a current injected into channel
B as the input level on terminal B is greater than VCCAD - 0.3V. This is a parasitic
current that passes through the "open" PMOS switch, and a part of this current flows to
ground through the external 220 ohm resistor connected to input channel A. This causes
an offset in the conversion result of channel A being sampled by ADC1.

Conditions This issue occurs if:
1. Input voltage on a shared input channel being sampled by one ADC is (VCCAD -

0.3V) or higher, and
2. The second ADC samples another channel such that there is some overlap between

the sampling windows of the two ADCs

Implications An offset error is introduced in the conversion result of any channel if a current is being
injected into a shared input channel.

Workaround(s) There are two options to minimize the impact of this issue:
1. Configure the two ADC modules such that their sampling periods do not overlap, or
2. Limit the shared analog input upper limit to be lower than (VCCAD - 0.3V). The

PMOS leakage is reduced exponentially if the input is lower than VCCAD - 0.3V.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

AHB_ACCES_PORT#3 (ARM ID-529470) — Debugger may display unpredictable data in the memory browser window if a
system reset occurs www.ti.com

12 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

AHB_ACCES_PORT#3 (ARM ID-529470) Debugger may display unpredictable data in the memory
browser window if a system reset occurs

Severity 3-Medium

Expected Behavior If a system reset (nRST goes low) occurs while the debugger is performing an access on
the system resource using system view, a slave error should be replied to the debugger.

Issue Instead, the response might indicate that the access completed successfully and return
unpredictable data if the access was a read.

Condition System reset is asserted LOW on a specific cycle while the debugger is completing an
access on the system using the system view. An example would be the debugger like
the CCS's memory browser window is refreshing its content using the system view. This
is not an issue for a CPU only reset. This is not an issue during power-on reset
(nPORRST) either.

Implication(s) Data read using the debugger in system view while a system reset occurs may be
corrupt, writes may be lost.

Workaround(s) This is a workaround for users and tools vendors.

Avoid performing debug reads and writes while the device might be reset.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com CORTEX-R4#26 (ARM ID-577077) — Thumb STREXD Treated As NOP If Same Register Used For Both
Source Operands

13SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

CORTEX-R4#26 (ARM ID-577077) Thumb STREXD Treated As NOP If Same Register Used For Both
Source Operands

Severity 3-Medium

Expected Behavior The STREXD instruction should work in Thumb mode when Rt and Rt2 are the same
register.

Issue The ARM Architecture permits the Thumb STREXD instruction to be encoded with the
same register used for both transfer registers (Rt and Rt2). Because of this issue, the
Cortex-R4 processor treats such encoding as UNPREDICTABLE and executes it as a
NOP.

Condition This error occurs when the processor is in Thumb state and a STREXD instruction is
executed with Rt = Rt2.

Note: this instruction is new in ARM Architecture version 7 (ARMv7). It is not present in
ARMv6T2 or other earlier architecture versions.

Implication(s) If this error occurs, the destination register, Rd, which indicates the status of the
instruction, is not updated and no memory transaction takes place. If the software is
attempting to perform an exclusive read-modify-write sequence, then it might either
incorrectly complete without memory being written, or loop forever attempting to
complete the sequence.

Workaround(s) This issue can be avoided by using two different registers for the data to be transferred
by a STREXD instruction. This may involve copying the data in the transfer register to a
second, different register for use by the STREXD.

Comment: TI Code Generation tool does not generate exclusive access load or store
instructions. On these Hercules devices there is no reason to use exclusive access
instructions.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

CORTEX-R4#27 (ARM ID-412027) — Debug Reset Does Not Reset DBGDSCR When In Standby Mode www.ti.com

14 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

CORTEX-R4#27 (ARM ID-412027) Debug Reset Does Not Reset DBGDSCR When In Standby Mode

Severity 3-Medium

Expected Behavior The debug reset input, PRESETDBGn, resets the processor's debug registers as
specified in the ARMv7R Architecture. The debug reset is commonly used to set the
debug registers to a known state when a debugger is attached to the target processor.

Issue When the processor is in Standby Mode and the clock has been gated off,
PRESETDBGn fails to reset the Debug Status and Control Register (DBGDSCR).

Condition
1. The DBGDSCR register has been written so that its contents differ from the reset

values (most fields in this register reset to zero, though a few are UNKNOWN at
reset), and

2. The processor is in Standby Mode, and the clocks have been gated off, that is
STANDBYWFI is asserted, and

3. The debug reset, PRESETDBGn, is asserted and de-asserted while the processor
clocks remain gated off.

Note: the debug reset is commonly used to set the debug registers to a known state
when a debugger is attached to the target processor.

Implication(s) This issue affects scan based debug utility developers. The end user should not be
affected by this issue if the development tool vendor has implemented the workaround.

If this issue occurs, then after the reset, the DBGDSCR register contains the values that
it had before reset rather than the reset values. If the debugger relies on the reset
values, then it may cause erroneous debug of the processor. For example, the
DBGDSCR contains the ExtDCCmode field which controls the Data Communications
Channel (DCC) access mode. If this field was previously set to Fast mode but the
debugger assumes that it is in Non-blocking mode (the reset value) then debugger
accesses to the DCC will cause the processor to execute instructions which were not
expected.

Workaround(s) This can be avoided by a workaround in the debug control software. Whenever the
debugger (or other software) generates a debug reset, follow this with a write of zero to
the DBGDSCR which forces all the fields to their reset values.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com CORTEX-R4#33 (ARM ID-452032) — Processor Can Deadlock When Debug Mode Enables Cleared

15SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

CORTEX-R4#33 (ARM ID-452032) Processor Can Deadlock When Debug Mode Enables Cleared

Severity 3-Medium

Expected Behavior The Cortex-R4 processor supports two different debugging modes: Halt-mode and
Monitor-mode. Both modes can be disabled. Bits [15:14] in the Debug Status and
Control Register (DBGDSCR) control which, if any, mode is enabled. Additionally, debug
events can only occur if the invasive debug enable pin, DBGEN is asserted. Deadlocks
should not occur when the debug mode is changed.

Issue If there are active breakpoints or watchpoints at the time when the debugging modes are
disabled via the DBGDSCR or DBGEN, this issue can cause the processor to deadlock
(in the case of a breakpoint) or lose data (in the case of a watchpoint).

Condition
1. DBGEN is asserted and the processor is running, and
2. At least one breakpoint or watchpoint is programmed and active, and
3. Either halt-mode debugging or monitor mode debugging is enabled, and
4. Either an instruction is fetched which matches a breakpoint, or an item of data is

accessed which matches a watchpoint, and
5. After the instruction or data is accessed, but before the instruction completes

execution, either the DBGEN input is de-asserted or both halt-mode and monitor-
mode debugging are disabled by means of a write the DBGDSCR.

Implication(s) This issue affects scan based debug utility developers. The end user should not be
affected by this issue if the development tool vendor has implemented the workaround.

Depending on which of the conditions are met, the processor will either lose data or
deadlock. If the processor deadlocks because of this issue it will still respond to
interrupts provided they are not masked.

Workaround(s) This issue can be avoided by ensuring that all watchpoints and breakpoints are made
inactive before either de-asserting DBGEN or changing the debug mode enables.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

CORTEX-R4#46 (ARM ID-599517) — CP15 Auxiliary ID And Prefetch Instruction Accesses Are UNDEFINED www.ti.com

16 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

CORTEX-R4#46 (ARM ID-599517) CP15 Auxiliary ID And Prefetch Instruction Accesses Are
UNDEFINED

Severity 3-Medium

Expected Behavior The ARMv7-R architecture requires implementation of the following two features in
CP15:

1. An Auxiliary ID Register (AIDR), which can be read in privileged modes, and the
contents and format of which are IMPLEMENTATION DEFINED.

2. The operation to prefetch an instruction by MVA, as defined in the ARMv6
architecture, to be executed as a NOP.

Because of this issue, both of these CP15 accesses generate an UNDEFINED exception
on Cortex-R4.

Issue CP15 accesses to Auxiliary ID Register (AIDR) or an operation to prefetch an instruction
by MVA will generate an UNDEFINED exception on Cortex-R4.

Condition Either of the following instructions is executed in a privileged mode:
• MRC p15,1,<Rt>,c0,c0,7 ; Read IMPLEMENTATION DEFINED Auxiliary ID Register
• MCR p15,0,<Rt>,c7,c13,1 ; NOP, was Prefetch instruction by MVA in ARMv6

Implication(s) This issue should only affect portable code supposed to run on different ARM
architecture or code running on cached Cortex-R4. Code written for Hercules products
should not be affected.

Workaround(s) The CP15 AIDR and MVA registers are not implemented on Cortex-R4 CPU. To avoid
this issue, don't read or write to them.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com CORTEX-R4#54 (ARM ID-639819) — An instruction which causes a data watchpoint to match is incorrectly
traced when Debugging mode is set to Monitor-mode.

17SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

CORTEX-R4#54 (ARM ID-639819) An instruction which causes a data watchpoint to match is
incorrectly traced when Debugging mode is set to Monitor-mode.

Severity 3-Medium

Expected Behavior When tracing a program execution using the ETM, an extra instruction should not be
traced when debugging mode is set to Monitor-Mode.

Issue The Cortex-R4 processor supports two different debugging modes: Halt-mode and
Monitor-mode. Bits [15:14] in the Debug Status and Control Register (DBGDSCR)
control which, if any, mode is enabled. When tracing program execution using the ETM,
an extra instruction is traced if a data watchpoint matches and causes a debug
exception. The extra instruction that is traced is the instruction which caused the data
watchpoint to match.

Condition The extra instruction is traced if the following occurs:
1. An hardware watchpoint matches, and
2. DBGEN is asserted, and
3. Debugging mode is set to Monitor-mode.

Implication(s) Most Hercules users will not be impacted by this issue, because Code Composer Studio
utilizes Halt-mode (not Monitor-mode) to debug Hercules. Therefore the conditions for
the issuewould not normally be met.

In special cases where Monitor-mode is being used, trace analysis tools will incorrectly
consider the instruction which causes a data watchpoint to match to have executed.

If any of the ETM address comparators are configured to match on address of the
instruction and the exact match bit is set, the comparator will incorrectly fire. This might
cause an unexpected trigger or change in any ETM resources which are configured to
be sensitive to the address comparator.

Workaround(s) If a data abort exception is taken and the cause was a data watchpoint, the instruction
traced immediately before the entry to the exception handler was not executed and must
be discarded.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

CORTEX-R4#55 (ARM ID-722412) — CPACR.ASEDIS and CPACR.D32DIS return incorrect value when implementation
includes floating point unit. www.ti.com

18 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

CORTEX-R4#55 (ARM ID-722412) CPACR.ASEDIS and CPACR.D32DIS return incorrect value when
implementation includes floating point unit.

Severity 3-Medium

Expected Behavior Because the Cortex-R4F CPU does not include the Advance SIMD (NEON) unit or
registers D16-D32, it should return a value of 11 (disabled) for CP15 CPACR [31:30]
(AESDIS and D32DIS).

Issue Because of this issue, these bits read zero in implementations of Cortex- R4F which
include the floating-point unit.

Condition On reads, CPACR[31:30] actually read as 00 not 11.

Implication(s) Software cannot uses the CPACR to determine whether Advanced SIMD functionality
and registers D16-D32 are available.

Workaround(s) Hercules products do not include Advance SIMD (NEON) unit or registers D16-D32 so
there is no need to check for these features.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com CORTEX-R4#56 (ARM ID-736960) — Debug Halt Exceptions Always Shown As Cancelling On ETM Interface

19SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

CORTEX-R4#56 (ARM ID-736960) Debug Halt Exceptions Always Shown As Cancelling On ETM
Interface

Severity 3-Medium

Expected Behavior When tracing program execution using the ETM, the instruction executed immediately
before an external debug halt request should be traced.

Issue However, when tracing program execution using the ETM, the instruction executed
immediately before an external debug halt request will not be traced. If this instruction is
a partially-executed multi-cycle instruction, for example a load-multiple which has
transferred some, but not all of its registers, then this is correct. However, when the
instruction has completed execution, this is erroneous.

Condition The issue occurs if:
• Tracing is enabled, and
• The processor enters debug halt state either because EDBGRQ was asserted or

because of a write to the DRCR, and
• At the time it stopped executing instructions in order to enter debug halt state, the

processor was not part-way through executing a load or store multiple instruction

Implication(s) Trace analysis tools will incorrectly consider the instruction executed immediately before
the debug halt state entry to have not executed.

If any of the ETM address comparators are configured to match on address of the
instruction and the exact match bit is set, the comparator will fail to fire. This might have
a knock-on effect to an expected trigger event or change in any ETM resources which
are configured to be sensitive to the address comparator.

Workaround(s) None.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

CORTEX-R4#57 (ARM ID-737195) — Conditional VMRS APSR_Nzcv, FPSCR May Evaluate With Incorrect Flags
www.ti.com

20 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

CORTEX-R4#57 (ARM ID-737195) Conditional VMRS APSR_Nzcv, FPSCR May Evaluate With Incorrect
Flags

Severity 3-Medium

Expected Behavior A conditional VMRS APSR_nzcv, FPSCR instruction should evaluate its condition codes
using the correct flags.

Issue Under certain circumstances, a conditional VMRS APSR_nzcv, FPSCR instruction may
evaluate its condition codes using the wrong flags and incorrectly execute or not
execute.

Condition The issue requires the following sequence of instructions in ARM state:
1. - VMRS<c> APSR_nzcv, FPSCR (formerly FMSTAT<c>), where the condition on the

instruction is not always. This instruction immediately following:
2. A flag-setting integer multiply or multiply and accumulate instruction (e.g. MULS)
3. A single-precision floating-point multiply-accumulate (FP-MAC) instruction (e.g.

VMLA), timed such that the accumulate operation is inserted into the pipeline in the
cycle in which the VMRS instruction is first attempted to be issued.

To meet the above timing requirements, the VMRS instruction must be three pipeline
stages behind the FPMAC. Depending on the rate in which the instructions are fetched,
interlocks within this sequence and dual-issuing, this can be up to three other
instructions between this pair, plus the multiply. Out-of-order completion of FP-MAC
instructions must be enabled.

Implication(s) If this issue occurs, the VMRS instruction will pass or fail its condition codes incorrectly,
and this will appear in any trace produced by the ETM. This can corrupt the N, Z, C, V
flag values in the CPSR which will typically affect the program flow.

Workaround(s) Workaround: This issue can be avoided by disabling out-of-order single-precision
floating-point multiply-accumulate (SPMAC) instruction completion. Set DOOFMACS, bit
[16] in the Secondary Auxiliary Control Register. This will have the side-effect of
reducing the performance of SP-MAC operations, though the impact will depend on how
these instructions are used in your code.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com CORTEX-R4#58 (ARM ID-726554) — DBGDSCR.Adadiscard Is Wrong When DBGDSCR.Dbgack Set

21SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

CORTEX-R4#58 (ARM ID-726554) DBGDSCR.Adadiscard Is Wrong When DBGDSCR.Dbgack Set

Severity 3-Medium

Expected Behavior When the DBGDSCR.ADAdiscard bit is set, asynchronous data aborts are discarded,
except for setting the DBGDSCR.ADAbort sticky flag. The Cortex-R4 processor ensures
that all possible outstanding asynchronous data aborts have been recognized before it
enters debug halt state. The flag is immediately on entry to debug halt state to indicate
that the debugger does not need to take any further action to determine whether all
possible outstanding asynchronous aborts have been recognized.

Issue Because of this issue, the Cortex-R4 processor also sets the DBGDSCR.ADAdiscard bit
when the DBGDSCR.DBGack bit is set. This can cause the DBGDSCR.ADAbort bit to
become set when the processor is not in debug halt state, and it is not cleared when the
processor enters debug halt state. However, the processor does not discard the abort. It
is pending or generates an exception as normal.

Condition
1. The processor is not in debug halt state
2. The DBGDSCR.DBGack bit is set
3. An asynchronous data abort (for example, SLVERR response to a store to Normal-

type memory) is recognized

NOTE: it is not expected that DBGDSCR.DBGack will be set in any Cortex-R4
system

Implication(s) Hercules users will not be impacted by this issue, because Code Composer Studio takes
care of this condition.

If this issue occurs, and the processor subsequently enters debug halt state, the
DBGDSCR.ADAbort bit will be set, when in fact no asynchronous data abort has
occurred in debug state. Before exiting debug state, the debugger will check this bit and
will typically treat it as an error. If no other asynchronous data abort has occurred in
debug state, this is a false error.

Workaround(s) None.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

CORTEX-R4#59 (ARM ID-748619) — Missing Reset Exception On ETM Interface www.ti.com

22 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

CORTEX-R4#59 (ARM ID-748619) Missing Reset Exception On ETM Interface

Severity 3-Medium

Expected Behavior Able to use the ETM to trace through a soft reset.

Issue When tracing program execution through soft reset using the ETM, a reset exception
might not be traced.

Condition Two sets of conditions cause this erratum to occur:

Conditions set 1: The first instruction at the reset vector is a load-store multiple
instruction. This must not happen because after reset there is no base register whose
contents can be guaranteed.

Conditions set 2: The processor enters debug halt state before executing the instruction
at the reset vector due to the following conditions being true when the processor comes
out of soft reset with nCPUHALTm HIGH or when nCPUHALTm is first de-asserted after
soft reset:
• The Halting mode debug enable bit (bit[14] in the DBGDSCR) is set

AND
• The DBGENm input pin is asserted

AND
• A debug event is triggered due to: - The Halt request bit in the DBGDRCR being set

OR
• The EDBGRQm input pin being asserted

Implication(s) For conditions set 1:
if the last instruction before the reset was an indirect branch instruction, a branch to
the reset vector will be traced but not marked with a reset exception. If the last
instruction before the reset was not an indirect branch, a trace analysis tool might
incorrectly infer the execution of one or more instructions after the instruction before
the reset until the processor executes an indirect branch. Typically, the instruction at
the reset vector is an indirect branch and therefore this error is limited to one or two
instructions. The address comparators in the ETM are unaffected unless an address
comparison was set on the address of the instruction just before the reset occurs and
the exact match bit was set for comparison. In this case the instruction is always
considered to be executed.

For conditions set 2:
The reset exception is not traced and only the debug exception is traced. Any ETM
address comparator configured to match on the instruction at the reset vector will not
match.

Workaround(s) None.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com CORTEX-R4#61 (ARM ID-720270) — Latched DTR-Full Flags Not Updated Correctly On DTR Access.

23SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

CORTEX-R4#61 (ARM ID-720270) Latched DTR-Full Flags Not Updated Correctly On DTR Access.

Severity 3-Medium

Expected Behavior When the debug Data Transfer Register (DTR) is in non-blocking mode, the latched
DTR-full flags (RXfull_l and TXfull_l) record the state of the DTR registers as observed
by the debugger and control the flow of data to and from the debugger to prevent race
hazards. For example, when the target reads data from DBGDTRRXint, the associated
flag RXfull is cleared to indicate that the register has been drained, but the latched value
Rxfull_l remains set. Subsequent debugger writes to DBGDTRRXext are ignored
because RXfull_l is set. RXfull_l is updated from RXfull when the debugger reads
DBGDSCRext such that a debugger write to DBGDTRRXext will only succeed after the
debugger has observed that the register is empty. The ARMv7 debug architecture
requires that RXfull_l be updated when the debugger reads DBGDSCRext and when it
writes DBGDTRRXext. Similarly, TXfull_l must be updated when the debugger reads
DBGDSCRext and when it reads DBGDTRTXext.

Issue Because of this issue, RXfull_l and TXfull_l are only updated when the debugger reads
DBGDSCRext.

Condition The DTR is in non-blocking mode, that is, DBGDSCR.ExtDCCmode is set to 0b00 and
EITHER:
1. The debugger reads DBGDSCRext which shows that RXfull is zero, that is,

DBGDTRRX is empty, and then
2. The debugger writes data to DBGDTRRXext, and
3. Without first reading the DBGDSCRext, and before the processor has read from

DBGDTRRXint, the debugger performs another write to DBGDTRRXext.
OR
1. The debugger reads DBGDSCRext which shows that TXfull is one, that is,

DBGDTRTX is full, and then
2. The debugger reads data from DBGDTRTXext, and then
3. The processor writes new data into DBGDTRTXint, and
4. Without first reading the DBGDSCRext, the debugger performs another read from

DBGDTRTXext.

Implication(s) The ARMv7 debug architecture requires the debugger to read the DBGDSCRext before
attempting to transfer data via the DTR when in non-blocking mode. This issue only has
implications for debuggers that violate this requirement. If the issue occurs via data
transfer, data loss may occur. The architecture requires that data transfer never occur.

Texas Instruments has verified that TI's Code Composer Studios IDE is not affected by
this issue.

Workaround(s) None.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

CORTEX-R4#66 (ARM ID-754269) — Register Corruption During a Load-Multiple Instruction at an Exception Vector
www.ti.com

24 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

CORTEX-R4#66 (ARM ID-754269) Register Corruption During a Load-Multiple Instruction at an
Exception Vector

Severity 3-Medium

Expected Behavior LDM will execute properly when used as the first instruction of an exception routine.

Issue Under certain circumstances, a load multiple instruction can cause corruption of a
general purpose register.

Condition All the following conditions are required for this issue to occur:
1. A UDIV or SDIV instruction is executed with out-of-order completion of divides

enabled
2. A multi-cycle instruction is partially executed before being interrupted by either an

IRQ, FIQ or imprecise abort. In this case, a multi-cycle instruction can be any of the
following:
• LDM/STM that transfers 3 or more registers
• LDM/STM that transfers 2 registers to an unaligned address without write back
• LDM/STM that transfers 2 registers to an aligned address with write back
• TBB/TBH

3. A load multiple instruction is executed as the first instruction of the exception handler
4. The load multiple instruction itself is interrupted either by an IRQ, FIQ, imprecise

abort or external debug halt request.

This issue is very timing sensitive and requires the UDIV or SDIV to complete when the
load multiple is in the Issue stage of the CPU pipeline. The register that is corrupted is
not necessarily related to the load-multiple instruction and will depend on the state in the
CPU store pipeline when the UDIV or SDIV completes.

Implication(s) For practical systems, it is not expected that an interruptible LDM will be executed as the
first instruction of an exception handler, because the handler is usually required to save
the registers of the interrupted context. Therefore, it is not expected that this issue has
any implications for practical systems. If the situation of the issue occurs it will result in
the corruption of the register bank state and could cause a fatal failure if the corrupted
register is subsequently read before being written.

Workaround(s) To work around this issue, set bit [7] of the Auxiliary Control Register to disable out-of-
order completion for divide instructions. Code performance may be reduced depending
on how often divide operations are used.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com CORTEX-R4#67 (ARM ID-758269) — Watchpoint On A Load Or Store Multiple May Be Missed.

25SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

CORTEX-R4#67 (ARM ID-758269) Watchpoint On A Load Or Store Multiple May Be Missed.

Severity 3-Medium

Expected Behavior The Cortex-R4 supports synchronous watchpoints. This implies that for load and store
multiples, a watchpoint on any memory access will generate a debug event on the
instruction itself.

Issue Due to this issue, certain watchpoint hits on multiples will not generate a debug event.

Condition All the following conditions are required for this issue to occur:
1. A load or store multiple instruction is executed with at least 5 registers in the register

list.
2. The address range accessed corresponds to Strongly-Ordered or Device memory.
3. A watchpoint match is generated for an access that does not correspond to either the

first two or the last two registers in the list.

Under these conditions the processor will lose the watchpoint. Note that for a "store
multiple" instruction, the conditions are also affected by pipeline state making them
timing sensitive.

Implication(s) Due to this issue, a debugger may not be able to correctly watch accesses made to
Device or Strongly-ordered memory. The ARM architecture recommends that
watchpoints should not be set on individual Device or Strongly-ordered addresses that
can be accessed as part of a load or store multiple. Instead, it recommends the use of
the address range masking functionality provided to set watchpoints on an entire region,
ensuring that the watchpoint event will be seen on the first access of a load or store
multiple to this region.

If this recommendation is followed, this issue will not occur.

Workaround(s) None.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

DCC#24 — Single Shot Mode Count may be Incorrect www.ti.com

26 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

DCC#24 Single Shot Mode Count may be Incorrect

Severity 3-Medium

Expected Behavior When the first clock source counts down to zero, the countdown value remaining for the
other clock source is accurately captured.

Issue The first issue is that there is an offset in starting and stopping the two counters due to
synchronization with VCLK that leads to a fixed offset. The second issue is that the value
remaining in the counter that did not reach zero may be latched while the bits are in
transition, giving an erroneous value.

Condition When used in single shot mode and the count value captured is not from VCLK.

Implication(s) The cycle count captured may be incorrect.

Workaround(s) Static frequency offset can be removed by making two measurements and subtracting.
The sporadic offset can be removed by making multiple measurements and discarding
outliers -- an odd filtering algorithm.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com DEVICE#142 — CPU Abort Not Generated on Write to Unimplemented MCRC Space

27SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

DEVICE#142 CPU Abort Not Generated on Write to Unimplemented MCRC Space

Severity Low

Expected Behavior A write to the unimplemented region (0xFE00_0200 to 0xFEFF_FFFF) of the MCRC
module will generate an abort

Issue Sometimes a cpu abort does not get generated.

Conditions When single stepping through the instruction that does the illegal write,
or

when there is a breakpoint on the instruction immediately after the illegal write.

Implications The abort will not be generated when debugging.

Workaround(s) None

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

DEVICE#B053 — CPU code execution could be halted on a device warm reset if the core power domain # 2 is disabled by
software. www.ti.com

28 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

DEVICE#B053 CPU code execution could be halted on a device warm reset if the core power
domain # 2 is disabled by software.

Severity 3-Medium

Expected Behavior The CPU code execution must start from the reset vector (address 0x00000000) upon a
device warm reset and is not affected by the state of any switchable device power
domain.

Issue CPU code execution could be halted upon a warm reset if the core power domain # 2
has been disabled by software prior to the device warm reset.

Condition The behavior is not dependent on any particular operating condition.

Implication(s) CPU code execution is halted so that a system hang occurs. An external monitor must
be present to prevent the system from entering an unsafe state when this happens.

Workaround(s) The application must not disable the core power domain # 2 in software via the Power
Management Module (PMM) registers, even if the modules inside this core power
domain are not used in the application.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com DEVICE#B063 — Incorrect PSCON Compare ErrorDEVICE#B063 the wording of this advisory was clarified

29SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

DEVICE#B063 Incorrect PSCON Compare Error

Severity 3 - Medium

Expected Behavior No Power-State Controller (PSCON) compare errors are expected when disabling a logic
power domain

Issue A false PSCON compare error is generated when disabling a logic power domain.

Conditions This problem might occur if either:
1. A logic power domain is disabled at reset by a factory OTP setting, or
2. Software explicitly disables a power domain via the Power Management Module

(PMM).

Implications ESM group 1 channel 38 and channel 39 errors may be incorrectly generated during
reset or when software disables a power domain. These PSCON compare errors are not
real and can be cleared and ignored.

Workaround(s) This workaround must be implemented in the system initialization after reset, but before
enabling either the interrupt (through register ESMIESR4) or nERROR pin action
(through register ESMIEPSR4) for ESM group 1 channels 38 and 39. Switching disabled
power domains back on requires a system reset so this workaround is only required
during system initialization.
1. Disable power domains that are to be turned off (if no power domains are to be

disabled by software, skip to step 2)
• Write a ‘1’ to each bit of the PDCLKDISSET register corresponding to the power

domain that you intend to disable.
• Write 0xA to the appropriate bit-fields of the LOGICPDPWRCTRL0 register to

power down the domains you intend to disable.
• Poll the appropriate LOGICPDPWRSTATx register for bits [1:0] to become 00 for

each domain you have disabled. The power domain is now powered down
(Allows for delay time of Power Good signal)

2. Clear any PSCON compare error flags. (You can write to clear all four of the flags
because if there is a true error condition in the PSCON, the compare error flag will
immediately be set again.)
• Write 0x000F0000 to LPDDCSTAT1 (0xFFFF00B0)

3. Clear ESM Group 1 flags 38 and 39
• Write 0x000000C0 to ESMSR4 (0xFFFFF558)

4. Enable the effect of ESM group 1 channels 38 and 39, interrupt request or error pin
toggle if desired.

The PSCON is now in lock step with its diagnostic partner, and any difference will now
result in a true ESM error.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

DEVICE#B064 — Incorrect Write to External Memory using Store-Multiple (STMxx) CPU instruction www.ti.com

30 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

DEVICE#B064 Incorrect Write to External Memory using Store-Multiple (STMxx) CPU instruction

Severity 2-High

Expected Behavior Writes to the external memory should happen correctly using any of the supported
ARM/Thumb2 assembly instructions.

Issue Any write to external memory using the CPU Store-Multiple (STMxx) instruction may
result in a failure on a subsequent write operation. The behavior is unpredictable and it is
advised to not use a STMxx instruction to write to an external memory.

Condition CPU performs a store-multiple write operation to external memory.

Implication(s) Data is either not written, or written to the wrong address, or the CPU itself hangs
depending on the configuration of the external memory.

Workaround(s) Do not perform a write to external memory using a store-multiple (STMxx, VSTM,
VPUSH) instruction. Use single stores (STRxx, VSTRxx) for all writes to external
memory.

Only use STR instructions to EMIF with the external memory configured as strongly-
ordered or device (not normal) type for write operations.

Compiler patch is available.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com DEVICE#B065 — RTP does not automatically restart transmitting trace data after an overflow condition is
corrected.

31SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

DEVICE#B065 RTP does not automatically restart transmitting trace data after an overflow
condition is corrected.

Severity 3-Medium

Expected Behavior The RTP is expected to automatically restart transmission after an overflowed FIFO is
drained.

Issue Under certain situations, the RTP cannot recover automatically after a FIFO overflow.
The RTP transmission can only resume by a software RTP module reset via the RESET
field of the RTP Global Control register (RTPGLBCTRL).

Condition The FIFO overflows when there are too much data to be traced.

Implication(s) RTP tracing could stop during operation when the FIFO overflows caused by a high data
rate.

Workaround(s) Enable halt on overflow. It will limit the usage and affect system operation.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

DEVICE#B066 — HCLK Stops Prematurely when Executing from Flash www.ti.com

32 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

DEVICE#B066 HCLK Stops Prematurely when Executing from Flash

Severity 3-Medium

Expected Behavior To reduce power consumption, the CPU may request that the memory clock, HCLK, is
disabled by setting bit 1 of the Clock Domain Disable Register (CDDIS.1). After the CPU
makes this request, the flash bank is expected to monitor CPU activity and delay the
actual disable of HCLK until the flash bank's Active Grace Period (BAGP) has expired
(meaning that the CPU has stopped requesting instructions and data from the flash bank
for some number of clock cycles).

Issue The flash bank fails to delay the disable of HCLK. Therefore the CPU may freeze before
it executes the WFI instruction.

Condition The code requests to disable HCLK by setting bit 1 of the Clock Domain Disable register
(CDDIS.1).

Implication(s) If HCLK is disabled, and the CPU stops before executing the "WFI" instruction, the CPU
will not resume execution on a wakeup interrupt.

Workaround(s) A WFI instruction should immediately follow the instruction that sets bit 1 of the Clock
Domain Disable Register.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com DEVICE#B071 — CPU write to peripheral or external memory may be lost

33SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

DEVICE#B071 CPU write to peripheral or external memory may be lost

Severity 3-Medium

Expected Behavior Writes to peripheral registers or peripheral RAM should happen correctly using any of
the supported ARM/Thumb2 assembly instructions

Issue Multiple CPU burst writes to peripheral registers or peripheral RAM concurrent to DMA
transfer may result in missed CPU write(s)

Condition Multiple CPU burst write to peripheral registers or peripheral RAM using a store-multiple
(STMxx, VSTM, VPUSH) instructions concurrent to DMA transactions

Implication(s) Concurrent DMA transfers and CPU burst writes could result in missed CPU writes.

Workaround(s) Do not perform a burst write to peripheral registers or peripheral RAM using a store-
multiple (STMxx, VSTM, VPUSH) instruction concurrent to DMA transactions

OR

Read back and verify after a store-multiple (STMxx, VSTM, VPUSH) instruction
concurrent to DMA transactions

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

DEVICE#B074 — Internal pull on MibSPI3_nCS[1] gets disabled when ECLK is made an output www.ti.com

34 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

DEVICE#B074 Internal pull on MibSPI3_nCS[1] gets disabled when ECLK is made an output

Severity 3-Medium

Expected Behavior Any internal pull on an I/O terminal is disabled when this terminal is configured to be an
output function. However, configuring an I/O terminal to be an output must not have any
impact on the internal pulls for another I/O terminal.

Issue When ECLK is configured to be either a general-purpose output or a functional output
signal, the internal pull on MibSPI3_nCS[1] gets disabled.

Condition This behavior is independent of any external conditions.

Implication(s) If the application requires ECLK to be configured as an output function, and if
MibSPI3_nCS[1] is configured as an input function, then an external pull up/down may
be required on the MibSPI3_nCS[1] terminal for it to function correctly.

Workaround(s) Add an external pull up/down on the MibSPI3_nCS[1] terminal.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com DMA#27 — DMA Requests Lost During Suspend Mode

35SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

DMA#27 DMA Requests Lost During Suspend Mode

Severity 3-Medium

Expected Behavior While the device is halted in suspend mode by the debugger the DMA is expected to
complete the remaining transfers of a block if the DEBUGMODE of the GCTRL register
is configured to '01'.

Issue The DMA does not complete the remaining transfers of a block but rather stops after two
more frames of data are transferred. Subsequent DMA requests from a peripheral to
trigger the remaining frames of a block can be lost.

Condition This only happens when:
• The device is suspended by a debugger &
• A peripheral continues to generate requests while the device is suspended &
• The DMA is setup to continue the current block transfer during suspend mode with

DEBUGMODE field of the GCTRL register set to '01' &
• And the request trigger type TTYPE is set to frame trigger

Implication(s) When the DMA comes out of the suspend mode to resume the transfer, the data
transfers corresponding to the third and subsequent requests will be lost.

Workaround(s) Workaround 1: Use TTYPE = Block transfer when DEBUGMODE is '01' (Finish Current
Block Transfer) or

Workaround 2: Use DMA DEBUGMODE = '00' (Ignore suspend) when using TTYPE =
Frame transfer to complete block transfer even after suspend/halt is asserted.

Either use TTYPE = Block transfer when DMA DEBUG MODE is '01' (Finish Current
Block Transfer) or use DMA DEBUG MODE = '00' (Ignore suspend) when using TTYPE
= Frame transfer to complete block transfer even after suspend/halt is asserted.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

DMM#16 — BUSY Flag Not Set When DMM Starts Receiving A Packet www.ti.com

36 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

DMM#16 BUSY Flag Not Set When DMM Starts Receiving A Packet

Severity 3-Medium

Expected Behavior The BUSY flag in the DMMGLBCTRL register should be set when DMM starts receiving
a packet or has data in its internal buffers.

Issue However, the BUSY flag in the DMMGLBCTRL register is not set when DMM starts
receiving a packet.

Condition The BUSY bit is set only after the packet has been received, deserialized and written to
the internal buffers. It stays active while data is still in the DMM internal buffers. If the
internal buffers are empty (this means that no data needs to be written to the destination
memory) then the BUSY bit will be cleared.

Implication(s) Care needs to be taken when turning the DMM module off (ON/OFF = 0101). The DMM
module will still finish the reception and data transmission to the destination memory if it
has been programmed to the off state during an ongoing reception. The BUSY flag will
not be set while this reception on the external DMM interface is in progress and all
internal buffers are empty.

Depending on the module configuration and the packet width it may take a different
number of DMMCLK cycles before the BUSY flag is set.

For example in Trace Mode the maximum packet size = 88
• port width = 1, it takes 91 DMMCLK cycles to receive and deserialize the packet
• port width = 16, it takes 9 DMMCLK cycles to receive and deserialize the packet

Workaround(s) Wait for a number of DMMCLK cycles (e.g. 95 DMMCLK cycles) beyond the longest
reception and deserialization time needed for a given packet size and DMM port
configuration before checking the status of the busy flag, after the DMM ON/OFF register
field has been programmed to OFF.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com EMIF#3 — EMIF generates data abort on register read after time-out error

37SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

EMIF#3 EMIF generates data abort on register read after time-out error

Severity 3-Medium

Expected Behavior The EMIF should not cause an abort when accessing EMIF registers.

Issue After an EMIF time-out error when an external asynchronous memory fails to respond, a
read to an EMIF register generates data abort.

Condition 1. The EMIF is used for asynchronous memory accesses in Extended Wait mode.

2. A time-out error occurs. For example, the memory does not de-assert the
EMIF_nWAIT input.

3. The asynchronous memory access with time-out error is followed by an EMIF register
read.

Implication(s) Aborts will be generated on EMIF register reads until the "time-out" status is corrected by
a successful EMIF region read.

Workaround(s) If a timeout error occurs, complete a dummy read from the EMIF memory that does not
return an error. This can be a synchronous read, a read from another asynchronous chip
select that is not configured to be in Extended Wait mode, or to the same asynchronous
chip select after disabling the Extended Wait mode on that chip select.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

EMIF#4 — Write to external asynchronous memory configured as “normal” causes extra WE pulses www.ti.com

38 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

EMIF#4 Write to external asynchronous memory configured as “normal” causes extra WE
pulses

Severity 3-Medium

Expected Behavior The number of WE pulses should match the correct number of writes required by the
size of the data being written and the memory width configuration of the EMIF. For
example, a 32-bit data written to a 16-bit wide memory should cause two write pulses.

Issue One additional WE pulse is observed on the EMIF outputs. The byte enable signals
(EMIF_nDQM) are not asserted for the extra write pulse. For example, the EMIF_nWE
signal is asserted three times for a 32-bit write over a 16-bit interface.

Condition 1. MPU configuration for external asynchronous memory is normal.

2. Write to external asynchronous memory.

Implication(s) An additional write could be performed if the external memory or FPGA does not use the
byte-enable signals to actually perform the write. This could cause incorrect data written
to external memory.

Workaround(s) External asynchronous memory must be configured to be "device" type or "strongly-
ordered" type using the CPU's MPU.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com ERAY#52 (FLEXRAY#52) — Wakeup Symbol (WUS) Generates Redundant Wakeup Interrupts (SIR.WUPA/B)

39SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

ERAY#52 (FLEXRAY#52) Wakeup Symbol (WUS) Generates Redundant Wakeup Interrupts
(SIR.WUPA/B)

Severity 4-Low

Expected Behavior If a sequence of wakeup symbols (WUS) is received and all are separated by
appropriate idle phases then a valid wakeup pattern (WUP) should be detected after
every second WUS.

Issue The FlexRay module detects a valid wakeup pattern (WUP) after the second WUS and
then after each following WUS.

Condition A sequence of wakeup symbols (WUS) is received, all separated by appropriate idle
phases.

Implication(s) More SIR.WUPA/B events are seen than expected especially when an application
program frequently resets the appropriate SIR.WUPA/B bits

Workaround(s) Ignore redundant SIR.WUPA/B events.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

ERAY#58 (FLEXRAY#58) — Erroneous Cycle Offset During Startup after abort of startup or normal operation www.ti.com

40 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

ERAY#58 (FLEXRAY#58) Erroneous Cycle Offset During Startup after abort of startup or normal
operation

Severity 4-Low

Expected Behavior Correct cycle offset in spite of abort of startup or normal operation by a READY
command.

Issue The state INITIALIZE_SCHEDULE may be one macrotick too short during an integration
attempt. This leads to an early cycle start in state
INTEGRATION_COLDSTART_CHECK or INTEGRATION_CONSISTENCY_CHECK.

Condition An abort of startup or normal operation by a READY command near the macrotick
border. The issue is limited to applications where READY command is used to leave
STARTUP, NORMAL_ACTIVE, or NORMAL_PASSIVE state

Implication(s) As a result the integrating node calculates a cycle offset of one macrotick at the end of
the first even/odd cycle pair in the states INTEGRATION_COLDSTART_CHECK or
INTEGRATION_CONSISTENCY_CHECK and tries to correct this offset.

If the node is able to correct the offset of one macrotick (pOffsetCorrectionOut >>
gdMacrotick), the node enters NORMAL_ACTIVE with the first startup attempt.

If the node is not able to correct the offset error because pOffsetCorrectionOut is too
small (pOffsetCorrectionOut <= gdMacrotick), the node enters ABORT_STARTUP and is
ready to try startup again. The next (second) startup attempt is not affected by this
erratum.

Workaround(s) With a configuration ofpOffsetCorrectionOut >> gdMacrotick*(1+cClockDeviationMax) the
node will be able to correct the offset and therefore also be able to successfully
integrate.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com ERAY#59 (FLEXRAY#59) — First Wakeup Symbol (WUS) Following Received Valid Wakeup Pattern (WUP)
May Be Ignored

41SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

ERAY#59 (FLEXRAY#59) First Wakeup Symbol (WUS) Following Received Valid Wakeup Pattern
(WUP) May Be Ignored

Severity 4-Low

Expected Behavior The FlexRay controller protocol engine should recognize all wakeup symbols (WUS).

Issue The FlexRay controller protocol engine may ignore the first wakeup symbol (WUS)
following the below stated state transition, therefore it sets the wakeup status interrupt
flags (SIR.WUPA/B) at the third WUS instead of the second WUS.

Condition The issue is limited to the reception of redundant wakeup patterns. When the protocol
engine is in WAKEUP_LISTEN state and receives a valid wakeup pattern (WUP), it
transfer into READY state and updates the wakeup status vector CCSV.WSV[2:0] as
well as the status interrupt flags SIR.WST and SIR.WUPA/B.

Implication(s) Delayed setting of status interrupt flags SIR.WUPA/B for redundant wakeup patterns.

Workaround(s) None.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

ERAY#60 (FLEXRAY#60) — READY Command Accepted In READY State www.ti.com

42 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

ERAY#60 (FLEXRAY#60) READY Command Accepted In READY State

Severity 4-Low

Expected Behavior The FlexRay module should ignore a READY command while in READY state.

Issue The FlexRay module does not ignore a READY command while in READY state.

Condition The Protocol Operation Controller (POC) issues a READY command while in READY
state.

Implication(s) The coldstart inhibit bit CCSV.CSI is set whenever the POC enters READY state.

Workaround(s) None.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com ERAY#61 (FLEXRAY#61) — The Transmission Slot Mode Bit Is Reset Immediately When Entering HALT State

43SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

ERAY#61 (FLEXRAY#61) The Transmission Slot Mode Bit Is Reset Immediately When Entering HALT
State

Severity 4-Low

Expected Behavior According to the FlexRay protocol specification, the slot mode should not be reset to
SINGLE slot mode before the following state transition from HALT to
DEFAULT_CONFIG state. The mode can be changed in DEFAULT_CONFIG or
CONFIG state only.

Issue Transmission slot mode bit is immediately reset to SINGLE slot mode (CCSV.SLM[1:0] =
"00").

Condition The protocol engine is in NORMAL_ACTIVE or NORMAL_PASSIVE state, and a HALT
or FREEZE command is issued by the CPU

Implication(s) The transmission slot mode is reset to SINGLE when entering HALT state.

Workaround(s) None.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

ERAY#68 (FLEXRAY#68) — Data transfer overrun for message transfers Message RAM to Output Buffer (OBF) or from
Input Buffer (IBF) to Message RAM www.ti.com

44 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

ERAY#68 (FLEXRAY#68) Data transfer overrun for message transfers Message RAM to Output Buffer
(OBF) or from Input Buffer (IBF) to Message RAM

Severity Medium

Expected Behavior Data transfers should not overrun the expected receive buffer.

Issue 1) A message buffer transfer from Message RAM to OBF When the message buffer has
its payload configured to maximum length (PLC = 127), the OBF word on address 00h
(payload data bytes 0 to 3) is overwritten with unexpected data at the end of the transfer.

2) A message buffer transfer from IBF to Message RAM After the Data Section of the
selected message buffer in the Message RAM has been written, one additional write
access overwrites the following word in the Message RAM which might be the first word
of the next Data Section

Conditions The problem occurs under the following conditions:

1) A received message is transferred from the Transient Buffer RAM (TBF) to the
message buffer that has its data pointer pointing to the first word of the Message RAM’s
Data Partition located directly after the last header word of the Header Partition of the
Last Configured Buffer as defined by MRC.LCB.

2) The Host triggers a transfer from / to the Last Configured Buffer in the Message RAM
with a specific time relation to the start of the TBF transfer described under 1).

Implications 1) When a message is transferred from the Last Configured Buffer in the Message RAM
to the OBF and PLC = 127 it may happen, that at the end of the transfer the OBF word
on address 00h (payload data bytes 0 to 3) is overwritten with unexpected data (see
Figure 4).

Figure 4. First Fail Mode

2) When a message is transferred from IBF to the Last Configured Buffer in the
Message RAM, it may happen, that at the end of the transfer of the Data Section one
additional write access overwrites the following word, which may be the first word of
another message’s Data Section in the Message RAM (see Figure 5).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com ERAY#68 (FLEXRAY#68) — Data transfer overrun for message transfers Message RAM to Output Buffer
(OBF) or from Input Buffer (IBF) to Message RAM

45SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

Figure 5. Second Fail Mode

Workaround(s) 1) Leave at least one unused word in the Message RAM between Header Section and
Data Section.

OR
2) Ensure that the Data Section directly following the Header Partion is assigned to a
transmit buffer.

Figure 6. Workarounds

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

ERAY#69 (FLEXRAY#69) — Missing startup frame in cycle 0 at coldstart after FREEZE or READY command www.ti.com

46 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

ERAY#69 (FLEXRAY#69) Missing startup frame in cycle 0 at coldstart after FREEZE or READY
command

Severity 3-Medium

Expected Behavior When a coldstart node re-enters startup, it listens to its attached channels and attempts
to receive FlexRay frames. If no communication is received, the node commences a
coldstart attempt which begins with the transmission of a collision avoidance symbol
(CAS). Only the coldstart node that transmits the CAS transmits the startup frames in the
first four cycles (from cycle 0 to cycle 3) after the CAS.

Issue The FlexRay may not transmit its startup frame in the first cycle after CAS (cycle 0)
when it is restarted as the leading coldstarter (was stopped by FREEZE or READY).

Condition The issue is limited to the following condition:

1. FlexRay has been stopped by FREEZE or READY command.

2. FlexRay is configured with startup frames with 1 to 7 slots

3. A coldstart after hardware reset is not affected.

Implication(s) Startup frame is not sent in cycle 0 after entering
COLDSTART_COLLISION_RESOLUTION state from COLDSTART_LISTEN state.

Workaround(s) Configure the FlexRay to use a static slot greater or equal 8 for the startup / sync
message.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com ETM_R4#16 — ETM-R4 Fails To Trace VNT Packet For The Second Half Of SWP Instruction

47SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

ETM_R4#16 ETM-R4 Fails To Trace VNT Packet For The Second Half Of SWP Instruction

Severity 3-Medium

Expected Behavior When tracing SWP or SWPB instructions, the load and store parts of the SWP or SWPB
instruction should be traced with separate data packets to the same address. If the load
transfer is traced and the store transfer is not traced, the store transfer should be traced
with a "Value Not Traced" packet.

Issue ETM-R4 Fails To Trace Value Not Traced (VNT) Packet For The Second Half Of SWP
Instruction. No trace is generated for the store transfer of the SWP or SWPB.

Condition The following conditions must occur:
• The ETM is enabled and is tracing
• A SWP or SWPB instruction is executed
• ViewData is configured to only trace the load part of the SWP or SWPB instruction

Implication(s) If the ETM traces any data transfer, a data packet must be traced for every subsequent
data transfer for that same instruction. This allows trace analysis tools to determine
which registers were used or updated by the traced data items. When this erratum
occurs, only the load part of the SWP or SWPB instruction is traced and therefore
analysis tools cannot determine if the transfer is the load or store part of the SWP or
SWPB instruction. This might cause misinterpretation of the execution of the processor
by the analysis tool. The trace stream is not corrupted.

Workaround(s) The following workarounds are for users or tool vendors:
• Ensure that for all SWP and SWPB instructions in your code ViewData is not

configured to trace load data only
• If ViewData has been configured to trace only the load transfer of a SWP or SWPB

instruction and a single transfer has been traced, the trace analyser can assume that
this corresponds to the load part of the instruction

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

FMC#67 (FLASH WRAPPER#67) — Error Status Register Bit B2_COR_ERR Set Erroneously during error profiling mode
www.ti.com

48 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

FMC#67 (FLASH WRAPPER#67) Error Status Register Bit B2_COR_ERR Set Erroneously during error
profiling mode

Severity 4-Low

Expected Behavior The Error status register bit B2_COR_ERR is normally set when a correctable error
occurs on Bus 2 access to OTP, TI-OTP or ECC. It should not be set during correctable
error profiling mode.

Issue The Error status register bit B2_COR_ERR bit also gets set along with the the
ERR_PRF_FLG bit when doing correctable error profiling.

Condition
1. In correctable error profiling mode &
2. Either the EOFEN (error "one" fail enable) or EZFEN (error "zero" fail enable) bit is

set &
3. The flash controller has already found a bus 1 (CPU) correctable error &
4. A correctable error due to another CPU access on the bus 2 interface which causes

the correctable error count to reach the threshold.

Implication(s) It is not expected that the customer would enable error profiling and EOFEN or EZFEN
at the same time if the application intention is for correctable error profiling only.
However, if they do, the CPU reads the status register after the bus 2 error and it looks
like the bus 2 caused the error, but the error address and position register point to a bus
1 location, creating confusion.

Workaround(s) Do not enable EOFEN or EZFEN when performing the correctable error profiling by
setting the EPEN bit.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com FMC#79 — Abort on Unaligned Access at End of Bank

49SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

FMC#79 Abort on Unaligned Access at End of Bank

Severity 4-Low

Expected Behavior Since packed code and data can be linked to unaligned boundaries, the CPU should be
able to read these locations in memory space independent of the flash bank boundaries.

Issue The CPU will sometimes get an abort when making an unaligned access near the
physical end of the bank boundary (in the range from 0xnnnnFFF1 through
0xnnnnFFFF). Examples of unaligned accesses capable of causing an abort:

Condition This only occurs within the ATCM space. It only occurs when the flash is in single cycle
mode and operating above 20MHz speed.

- a 32 bit data read such as a LDR at an address not on a 4 byte boundary

- a 16 bit data read such as a LDRH at an address not on a 2 byte boundary

- fetching a 32-bit thumb2 instruction which is not aligned on a four byte boundary

Implication(s) An abort exception may be generated when accessing unaligned data or instructions in
this range

Workaround(s) Use an option to keep the compiler from generating unaligned data or instructions. For
the TI compiler use --unaligned_access=off. Also ensure that hand generated assembly
language routines do not create an unaligned access to these locations.

OR

Do not use single cycle mode (RWAIT=0) at frequencies above 20MHz.

OR

Reserve the last fifteen bytes of flash in each bank on the ATCM with either a dummy
structure that is not accessed, or with a structure that will not create an unaligned
access.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

FMC#80 — Abort on Accesses Switching Between two Banks www.ti.com

50 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

FMC#80 Abort on Accesses Switching Between two Banks

Severity 3-Medium

Expected Behavior Memory space is readable independent of flash bank boundaries

Issue An abort is sometimes generated when the next address is a memory access (either
instruction fetch or data read) to another bank within the ATCM memory space

Condition This only occurs in single cycle mode at HCLK frequenies greater than 20MHz.

This only occurs on devices with at least two banks of flash in the main memory (TCM)
and at least one bank is not a size that can be expressed by 2n.

Examples:

A 3MB device that is comprised of two 1.5MB flash banks may generate an abort if an
access to bank 0 is followed by an access between 1.5MB and 2MB (in bank 1).
Likewise, the device may generate an abort if an access to bank 1 is followed by an
access between 1MB and 1.5MB (in bank 0).

A 2MB device that is comprised of bank 0 with 1.5MB of flash and bank 1 with 0.5MB
flash may generate an abort if an access to bank 0 is followed by an access to bank 1.

Implication(s) An abort exception may be generated when the flash accesses cross bank boundaries

Workaround(s) Do not operate in single cycle mode above 20MHz in speed.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com FTU#08 — FlexRay Transfer Unit Not Disabled On Memory Protection Violation (MPV) Error

51SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

FTU#08 FlexRay Transfer Unit Not Disabled On Memory Protection Violation (MPV) Error

Severity 3-Medium

Expected Behavior On memory protection violation (MPV) errors the FTU should get disabled.

Issue The FTU does not get disabled under some conditions.

Condition If an MPV error occurs during the following transfer scenarios:
• During header transfer from system memory to FlexRay RAM, when FTU is

configured to transfer header and payload
• During payload transfer from FlexRay RAM to system memory, when FTU is

configured to transfer header and payload
• During a transfer from FlexRay RAM to system memory, when FTU is configured to

transfer payload only

Implication(s) The MPV error flag in the Transfer Error Interrupt Flag (TEIF) register is set, but the
Transfer Unit Enabled (TUE) flag in the Global Control Set/Reset (GCS/R) register does
not get cleared. As a result, the FTU does not get disabled.

Workaround(s) This erratum can be avoided in the following ways:

• For transfers from system memory to FlexRay RAM, transfer the payload only
• Generate an MPV interrupt and clear the TUE flag in the Global Control Set/Reset

(GCS/R) register in the interrupt service routine

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

FTU#19 — TCCOx Flag Clearing Masked www.ti.com

52 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

FTU#19 TCCOx Flag Clearing Masked

Severity 4-Low

Expected Behavior When TOOFF (Transfer Occurred Offset) is read, the corresponding message flag in
TCCOx must be cleared.

Issue In some conditions, the read of TOOFF register would not be up to date and would not
reflect the last buffer completed.

Condition There may be a timing condition when TCCOx flag clearing could be masked due to the
state machine clearing of TTCCx (Trigger transfer to communication controller) within the
same cycle as software reading TOOFF.

Implication(s) The TCCOx flag is not being cleared.

Workaround(s) After reading the TOOFF to determine the highest buffer completed, clear the
corresponding flag in TCCOx.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com GCM#59 — Oscillator can be disabled while PLL is running

53SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

GCM#59 Oscillator can be disabled while PLL is running

Severity 4-Low

Expected Behavior No clock source can be disabled if it is being used

Issue The oscillator can be disabled if the PLL is the only thing using it as a clock source

Condition The oscillator may be disabled if:

1. no clock domain relies upon the oscillator

2. no clock domain relies upon any PLL

Implication(s) This issue allows the oscillator to be disabled while used by the PLL. When the oscillator
disables, the PLL will slip. The system behaves exactly like it would in case of a PLL
slip. The response includes:

1. setting the RF SLIP flag (GBLSTAT.8)

2. switching Clock Source 1 from the PLL (if enabled). This autonomous switch prevents
use of the PLL until the fault is cleared.

3. the device generates an ESM error (if enabled)

4. Cause a reset if the Reset-On-Slip Failure bit is set in PLLCTRL1.

If the software now uses the PLL as a clock source, there will be a long delay (mS) for
the oscillator and the PLL to restart and provide a clock. Additionally, the SLIP flag(s)
must be cleared in order for the PLL to propagate to the clock domains.

Normally this is not an issue as the software should not attempt to disable the oscillator
when it is being used by the PLL. Also, once the PLL is stable and used as a clock
source, the oscillator can no longer be disabled.

Workaround(s) Since the PLL is a secondary clock source dependent on the Oscillator input, the user
software should not disable the Oscillator while the PLL is enabled while neither of them
are sources for any of the clock domains.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

MCRC#18 — CPU Abort Generated on Write to Implemented CRC Space After Write to Unimplemented CRC Space
www.ti.com

54 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

MCRC#18 CPU Abort Generated on Write to Implemented CRC Space After Write to
Unimplemented CRC Space

Severity 4-Low

Expected Behavior A write to the legal address region (0xFE00_0000 to 0xFE00_01FF) of the CRC module
should not generate an abort

Issue An abort is generated on a write to a legal address region (0xFE000000-0xFE0001FF) of
the CRC register space.

Condition When a normal mode write to an unimplemented address region (0xFE00_0200 to
0xFE00_FFFF) of the CRC register space is followed by a write to a legal address
region (0xFE00_0000 to 0xFE00_01FF) of the CRC register space.

Implication(s) A write to an unimplemented address region of the CRC register space generates a data
abort as expected. The next write to a legal address region of the CRC register space
generates an unexpected second data abort.

Workaround(s) None.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com MIBSPI#110 — Multibuffered SPI in Slave Mode In 3- or 4-Pin Communication Transmits Data Incorrectly for
Slow SPICLK Frequencies and for Clock Phase = 1

55SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

MIBSPI#110 Multibuffered SPI in Slave Mode In 3- or 4-Pin Communication Transmits Data
Incorrectly for Slow SPICLK Frequencies and for Clock Phase = 1

Severity 3-Medium

Expected Behavior The SPI must be able to transmit and receive data correctly in slave mode as long as
the SPICLK is slower than the maximum frequency specified in the device datasheet.

Issue The MibSPI module, when configured in multi-buffered slave mode with 3 functional pins
(CLK, SIMO, SOMI) or 4 functional pins (CLK, SIMO, SOMI, nENA), could transmit
incorrect data.

Condition This issue can occur under the following condition:
• Module is configured to be in multi-buffered mode, AND
• Module is configured to be a slave in the SPI communication, AND
• SPI communication is configured to be in 3-pin mode or 4-pin mode with nENA, AND
• Clock phase for SPICLK is 1, AND
• SPICLK frequency is VCLK frequency / 12 or slower

Implication(s) Under the above described condition, the slave MibSPI module can transmit incorrect
data.

Workaround(s) The issue can be avoided by setting the CSHOLD bit in the control field of the TX RAM.
The nCS is not used as a functional signal in this communication, hence setting the
CSHOLD bit does not cause any other effect on the SPI communication.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

MIBSPI#111 — Data Length Error Is Generated Repeatedly In Slave Mode when I/O Loopback is Enabled www.ti.com

56 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

MIBSPI#111 Data Length Error Is Generated Repeatedly In Slave Mode when I/O Loopback is
Enabled

Severity 3-Medium

Expected Behavior After a data length (DLEN) error is generated and the interrupt is serviced the SPI
should abort the ongoing transfer and stop.

Issue When a DLEN error is created in Slave mode of the SPI using nSCS pins in IO
Loopback Test mode, the SPI module re-transmits the data with the DLEN error instead
of aborting the ongoing transfer and stopping.

Condition This is only an issue for an IOLPBK mode Slave in Analog Loopback configuration,
when the intentional error generation feature is triggered using
CTRL_DLENERR(IOLPBKTSTCR.16).

Implication(s) The SPI will repeatedly transmit the data with the DLEN error when configured in the
above configuration.

Workaround(s) After the DLEN_ERR interrupt is detected in IOLPBK mode, disable the transfers by
clearing the SPIEN bit of SPIGCR1 register (bit 24) and then re-enable the transfers by
setting SPIEN.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com MIBSPI#137 — Spurious RX DMA REQ from a Slave mode MIBSPI

57SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

MIBSPI#137 Spurious RX DMA REQ from a Slave mode MIBSPI

Severity 4-Low

Expected Behavior The MIBSPI should not generate DMA requests when it has not received data from the
SPI master

Issue A spurious DMA request is generated even when the SPI slave is not transferring data.

Condition This erratum is only valid when all below conditions are true:

• The MIBSPI is configured in standard (not multi-buffered) SPI mode as a slave.
• SPIINT0.16 (DMA_REQ_EN) bit is set to enable DMA requests.
• The nSCS (Chip Select) pin is in active state, but no transfers are active.
• The SPI is disabled by clearing SPIGCR1.24 (SPIEN) bit from '1' to '0'.

The above sequence triggers a false request pulse on the Receive DMA Request as
soon as SPIEN bit is cleared from '1' to '0'.

Implication(s) The SPI generates a false DMA request to the DMA module when the data is not yet
available for the DMA module to retrieve.

Workaround(s) Whenever the SPI is to be disabled by clearing SPIEN bit, clear the DMA_REQ_EN bit
to '0' first and then clear the SPIEN bit.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

MIBSPI#139 — Mibspi RX RAM RXEMPTY bit does not get cleared after reading www.ti.com

58 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

MIBSPI#139 Mibspi RX RAM RXEMPTY bit does not get cleared after reading

Severity 3-Medium

Expected Behavior The MibSPI RXEMPTY flag is auto-cleared after a CPU or DMA read.

Issue Under a certain condition, the RXEMPTY flag is not auto-cleared after a CPU or DMA
read.

Condition The TXFULL flag of the latest buffer that the sequencer read out of transmit RAM for the
currently active transfer group is 0, AND

A higher priority transfer group interrupts the current transfer group and the sequencer
starts to read the first buffer of the new transfer group from the transmit RAM, AND

Simultaneously, the host (CPU/DMA) is reading out a receive RAM location that contains
valid received data from the previous transfers.

Implication(s) The fake RXEMPTY '1' suspends the next Mibspi transfer with BUFMODE 6 or 7.

With other BUFMODEs, a false "Receive data buffer overrun" will be reported for the
next Mibspi transfer.

Workaround(s) 1. If at all possible, avoid transfer groups interrupting one another.

2. If dummy buffers are used in lower priority transfer group, select appropriate
"BUFMODE" for them (like SKIP/DISABLED) unless there is a specific need to use the
"SUSPEND" mode.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com NHET#54 — PCNT incorrect when low phase is less than one loop resolution

59SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

NHET#54 PCNT incorrect when low phase is less than one loop resolution

Severity 3-Medium

Expected Behavior PCNT instruction can correctly capture a low going pulse width if the pulse width is
greater than two high resolution clocks

Issue PCNT instruction may capture incorrect low resolution clock (control field) and high
resolution clock value

Condition When measuring from falling edge to rising edge and the low pulse width is less than
one low resolution clock width.

Implication(s) PCNT cannot be used for capturing the pulse width of a low pulse less than one low
resolution clock wide.

Workaround(s) Connect the input pulse to be measured on two nHET channels using the high resolution
share feature. Then use two WCAP instructions, one to measure the falling edge, the
second to measure the rising edge. Use the CPU to calculate the time difference. In this
workaround the period of the input signal must be two loop resolutions or longer.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

NHET#55 — More than one PCNT instruction on the same pin results in measurement error www.ti.com

60 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

NHET#55 More than one PCNT instruction on the same pin results in measurement error

Severity 3 - Medium

Expected Behavior It should be possible to use more than one Period/Pulse Count (PCNT) instruction to
measure a single pin, as long as only one of the PCNT instructions is configured for high
resolution (hr_lr=HIGH). For example, consider the following code fragments.

Code Fragment 1 - Should Be OK, But Fails Due to This Issue
PC1 PCNT { hr_lr=HIGH, type=RISE2FALL, pin=2};
PC2 PCNT { hr_lr=LOW, type=FALL2FALL, pin=2};

Code Fragment 2 - Should Be OK, But Fails Due to This Issue
PC1 PCNT { hr_lr=LOW, type=RISE2FALL, pin=2};
PC2 PCNT { hr_lr=HIGH, type=FALL2FALL, pin=2};

Code fragments 1 and 2 should work properly because only one of the two PCNT
instructions are configured for hr_lr=HIGH, and there is one hi-res structure available.

Issue There are two issues.
1. A measurement error is introduced into the result of the PCNT instruction with

hr_lr=HIGH. Normally this instruction would return a result to within ±½ high
resolution clock periods of the actual result, due to quantization noise. However
another PCNT instruction on the same pin causes an error of up to ±1 loop resolution
period. Note that this error is greater than the normal loop resolution period error of
±½ loop resolution period; because the high-resolution bits also contribute to the
error in this case.

2. A measurement error is introduced into the result of the PCNT instruction with
hr_lr=LOW. The PCNT instruction with hr_lr=LOW should return a value with 0's in bit
positions 6:0 (the high-resolution portion of the measurement result). This is the case
when both PCNT instructions are set for hr_lr=LOW (Code Fragment 3) but for Code
Fragments 1 and 2 the loop resolution PCNT returns a non-zero in bit positions 6:0.

Conditions This problem occurs when both conditions are true:

1. More than one PCNT selecting the same pin number is executed during the same
loop resolution period.

2. One of the PCNT instructions is configured for high resolution (hr_lr=HIGH).

Please also note that the N2HET assembler defaults to high resolution for PCNT if the
hr_lr field is not specified as part of the instruction. Therefore unless the instruction is
coded explicitly with 'hr_lr=LOW as an option, the assembler will create N2HET machine
code with hr_lr=HIGH.'

Implications The impact is greatest when workaround option 1 cannot be applied due to the number
of timer pins required by the application. If Option 1 cannot be applied, then the PCNT
measurements on this pin are reduced to ±½ loop resolution period.

Workaround(s) Option 1 - Use the HR Share feature and make both measurements with hr_lr=HIGH.
First, set the appropriate HRSHARE bit in the HETHRSH register. In the following
example this means setting HETHRSH bit 1 - "HRSHARE3/2". This bit causes the input
of device pin 2 to drive the N2HET pin inputs 2 and 3. Then modify the N2HET code
sequence to use pin 3 for one of the PCNT instructions:

Code Fragment 1 Modified for HR Share
PC1 PCNT { hr_lr=HIGH, type=RISE2FALL, pin=2};
PC2 PCNT { hr_lr=HIGH, type=FALL2FALL, pin=3};

This option exceeds the original measurement resolution objective because both PCNT
measurements are made with high-resolution. The disadvantage of this workaround is
that it requires the high-resolution structure of pin 3, leaving pin 3 only useable as a
GPIO pin rather than as a timer pin.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com NHET#55 — More than one PCNT instruction on the same pin results in measurement error

61SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

Option 2 - Use only loop resolution mode PCNT instructions (as in Code Fragment 3).
This will work properly while leaving pin 3 available for timing functions, but the
resolution on both the period and duty cycle measurements are reduced to loop
resolution.

Code Fragment 3 - OK
PC1 PCNT { hr_lr=LOW, type=RISE2FALL, pin=2};
PC2 PCNT { hr_lr=LOW, type=FALL2FALL, pin=2};

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

PBIST#4 — PBIST ROM Algorithm Doesn't Execute www.ti.com

62 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

PBIST#4 PBIST ROM Algorithm Doesn't Execute

Severity 3-Medium

Expected Behavior PBIST controller checks memories with the specified algorithm as documented in the
TRM

Issue The possibility that the PBIST algorithms will not execute only occurs when PBIST is
initially run after power on reset. Once the PBIST controller starts working, it will continue
to work until the next power cycle.

Condition The possibility that the PBIST algorithms will not download only occurs when PBIST is
initially executed after power on reset. Once the PBIST ROM starts working, it will
continue to work until the next power cycle.

Implication(s) The PBIST test may return with a pass status, even though the algorithm was not
properly executed

Workaround(s) This condition does not occur often, but when it does occur the execution time is very
short. Successive attempts eventually succeed. One workaround is to measure the
execution time of the PBIST algorithm. Using a software loop with interrupts disabled is
sufficient. If the execution time is much shorter than the normal execution time and the
status indicates PBIST passed, ignore the results and rerun the PBIST test. Normal
execution time is dependent on clock speeds and which memory and algorithms are
selected. The normal execution time can be derived from PBIST times given in the
datasheet, or as measured in initial code development.

TI recommends to use 120% of the normal time as a time out value and less than 80%
of the normal execution time as an indication that the PBIST controller did not execute
properly.

A more sophisticated workaround is to use the errata_PBIST_4() function provided in
HALCoGen version 3.08.00 or later.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com SSWF021#35 — Potential clock glitch when switching PLL clock divider from divide-by-1.

63SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

SSWF021#35 Potential clock glitch when switching PLL clock divider from divide-by-1.

Severity 3-Medium

Expected Behavior User should be able to switch the PLL clock divider from any valid setting to any other
valid setting.

Issue When switching the PLL output clock divider from divide-by-1 to any other ratio a clock
glitch may be generated. Unpredictable results can occur in the clocked circuitry as a
result from the resultant glitch.

Condition The glitch is created when switching the PLL clock divider from divide-by-1; the glitch
propagates to logic that can be disrupted when that PLL is the clock source for a clock
domain.

Implication(s) The issue causes unpredictable results when the glitch propagates to circuitry in a clock
domain for which the PLL is the clock source.

Workaround(s) Switch all clock domains to a different source (such as oscillator) before switching the
PLL output clock divider from divide-by-1 to a larger divider; after the PLL divider has
been changed, revert to the PLL as clock source for those clock domains.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

SSWF021#44 — Change to PLL Lock Time www.ti.com

64 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

SSWF021#44 Change to PLL Lock Time

Severity 4-Low

Expected Behavior The time for the PLL to lock would be the same for all revisions of a part.

Issue The PLL lock time has been increased on newer revision parts by 384 OSCIN cycles.

Condition None

Implication(s) The PLL takes longer to lock. If the software has a timeout loop waiting for the PLL to
lock, software developed on this revision of silicon may timeout on future revisions of
silicon.

Workaround(s) If there is a timeout loop in the software waiting for the PLL to lock, the timeout value
should be large enough to allow for the greater lock time required in newer versions of
the silicon. The lock time increases:

from 128 + 1024*NR OSCIN cycles

to 512 + 1024*NR OSCIN cycles

For typical PLL settings, the input divider is larger than 1 so that the percentage increase
in lock time is small.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com SSWF021#45 — PLL Fails to Start

65SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

SSWF021#45 PLL Fails to Start

Severity 2-High

Expected Behavior When the PLL control registers are properly initialized and the appropriate clock source
disable bit is cleared, after the prescribed number of OSCIN cycles, the PLL should be
locked and the appropriate CSVSTAT bit should be set.

Issue On rare occasions the PLL does not start properly. The fail has one of three signatures:
1. CSVSTAT is set, but the ESM flag for PLL slip is set.
2. CSVSTAT is not set and the ESM flag for PLL slip is set.
3. CSVSTAT is set, the ESM flag for PLL slip is not set, but the PLL as measured by

the DCC is not running.

Condition This issue applies to both PLLs (if the device has more than one PLL). This condition
occurs only from a power-on. Once the PLL has locked, the PLL stays locked. Once
properly locked, the PLL can be disabled and re-enabled with no issues.

Implication(s) If the PLL is used as the main clock source when it has not properly started, the CPU
may stop executing instructions.

Workaround(s) While the main clock is being driven by the oscillator, the software loop checking that the
PLL has locked (CSVSTAT = 1) should also check if the ESM flag for PLL slip has been
set. When the CSVSTAT bit is set, the PLL frequency should be measured with the DCC
before using the PLL as a clock source. If either the ESM flag for PLL slip is set, or the
PLL has an incorrect frequency, the PLL should be disabled and the lock procedure
should be repeated; TI recommends allowing a minimum of five attempts.

A more detailed explanation of the workaround with associated source code can be
found in the application note:
Hercules PLL Advisory SSWF021#45 Workaround

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G
http://www.ti.com/lit/pdf/spna233

STC#26 — The value programmed into the Self Test Controller (STC) Self-Test Run Timeout Counter Preload Register
(STCTPR) is restored to its reset value at the end of each self test run. www.ti.com

66 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

STC#26 The value programmed into the Self Test Controller (STC) Self-Test Run Timeout
Counter Preload Register (STCTPR) is restored to its reset value at the end of
each self test run.

Severity 4-Low

Expected Behavior Once the Self-Test Run Timeout Counter Preload Register (STCTPR) is written, the
value written into the register will be maintained until it is overwritten or a system or
power on reset occurs and it will be used to preload the timeout counter for each self
test run.

Issue The STCTPR is reset to the reset default value (0xFFFFFFFF) at the end of each CPU
self test run and the value previously written to the STCTPR register is lost.

Condition Execution of any CPU self test with a STCTPR value other than the default value
(0xFFFFFFFF).

Implication(s) Subsequent self test runs will use a maximum timeout value of 0xFFFFFFFF if not re-
written to the desired value.

Workaround(s) The Timeout preload value in STCTPR register needs to be programmed to the required
time out value before starting each self test if a timeout count other than 0xFFFFFFFF is
desired.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com STC#29 — Inadvertent Performance Monitoring Unit (PMU) interrupt request generated if a system reset
[internal or external] occurs while a CPU Self-Test is executing.

67SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

STC#29 Inadvertent Performance Monitoring Unit (PMU) interrupt request generated if a
system reset [internal or external] occurs while a CPU Self-Test is executing.

Severity 4-Low

Expected Behavior If an internal or external system reset is asserted the CPU should be reset cleanly with
no inadvertent interrupt requests.

Issue An unexpected PMU interrupt request may be generated.

Condition This condition can occur when am internal or external system reset is asserted and the
CPU is executing a CPU self test.

Implication(s) The interrupt request signal from the performance monitoring unit (PMUIRQ) may
inadvertently be set. This signal will generate an interrupt to the Vector Interrupt Module
(VIM) and later become an interrupt to the CPU. Therefore, it is possible to see an
unexpected interrupt after the CPU comes out of the system reset.

Workaround(s) Clear VIM interrupt request 22 by writing 0x00400000 to location 0xFFFFFE20 before
enabling this interrupt.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

STC#31 — Self Test Controller Returns a False Failure www.ti.com

68 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

STC#31 Self Test Controller Returns a False Failure

Severity 3-Medium

Expected Behavior The STC tests the logic of the CPUs then generates a CPU reset on completion.

Issue The STC may indicate that the self test (LBIST) failed when the CPU logic is working
properly. The root cause is that the ROM in the STC is not read properly. This is the
same root cause as in erratum PBIST#4.

Condition This only occurs after initial power on. This fail condition is believed to be very rare, but it
can be reproduce in simulations and has been seen in similar circuits. The fail mode is
dependent on temperature, core voltage slew rate and currents into the device from
input pins before the device powers up. The impact of these factors is different on each
device.

Implication(s) The CPU self test appears to fail.

Workaround(s) Use the function "errata_PBIST_4()" provided in HALCoGen 3.08.00 or later before
running PBIST or LBIST. Then run the PBIST ROM tests on all ROMs before using the
STC controller to execute LBIST.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com SYS#046 — Clock Source Switching Not Qualified With Clock Source Enable And Clock Source Valid

69SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

SYS#046 Clock Source Switching Not Qualified With Clock Source Enable And Clock
Source Valid

Severity 4-Low

Expected Behavior An attempt to switch to a clock source which is not valid yet should be discarded.

Issue Switching a clock source by simply writing to the GHVSRC bits of the GHVSRC register
may cause unexpected behavior. The clock will switch to a source even if the clock
source was not ready.

Condition A clock domain that is programmed to take the clock source which is not yet valid as
indicated by the CSVSTAT register.

Implication(s) Unexpected behavior stated above.

Workaround(s) Always check the CSDIS register to make sure the clock source is turned on and check
the CSVSTAT register to make sure the clock source is valid. Then write to GHVSRC to
switch the clock.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

SYS#102 — Bit field EFUSE_Abort[4:0] in SYSTASR register is read-clear instead of write-clear www.ti.com

70 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

SYS#102 Bit field EFUSE_Abort[4:0] in SYSTASR register is read-clear instead of write-clear

Severity 3-Medium

Expected Behavior The Technical Reference Manual states that EFUSE_Abort[4:0] of the SYSTASR
register should be write-clear in privilege mode.

Issue However, these bits are implemented as read-clear.

Condition Always.

Implication(s) Software implementation for error handling needs to take care of this as the subsequent
reads of the register can return value of zero.

Workaround(s) Avoid multiple read accesses of the SYSTASR register.

None

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

www.ti.com VIM#27 — Unexpected phantom interrupt

71SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

VIM#27 Unexpected phantom interrupt

Severity 2-High

Expected Behavior When responding to an interrupt and a subsequent interrupt is received, the
corresponding VIM request should be flagged as pending in the VIM status registers.
When the CPU is ready to service the subsequent interrupt, the correct service routine
address should be fetched by the CPU.

Issue On rare occasions the VIM may return the phantom interrupt vector instead of the real
interrupt vector.

Condition This condition is specific to software and hardware vectored modes. This is not
applicable for legacy interrupt servicing mode. This condition occurs when the ratio of
GCLK to VCLK is 3:1 or greater for hardware vectored mode, or the ratio of GCLK to
VCLK is 5:1 or greater for software vectored mode. A subsequent interrupt request must
occur when the VIM is finishing acknowledging a previous interrupt.

Implication(s) The subsequent interrupt request vectors to the phantom interrupt routine instead of the
correct service routine.

Workaround(s) The issue can be completely avoided if the GCLK:VCLK ratio is configured as 1:1 or 2:1.

For other VCLK ratios, the phantom interrupt handler simply needs to exit as normal,
without taking any special steps. If this issue is present, the VIM will interrupt the CPU
again, providing the correct vector.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

Revision History www.ti.com

72 SPNZ195G–February 2013–Revised May 2016
Submit Documentation Feedback

Copyright © 2013–2016, Texas Instruments Incorporated

TMS570LS31x/21x Microcontroller

4 Revision History
This silicon errata revision history highlights the technical changes made from the previous revision of this
document to the current revision.

Table 2. Revision History from Errata Document Revision F to Revision G

Advisory Changes in Advisory List Advisory ID
Added advisory(s) SSWF021#45

Removed advisory(s) None
Modified advisory(s) None

Other None

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPNZ195G

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	TMS570LS31x/21x Microcontroller
	Table of Contents
	1 Device Nomenclature
	2 Revision Identification
	3  Known Design Exceptions to Functional Specifications
	4 Revision History

	Important Notice

