
Application Report

SPRA958L – January 2013

Running an Application from Internal Flash Memory on the
TMS320F28xxx DSP

David M. Alter Embedded Processors and Microcontrollers - Semiconductor Group

ABSTRACT

Several special requirements exist for running an application from on-chip flash memory
on the TMS320F28xxx. These requirements generally do not manifest themselves during
code development in RAM since the Code Composer Studio™ (CCS) debugger can mask
problems associated with initialized sections and their linkage in memory. This application
report covers the application software modifications needed for execution from on-chip
flash memory. Requirements for both DSP/BIOS™ and non-DSP/BIOS projects are
presented. Some performance considerations and techniques are also discussed.

Example CCS v5 projects are provided for the F2812, F2808, F28335, F28027, F28035,
F28055, and F28069 (i.e., usually the superset device in each F28xxx sub-family). These
can be downloaded from http://www.ti.com/lit/zip/SPRA958, and can provide a starting
point for code development independent of this application report.

Note that the issues discussed in this application report apply to these current members of
the TMS320F28xxx device family, specifically:

F281x: F2810, F2811, F2812
F280x/2801x/28044: F2801, F2802, F2806, F2808, F2809, F28015, F28016, F28044
F2823x/2833x: F28232, F28234, F28235, F28332, F28334, F28335
F2802x: F28020, F28021, F28022, F28023, F28026, F28027, F280200
F2803x: F28030, F28031, F28032, F28033, F28034, F28035
F2805x: F28050, F28051, F28052, F28053, F28054, F28055
F2806x: F28062, F28063, F28064, F28065, F28066, F28067, F28068, F28069

Applicability to other F28xxx devices, although likely, is not guaranteed. Further, the code
and methods presented apply to the development tool versions utilized, specifically:

CCS v5.3.0, Code Generation Tools v6.1.1, DSP/BIOS v5.42.0.07

Be aware that future tool versions may have differences although in all likelihood
backwards compatibility will be maintained so that the techniques discussed here should
still work. Also note that the operation and setup for SYS/BIOS (BIOS v6) differs from that
of DSP/BIOS (BIOS v5). This application report only applies to DSP/BIOS.

Finally, this application report does not provide a tutorial on writing and building code for
the F28xxx. It is assumed that the reader already has at least the main framework of their
application running from RAM. This report only identifies the special items that must be
considered when moving the application into on-chip flash memory.

Code Composer Studio and DSP/BIOS are trademarks of Texas Instruments.
Trademarks are the property of their respective owners.

1

http://www.ti.com/lit/zip/SPRA958

SPRA958L

2 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

Contents
1 Introduction ... 3
2 Creating a User Linker Command File .. 3

2.1 Non-DSP/BIOS Projects ... 3
2.2 DSP/BIOS Projects ... 4

3 Where to Link the Sections .. 5
3.1 Non-DSP/BIOS Projects ... 6
3.2 DSP/BIOS Projects ... 7

4 Copying Sections from Flash to RAM ... 9
4.1 Copying the Interrupt Vectors (non-DSP/BIOS projects only) .. 9
4.2 Copying the .hwi_vec Section (DSP/BIOS projects only) .. 10
4.3 Copying the .trcdata Section (DSP/BIOS projects only) .. 11
4.4 Initializing the Flash Control Registers (DSP/BIOS and non-DSP/BIOS projects) 12
4.5 Maximizing Performance by Executing Time-critical Functions from RAM 15
4.6 Maximizing Performance by Linking Critical Global Constants to RAM 15

4.6.1 Method 1: Running All Constant Arrays from RAM .. 16
4.6.2 Method 2: Running a Specific Constant Array from RAM .. 19

5 Programming the Code Security Module Passwords ... 20
5.1 Single-Zone Security Devices (DSP/BIOS and non-DSP/BIOS projects) 21
5.2 Dual-Zone Security Devices (DSP/BIOS and non-DSP/BIOS projects) 24

6 Executing Your Code from Flash after a DSP Reset .. 32
7 Disabling the Watchdog Timer During C-Environment Boot ... 34
8 C-Code Examples ... 36

8.1 General Overview ... 36
8.2 Directory Structure .. 38
8.3 Additional Information ... 39

References ... 43
Revision History ... 44

Figures
Figure 1. Specifying the User Init Function in the DSP/BIOS Configuration tool 11
Figure 2. Specifying the Link Order In Code Composer Studio v5 .. 18
Figure 3. DSP/BIOS MEM Properties for CSM Password Locations .. 23
Figure 4. DSP/BIOS MEM Properties for CSM Reserved Locations ... 24
Figure 5. DCSM Zone Select Block .. 25
Figure 6. DCSM Security Zone Configuration Table OTP Memory ... 26
Figure 7. DSP/BIOS MEM Properties for DCSM_OTP_Z2_P0 Memory 29
Figure 8. DSP/BIOS MEM Properties for DCSM_ZSEL_Z2 Memory ... 30
Figure 9. DSP/BIOS MEM Properties for DCSM_OTP_Z1_P0 Memory 30
Figure 10. DSP/BIOS MEM Properties for DCSM_ZSEL_Z1_P0 Memory 31
Figure 11. DSP/BIOS MEM Properties for Jump to Flash Entry Point .. 33

Tables
Table 1. Section Linking for Non-DSP/BIOS Projects (Large memory model) 6
Table 2. Section Linking for DSP/BIOS Projects (Large Memory Model) 7
Table 3. CCS Example Code Directory Descriptions ... 39

Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 3

SPRA958L

1 Introduction

The TMS320F28xxx DSP family has been designed for standalone operation in embedded
controller applications. The on-chip flash usually eliminates the need for external non-volatile
memory and a host processor from which to bootload. Configuring an application to run from
flash memory is a relatively easy matter provided that one follows a few simple steps. This
report covers the major concerns and steps needed to properly configure application software
for execution from internal flash memory. Requirements for both DSP/BIOS and non-DSP/BIOS
projects are presented. Some performance considerations and techniques are also discussed.

Example CCS v5 projects are provided for the F2812, F2808, F28335, F28027, F28035,
F28055, and F28069 (i.e., usually the superset device in each F28xxx sub-family). These can
be downloaded from http://www.ti.com/lit/zip/SPRA958, and can provide a starting point for
code development independent of this application report.

Note that the issues discussed in this application report apply to these current members of the
TMS320F28xxx device family, specifically:

F281x: F2810, F2811, F2812
F280x/2801x/28044: F2801, F2802, F2806, F2808, F2809, F28015, F28016, F28044
F2823x/2833x: F28232, F28234, F28235, F28332, F28334, F28335
F2802x: F28020, F28021, F28022, F28023, F28026, F28027, F280200
F2803x: F28030, F28031, F28032, F28033, F28034, F28035
F2805x: F28050, F28051, F28052, F28053, F28054, F28055
F2806x: F28062, F28063, F28064, F28065, F28066, F28067, F28068, F28069

Applicability to other F28xxx devices, although likely, is not guaranteed. Further, the code
and methods presented apply to the development tool versions utilized, specifically:

CCS v5.3.0, Code Generation Tools v6.1.1, DSP/BIOS v5.42.0.07

Be aware that future tool versions may have differences although in all likelihood backwards
compatibility will be maintained so that the techniques discussed here should still work. Also
note that the operation and setup for SYS/BIOS (BIOS v6) differs from that of DSP/BIOS
(BIOS v5). This application report only applies to DSP/BIOS.

Finally, this application report does not provide a tutorial on writing and building code for the
F28xxx. It is assumed that the reader already has at least the main framework of their
application running from RAM. This report only identifies the special items that must be
considered when moving the application into on-chip flash memory.

2 Creating a User Linker Command File

2.1 Non-DSP/BIOS Projects

In non-DSP/BIOS applications, the user linker command file will be where most memory is
defined, and where the linking of most sections is specified. The format of this file is no different
than the linker command file you are currently using to run your application from RAM. The
difference will be in where you link the sections (to be discussed in Section 3). More information
on linker command files can be found in reference [11]. The non-DSP/BIOS code projects that
accompany this application report contain linker command files that can be used for reference.

http://www.ti.com/lit/zip/SPRA958

4 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

SPRA958L

The peripheral header files (see references [25 - 32]) contain linker command files named

DSP281x_Headers_nonBIOS.cmd F2802x_Headers_nonBIOS.cmd
DSP280x_Headers_nonBIOS.cmd DSP2803x_Headers_nonBIOS.cmd
DSP2804x_Headers_nonBIOS.cmd F2805x_Headers_nonBIOS.cmd
DSP2833x_Headers_nonBIOS.cmd F2806x_Headers_nonBIOS.cmd

These files contain linker MEMORY and SECTIONS declarations for linking the peripheral
register structures. Since CCS supports having more than one linker command file in a project,
all one needs to do is add the appropriate one of these linker command files to your code project
in addition to your user linker command file.

In general, the order of the linker command files is unimportant since during a project build, CCS
evaluates the MEMORY section of every linker command file before evaluating the SECTIONS
section of any linker command file. This ensures that all memories are defined before linking
any sections to those memories. However, advanced users may need manual control over the
order of linker command file evaluation in some rare situations. This can be specified within
CCS v5 on the Project → Properties menu, then select the CCS Build category, Link Order tab.

2.2 DSP/BIOS Projects

The DSP/BIOS configuration tool generates a linker command file that specifies how to link all
DSP/BIOS generated sections, and by default all C-compiler generated sections. When running
your application from RAM, this linker command file may be the only one in use. However, when
executing from flash memory, there will likely be a need to generate and link one or more user
defined sections. In particular, any code that configures the on-chip flash control registers (e.g.
flash wait-states) cannot execute from flash. In addition, one may want to run certain time
critical functions from RAM (instead of flash) to maximize performance. A user linker command
file must be created to handle these user defined sections.

Beyond the user and DSP/BIOS generated linker command files, the peripheral header files (see
references [25 - 32]) contain linker command files named

DSP281x_Headers_BIOS.cmd F2802x_Headers_BIOS.cmd
DSP280x_Headers_BIOS.cmd DSP2803x_Headers_BIOS.cmd
DSP2804x_Headers_BIOS.cmd F2805x_Headers_BIOS.cmd
DSP2833x_Headers_BIOS.cmd F2806x_Headers_BIOS.cmd

These file contains linker MEMORY and SECTIONS declarations for linking the peripheral
register structures. Since CCS supports having more than one linker command file in a project,
all one needs to do is add all three linker command files to their project.

In general, the order of the linker command files is unimportant since during a project build, CCS
evaluates the MEMORY section of every linker command file before evaluating the SECTIONS
section of any linker command file. This ensures that all memories are defined before linking
any sections to those memories. However, advanced users may need manual control over the
order of linker command file evaluation in some rare situations (for example, to preempt and
override DSP/BIOS linkage of a section). This can be specified within CCS v5 on the Project →
Properties menu, then select the CCS Build category, Link Order tab.

Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 5

SPRA958L

3 Where to Link the Sections
Two basic section types exist: initialized, and uninitialized. Initialized sections must contain valid
values at device power-up. For example, code and constants are found in initialized sections.
When designing a stand-alone embedded system with the F28xxx DSP (e.g., no emulator or
debugger in use, no host processor present to perform bootloading), all initialized sections must
be linked to non-volatile memory (e.g., on-chip flash). An uninitialized section does not contain
valid values at device power-up. For example, variables are found in uninitialized sections.
Code will write values to the variable locations during code execution. Therefore, uninitialized
sections must be linked to volatile memory (e.g., RAM).

It is suggested that the -w linker option be invoked (it is selected by default for all newly created
CCS projects). The -w option will produce a warning if the linker encounters any sections in your
project that have not been explicitly specified for linking in a linker command file. When the
linker encounters an unspecified section, it uses a default allocation algorithm to link the section
into memory (it will link the section to the first defined memory with enough available free space).
This is almost always risky, and can lead to unreliable and unpredictable code behavior. The -w
option will identify any unspecified sections (e.g., those accidentally forgotten by the user) so
that the user can make the necessary addition to the appropriate linker command file. In
CCS v5, the -w option checkbox is found on the Project → Properties menu, then select the
Build → C2000 Linker → Diagnostics category.

CAUTION:

It is important that the large memory model be used with the C-compiler (as
opposed to the small memory model). Small memory model requires certain
initialized sections to be linked to non-volatile memory in the lower 64Kw of
addressable space. However, no flash memory is present in this region on any
F28xxx devices, and this will likely be true for future F28xxx devices as well.
Therefore, large memory model should be used. For CCS v5 projects, the large
memory model checkbox is found on the Project → Properties menu, then select
Build → C2000 Compiler → Basic Options category. It is selected by default for
all newly created CCS projects.

For non-DSP/BIOS projects, one should include the large memory model C-
compiler runtime support library into their code project. For the fixed-point
devices, this is library rts2800_ml.lib (as opposed to rts2800.lib, which is for the
small memory model). For the floating-point devices, this is file
rts2800_fpu32.lib for plain C code, or rts2800_fpu32_eh.lib for C++ code (there
are no small memory model libraries for the floating-point devices). In CCS v5,
there is an “Automatic” setting for the library that can be used if desired to have
CCS select the correct library for you based on your project settings (e.g.,
floating point support and memory model selections).

For DSP/BIOS projects, DSP/BIOS will take care of including the required library.
The user should not include any runtime support library in a DSP/BIOS project.

6 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

SPRA958L

/**
* User linker command file
**/

SECTIONS
{

.reset : > FLASH, PAGE = 0, TYPE = DSECT
}

3.1 Non-DSP/BIOS Projects

The compiler uses a number of specific sections. These sections are the same whether you are
running from RAM or flash. However, when running a program from flash, all initialized sections
must be linked to non-volatile memory, whereas all uninitialized sections must be linked to
volatile memory. Table 1 shows where to link each compiler generated section on the F28xxx
DSP. Information on the function of each section can be found in reference [12]. Any user
created initialized section should be linked to flash (e.g., those sections created using the
CODE_SECTION compiler pragma), whereas any user created uninitialized sections should be
linked to RAM (e.g., those sections created using the DATA_SECTION compiler pragma).

Table 1. Section Linking for Non-DSP/BIOS Projects (Large memory model)

Section Name Where to Link
.cinit Flash

.cio RAM

.const Flash

.econst Flash

.pinit Flash

.switch Flash

.text Flash

.bss RAM

.ebss RAM

.stack Lower 64Kw RAM

.sysmem RAM

.esysmem RAM

.reset RAM1

Table 1 Notes:
1 The .reset section contains nothing more than a 32-bit interrupt vector that points to the C-
compiler boot function in the runtime support library (the _c_int00 routine). It is almost never
used. Instead, the user typically creates their own branch instruction to point to the starting point
of the code (see Sections 6 and 0). When not in use, the .reset section should be omitted from
the code build by using a DSECT modifier in the linker command file. For example:

Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 7

SPRA958L

3.2 DSP/BIOS Projects

The memory section manager in the DSP/BIOS configuration tool allows one to specify where to
link the various DSP/BIOS and C-compiler generated sections. Table 2 indicates where the
sections shown on each tab of the memory section manager should be linked (i.e., RAM or
FLASH). Note that this information has been tabulated specifically for the DSP/BIOS version
used in this report (see Section 1). Later versions of DSP/BIOS, although quite likely to be the
same, may have some differences. The reader should check the version they are using and
simply be aware of potential differences while proceeding. In CCS v5, the DSP/BIOS version is
tied to each individual project. Go to the Project → Properties menu, then select the General
category.

Table 2. Section Linking for DSP/BIOS Projects (Large Memory Model)

Memory Section
Manager TAB

Section Name Where to Link

General

Segment for DSP/BIOS Objects RAM

Segment for malloc()/free() RAM

BIOS Data

Argument Buffer Section (.args) RAM

Stack Section (.stack) Lower 64Kw RAM

DSP/BIOS Init Tables (.gblinit) Flash

TRC Initial Values (.trcdata) RAM1

DSP/BIOS Kernel State (.sysdata) RAM

DSP/BIOS Conf Sections (*.obj) RAM

BIOS Code

BIOS Code Section (.bios) Flash

Startup Code Section (.sysinit) Flash

Function Stub Memory (.hwi) Flash

Interrupt Service Table Memory (.hwi_vec) PIEVECT RAM2

RTDX Text Segment (.rtdx_text) Flash

Compiler Sections

Text Section (.text) Flash

Switch Jump Tables (.switch) Flash

C Variables Section (.bss) RAM

C Variables Section (.ebss) RAM

Data Initialization Section (.cinit) Flash

C Function Initialization Table (.pinit) Flash

Constant Section (.econst) Flash

8 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

SPRA958L

Compiler Sections
(continued)

Constant Section (.const) Flash

Data Section (.data) Flash

Data Section (.cio) RAM

Load Address

Load Address - BIOS Code Section (.bios) Flash3

Load Address - Startup Code Section (.sysinit) Flash3

Load Address - DSP/BIOS Init Tables (.gblinit) Flash3

Load Address - TRC Initial Value (.trcdata) Flash1

Load Address - Text Section (.text) Flash3

Load Address - Switch Jump Tables (.switch) Flash3

Load Address - Data Initialization Section (.cinit) Flash3

Load Address - C Function Initialization Table (.pinit) Flash3

Load Address - Constant Section (.econst) Flash3

Load Address - Constant Section (.const) Flash3

Load Address - Data Section (.data) Flash3

Load Address - Function Stub Memory (.hwi) Flash3

Load Address - Interrupt Service Table Memory (.hwi_vec) Flash2

Load Address - RTDX Text Segment (.rtdx_text) Flash3

Table 2 Notes:
1 The .trcdata section must be copied by the user from its load address (specified on the
Load_Address tab) to its run address (specified on the BIOS_Data tab) at runtime. See Section
4.3 for details on performing this copy.
2 The PIEVECT RAM is a specific block of RAM associated with the Peripheral Interrupt
Expansion (PIE) peripheral. On F28xxx devices covered in this report, the PIE RAM is a 256x16
block starting at address 0x000D00 in data space. For other devices, confirm the address in the
device datasheet. The memory section manager in the DSP/BIOS configuration tool should
already have a pre-defined memory named PIEVECT. The .hwi_vec section must be copied by
the user from its load address (specified on the memory section manager Load_Address Tab) to
its run address (specified on the memory section manager BIOS_Code Tab) at runtime. See
Section 4.2 for details on performing this copy.
3 The specific flash memory selected as the load address for this section should be the same
flash memory selected previously as the run address for the section (e.g., on the BIOS Data,
BIOS Code, or Compiler Sections tab).

Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 9

SPRA958L

/**
* User's C-source file
**/

/**
* NOTE: This function assumes use of the Peripheral Header File
* structures (see References [25 - 32]).
**/

#include <string.h>

void main(void)
{
/*** Initialize the PIE_RAM ***/

PieCtrlRegs.PIECTRL.bit.ENPIE = 0; // Disable the PIE
asm(" EALLOW"); // Enable EALLOW protected register access
memcpy((void *)0x000D00, &PieVectTableInit, 256);
asm(" EDIS"); // Disable EALLOW protected register access

}

4 Copying Sections from Flash to RAM

4.1 Copying the Interrupt Vectors (non-DSP/BIOS projects only)

The Peripheral Interrupt Expansion (PIE) module manages interrupt requests on F28xxx
devices. At power-up, all interrupt vectors must be located in non-volatile memory (i.e., flash),
but copied to the PIEVECT RAM as part of the device initialization procedure in your code. The
PIEVECT RAM is a specific block of RAM, which on F28xxx devices covered in this report is a
256x16 block starting at address 0x000D00 in data space.

Several approaches exist for linking the interrupt vectors to flash and then copying them to the
PIEVECT RAM at runtime. One approach is to create a constant C-structure of function pointers
that contains all 128 32-bit vectors. If using the peripheral header file structures (see references
[25-32]), such a structure, called PieVectTableInit, has already been created in the
corresponding file DSP28xxx_PieVect.c. Since this structure is declared using the const type
qualifier, it will be placed in the .econst section by the compiler. One simply needs to copy this
structure to the PIEVECT RAM at runtime. The C-compiler runtime support library contains a
memory copy function called memcpy() that can be used to perform the copy task as follows:

Note that the copy length is 256 because memcpy() copies 16-bit words.

The above example uses a hard coded address for the start of the PIE RAM, specifically
0x000D00. If this is objectionable (as hard coded addresses are not good programming
practice), one can use a DATA_SECTION pragma to create an uninitialized dummy variable,
and link this variable to the PIE RAM. The name of the dummy variable can then be used in
place of the hard coded address. For example, when using any of the ‘28xxx device peripheral
structures, an uninitialized structure called PieVectTable is created and linked over the PIEVECT
RAM. The memcpy() instruction in the previous example can be replaced by:

memcpy(&PieVectTable, &PieVectTableInit, 256);

10 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

SPRA958L

/**
* User's C-source file
**/

#include <string.h>

extern unsigned int hwi_vec_loadstart;
extern unsigned int hwi_vec_loadsize;
extern unsigned int hwi_vec_runstart;

void main(void)
{
/*** Initialize the .hwi_vec section ***/

asm(" EALLOW"); /* Enable EALLOW protected register access */
memcpy(&hwi_vec_runstart, &hwi_vec_loadstart, (Uint32)&hwi_vec_loadsize);
asm(" EDIS"); /* Disable EALLOW protected register access */

}

Lastly, on some devices, specifically the ‘Piccolo’ devices (F2802x, F2803x, F2805x, F2806x),
the first three 32-bit PIE vector locations are used for bootmode selection when the debugger is
in use. Therefore, the code should be modified to avoid overwriting these locations as follows:

memcpy((void *)0x000D06, (Uint16 *)&PieVectTableInit+6, 256-6);

or

memcpy((Uint16 *)&PieVectTable+6, (Uint16 *)&PieVectTableInit+6, 256-6);

4.2 Copying the .hwi_vec Section (DSP/BIOS projects only)

The DSP/BIOS .hwi_vec section contains the interrupt vectors, and must be loaded to flash but
run from RAM. The user is responsible for copying this section from its load address to its run
address. This is typically done in main(). The DSP/BIOS configuration tool generates global
symbols that can be accessed by code in order to determine the load address, run address, and
length of the .hwi_vec section. These symbol names are:

hwi_vec_loadstart hwi_vec_loadend
hwi_vec_loadsize hwi_vec_runstart

Each symbol should be self-explanatory from its name. Note that the symbols are not pointers,
but rather symbolically reference the 16-bit data value found at the corresponding location (i.e.,
start or end) of the section. The C-compiler runtime support library contains a memory copy
function called memcpy() that can be used to perform the copy task. A C-code example of how
to use this function to perform the section copy follows.

Lastly, on some devices, specifically the ‘Piccolo’ devices (F2802x, F2803x, F2805x, F2806x),
the first three 32-bit PIE vector locations are used for bootmode selection when the debugger is
in use. Therefore, the code should be modified to avoid overwriting these locations as follows:

memcpy(&hwi_vec_runstart+6, &hwi_vec_loadstart+6,
(Uint32)(&hwi_vec_loadsize-(Uint16*)6));

Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 11

SPRA958L

4.3 Copying the .trcdata Section (DSP/BIOS projects only)

The DSP/BIOS .trcdata sections must be loaded to flash, but run from RAM. The user is
responsible for copying this section from its load address to its run address. However, unlike the
.hwi_vec section, the copying of .trcdata must be performed prior to main(). This is because
DSP/BIOS modifies the contents of .trcdata during DSP/BIOS initialization (which also occurs
prior to main()).

The DSP/BIOS configuration tool provides for a user initialization function which can be utilized
to perform the .trcdata section copy prior to both main() and DSP/BIOS initialization. This can
be found in the CCS v5 project configuration file under System → Global Settings Properties, as
shown in Figure 1.

Check
this
box Enter your

function name
here (note the
leading
underscore)

Figure 1. Specifying the User Init Function in the DSP/BIOS Configuration tool

What remains is to create the user initialization function. The DSP/BIOS configuration tool
generates global symbols that can be accessed by code in order to determine the load address,
run address, and length of each section. These symbol names are:

trcdata_loadstart trcdata_loadend
trcdata_loadsize trcdata_runstart

12 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

SPRA958L

/**
* User's C-source file
**/

#include <string.h>

extern unsigned int trcdata_loadstart;
extern unsigned int trcdata_loadsize;
extern unsigned int trcdata_runstart;

void UserInit(void)
{
/*** Initialize the .trcdata section before main() ***/

memcpy(&trcdata_runstart, &trcdata_loadstart, (Uint32)&trcdata_loadsize);
}

Each symbol should be self-explanatory from its name. Note that the symbols are not pointers,
but rather symbolically reference the 16-bit data value found at the corresponding location (i.e.,
start or end) of the section. The C-compiler runtime support library contains a memory copy
function called memcpy() that can be used to perform the copy task. A C-code example of a
user init function that performs the .trcdata section copy follows.

4.4 Initializing the Flash Control Registers (DSP/BIOS and non-DSP/BIOS projects)

The initialization code for the flash control registers cannot be executed from the flash memory
or unpredictable results may occur. Therefore, the initialization function for the flash control
registers must be copied from flash (its load address) to RAM (its run address) at runtime.

CAUTION:

The flash control registers are protected by either the Code Security Module
(CSM) or the Dual Code Security Module (DCSM), depending on the device.

On devices with the CSM, if the CSM is secured you must run the flash register
initialization code from CSM secure RAM or the initialization code will be unable
to access the flash registers (see the memory map section of the device data
sheet to identify the secure memories). Note that the CSM is always locked at
device reset, although the ROM bootloader will unlock it if you are using dummy
passwords of 0xFFFF.

On devices with the DCSM, the protection of the flash control registers is
controlled by the SEM field of the FLSEM register. At reset, the SEM default is
such that the flash control registers can be written to by code running from any
memory. Normally, software will configure the flash control registers prior to
changing the SEM field, and therefore the user need only copy the configuration
code to any RAM and execute it from there. However, if software first changes
the SEM field, the flash configuration code will need to be executed from a RAM
block that has security access to the flash configuration registers. This access
is determined by the SEM field value. See reference [18] for information on the
SEM field of the FLSEM register.

Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 13

SPRA958L

The CODE_SECTION pragma of the C compiler can be used to create a separately linkable
section for the flash initialization function. For example, suppose the flash register configuration
is to be performed in the C function InitFlash(), and it is desired to place this function into a
linkable section called secureRamFuncs. The following C-code example shows proper use of
the CODE_SECTION pragma along with an example configuration of the flash registers:

/**
* User's C-source file
**/

/**
* NOTE: The InitFlash() function shown here is just an example of an
* initialization for the flash control registers. Consult the device
* datasheet for production wait state values and any other relevant
* information. Wait-states shown here are specific to current F280x
* devices operating at 100 MHz.
* NOTE: This function assumes use of the Peripheral Header File
* structures (see References [25 - 32]).
**/

#pragma CODE_SECTION(InitFlash, "secureRamFuncs")
void InitFlash(void)
{

asm(" EALLOW"); // Enable EALLOW protected register access
FlashRegs.FPWR.bit.PWR = 3; // Flash set to active mode
FlashRegs.FSTATUS.bit.V3STAT = 1; // Clear the 3VSTAT bit
FlashRegs.FSTDBYWAIT.bit.STDBYWAIT = 0x01FF; // Sleep to standby cycles
FlashRegs.FACTIVEWAIT.bit.ACTIVEWAIT = 0x01FF; // Standby to active cycles
FlashRegs.FBANKWAIT.bit.RANDWAIT = 3; // F280x Random access wait states
FlashRegs.FBANKWAIT.bit.PAGEWAIT = 3; // F280x Paged access wait states
FlashRegs.FOTPWAIT.bit.OTPWAIT = 5; // F280x OTP wait states
FlashRegs.FOPT.bit.ENPIPE = 1; // Enable the flash pipeline
asm(" EDIS"); // Disable EALLOW protected register access

/*** Force a complete pipeline flush to ensure that the write to the last register

configured occurs before returning. Safest thing is to wait 8 full cycles. ***/

asm(" RPT #6 || NOP"); // Takes 8 cycles to execute

} //end of InitFlash()

The section secureRamFuncs can then be linked using the user linker command file. This
section will require separate load and run addresses. Further, it is desired to have the linker
generate some global symbols that can be used to determine the load address, run address,
and length of the section. This information is needed to perform the copy from the sections load
address to its run address. The user linker command file would appear as follows:

14 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

SPRA958L

/**
* User's C-source file
**/

#include <string.h>

extern unsigned int secureRamFuncs_loadstart;
extern unsigned int secureRamFuncs_loadsize;
extern unsigned int secureRamFuncs_runstart;

void main(void)
{
/* Copy the secureRamFuncs section */

memcpy(&secureRamFuncs_runstart,
&secureRamFuncs_loadstart,
(Uint32)&secureRamFuncs_loadsize);

/* Initialize the on-chip flash registers */

InitFlash();
}

In this example, the memories FLASH and SECURE_RAM are assumed to have been defined
either in the MEMORY section of the user linker command file (for non-DSP/BIOS projects) or in
the memory section manager of the DSP/BIOS configuration tool (for DSP/BIOS projects). The
PAGE designation for these memories should match that of the memory definition. The above
example assumes both memories have been declared on PAGE 0 (program memory space).
The LOAD_START, LOAD_SIZE, and RUN_START directives will generate global symbols with
the specified names for the corresponding addresses. Note the use of the leading underscore
on the global symbol definitions (e.g., _secureRamFuncs_runstart)

Finally, the section must be copied from flash to RAM at runtime. As in Sections 4.1 - 4.3, the
function memcpy() from the compiler runtime support library can be used.

/**
* User linker command file
**/

SECTIONS
{
/*** User Defined Sections ***/
secureRamFuncs: LOAD = FLASH, PAGE = 0

RUN = SECURE_RAM, PAGE = 0
LOAD_START(_secureRamFuncs_loadstart),
LOAD_SIZE(_secureRamFuncs_loadsize),
RUN_START(_secureRamFuncs_runstart)

}

Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 15

SPRA958L

4.5 Maximizing Performance by Executing Time-critical Functions from RAM

(DSP/BIOS and non-DSP/BIOS projects)

The on-chip RAM memory of the F28xxx devices covered in this report provides code execution
in MIPS (millions of instructions per second) that is equal to the operating clock frequency of the
device in MHz (e.g., 150 MIPS at 150 MHz, 100 MIPS at 100 MHz, etc.). However, the on-chip
flash memory gives effective code execution performance that is somewhat less, depending on
the device frequency and the application. Rough flash execution performance estimates for the
devices covered in this report are1:

90 - 95 MIPS at 150 MHz
80 - 85 MIPS at 100 MHz
65 - 70 MIPS at 80 MHz
50 - 55 MIPS at 60 MHz
37 - 39 MIPS at 40 MHz

It may therefore be desirable to run certain time-critical or computationally demanding routines
from on-chip RAM, especially for devices running at 150 MHz. In a standalone embedded
system however, all code must initially reside in non-volatile memory. Separate load and run
addresses must be setup for those functions running from RAM, and a copy must be performed
to move them from on-chip flash to the RAM at runtime. To do this, apply the same procedure
previously described in Section 4.4.

Using the CODE_SECTION pragma, one can add multiple functions to the same linkable
section. The entire section can then be assigned to run from a particular RAM block, and the
user can copy the entire section to RAM all at once, as discussed in Section 4.4. If finer linking
granularity is required, separate section names can be created for each function.

4.6 Maximizing Performance by Linking Critical Global Constants to RAM

(DSP/BIOS and non-DSP/BIOS projects)

Constants are those data structures declared using the C language const type modifier. The
compiler places all constants in the .econst section (large memory model assumed). While
special pipelining on the F28xxx devices covered by this report accelerates effective flash
performance for code execution, no such pipelining exists for accessing data constants located
in the on-chip FLASH. Each flash data access can take multiple cycles. Typical flash wait-
states will be 5 cycles at 150 MHz, 3 cycles at 100 or 90 MHz, 2 cycles at 80 or 60 MHz, and 1
cycle at or below 50 MHz device1.

CAUTION:
Flash timings vary among the different F28xxx devices. It is important to check
the specific datasheet for the device in use.

1 These estimates apply only to the devices covered by this report (see Section 1), which have all been fabricated in the same
180 nm CMOS process. The newest F28xxx devices (e.g. F28M35x, F28M36x) are fabricated in a 65 nm process and also
have a wider flash pre-fetch buffer. They have significantly higher effective flash execution performance than the 180 nm
devices.

16 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

SPRA958L

}

LOAD = FLASH, PAGE = 0
RUN = RAM, PAGE = 1
LOAD_START(_econst_loadstart),
LOAD_SIZE(_econst_loadsize),
RUN_START(_econst_runstart)

SECTIONS
{
.econst:

/**
* User linker command file
**/

/**
* User's C-source file
**/

#include <string.h>

extern unsigned int econst_loadstart;
extern unsigned int econst_loadsize;
extern unsigned int econst_runstart;

void main(void)
{
/* Copy the .econst section */

memcpy(&econst_runstart, &econst_loadstart, (Uint32)&econst_loadsize);
}

It may therefore be desirable to keep heavily accessed constants and constant tables in on-chip
RAM. However, a standalone embedded system requires that all initialized data (e.g.,
constants) initially reside in non-volatile memory. Therefore, separate load and run addresses
must be setup for those constants you wish to access in RAM, and a copy must be performed to
move them from the on-chip flash to the RAM at runtime. Two different approaches for
accomplishing this will be presented.

4.6.1 Method 1: Running All Constant Arrays from RAM

This approach involves specifying separate load and run addresses for the entire .econst
section. The advantage of this approach is ease of use, while the disadvantage is excessive
RAM usage (there may be only a few constants that require high-speed access, but with this
method all constants are relocated into RAM).

4.6.1.1 Non-DSP/BIOS Projects

The same approach discussed in Section 4.4 can be used. Simply specify separate load and
run address for the .econst section in the user linker command file, and then add code to your
project to copy the entire .econst section to RAM at runtime. For example:

Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 17

SPRA958L

}

LOAD = FLASH, PAGE = 0
RUN = RAM, PAGE = 1
LOAD_START(_econst_loadstart),
LOAD_SIZE(_econst_loadsize),
RUN_START(_econst_runstart)

.econst:

/**
* User linker command file (DSP/BIOS Projects)
**/

SECTIONS
{
/*** Preemptively link the .econst section ***/
/* Must come before DSP/BIOS linker command file is evaluated */

4.6.1.2 DSP/BIOS Projects

Although the DSP/BIOS configuration tool allows the specification of different load and run
addresses for the .econst section, it will not generate the code accessible labels that are
needed to perform the memory copy. Therefore, the user must preemptively link the .econst
section in the user linker command file before the DSP/BIOS generated linker command file is
evaluated. The user linker command file would appear as follows:

To guarantee that the user linker command file is evaluated before the DSP/BIOS generated
linker command file during the project build, one must specify the link order in CCS. To do this
in CCS v5, go to Project → Properties, then select the Build category, Link Order tab. You can
then specify the appropriate order for the linker command files in question by clicking on the
‘Add…’ button. Note that the DSP/BIOS generated linker command file will not be explicitly
listed in the file selection list. Rather, you should select “$(GEN_CMDS_QUOTED)” which
means the DSP/BIOS generated .cmd file. Figure 2 shows an example of this, where
F2808_BIOS_flash.cmd is the user linker command file and “$(GEN_CMDS_QUOTED)” refers
to the F2808_example_BIOS_flashcfg.cmd file generated by DSP/BIOS.

18 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

SPRA958L

Figure 2. Specifying the Link Order In Code Composer Studio v5

Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 19

SPRA958L

/**
* User's C-source file
**/

#include <string.h>

extern unsigned int econst_loadstart;
extern unsigned int econst_loadsize;
extern unsigned int econst_runstart;

void main(void)
{
/* Copy the .econst section */

memcpy(&econst_runstart, &econst_loadstart, (Uint32)&econst_loadsize);
}

/**
* User's C-source file
**/

#pragma DATA_SECTION(table, "ramconsts")
const int table[5] = {1,2,3,4,5};

void main(void)
{

}

The .econst section can then be copied from its load address to its run address as follows:

4.6.2 Method 2: Running a Specific Constant Array from RAM

(DSP/BIOS and non-DSP/BIOS projects)

This method involves selectively copying constants from flash to RAM at runtime. The
procedure to accomplish this is similar to that of Method 1, except that only selected constants
are placed in a named section and copied to RAM (rather than copying all constants to RAM).

Suppose for example that one wants to create a 5 word constant array called table[] to be run
from RAM. A DATA_SECTION pragma is used to place table[] in a user defined section called
ramconsts. The C-source file would appear as follows:

The section ramconsts is linked to load to flash but run from RAM using the user linker
command file, and global symbols are generated to facilitate the memory copy. The user linker
command file would appear as follows:

20 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

SPRA958L

/**
* User's C-source file
**/

#include <string.h>

extern unsigned int ramconsts_loadstart;
extern unsigned int ramconsts_loadsize;
extern unsigned int ramconsts_runstart;

void main(void)
{
/* Initialize the ramconsts section */

memcpy(&ramconsts_runstart, &ramconsts_loadstart, (Uint32)&ramconsts_loadsize);
}

Finally, table[] must be copied from its load address to its run address at runtime:

5 Programming the Code Security Module Passwords
The code-security module on F28xxx devices provides protection against unwanted copying of
and tampering with your software. Devices covered by this report have either a single-zone
code security module (CSM), or a dual-zone code security module (DCSM). The CSM uses a
single 128-bit password that restricts access to all secure memories. The DCSM provides for
two 128-bit passwords, each restricting access to one of the two security zones. Some secure
memory resources are fixed in their assignment to one of the two zones, while others can be
assigned by software to either zone.

/**
* User linker command file
**/

SECTIONS
{
/*** User Defined Sections ***/
ramconsts: LOAD = FLASH, PAGE = 0

RUN = RAM, PAGE = 1
LOAD_START(_ramconsts_loadstart),
LOAD_SIZE(_ramconsts_loadsize),
RUN_START(_ramconsts_runstart)

}

Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 21

SPRA958L

F281x: F2810, F2811, F2812
F280x/2801x/28044: F2801, F2802, F2806, F2808, F2809, F28015, F28016, F28044
F2823x/2833x: F28232, F28234, F28235, F28332, F28334, F28335
F2802x: F28020, F28021, F28022, F28023, F28026, F28027, F280200
F2803x: F28030, F28031, F28032, F28033, F28034, F28035
F2806x: F28062, F28063, F28064, F28065, F28066, F28067, F28068, F28069

F2805x: F28050, F28051, F28052, F28053, F28054, F28055

Single-zone Code Security Module Devices:

Dual-zone Code Security Module Devices:

The sub-sections that follow explain how to incorporate the code security passwords into your
code project for the single-zone and dual-zone security devices. It is well beyond the scope of
this report to explain in detail the operation of the security modules. The reader is referred to
references [13 - 19] for this information.

5.1 Single-Zone Security Devices (DSP/BIOS and non-DSP/BIOS projects)

On single-zone security devices, the CSM secures the entire flash, the OTP memory, and some
of the ‘L’ SARAM blocks (see the device datasheet for device specific information). The flash
configuration registers are secured as well. When locked, only code executing from secure
memory can access data (read or write) in other secured memory. Code executing from
unsecure memory can branch to (or call) code in secure memory, but cannot access any data in
secure memory.

The CSM uses a 128-bit password comprised of 8 individual 16-bit words. For CSM devices
covered by this report, these passwords are stored in the upper most 8 words of the flash (e.g.,
addresses 0x3F7FF8 through 0x3F7FFF on F281x, F280x, F2801x, F28044, F2802x, F2803x,
and F2806x devices, and addresses 0x33FFF8 through 0x33FFFF on F2823x and F2833x
devices). During development, it is recommended that dummy passwords of 0xFFFF be used.
When dummy passwords are used, only dummy reads of the password locations are needed to
unsecure the CSM. Placing dummy passwords into the password locations is easy to do since
0xFFFF will be the state of these locations after the flash is erased during flash programming.
Users need only avoid linking any sections to the password addresses in their code project, and
the passwords will retain the 0xFFFF.

After development, one may want to use real passwords. In addition, to properly lock the CSM
module for devices covered in this report, values of 0x0000 must be programmed into the 118
flash addresses beginning 120 words prior to the start of the CSM passwords, e.g., addresses
0x3F7F80 through 0x3F7FF5 on F281x, F280x, F2801x, F28044, F2802x, F2803x, and F2806x
devices, and addresses 0x33FF80 through 0x33FFF5 on F2823x and F2833x devices (see
references [1 - 6, and 8]). An easy way to accomplish both of these tasks is with a little simple
assembly language programming. The following example assembly code file specifies the
desired password values and places them in a named initialized section called passwords. It
also creates a named initialized section called csm_rsvd that contains all 0x0000 values and is
of proper length to fit in the aforementioned 118 word address ranges. See reference [11] for
more information on the assembly language directives used.

22 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

SPRA958L

* File: Passwords.asm

* Dummy passwords of 0xFFFF are shown. The user can change these to
* desired values.
*
* CAUTION: Do not use 0x0000 for all 8 passwords or the CSM module can
* be permanently locked. See References [13 – 17, and 19] for more
* information.

.sect "passwords"

.int 0xFFFF ;PWL0 (LSW of 128-bit password)

.int 0xFFFF ;PWL1

.int 0xFFFF ;PWL2

.int 0xFFFF ;PWL3

.int 0xFFFF ;PWL4

.int 0xFFFF ;PWL5

.int 0xFFFF ;PWL6

.int 0xFFFF ;PWL7 (MSW of 128-bit password)
;--

.sect "csm_rsvd"

.loop (3F7FF5h - 3F7F80h + 1)

.int 0x0000

.endloop
;--

.end ;end of file passwords.asm

Note that this example is showing dummy password values of 0xFFFF. Replace these values
with your desired passwords.

CAUTION:
Do not use 0x0000 for all 8 passwords. Doing so can permanently lock the CSM
module! See references [13 - 17, and 19] for more information.

The passwords and csm_rsvd sections should be placed in memory with the user linker
command file.

For non-DSP/BIOS projects, the user should define memories named (for example)
PASSWORDS and CSM_RSVD on PAGE 0 in the MEMORY portion of the user linker command
file. The sections passwords and csm_rsvd can then be linked to these memories. The
following example applies to F281x, F280x, F2801x, F28044, F2802x, F2803x, and F2806x
devices. For other devices, consult the device datasheet to confirm the addresses of the
password and CSM reserved locations.

Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 23

SPRA958L

For DSP/BIOS projects, the user should define the memories named (for example)
PASSWORDS and CSM_RSVD using the memory section manager of the DSP/BIOS
configuration tool. The two figures that follow show the DSP/BIOS memory section manager
properties for these memories on F281x, F280x, F2801x, F28044, F2802x, F2803x, and F2806x
devices. As always, consult the device datasheet to confirm the correct addresses and lengths,
or for memory map information of other F28xx devices.

Figure 3. DSP/BIOS MEM Properties for CSM Password Locations

}
PAGE = 0 > CSM_RSVD,

> PASSWORDS, PAGE = 0 passwords:
csm_rsvd:

SECTIONS
{
/*** Code Security Password Locations ***/

/**
* User linker command file (non-DSP/BIOS Projects)
**/

MEMORY
{
PAGE 0: /* Program Memory */

CSM_RSVD : origin = 0x3F7F80, length = 0x000076
PASSWORDS : origin = 0x3F7FF8, length = 0x000008

}

24 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

SPRA958L

Figure 4. DSP/BIOS MEM Properties for CSM Reserved Locations

The sections passwords and csm_rsvd can then be linked to these memories in the user linker
command file. For DSP/BIOS projects, the user linker command file would appear as:

5.2 Dual-Zone Security Devices (DSP/BIOS and non-DSP/BIOS projects)

Dual-zone security operates similar to the single-zone security described in the previous section
except for three major differences:

1. Code executing from a secured zone can only access data located either in that zone, or in
unsecured memories. Code in one secured zone cannot access data located in the other
secured zone, although it can branch to or call code that resides in any memory. Optionally,
a memory block can be configured as execute only such that no code is able to access data
in that memory (including code executing from that same memory).

/**
* User linker command file (DSP/BIOS Projects)
**/

SECTIONS
{
/*** Code Security Password Locations ***/

passwords: > PASSWORDS, PAGE = 0
csm_rsvd: > CSM_RSVD, PAGE = 0

}

Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 25

SPRA958L

2. Each zone uses a 16x16 bit ‘Zone Select Block’ located in OTP memory to control security
access to that zone. The zone select block contains the 128-bit security passwords for that
zone as well as zone assignment and execute-only designations for securable memories.
Figure 5 shows the entries and arrangement of a zone select block.

16-bit Address Offset:
0x00

0x02

0x04

0x06

0x08

0x0A

0x0C

0x0E
0x0F

Figure 5. DCSM Zone Select Block

3. Since the security configuration tables are located in OTP memory, each entry in a zone
select block can be written only once (to be exact, a 1 bit can be flipped to a 0 bit at any time,
but a 0 bit cannot be changed). To provide the flexibility to change security configurations a
few times over the life of a product and to aid with development, multiple zone select blocks
exist as part of an overall 512x16 bit zone configuration table in OTP memory. The first entry
in the configuration table is a link value that specifies which zone select block in the table is
active. The link value is updatable by sequentially changing 1 bits to 0 bits, starting with bit
position 0. In this way, the zone select block can be ‘Updated’ up to thirty times. Figure 6
shows the entries and arrangement in memory of a zone configuration table. To be clear
there are two configuration tables in OTP memory, one for each of the two security zones.

Zx-EXEONLYRAM (1x32)

Zx-EXEONLYSECT (1x32)

Zx-GRABRAM (1x32)

Zx-GRABSECT (1x32)

Zx-CSMPSWD0 (1x32)

Zx-CSMPSWD1 (1x32)

Zx-CSMPSWD2 (1x32)

Zx-CSMPSWD3 (1x32)

26 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

SPRA958L

16-bit Address Offset:
0x000

0x002

0x004

0x006

0x010

0x020

0x030

0x1F0

0x1FF

Figure 6. DCSM Security Zone Configuration Table OTP Memory

For a given device, the datasheet should be consulted to determine the base address for each of
the two DCSM security configuration tables. For example, on F2805x devices the zone 1
security configuration table starts at address 0x3D7A00, while that of zone 2 starts at address
0x3D7800.

Zx-LINKPOINTER (1x32)

Zx-OTPSECLOCK (1x32)

Zx-BOOTMODE (1x32)

Reserved (5x32)

Zone Select Block 0 (8x32)

Zone Select Block 1 (8x32)

Zone Select Block 30 (8x32)

Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 27

SPRA958L

As previously stated, the read should refer to the documentation for their particular device for a
fully detailed explanation of DCSM operation and the security configuration tables. The primary
intent here is to show how to place the security configuration table in memory.

A simple way to create the zone configuration tables is with a small amount of assembly
language coding. For each of the two configuration tables, two data sections are needed
(meaning a total of four data sections). The first section is the table base section, and contains
the first three entries in the table: Zx-LINKPOINTER, Zx-OTPSECLOCK, and Zx-BOOTMODE.
It is always linked to the base address of the configuration table. The second section contains
the zone select block that was depicted in Figure 5. It should be linked to memory at an offset
from the table base address. This offset is specified by the value of the Zx-LINKPOINTER. See
the device documentation for Zx-LINKPOINTER values. It is not a simple ‘value equals offset’
relationship. In general, users will utilize the Zone Select Blocks in sequence, starting with Zone
Select Block 0 at offset 0x010. To change to a new (the next) Zone Select Block, the least-
significant 1 bit in the Zx-LINKPOINTER is programmed to a 0, and the new Zone Select Block
would be programmed to the next offset address in the configuration table.

The following two example assembly code files create the above described needed data
elements for each of the two security zones. The table base sections are named dcsm_otp_z1
and dcsm_otp_z2, while the zone select block sections are named dcsm_zsel_z1 and
dcsm_zsel_z2. See reference [11] for more information on the assembly language directives
used.

;end of file Passwords_zone1.asm .end

;Z1-EXEONLYRAM
;Z1-EXEONLYSECT
;Z1-GRABRAM
;Z1-GRABSECT
;Z1-CSMPSWD0 (LSW of 128-bit password)
;Z1-CSMPSWD1
;Z1-CSMPSWD2
;Z1-CSMPSWD3 (MSW of 128-bit password)

.sect "dcsm_zsel_z1"

.long 0xFFFFFFFF

.long 0xFFFFFFFF

.long 0xFFFFFFFF

.long 0xFFFFFFFF

.long 0xFFFFFFFF

.long 0xFFFFFFFF

.long 0xFFFFFFFF

.long 0xFFFFFFFF

;Z1-LINKPOINTER
;Z1-OTPSECLOCK
;Z1-BOOTMODE

.sect "dcsm_otp_z1"

.long 0xFFFFFFFF

.long 0xFFFFFFFF

.long 0xFFFFFFFF

* File: Passwords_zone1.asm

* Dummy values of 0xFFFFFFFF are shown for all entries. The user can
* change these to desired values.
*
* CAUTION: Do not use 0x00000000 for all 4 passwords or the DCSM zone
* can be permanently locked. See Reference [18] for more information.

28 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

SPRA958L

Note that this example is showing dummy values of 0xFFFFFFFF for all configuration values.
These will be replaced with your desired values when you are ready to secure the device.

CAUTION:

Do not use 0x00000000 for all 4 passwords in a zone select block. Doing so can
permanently lock that zone in the DCSM module! See reference [18] for more
information.

The dcsm_otp_z1, dcsm_otp_z2, dcsm_zsel_z1, and dcsm_zsel_z2 sections now need to be
linked to memory.

For non-DSP/BIOS projects, the user should define four memories to hold these sections in the
user linker command file. For example, define DCSM_OTP_Z1_P0 and DCSM_OTP_Z2_P0 to
hold the two table base entry sections, and DCSM_ZSEL_Z1_P0 and DCSM_ZSEL_Z2_P0 to
hold the two zone select block sections. The sections dcsm_otp_z1, dcsm_otp_z2,
dcsm_zsel_z1, and dcsm_zsel_z2 sections can then be linked to these memories as shown in
the following example.

;end of file Passwords_zone2.asm .end

;Z2-EXEONLYRAM
;Z2-EXEONLYSECT
;Z2-GRABRAM
;Z2-GRABSECT
;Z2-CSMPSWD0 (LSW of 128-bit password)
;Z2-CSMPSWD1
;Z2-CSMPSWD2
;Z2-CSMPSWD3 (MSW of 128-bit password)

.sect "dcsm_zsel_z2"

.long 0xFFFFFFFF

.long 0xFFFFFFFF

.long 0xFFFFFFFF

.long 0xFFFFFFFF

.long 0xFFFFFFFF

.long 0xFFFFFFFF

.long 0xFFFFFFFF

.long 0xFFFFFFFF

;Z2-LINKPOINTER
;Z2-OTPSECLOCK
;Z2-BOOTMODE

.sect "dcsm_otp_z2”

.long 0xFFFFFFFF

.long 0xFFFFFFFF

.long 0xFFFFFFFF

* File: Passwords_zone2.asm

* Dummy values of 0xFFFFFFFF are shown for all entries. The user can
* change these to desired values.
*
* CAUTION: Do not use 0x00000000 for all 4 passwords or the DCSM zone
* can be permanently locked. See Reference [18] for more information.

Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 29

SPRA958L

/**
* User linker command file (non-DSP/BIOS Projects)
**/

PAGE 1:
}

/* Data Memory */

SECTIONS
{

}

MEMORY
{
PAGE 0: /* Program Memory */

DCSM_OTP_Z2_P0 : origin = 0x3D7800, length = 0x000006 /* Z2 DCSM Table Base */
DCSM_ZSEL_Z2_P0 : origin = 0x3D7810, length = 0x000010 /* Z2 Select Block */
DCSM_OTP_Z1_P0 : origin = 0x3D7A00, length = 0x000006 /* Z1 DCSM Table Base */
DCSM_ZSEL_Z1_P0 : origin = 0x3D7A10, length = 0x000010 /* Z1 Select Block */

dcsm_otp_z1: > DCSM_OTP_Z1_P0, PAGE = 0
dcsm_zsel_z1: > DCSM_ZSEL_Z1_P0, PAGE = 0
dcsm_otp_z2: > DCSM_OTP_Z2_P0, PAGE = 0
dcsm_zsel_z2: > DCSM_ZSEL_Z2_P0, PAGE = 0

For DSP/BIOS projects, the four memories are defined using the memory section manager of
the DSP/BIOS configuration tool. The four figures that follow show the DSP/BIOS memory
section manager properties for these memories on F2805x devices. As always, consult the
device datasheet to confirm the correct addresses and lengths, or for memory map information
of other F28xx devices with the DCSM module.

Figure 7. DSP/BIOS MEM Properties for DCSM_OTP_Z2_P0 Memory

30 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

SPRA958L

Figure 8. DSP/BIOS MEM Properties for DCSM_ZSEL_Z2 Memory

Figure 9. DSP/BIOS MEM Properties for DCSM_OTP_Z1_P0 Memory

Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 31

SPRA958L

/**
* User linker command file (DSP/BIOS Projects)
**/

SECTIONS
{

}

Figure 10. DSP/BIOS MEM Properties for DCSM_ZSEL_Z1_P0 Memory

The four created security sections can then be linked to these memories with the user linker
command file. This is the same as the SECTIONS portion of the .cmd file for non-DSP/BIOS
projects, as shown below:

dcsm_otp_z1: > DCSM_OTP_Z1_P0, PAGE = 0
dcsm_zsel_z1: > DCSM_ZSEL_Z1_P0, PAGE = 0
dcsm_otp_z2: > DCSM_OTP_Z2_P0, PAGE = 0
dcsm_zsel_z2: > DCSM_ZSEL_Z2_P0, PAGE = 0

32 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

SPRA958L

6 Executing Your Code from Flash after a DSP Reset
(DSP/BIOS and non-DSP/BIOS projects)

F28xxx devices contain a ROM bootloader that can transfer code execution to the flash after a
device reset. The ROM bootloader is detailed in references [18 - 24]. When the boot mode
selection pins are configured for ‘Jump-to-Flash’ mode, the ROM bootloader will branch to the
instruction located at the jump-to-Flash target address in the flash. This address is 0x3F7FF6
for F281x, F280x, F2801x, F28044, F2802x, F2803x, and F2806x devices, 0x3F7FFE for
F280x5 devices, and 0x33FFF6 for F2833x and F2823x devices. Always confirm the address
for your specific device in either the device datasheet [1 - 8], or in the ROM bootloader
documentation [18 - 24]. The user should place an instruction that branches to the beginning of
their code at this address. A long branch (LB in assembly code) occupies two 16-bit words, and
the device memory map is designed to accommodate this.

In general, the branch instruction will branch to the start of the C-environment initialization
routine located in the C-compiler runtime support library. The entry symbol for this routine is
_c_int00. No C code can be executed until this setup routine is run. Alternately, there is
sometimes a need to execute a small amount of assembly code prior to starting your C
application (for example, to disable the watchdog timer peripheral). In this case, the branch
instruction should branch to the start of your assembly code. Regardless, there is a need to
properly locate this branch instruction in the flash. The easiest way to do this is with assembly
code. The following example creates a named initialized section called codestart that contains a
long branch to the C-environment setup routine. The codestart section should be placed in
memory with the user linker command file.

For non-DSP/BIOS projects, the user should define a memory named (for example)
BEGIN_FLASH on PAGE 0 in the MEMORY portion of the user linker command file. The
section codestart can then be linked to this memory. The 0x3F7FF6 address used in the
following example applies to F281x, F280x, F2801x, F28044, F2802x, F2803x, and F2806x
devices. Modify the address for other devices.

;end of file CodeStartBranch.asm .end

;branch to start of code
.sect "codestart"
LB _c_int00

* CodeStartBranch.asm

.ref _c_int00

Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 33

SPRA958L

For DSP/BIOS projects, the user should define the memory named BEGIN_FLASH (for
example) using the memory section manager of the DSP/BIOS configuration tool. Figure 11
shows the memory section manager properties for this memory with the ‘base’ address entry set
for a F281x, F280x, F2801x, F2802x, F2803x, F28044, or F2806x device.

Figure 11. DSP/BIOS MEM Properties for Jump to Flash Entry Point

BEGIN_FLASH : origin = 0x3F7FF6, length = 0x000002
PAGE 1: /* Data Memory */
}

SECTIONS
{
/*** Jump to Flash boot mode entry point ***/
codestart: > BEGIN_FLASH, PAGE = 0
}

/* Program Memory */

MEMORY
{
PAGE 0:

/**
* User's linker command file (non-DSP/BIOS Projects)
**/

34 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

SPRA958L

The section codestart can then be linked to this memory in the user linker command file. For
DSP/BIOS projects, the linker command file would appear as:

7 Disabling the Watchdog Timer During C-Environment Boot
(DSP/BIOS and non-DSP/BIOS projects)

The C-environment initialization function in the C compiler runtime support library, _c_int00,
performs the initialization of global and static variables. This involves a data copy from the .cinit
section (located in on-chip flash memory) to the .ebss section (located in RAM) for each
initialized global variable. For example, when a global variable is declared in source code as:

int x=5;

the "5" is placed into the initialized section .cinit, whereas space is reserved in the .ebss section
for the symbol "x." The _c_int00 routine then copies the "5" to location "x" at runtime. When a
large number of initialized global and static variables are present in the software, the watchdog
timer can timeout before the C-environment boot routine can finish and call main() (where the
watchdog can be either configured and serviced, or disabled). This problem may not manifest
itself during code development in RAM since the data copy from a .cinit section linked to RAM
will occur at a fast pace. However, when the .cinit section is linked to internal flash, copying
each data word will take multiple cycles since the internal flash memory defaults to the maximum
number of wait-states (wait-states are not configured until the user code reaches main()). In
addition, the code performing the data copying is executing from flash, which further increases
the time needed to complete the data copy (the code fetches and data reads must share access
to the flash). Combined with the fact that the watchdog timeout period defaults to its minimum
possible value, a watchdog timeout becomes a real possibility.

You can detect the presence of this problem in your system by using the CCS debugger. Set a
breakpoint at the start of main(), and also set a breakpoint at the start of _c_int00. Reset the
processor, and then run. You should hit the breakpoint at _c_int00. If you do not, you have a
bootmode configuration problem. If you get to _c_int00, run again. This time you should get to
the breakpoint in main(). If you do not, the watchdog is timing out before you get there.

/**
* User's linker command file (DSP/BIOS projects)
**/

SECTIONS
{
/*** Jump to Flash boot mode entry point ***/
codestart: > BEGIN_FLASH, PAGE = 0
}

Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 35

SPRA958L

The easiest method for correcting the watchdog timeout problem is to disable the watchdog
before starting the C-environment boot routine. The watchdog can later be re-enabled after
reaching main() and starting your normal code execution flow. The watchdog is disabled by
setting the WDDIS bit to a 1 in the WDCR register. To disable the watchdog before the boot
routine, assembly code must be used (since the C environment is not yet setup). In Section 6,
the codestart assembly code section implemented a branch instruction that jumped to the
C-environment initialization routine, _c_int00. To disable the watchdog, this branch should
instead jump to watchdog disabling code, which can then branch to the _c_int00 routine. The
following code example performs these tasks:

* File: CodeStartBranch.asm
* Devices: TMS320F28xxx
* Author: David M. Alter, Texas Instruments Inc.
* History: 02/11/05 - original (D. Alter)

WD_DISABLE .set 1 ;set to 1 to disable WD, else set to 0

.ref _c_int00

* Function: codestart section
* Description: Branch to code starting point

.sect "codestart"

.if WD_DISABLE == 1
LB wd_disable ;Branch to watchdog disable code

.else
LB _c_int00 ;Branch to start of boot.asm in RTS library

.endif
;end codestart section

* Function: wd_disable
* Description: Disables the watchdog timer

.if WD_DISABLE == 1

.text
wd_disable:

EALLOW ;Enable EALLOW protected register access
MOVZ DP, #7029h>>6 ;Set data page for WDCR register
MOV @7029h, #0068h ;Set WDDIS bit in WDCR to disable WD
EDIS ;Disable EALLOW protected register access
LB _c_int00 ;Branch to start of boot.asm in RTS library

.endif

;end wd_disable

.end ; end of file CodeStartBranch.asm

36 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

SPRA958L

8 C-Code Examples

8.1 General Overview

A code download containing CCS v5 code projects for the superset device in each of the F281x,
F280x, F2802x, F2803x, F2805x, F2806x, and F2833x sub-families accompanies this report.
With the exception of the F2802x, F2803x, and F2805x each device type has four distinct
projects:

• F28xxx_example_nonBIOS_ram.pjt - non-DSP/BIOS project that runs from on-chip RAM

• F28xxx_example_nonBIOS_flash.pjt - non-DSP/BIOS project that runs from on-chip Flash

• F28xxx_example_BIOS_ram.pjt - DSP/BIOS project that runs from on-chip RAM

• F28xxx_example_BIOS_flash.pjt - DSP/BIOS project that runs from on-chip Flash

The F2802x, F2803x, and F2805x examples do not include the F28xxx_example_BIOS_ram.pjt
since from a practical perspective there is insufficient RAM on these devices to support
DSP/BIOS without utilizing the flash memory to hold the bulk of the code. Also, although the
focus of this report is running code from flash, the RAM examples are provided for completeness
and can be useful during the early stages of development work.

These are just examples, and have only been tested briefly. No guarantee is made about their
suitability for application usage. The examples were built and tested using the following
development tool versions:

CCS v5.3.0, Code Generation Tools v6.1.1, DSP/BIOS v5.42.0.07

Note that it is unlikely that the CCS projects will work correctly with earlier versions of CCS, even
minor revisions earlier. CCS versions are generally backwards compatible, not forwards
compatible. The projects may appear to import successfully, but they may be missing some
project options and/or produce build errors. If you are using an earlier CCSv5 version, update to
at least v5.3.0. Alternately, you can create a new CCS project with your old version and put the
example source code of interest into the new project. The code itself will work fine. It is just the
CCS project files themselves (i.e. .project, .cproject, and .ccsproject) that could have difficulty
with earlier CCS versions.

The source code uses the following versions of the C2000 peripheral header files for accessing
the device peripheral registers:

DSP281x Peripheral Header File structures v1.20
DSP280x Peripheral Header File structures v1.70
DSP2833x Peripheral Header File structures v1.33
F2802x Peripheral Header File structures v2.10
DSP2803x Peripheral Header File structures v1.26
F2805x Peripheral Header File structrure v1.00
F2806x Peripheral Header File structures v1.35

Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 37

SPRA958L

All needed files from the header file packages are included here (see references [25 - 32]).
However, the user is encouraged to obtain the complete header file package for additional
information. For the newer devices, the header files are available via the ControlSuite tool,
available at http://www.ti.com/tool/controlsuite. For older devices, they are downloadable from
the TI website, http://www.ti.com.

The projects were developed on the eZdspF2812, eZdspF2808, and eZdspF28335 development
boards, the F2808, F28335, F28027, F28035, F28055, and F28069 Experimenter’s Kits, and the
F28027 and F28069 ‘Piccolo’ Control Sticks. However, they will also run on other F28xxx board
as follows:

F281x examples: These will run on any F281x board as they run entirely from internal memory
and use only the flash memory common to all three devices. If running on a different board, be
aware that the code configures the GPIOA0/PWM1 and GPIOF14/XF_XPLLDIS* pins as
outputs. Also note that the code does configure the external memory interface on the F2812 as
part of the DSP initialization process. Since most of the external memory interface does not
exist on F2810 and F2811 devices (exception is the XCLKOUT pin), this initialization is not
needed on these two devices (although it is harmless).

F280x examples: These will run on any F2808 board. They can also be adapted to run on
other F280x, F2801x, and F28044 boards by adjusting the memory definitions (RAM and Flash)
in the .cmd file for non-DSP/BIOS projects, or the .tcf file for DSP/BIOS projects. The PLL
setting may also need to be adjusted depending on the crystal or oscillator used on the board
and the operating frequency of the device. If running on a different board, the user should be
aware that the code configures the GPIO0/ePWM1A and GPIO34 pins as outputs.

F2833x examples: These will run on any F28335 board. They can also be adapted to run on
other F2833x or F2823x boards by adjusting the memory definitions (RAM and Flash) in the
.cmd file for non-DSP/BIOS projects, or the .tcf file for DSP/BIOS projects. The PLL setting may
also need to be adjusted depending on the crystal or oscillator used on the board and the
operating frequency of the device. Also, for F2823x devices, you should change the project
build options in CCS v5 to disable floating point support (go to Project → Properties, select the
Build → C2000 Compiler → Runtime Model Options category, and change the ‘Specify floating
point support’ box to blank). If running on a different board, the user should be aware that the
code configures the GPIO0/ePWM1A, GPIO32, and GPIO34 pins as outputs.

F2802x examples: These will run on any F28027 board. They can also be adapted to run on
other F2802x boards by adjusting the memory definitions (RAM and Flash) in the .cmd file for
non-DSP.BIOS projects, or the .tcf file for DSP/BIOS projects. The PLL setting may also need to
be adjusted depending on the operating frequency of the device. If running on a different board,
the user should be aware that the code configures the GPIO0/ePWM1A and GPIO34 pins as
outputs.

F2803x examples: These will run on any F28035 board. They can also be adapted to run on
other F2803x boards by adjusting the memory definitions (RAM and Flash) in the .cmd file for
non-DSP.BIOS projects, or the .tcf file for DSP/BIOS projects. If running on a different board,
the user should be aware that the code configures the GPIO0/ePWM1A and GPIO34 pins as
outputs.

http://www.ti.com/tool/controlsuite
http://www.ti.com/

38 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

SPRA958L

F2805x examples: These will run on any F28055 board. They can also be adapted to run on
other F2805x boards by adjusting the memory definitions (RAM and Flash) in the .cmd file for
non-DSP.BIOS projects, or the .tcf file for DSP/BIOS projects. If running on a different board,
the user should be aware that the code configures the GPIO0/ePWM1A and GPIO34 pins as
outputs.

F2806x examples: These will run on any F28069 board. They can also be adapted to run on
other F2806x boards by adjusting the memory definitions (RAM and Flash) in the .cmd file for
non-DSP.BIOS projects, or the .tcf file for DSP/BIOS projects. If running on a different board,
the user should be aware that the code configures the GPIO0/ePWM1A and GPIO34 pins as
outputs.

Each code project performs the same functions:

• Illustrates F28xxx device initialization. The PLL is configured for the maximum clock speed
allowed for each device.

• Enables the real-time emulation mode of Code Composer Studio.

• Toggles the GPIOF14 pin on the F2812, the GPIO34 pin on F2808, F28027, F28035,
F28055, and F28069, and the GPIO32 and GPIO34 pins on the F28335. This blinks the
LED on the development board (for F28335, only one GPIO is connected to an LED,
depending on which board is in use). In non-DSP/BIOS projects, this is done in the
ADCINT ISR. In DSP/BIOS projects, a periodic function is used.

• Configures the ADC to sample the ADCINA0 channel. On F2812, F2808, F28335, and
F28069 devices, this is done at a 50 kHz rate. A 25 kHz rate is used for the slower 60 MHz
devices: F28027, F28035, and F28055. The 25 kHz rate is needed due to CPU loading
constraints in the DSP/BIOS examples, which illustrates why you should not put a high-
speed interrupt under DSP/BIOS control as was done in these examples (i.e., the ADC
SWI)! Instead, execute your high frequency interrupt routines directly in the HWI.
DSP/BIOS can still manage the overall system and lower frequency ISRs.

• Services the ADC interrupt. The ADC result is placed in a circular buffer of length 50 words.

• Sends out 2 kHz symmetric PWM on either the PWM1 pin (for F281x), or the ePWM1A
signal mapped to the GPIO0 pin (for F2808, F28335, F28027, F28035, F28055, and
F28069).

• Configures the capture unit #1. On F2808, F28335, F28027, F28035, F28055, and F28069
devices, the eCAP1 signal is mapped to the GPIO5 pin.

• Services the capture #1 interrupt. Reads the capture result and computes the pulse width.

8.2 Directory Structure

Each code project is completely self-contained in terms of all needed files (with the exception of
the C-compiler runtime support (RTS) library which is taken from the folder of the code
generation tools being used by the CCS project). Table 3 provides a description of the directory
structure for the individual CCS projects.

Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 39

SPRA958L

Table 3. CCS Example Code Directory Descriptions

File Directory Contents
<project_root> Contains the CCS created project files: .ccsproject,

.cdtbuild, .cdtproject, .project, and DSP/BIOS .tcf.
<project_root>\.settings Contains CCS created project setting files
<project_root>\cmd Contains the user linker command file (.cmd file)
<project_root>\DSP28xxx_headers\cmd
or
<project_root>\F28xxx_headers\cmd

Contains the needed linker command file from the
Peripheral Header File structures for the targeted
device.

<project_root>\DSP28xxx_headers\include
or
<project_root>\F28xxx_headers\include

Contains the needed include files from the Peripheral
Header File structures for the targeted device.

<project_root>\include Contains include files (.h files)
<project_root>\src Contains source code files (.c and .asm files)

8.3 Additional Information

1) After building a project, the .out file will be located in the <project_root>\Debug directory.

2a) If using the RAM examples, your board should be configured for "Jump to H0 SARAM"
(F2812) or “Jump to M0 SARAM” (F2808, F28027, F28035, F28055, F28069, F28335) boot
mode. Check the reference manual for your board to confirm any needed jumper settings, and
also see the Boot ROM user’s guide for your device (references [18 - 24]). A summary for some
development boards is given below. Check the board jumpers/dip-switch to be:

eZdspF2812: JP1 2-3 (MP/MC*)

JP9 1-2 (PLL)
JP7 2-3 (boot mode selection)
JP8 2-3 (boot mode selection)
JP11 1-2 (boot mode selection)
JP12 2-3 (boot mode selection)

eZdspF2808: DIP SW1: 1 = ON

2 = OFF
3 = ON

eZdspF28335: DIP SW1: 1 = ON

2 = ON

3 = OFF
4 = ON

40 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

SPRA958L

F2808 Experimenter’s Kit: Current versions of this board are hardwired for jump-to-flash
bootmode. The debugger can be used to set the PC to begin execution from the code entry
point (e.g. _c_int00). In CCS v5, Run → Restart will set the PC to this entry point.

F28335 Experimenter’s Kit: Current versions of this board are hardwired for jump-to-flash
bootmode. The debugger can be used to set the PC to begin execution from the code entry
point (e.g. _c_int00). In CCS v5, Run → Restart will set the PC to this entry point.

F28027 Experimenter’s Kit or ControlStick: When the emulator is connected to the F28027,
the debugger is used to select the boot mode. Check the Scripts menu in CCS v5 for boot mode
selection options.

F28035 Experimenter’s Kit: When the emulator is connected to the F28035, the debugger is
used to select the boot mode. Check the Scripts menu in CCS v5 for boot mode selection
options.

F28055 Experimenter’s Kit: When the emulator is connected to the F28055, the debugger is
used to select the boot mode. Check the Scripts menu in CCS v5 for boot mode selection
options. Note that on the F28055 ISO Control Card, the JTAG emulation is electrically isolated
from the processor side of the board. A by-product of this design is that DIP SW4.1 controls
TRSTn signal connection between the processor and the on-board emulation chip. SW4.1 must
be in the ON position (up) in order for the JTAG to function (the ON position makes the TRSTn
connection). See the F28055 ISO Control Card documentation for more information.

F28069 Experimenter’s Kit or ControlStick: When the emulator is connected to the F28069,
the debugger is used to select the boot mode. Check the Scripts menu in CCS v5 for boot mode
selection options.

If the above methods do not seem to be working, check the reference manual for your board to
confirm any needed jumper settings, and also see the Boot ROM user’s guide for your device
(references [18 - 24]).

2b) If using the FLASH examples, your board should be configured for "Jump to Flash" boot
mode. Check the reference manual for your board to confirm any needed jumper settings, and
also see the Boot ROM user’s guide for your device (references [18 - 24]). A summary for some
development boards is given below. Check the board jumpers/dip-switch to be:

eZdspF2812: JP1 2-3 (MP/MC*)

JP9 1-2 (PLL)
JP7 1-2 (boot mode selection)
JP8 don’t care (boot mode selection)
JP11 don’t care (boot mode selection)
JP12 don’t care (boot mode selection)

eZdspF2808: DIP SW1: 1 = OFF

2 = OFF
3 = OFF

Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 41

SPRA958L

eZdspF28335: DIP SW1: 1 = OFF

2 = OFF
3 = OFF
4 = OFF

F2808 Experimenter’s Kit: This board is hardwired jump-to-flash boot mode.

F28335 Experimenter’s Kit: This board defaults to jump-to-flash boot mode.

F28027 Experimenter’s Kit or ControlStick: When the emulator is connected, the debugger is
used to select the boot mode. Check the Scripts menu in CCS v5 for selection options. When
the emulator is disconnected, the board will boot in jump-to-flash mode provided the OTP_KEY
and OTP_BMODE locations in the OTP have not been otherwise programmed, and on the
Experimenter’s Kit only:

DIP SW1: 1 = ON
2 = ON

F28035 Experimenter’s Kit: When the emulator is connected, the debugger is used to select
the boot mode. Check the Scripts menu in CCS v5 for boot mode selection options. When the
emulator is disconnected, the board will boot in jump-to-flash mode provided the OTP_KEY and
OTP_BMODE locations in the OTP have not been otherwise programmed, and DIP SW2 is set
as:

DIP SW2: 1 = ON
2 = ON

F28055 Experimenter’s Kit: When the emulator is connected, the debugger is used to select
the boot mode. Check the Scripts menu in CCS v5 for boot mode selection options. When the
emulator is disconnected, the board will boot in jump-to-flash mode provided the OTP_KEY and
OTP_BMODE locations in the OTP have not been otherwise programmed, and the following DIP
switches are set as:

DIP SW1: 1 = ON
2 = ON

DIP SW4: 1 = OFF
2 = don’t care

The SW4 setting is required because the JTAG emulation on the F28055 ISO Control Card is
electrically isolated from the processor side of the board. A by-product of this design is that
SW4.1 must be in the OFF position (down) for the processor to operate correctly in standalone
mode (no emulator connected). SW4.1 controls the connection of the TRSTn signal between
the processor and the on-board emulator chip, and the OFF position breaks the connection. See
the F28055 ISO Control Card documentation for more information.

42 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

SPRA958L

F28069 Experimenter’s Kit or ControlStick: When the emulator is connected, the debugger is
used to select the boot mode. Check the Scripts menu in CCS v5 for boot mode selection
options. When the emulator is disconnected, the board will boot in jump-to-flash mode provided
the OTP_KEY and OTP_BMODE locations in the OTP have not been otherwise programmed,
and on the Experimenter’s Kit only:

DIP SW2: 1 = ON
2 = ON

If the above methods do not seem to be working, check the reference manual for your board to
confirm any needed jumper settings, and also see the Boot ROM user’s guide for your device
(references [18 - 24]).

3) There has not been too much attention given to where everything is linked. The goal in
writing these example projects was to simply get them working. If these projects are used as a
starting point for code development, the linking may need to be tuned to get better performance
(e.g., to avoid memory block access contention, or to better manage memory block utilization).

4) For non-DSP/BIOS projects, a complete set of interrupt service routines are defined in the file
DefaultIsr_nonBIOS.c. Each interrupt is executed directly in its hardware ISR. However, with
the exception of the ADCINT and ECAP1INT (or CAPINT1 on F2812), each ISR actually
executes an ESTOP0 instruction (emulation stop) to trap spurious interrupts during debug,
followed by an endless loop. In production code, you would want to vector unused interrupts to
some sort of error handling routine of your own design (as opposed to just trapping the code).
Note that each ISR is using the "interrupt" keyword which tells the compiler to perform a context
save/restore upon function entry/exit.

5) For DSP/BIOS projects, a complete set of (hardware) interrupt service routines are defined in
the file DefaultIsr_BIOS.c. Each ISR can be hooked to the desired interrupt using the HWI
manager in the DSP/BIOS configuration tool. As is, the code examples only assign the two ISRs
in use, specifically ADCINT1 and ECAP1INT. Also, the DSP/BIOS Interrupt Dispatcher is being
used to handle the context save/restore, which is why the ISRs are not using the "interrupt"
keyword (as in the non-DSP/BIOS case). In these examples, the ECAP1INT ISR (or CAPINT1
ISR for F2812) is performed directly in the DefaultIsr_BIOS.c file (as an example of reducing
latency), whereas the ADC interrupt function in DefaultIsr_BIOS.c posts a SWI to perform the
ADC routine. These are just examples. Note that the ECAP1INT (and CAPINT1) ISRs are
using the DSP/BIOS dispatcher to perform context save/restore (as selected in the HWI
manager of the configuration tool). If absolute minimum latency is required (for some time
critical ISR), one could disable the interrupt dispatcher for that interrupt, and add the "interrupt"
keyword to the ISR function declaration. Note that doing so will preclude the user for utilizing
any DSP/BIOS functionality in that ISR. Also, one should consider the potential impact to task
stack size requirements since the time critical ISR can now run within the context of any of the
existing stacks (system stack, or any task stack) depending on what thread is active when the
critical interrupt occurs. Finally, the HWI manager in the DSP/BIOS Configuration tool defaults
all unused interrupts to a routine called HWI_unused(). This routine is essentially and code trap
using an endless loop. For production code, you should vector all unused interrupts to some
sort of error handling routine of your own design.

Running an Application from Internal Flash Memory on the TMS320F28xxx DSP 43

SPRA958L

References

1. TMS320F2810, TMS320F2811, TMS320F2812, TMS320C2810, TMS320C2811,
TMS320C2812 Digital Signal Processors Data Manual (SPRS174)

2. TMS320F2809, TMS320F2808, TMS320F2806, TMS320F2802, TMS320F2801,
TMS320C2802, TMS320C2801, TMS320F2801x DSPs Data Manual (SPRS230)

3. TMS320F28044 Digital Signal Processor Data Manual (SPRS357)
4. TMS320F28335, TMS320F28334, TMS320F28332, TMS320F28235, TMS320F28234,

TMS320F28232 Digital Signal Controllers Data Manual (SPRS439)
5. TMS320F28020, TMS320F28021, TMS320F28022, TMS320F28023, TMS320F28026,

TMS320F28027 Piccolo Microcontrollers Data Manual (SPRS523)
6. TMS320F28030, TMS320F28031, TMS320F28032, TMS320F28033, TMS320F28034,

TMS320F28035 Piccolo Microcontrollers Data Manual (SPRS584)
7. TMS320F28050, TMS320F28051, TMS320F28052, TMS320F28053, TMS320F28054,

TMS320F28055 Piccolo Microcontrollers Data Manual (SPRS797)
8. TMS320F28062, TMS320F28063, TMS320F28064, TMS320F28065, TMS320F28066,

TMS320F28067, TMS320F28068, TMS320F28069 Piccolo Microcontrollers Data
Manual (SPRS698)

9. TMS320C28x CPU and Instruction Set Reference Guide (SPRU430)
10. TMS320C28x Floating Point Unit and Instruction Set Reference Guide (SPRUE02)
11. TMS320C28x Assembly Language Tools User’s Guide (SPRU513)
12. TMS320C28x Optimizing C/C++ Compiler User’s Guide (SPRU514)
13. TMS320x281x DSP System Control and Interrupts Reference Guide (SPRU078)
14. TMS320x280x, 2801x, 2804x DSP System Control and Interrupts Reference Guide

(SPRU712)
15. TMS320x2833x System Control and Interrupts Reference Guide (SPRUFB0)
16. TMS320x2802x System Control and Interrupts Reference Guide (SPRUFN3)
17. TMS320x2803x System Control and Interrupts Reference Guide (SPRUGL8)
18. TMS320x2805x Piccolo Technical Reference Manual (SPRUHE5)
19. TMS320x2806x Piccolo Technical Reference Manual (SPRUH18)
20. TMS320x281x DSP Boot ROM Reference Guide (SPRU095)
21. TMS320x280x, 2801x, 2804x Boot ROM Reference Guide (SPRU722)
22. TMS320x2833x, 2832x Boot ROM Reference Guide (SPRU963)
23. TMS320x2802x Piccolo Boot ROM Reference Guide (SPRUFN6)
24. TMS320x2803x Piccolo Boot ROM Reference Guide (SPRUGO0)
25. F281x C/C++ Header Files and Peripheral Examples (SPRC097)
26. F280x C/C++ Header Files and Peripheral Examples (SPRC191)
27. F2804x C/C++ Header Files and Peripheral Examples (SPRC324)
28. F2833x/C2823x C/C++ Header Files and Peripheral Examples (available in

ControlSuite)
29. F2802x C/C++ Header Files and Peripheral Examples (available in ControlSuite)
30. F2803x C/C++ Header Files and Peripheral Examples (available in ControlSuite)
31. F2805x C/C++ Header Files and Peripheral Examples (available in ControlSuite)
32. F2806x C/C++ Header Files and Peripheral Examples (available in ControlSuite)

44 Running an Application from Internal Flash Memory on the TMS320F28xxx DSP

SPRA958L

Revision History

Revision Date Who Description of Major Changes from Previous Version
SPRA958L Jan 23,

2013
D. Alter - Minor text touch-up.

- Added F2805x device support including code examples.
- Expanded Section 5 to cover the dual-zone code security module on F2805x.
- Removed CCS v4 code examples.
- Changed F28069 example to 80 MHz to 90 MHz operation.
- All code tested with CCS v5.3.0, C-compiler v6.1.1, and DSP/BIOS v5.42.0.07.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	ABSTRACT
	Contents
	1 Introduction
	2 Creating a User Linker Command File
	2.1 Non-DSP/BIOS Projects
	2.2 DSP/BIOS Projects

	3 Where to Link the Sections
	CAUTION:
	3.1 Non-DSP/BIOS Projects
	Table 1. Section Linking for Non-DSP/BIOS Projects (Large memory model)

	3.2 DSP/BIOS Projects
	Table 2. Section Linking for DSP/BIOS Projects (Large Memory Model)

	4 Copying Sections from Flash to RAM
	4.1 Copying the Interrupt Vectors (non-DSP/BIOS projects only)
	4.2 Copying the .hwi_vec Section (DSP/BIOS projects only)
	4.3 Copying the .trcdata Section (DSP/BIOS projects only)
	Figure 1. Specifying the User Init Function in the DSP/BIOS Configuration tool

	4.4 Initializing the Flash Control Registers (DSP/BIOS and non-DSP/BIOS projects)
	CAUTION:

	4.5 Maximizing Performance by Executing Time-critical Functions from RAM
	(DSP/BIOS and non-DSP/BIOS projects)

	4.6 Maximizing Performance by Linking Critical Global Constants to RAM
	(DSP/BIOS and non-DSP/BIOS projects)
	CAUTION:
	4.6.1 Method 1: Running All Constant Arrays from RAM
	4.6.1.1 Non-DSP/BIOS Projects
	4.6.1.2 DSP/BIOS Projects
	Figure 2. Specifying the Link Order In Code Composer Studio v5

	4.6.2 Method 2: Running a Specific Constant Array from RAM
	(DSP/BIOS and non-DSP/BIOS projects)

	5 Programming the Code Security Module Passwords
	Single-zone Code Security Module Devices:
	5.1 Single-Zone Security Devices (DSP/BIOS and non-DSP/BIOS projects)
	CAUTION:
	Figure 3. DSP/BIOS MEM Properties for CSM Password Locations

	5.2 Dual-Zone Security Devices (DSP/BIOS and non-DSP/BIOS projects)
	Figure 5. DCSM Zone Select Block
	Figure 6. DCSM Security Zone Configuration Table OTP Memory
	CAUTION:
	Figure 7. DSP/BIOS MEM Properties for DCSM_OTP_Z2_P0 Memory

	6 Executing Your Code from Flash after a DSP Reset
	(DSP/BIOS and non-DSP/BIOS projects)
	Figure 11. DSP/BIOS MEM Properties for Jump to Flash Entry Point

	7 Disabling the Watchdog Timer During C-Environment Boot
	(DSP/BIOS and non-DSP/BIOS projects)

	8 C-Code Examples
	8.1 General Overview
	8.2 Directory Structure
	Table 3. CCS Example Code Directory Descriptions

	8.3 Additional Information

	References
	Revision History

