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ABSTRACT
This primer provides an overview of the floating-point unit (FPU) in the C2000™ Delfino
microcontroller devices.
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1 Introduction

1.1 Nomenclature

1.2 What is the C28x Plus Floating Point Unit?

Introduction www.ti.com

This section explains what the floating-point unit is and why it was added to the C28x™ generation of
devices.

The following nomenclature is used throughout this document:
• CPU is the central processing unit.
• The TMS320C28x fixed-point central-processing-unit is referred to as C28x or C28x CPU.
• The TMS320C28x plus floating-point CPU is refereed to as C28x plus floating-point or C28x+FPU.
• A floating-point instruction refers to all instructions added for floating-point support. This does not

include the fixed-point CPU instruction set. These are documented in TMS320C28x Floating Point Unit
and Instruction Set Reference Guide (SPRUEO2).

• A C28x standard instruction refers to all instructions on the fixed-point C28x CPU. These are
documented in TMS320C28x CPU and Instruction Set Reference Guide (SPRU430).

Note: The C28x fixed-point CPU is documented in TMS320C28x CPU and Instruction Set
Reference Guide (SPRU430). This document also applies to the C28x+FPU.

The extensions to the C28x to support floating-point are documented in TMS320C28x
Floating Point Unit and Instruction Set Reference Guide (SPRUEO2). This document should
be considered as a supplement to TMS320C28x CPU and Instruction Set Reference Guide
(SPRU430).

The C28x+FPU offers the best of two worlds:
• Everything the fixed-point C28x CPU has
• IEEE 32-bit floating-point format support

The C28x+FPU is a 32-bit fixed-point processing unit with IEEE 32-bit floating-point format support. This
CPU draws from the best features of digital signal processing; reduced instruction set computing (RISC);
and microcontroller architectures, firmware, and tool sets. The C28x devices features include a modified
Harvard architecture and circular addressing. The RISC features are single-cycle instruction execution,
register-to-register operations, and modified Harvard architecture. The microcontroller features include
ease of use through an intuitive instruction set, byte packing and unpacking, and bit manipulation. The
modified Harvard architecture of the CPU enables instruction and data fetches to be performed in parallel.
The CPU can read instructions and data while it writes data simultaneously to maintain the single-cycle
instruction operation across the pipeline. The CPU does this over six separate address/data buses.

Figure 1 shows the functional block diagram of the C28x+FPU. Those familiar with the C28x will find that
no changes have been made to existing:
• C28x Instructions
• C28x Pipeline
• C28x Emulation
• Memory Bus Architecture
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1.3 Why Floating-Point for C2000?

www.ti.com Introduction

New instructions to support floating-point operations have been added as an extension to the standard
C28x instruction set. This means code written for the C28x fixed-point CPU is 100% compatible with the
C28x+FPU. This allows for mixing and matching fixed-point and floating-point in your application. Devices
with the C28x+FPU connect the floating-point overflow and underflow (LVF, LUF) flags to the peripheral
interrupt expansion (PIE) block. This makes debug overflow and underflow issues within your application
much easier.

The first devices to include the C28x+FPU are the TMS320F2833x and TMS320C2834x family of
microcontrollers. Look for more information on the Texas Instruments website at www.ti.com/delfino.

Figure 1. C28x + FPU Functional Block Diagram

The addition of floating-point brings performance improvements to control type algorithms for the C2000
platform. Since the C28x+FPU is backward compatible with the C28x, you are free to choose the
appropriate data type for your application. Floating-point has the following advantages over fixed-point:
• Developer Requests

Developers like floating-point. It is easier to code in than fixed-point and the resulting code is inherently
more robust.

• Performance Boost
Many algorithms used in control applications see a performance boost from native floating-point. For
example, division, square root, sin, cos, FFT and IIR all benefit from floating-point.

• Simplified software development common to floating-point processors.
Coding in floating-point is more C/C++ friendly than coding in fixed-point.
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1.4 Support for Long Double (64-Bit Floating Point)

2 Architecture

2.1 IEEE Single-Precision Floating-Point Format

Architecture www.ti.com

• Robustness
Software developers typically begin creating algorithms in a floating-point environment for validation,
and then convert the code to run on fixed-point devices. Now, however, you can eliminate time spent
contending with scaling, saturation and adjustment of numerical resolution required in fixed-point
implementations. The scaling and saturation burden seen in fixed-point is removed. In fixed-point, if a
value overflows it can result in inversion of the data but in floating-point the value will automatically
saturate and does not cause inversion.

All C28x devices support the long double (64-bit float) data type through the standard runtime support
library that comes with the compiler. It should be noted that the Delfino microcontrollers only support 32-bit
float in hardware. 64-bit float is performed in software. Consider looking at 64-bit integer math (long long)
if this level of accuracy is required. It may be much faster then 64-bit float-point support in software.

This section describes the FPU format in terms of IEEE standards. It also gives a brief overview of the
register set, pipeline, and working with delay slots.

The C28x+FPU follows the Institute of Electrical and Electronics Engineers, Inc. (IEEE) 754 format
standard for single-precision floating-point. The single-precision (32-bit) number format includes:
• 1 sign bit: 0 means the value is positive and 1 means the value is negative.
• 8-bit exponent: This exponent is biased to allow for both positive and negative exponents.
• 23-bit mantissa: The mantissa includes an implicit leading 1 plus the fractional bits.

Figure 2. IEEE Single-Precision Floating-Point Format

31 30 24 23 22 0
Sign Exponent Mantissa

The types of numbers defined by the standard are shown in Table 1.

Table 1. IEEE Single-Precision Floating-Point Numbers
Sign Exponent Mantissa Value

0 0 0 Positive zero
1 0 0 Negative zero

0 or 1 0 non-zero Denormalized number (1)

0 1-254 0x00000 - 0x7FFFF Normal range of positive numbers (2)

1 1-254 0x00000 - 0x7FFFF Normal range of negative numbers (2)

0 255 (max) 0 Positive infinity
1 255 (max) 0 Negative infinity

0 or 1 255 (max) non-zero Not a number (NaN)

(1) Denormalized values are very small. They are calculated using the formula ( -1 ) s x 2 (E-126) x 0.M
(2) Normalized values are calculated using the formula: ( -1 ) s x 2 (E-127) x 1.M

The normal range of positive and negative numbers are calculated using the formula:

( -1 ) s x 2 (E-127) x 1.M.

This results in numbers in the range ± ~1.7 x 10 -38 to ± ~3.4 x 10 +38. Notice that these numbers are
normalized and have a hidden 1. Thus the equivalent signed integer resolution is the number of mantissa
bits + sign + 1.
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www.ti.com Architecture

The IEEE 754 standard is the most widely used standard for floating-point numbers. This standard
includes:
• Standard number formats and special values such as not-a-number and infinity
• Standard rounding modes and floating point operations
• A standard used on many platforms including the Texas Instruments C67x devices

Some simplifications to the standard have been made for the C28x+FPU. These are common ways of
handing these numbers:
• The status flags and compare operations treat negative zero as positive zero.
• Denormalized numbers are very small and therefore are treated as zero.
• Not-a-number is very large and looks similar to infinity. On the C28x+FPU, NaN is treated as infinity.
• The IEEE 754 standard supports five rounding modes. The C28x+FPU supports two of these modes:

– Truncate
– Round to nearest, tie to even. In this mode the value is rounded to the nearest value. If a value falls

half way between two values, then it is rounded to the even value.

Table 2 shows how different rounding modes can affect an average calculation. To simplify the example,
small numbers have been used. Each column shows the value that results from that particular rounding
mode. When the values are averaged, the round-to-nearest result converges to the same result as the
actual values without rounding. This is why round to nearest is the most commonly used rounding mode.
Code generated by the C28x+FPU compiler by default configures the processor to use round to nearest.
In your assembly code you can set this rounding mode with the SET STF instruction.

Table 2. Effects of Different Rounding Modes
Round to

Actual Value Nearest (tie to Round to Round to
(Binary) Actual Value Even) (1) Truncate (1) +Infinity (1) -Infinity (1) +.5 LSB (2)

010.111 2.875 3.000 2.000 3.000 2.000 3.000
010.110 2.750 3.000 2.000 3.000 2.000 3.000
010.101 2.625 3.000 2.000 3.000 2.000 3.000
010.100 2.5 2.000 2.000 3.000 2.000 3.000
010.011 2.375 2.000 2.000 3.000 2.000 2.000
010.010 2.250 2.000 2.000 3.000 2.000 2.000
010.001 2.125 2.000 2.000 3.000 2.000 2.000
010.000 2.00 2.000 2.000 2.000 2.000 2.000
001.111 1.875 2.000 1.000 2.000 1.000 2.000
001.110 1.750 2.000 1.000 2.000 1.000 2.000
001.101 1.625 2.000 1.000 2.000 1.000 2.000
001.100 1.500 2.000 1.000 2.000 1.000 2.000
001.011 1.375 1.000 1.000 2.000 1.000 1.000
001.001 1.125 1.000 1.000 2.000 1.000 1.000
001.000 1.00 1.000 1.000 1.000 1.000 1.000

Average: 1.9375 1.9375 1.5000 2.3570 1.5000 2.067
Delta: 0.0000 0.0000 -0.4275 +0.4375 -0.4275 +0.1292

(1) IEEE rounding mode. Only round to nearest (tie to even) and truncate are supported by the C28x+FPU.
(2) +.5 LSB rounding is typically used in fixed-point math.
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2.2 C28x+FPU Register Set

ACC (32-bit)

R1H (32-bit)

R2H (32-bit)

R3H (32-bit)

R4H (32-bit)

R5H (32-bit)

R6H (32-bit)

R7H (32-bit)

R0H (32-bit)

FPU Status Register (STF)

Repeat Block Register (RB)

P (32-bit)

XT (32-bit)

XAR0 (32-bit)

XAR1 (32-bit)

XAR2 (32-bit)

XAR3 (32-bit)

XAR4 (32-bit)

XAR5 (32-bit)

XAR6 (32-bit)

XAR7 (32-bit)

PC (22-bit)

RPC (22-bit)

DP (16-bit)

SP (16-bit)

ST0 (16-bit)

ST1 (16-bit)

IER (16-bit)

IFR (16-bit)

DBGIER (16-bit)

Standard C28x Register Set Additional 32-bit FPU Registers

FPU registers R0H - R7H and STF
are shadowed for fast context
save and restore

Architecture www.ti.com

The C28x+FPU register set is shown in Figure 3. The register set consists of:
• The standard C28x fixed-point register set

– 32-bit accumulator, product and temporary register
– 8, 32-bit extended auxiliary registers
– 22-bit program counter and return program counter
– 16-bit data page and stack pointers
– 16-bit status registers and interrupt control registers

• Additional registers to support floating-point.
– 8, 32-bit result registers (R0H-R7H)
– 32-bit floating-point status register
– 32-bit repeat block register

Figure 3. C28x With Floating-Point Registers

The floating-point result and status registers are all shadowed. If nested interrupts are not allowed within
an interupt service routine, then the registers can be copied to their shadow registers instead of the stack.
This document refers to this as a high-priority interrupt. This results in a very efficient interrupt response.
See Section 4 for more information.
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Table 3. C28x Plus Floating-Point CPU Register Summary
Register C28x CPU C28x+FPU Size Description
ACC Yes Yes 32 bits Accumulator
XAR0 Yes Yes 16 bits Auxiliary register 0
XAR1 Yes Yes 32 bits Auxiliary register 1
XAR2 Yes Yes 32 bits Auxiliary register 2
XAR3 Yes Yes 32 bits Auxiliary register 3
XAR4 Yes Yes 32 bits Auxiliary register 4
XAR5 Yes Yes 32 bits Auxiliary register 5
XAR6 Yes Yes 32 bits Auxiliary register 6
XAR7 Yes Yes 32 bits Auxiliary register 7
DP Yes Yes 16 bits Data-page pointer
IFR Yes Yes 16 bits Interrupt flag register
IER Yes Yes 16 bits Interrupt enable register
DBGIER Yes Yes 16 bits Debug interrupt enable register
P Yes Yes 32 bits Product register
PC Yes Yes 22 bits Program counter
RPC Yes Yes 22 bits Return program counter
SP Yes Yes 16 bits Stack pointer
ST0 Yes Yes 16 bits Status register 0
ST1 Yes Yes 16 bits Status register 1
XT Yes Yes 32 bits Multiplicand register
R0H No Yes 32 bits Floating-point result register 0
R1H No Yes 32 bits Floating-point result register 1
R2H No Yes 32 bits Floating-point result register 2
R3H No Yes 32 bits Floating-point result register 3
R4H No Yes 32 bits Floating-point result register 4
R5H No Yes 32 bits Floating-point result register 5
R6H No Yes 32 bits Floating-point result register 6
R7H No Yes 32 bits Floating-point result register 7
STF No Yes 32 bits Floating-point status register
RB No Yes 32 bits Repeat block register
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2.3 C28x+FPU Pipeline

Fetch

F1C28x pipeline F2

Decode

D1 D2

Read
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DFPU instruction R E1
E2
W

Store

Load
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MPY/ADD/SUB/MACF32

2.4 Working with Delay Slots

Architecture www.ti.com

The C28x has an 8-stage pipeline:
• Two fetch stages (F1 and F2)
• Two decode stages (D2 and D2)
• Two read stages (R1 and R2)
• One execute stage (E)
• One write stage (W)

On C28x+FPU, the C28x standard instructions follow the same 8-stage pipeline. That is, no changes have
been made to the C28x pipeline or instruction behavior. The 8-state pipeline is described in TMS320C28x
CPU and Instruction Set Reference Guide (SPRU430).

In the decode 2 (D2) stage, it is determined whether an instruction is a floating-point instruction. If it is,
then the pipeline behavior changes. The instruction will go through an additional decode stage (D). After
the decode stage any data to be read will be fetched. The data read aligns with the C28x R2 stage where
data is read for standard C28x instructions. Wait states will stall the floating-point instruction. The
floating-point pipeline has an execute (E1) and write stage (W) that both align with the corresponding
C28x pipeline. Wait states for write accesses will stall the floating-point instruction just as on the C28x.

Everything described so far has the C28x and FPU pipelines in lock step. This is not the case when a
floating-point instruction requires an additional execute phase (E2). This is the case for math and
conversion instructions. This results in an additional cycle before the instruction completes. Such
operations are not pipeline protected. Instructions that require an additional execution phase require a
software delay slot for the operation to complete. This delay slot is any instruction that does not use the
result register of the instruction that requires the delay slot. When needed, you will Insert a NOP or any
other non-conflicting instructions between operations. Examples of this are shown in Section 3.

Figure 4 shows the pipeline for C28x standard instructions and floating-point instructions.

Figure 4. FPU Pipeline Relationship

Instructions that require a delay are indicated in the documentation with a ‘p’ after their cycle count. For
example ‘2p cycles’ stands for 2 pipelined cycles. This means that a new instruction can be started every
cycle, but the result from that operation will not be available until one cycle later. More examples of this
are given in Section 3.

As a first pass, you can simply fill delay slots with a NOP (no operation) instruction. This will use a single
cycle, but does not do any useful work. Later, to improve performance, you can remove the NOPs and
instead insert non-conflicting instructions into the delay slots.

There are three general guidelines for when a delay cycle is required. These guidelines are simple and
easy to recall. They are given to help you write your code, but keep in mind the C28x+FPU assembler will
issue an error if you have improperly filled a delay slot and created a pipeline conflict.
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3 Instruction Set Overview

3.1 Instruction Format

3.2 Types of Floating-Point Instructions

www.ti.com Instruction Set Overview

The three guidelines are shown in Table 4:

Table 4. Delay Slot Guidelines
Instruction Type Examples Cycles Delay Slot Requirements
Floating Point Math (1) ADDF32, SUBF32, MPYF32, MACF32 2p 1 Delay Slot
Conversion I16TOF32, F32TOI16, F32TOI16R, etc… 2p 1 Delay Slot
Everything Else (2) Load, Store, Compare, Min, Max, Absolute 1 No Delay Slot Required

and Negative value

(1) The single-repeatable MACF32 instruction does not require alignment cycles. Other versions of MACF32 are, however, 2p and
require a delay slot.

(2) Moves between CPU and FPU registers have special pipeline alignment requirements.

This section provides information on the following:
• Instruction set
• Types of floating-point instructions
• 2 pipeline-cycle (2p) instruction examples
• Parallel instructions
• Taking advantage of delay slots
• Using floating-point flags
• The repeat block instruction (RPTB)
• Moves between C28x and FPU registers

The floating-point instructions follow the same format as the C28x instructions. That is, the destination
operands are always on the left and the source operands are on the right.

Example 1 shows two multiply operations. The first multiply is a fixed-point multiply. The source comes
from the T register and the 16-bit location indicated by loc16. The result of the multiply is stored in the
accumulator (ACC).

Example 1. Example Instructions

MPY ACC, T, loc16 ; Fixed-point multiply
MPYF32 R0H, R1H, R2H ; Floating-point multiply

The second multiply is a floating-point operation. In this case, the source operands are R1H and R2H.
The result of the multiply is stored in R0H.

To enable the compiler to generate floating-point instructions, you must tell it that you have a C28x
device that supports floating-point. This is done by using the compiler switch: - -float_support = fpu32
which is available in C28x codegen tools V5.0 and later.

The following tables show a summary of the types of instructions that have been added to the
C28x+FPU. Note that these instructions are in addition to the standard C28x instruction set. Table 5
shows the type of single cycle instructions that are available. Notice each of these operations takes a
single cycle and therefore do not require a delay slot.
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Table 5. Floating-Point Instruction Types - Single Cycle
Register Example Cycles
Load (Conditional) MOV32 R0H, mem32 1
Store MOV32 mem32, R1H 1
Load with Data Move MOVD32 R3H, mem32 1
FPU Register to C28x Register MOV32 XAR6, R2H 1 (1)

C28x Register to FPU Register MOV32 R3H, XAR7 1 (1)

Compare, Min, Max CMPF32 R2H, R3H 1
Absolute Value, Negative Value ABSF32 R2H, R3H 1
Context Save FPU Registers SAVE 1
Context Restore FPU Registers RESTORE 1

(1) Moves between FPU and C28x registers require additional pipeline alignment. See Section 3.8 for details.

Table 6 shows an overview of 2p, or 2-pipelined cycle, instructions. These are the math type and
conversion type instructions and require 1 cycle delay for the result to be updated.

Table 6. Floating-Point Instruction Types - 2 Pipeline Cycles
Register Example Cycles
Unsigned Integer To Float UI16TOF32 R1H, mem32 2p
Integer to Float I32TOF32 2p
Float to Integer and Round F32TOI16R 2p
Float to Integer F32TOI32 2p
Multiply, Add, Subtract MPYF32 R2H, R1H, R0H 2p
MAC 2P
1/x Estimate EINVF32 R2H, R1H 2p
1/√x Estimate EISQRTF32 R3H, R0H 2p
Repeat MAC RPT (#N-1) 3 + N

|| MACF32 R7H,R3H,mem32,*XAR7++

The floating-point unit also supports some parallel operations. These are shown in and are discussed in
more detail in Section 3.4. Notice that the cycle information is given for both of the operations within the
instruction.

Table 7. Floating-Point Parallel Instruction Types
Register Example Cycles
Min or Max MINF32 R0H, R4H 1/1
and Parallel Move || MOV32 R1H, R2H
Multiply MPYF32 R0H, R1H, R2H 2p/2p
and Parallel Add or Subtract || ADDF32 R4H, R4H, R2H
Multiply, Add or Subtract, MAC MPYF32 R0H, R1H, R2H 2p/1
and Parallel Load || MOV32 R4H, mem32
Multiply, Add or Subtract, MAC MPYF32 R0H, R1H, R2H 2p/1
and Parallel Store || MOV32 mem32, R0H
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3.3 2 Pipeline-Cycle (2p) Instruction Examples
www.ti.com Instruction Set Overview

Consider the following floating-point instruction shown in Example 2:

Example 2. Floating-Point Multiply

MPYF32 R2H, R1H, R0H

The instruction is a floating-point multiply. Recall from the guidelines given in Table 4 that any
floating-point math instruction is a 2p instruction. This means it requires 1-cycle delay for the result (in
R2H) to be available. As a first step, you can simply add a NOP after the multiply to take care of this
requirement. The NOP will take up a cycle, but does no useful work.

Example 3. Using a NOP in a Delay Slot

MPYF32 R2H, R1H, R0H ; 2p instruction
NOP ; 1 cycle delay

; <- MPYF32 completes, R2H valid
<any instruction> ; Can use R2H

;

To improve performance, you can replace the NOP with any non-conflicting instruction. In this case, this
means any instruction that does not use R2H, which is the result register for the multiply operation. In
Example 4 the NOP has been replaced with a floating-point addition instruction.

Example 4. Using a Non-Conflicting 2p Instruction in a Delay Slot

MPYF32 R2H, R1H, R0H ; 2p instruction
ADDF32 R3H, R3H, R1H ; 1 cycle delay for MPYF32

; <- MPYF32 completes, R2H valid
NOP ; 1 cycle delay for ADDF32

; <- ADDF32 complete, R3H valid
<any instruction> ; Can use R3H

The addition instruction, like all math instructions, takes 2 pipeline cycles and therefore requires 1 delay
cycle for its result to be valid. A NOP has been added after the addition to allow it to complete. As with
the previous case, this NOP can be replaced by any non-conflicting instruction that does not use R3H.
In Example 5, the NOP has been replaced by a store (MOV32) instruction.

Example 5. Using a Non-Conflicting Single Cycle Instruction in a Delay Slot

MPYF32 R2H, R1H, R0H ; 2p instruction
ADDF32 R3H, R3H, R1H ; 1 cycle delay for MPYF32

; <- MPYF32 completes, R2H valid
MOV32 *XAR7, R2H ; 1 cycle delay for ADDF32

; <- ADDF32 complete, R3H valid
<any instruction> ; Can use R3H

The MOV32 copies the contents of R2H, the result from the multiply, into the location pointed to by the
XAR7 register. This does not cause a pipeline conflict since the multiply has had time to complete. The
MOV32 instruction is single cycle and it does not require a delay slot.
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3.4 Parallel Instructions
Instruction Set Overview www.ti.com

In the previous section, all of the operations were individual instructions. That is, each had its own
opcode and each started sequentially. The C28x+FPU also includes special parallel instructions.
Parallel instructions are a single instruction, single opcode, that performs two operations. Parallel bars
before the 2nd operation indicate that the two operations belong to a parallel instruction. The following
example shows an addition with parallel store instruction.

Example 6. Addition with Parallel Store

ADDF32 R3H, R3H, R1H
|| MOV32 *XAR7, R3H

There are three types of parallel instructions available. These are summarized in Table 8.

Table 8. Types of Parallel Instructions
Register Example Cycles
Min or Max MINF32 R0H, R4H 1/1
and Parallel Move || MOV32 R1H, R2H
Multiply MPYF32 R0H, R1H, R2H 2p/2p
and Parallel Add or Subtract || ADDF32 R4H, R4H, R2H
Multiply, Add or Subtract, MAC MPYF32 R0H, R1H, R2H 2p/1
and Parallel Load or Store || MOV32 R4H, mem32

For a parallel instruction the cycle count includes two numbers; one for each operation. The guidelines
for delay slots are the same as described in Section 2.4. Math operations take 2p cycles while load,
store, min and max are all single cycle. One thing that is key to understanding parallel instructions is
the knowledge that both operations are part of a single instruction. The 2nd operation is not in the delay
slot of the first. For example, consider a multiply with parallel addition shown in Example 7. This is a
2p/2p instruction. One delay cycle must be added after the instruction to allow both the multiply and
subtract to complete. Since both operations are started at the same time, additional delays are not
required.

Example 7. 2p/2p Parallel Instruction Requires 1 Delay Slot

MPYF32 R2H, R1H, R0H ; 2p/2p instruction
|| ADDF32 R5H, R4H, R1H

NOP ; Delay for MPYF32 and ADDF32
; <- R2H and R5H updated

<any instruction> ; Can use R2H

Consider the following 2p/1 parallel instruction which is a multiply with parallel store instruction:

Example 8. Multiply with Parallel Store

MPYF32 R2H, R1H, R0H
|| MOV32 *XAR3, R2H

The multiply, like all math operations, takes 2 pipeline cycles and the load operation is single cycle.
That means the load will finish immediately after the instruction and no delay is required. A single NOP
has been added after the instruction to allow the multiply to complete.
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Example 9. Using a NOP to Fill the Delay Slot of a Parallel Instruction

MPYF32 R2H, R1H, R0H ; 2p/1 instruction
|| MOV32 *XAR3, R2H

; <- MOV32 complete
NOP ; Delay for MPYF32

; <- R2H updated
<any instruction> ; Can use R2H

Notice that the MOV32 operation uses the R2H register and the R2H register is also the destination for
the multiply. Remember the MOV32 operation is not in the delay slot of the MPYF32; it is part of the
same instruction. Because the two operations are part of a parallel instruction MOV32's use of R2H
does not result in a pipeline conflict. Both operations are started at the same time and MOV32 uses the
value in R2H before the multiply. Without the parallel bars, however, MOV32 would instead be in the
delay slot for the MPYF32. In this case, they would result in a pipeline conflict and the assembler would
issue an error.

Example 10. Using the Result Register in a Parallel Operation

; Before: R0H = 2.0, R1H = 3.0, R2H = 10.0
; MOV32 uses the value of R2H before the multiply

MPYF32 R2H, R1H, R0H ; 2p/1 instruction
|| MOV32 *XAR3, R2H

; <- MOV32 complete
NOP ; Delay for MPYF32

; <- R2H updated
<any instruction> ; Can use R2H

; After: R2H = R1H * R0H = 3.0 * 2.0
; *XAR3 = 10.0

As before, the NOP can be replaced by any non-conflicting instruction. In this case, any instruction that
does not use R2H will work as shown in example Example 11. Do not worry, though, the assembler will
report an error if you create a pipeline conflict.

Example 11. Filling a Delay Slot With a Non-Conflicting Instruction

MPYF32 R2H, R1H, R0H ; 2p/1 instruction
|| MOV32 *XAR3, R2H

; <- MOV32 complete
MOV32 R1H, *XAR4 ; Delay for MPYF32

; <- R2H updated, R1H updated
ADDF32 R2H, R2H, R1H ; Can use R2H
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In the previous sections you saw how performance can be improved by using non-conflicting
instructions within the delay slots. The good news is most instructions can be used within a delay slot
location. There are really only three things that will create a pipeline conflict. In each of these cases, the
C28x+FPU assembler will issue a warning if you have created a conflict.
• Destination and source register conflicts with the instruction requiring the delay slot.

The delay slot is needed in order for the result from the operation to update. Therefore, the
instruction within the delay slot should not use this register as either a source or a destination.

• Instructions that read or modify the floating-point status register flags.
The instruction that requires the delay may access the STF register. Therefore, placing an
instruction in the delay slot that reads or modifies STF will cause a conflict. These instructions are
SAVE, SETFLG, RESTORE and MOVEST0.

• Moves between the C28x CPU and FPU registers have special pipeline alignment requirements.
These requirements are shown in detail in Section 3.8. These types of move operations are
infrequent.

To see how using delay slots can considerably improve performance, consider the code shown in
Example 12. The code shown is hand-coded, 32-bit, fixed-point code for two calculations: Y1 = m1 *
X1+B1 and Y2 = m2 * X2+B2.

Example 12. 32-Bit Fixed-Point Code: Y=mX+B

; C28x 32-bit fixed-point
; Y1=(M1*X1)>> Q + B1

MOVL XT,@M1
IMPYL P,XT,@X1
QMPYL ACC,XT,@X1
ASR64 ACC:P,#Q
ADDL ACC,@B1
MOVL @Y1,ACC

; Y2=(M2*X2)>> Q + B2

MOVL XT,@M2
IMPYL P,XT,@X2
QMPYL ACC,XT,@X2
ASR64 ACC:P,#Q
ADDL ACC,@B2
MOVL @Y2,ACC

; 14 cycles

If the fixed-point code in Example 12 is recoded into floating-point, the result may look like the code
shown in Example 13. In this case, the coding was done by hand and NOPs were used to fill the delay
slots required by the FPU math instructions. The performance of the floating-point code and the
fixed-point code is equal; both take 14 cycles.
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Example 13. 32-Bit Floating-Point Code: Y=mX+B

; C28x+FPU 32-bit floating-point
; Y1 = M1*X1 + B1

MOV32 R0H,@M1
MOV32 R1H,@X1
MPYF32 R1H,R1H,R0H

|| MOV32 R0H,@B1
NOP ; delay for MPYF32
ADDF32 R1H,R1H,R0H
NOP ; delay for ADDF32
MOV32 @Y1,R1H

; Y2 = M2*X2 + B2

MOV32 R0H,@M2
MOV32 R1H,@X2
MPYF32 R1H,R1H,R0H

|| MOV32 R0H,@B2
NOP ; delay for MPYF32
ADDF32 R1H,R1H,R0H
NOP ; delay for ADDF32
MOV32 @Y2,R1H

; 14 cycles

The performance of the floating-point code can be improved by taking advantage of the delay slots.
Example 14 shows the floating-point code written such that the delay slots are used by productive
non-conflicting instructions. In this case both calculations take only 2 cycles more than a single
calculation shown in Example 12 and Example 13. Optimizations such as this are possible using the
compiler, not just for hand-coded assembly.

Example 14. Optimized 32-Bit Floating-Point Code: Y=mX+B

; C28x+FPU 32-bit optimized floating-point
; Y1 = M1*X1 + B1
; Y2 = M2*X2 + B2

MOV32 R2H,@X1
MOV32 R1H,@M1
MPYF32 R3H,R2H,R1H

|| MOV32 R0H,@M2
MOV32 R1H,@X2
MPYF32 R0H,R1H,R0H

|| MOV32 R4H,@B1
ADDF32 R1H,R4H,R3H

|| MOV32 R2H,@B2
ADDF32 R0H,R2H,R0H
MOV32 @Y1,R1H
MOV32 @Y2,R0H

; 9 cycles
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3.6 Using Floating-Point Flags
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The C28x+FPU has three status registers: ST0, ST1, and STF. ST0 and ST1 are identical to the C28x
status registers. STF has been added and responds to floating-point instructions. The bit fields of the
STF register are shown in Figure 5.

Figure 5. Floating-Point Unit Status Register (STF)

31 30 16
SHDWS Reserved

R/W-0 R-0

15 10 9 8 7 6 5 4 3 2 1 0
Reserved RND32 Reserved TF ZI NI ZF NF LUF LVF

R-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

The latched overflow and underflow flags are connected to the peripheral interrupt expansion (PIE)
block. This can be useful for debugging any overflow or underflow problems in an application. The LUV
and LVF bits will stay set until you take an action that will clear them.

Table 9. Floating-Point Flags
Flag Name Used By
LVF Latched overflow LVF and LUF flags are set by math instructions. This includes multiply, addition, subtraction,

1/x, 1/sqrt(x)LUF Latched underflow
NF Negative Negative and zero flags are set on:

floating-point • Moves to floating-point registers
ZF Zero floating-point • The result of compare, min, max, absolute value and negative value operations
NI Negative integer
ZI Zero integer
TF Test TESTTF instruction
RND32 Rounding mode SETFLG instruction, SAVE instruction.
SHDWS Shadow bit Set when the SAVE instruction is used to copy the FPU registers to their shadow. Cleared with

the RESTORE instruction is used.

Instructions that control program flow are standard C28x instructions. The ST0 register flags determine
what these conditional operations do. To instead take action based on floating-point results, you must
first copy the relevant flags to the ST0 register. Example 15 shows how this is done. The CMPF32
instruction compares the contents of R1H and R2H and sets the NF and ZF flags in STF appropriately.
MOVST0 then copies the specified flags to the ST0 register. The branch fast (BF) instruction then
checks flags in ST0 to determine if the loop is repeated or not. Notice that only the flags specified by
the MOVST0 are copied to ST0. If this list includes the latched overflow or underflow flags, then the flag
is automatically cleared as part of the MOVST0 instruction.

Example 15. Copying FPU Flags to the ST0 Register

Loop:
MOV32 R0H,*XAR4++
MOV32 R1H,*XAR3++
CMPF32 R1H, R0H
MOVST0 ZF, NF
BF Loop, GT ; Loop if (R1H > R0H)
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3.7 The Repeat Block Instruction
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The repeat block instruction (RPTB) is new for the C28x FPU. RPTB allows you to repeat a block of
code. Any mix of instructions can make up the block of code as long as they are not discontinuities
such as branch, call or TRAP type instructions.

The two forms of RPTB are shown in Example 16. An important thing to understand is after the first
iteration RPTB does not have any cycle overhead. That is, RPTB takes zero cycles after the first
iteration. On the C28x, similar loops were implemented using the BANZ instruction. The BANZ
instruction has an overhead of 4 cycles each iteration. Performance of block type algorithms such as
the FFT and IIR are greatly improved by the use of the RPTB instruction.

Example 16. Two Forms of the Repeat Block Instruction

; Repeat block with immediate count
;
RPTB #label, #RC ; 1+0 Cycles

; Repeat block with count stored in a register
;
RPTB #label, loc16 ; 4+0 Cycles

The RPTB instruction has its own support register called RB. This register is automatically managed by
the hardware when RPTB is executed. You do not need to read or modify this register. The RB register
are shown in Figure 6.

Figure 6. Repeat Block Register (RB)

31 30 29 23 22 16
RAS RA RSIZE RE

R/W-0 R/W-0 R/W-0 R/W-0

15 0

RC
R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Example 17 shows a RPTB block. The assembler calculates the size of the block using the label in the
RPTB instruction. In this case, VECTOR_MAX_END is the label indicating the end of the block. When
the RPTB starts the repeat block active bit (RA) is set to 1 and the repeat block size, end address and
count (RSIZE, RE, and RC) are automatically populated. The count specified is the number of times the
block is repeated. If RC is zero, then the block will execute once. When the block completes, the RA bit
is automatically cleared.

Notes:
• The maximum block size is 127 x 16-bit words.
• The minimum block size depends on the address alignment of the block:

– For odd alignment, the minimum is 8 words.
– For even alignment, the minimum is 9 words.

• The assembler will check the size and alignment of your repeat blocks.
• Interrupts are the only discontinuity allowed in a repeat block.

The block size is limited to 127 16-bit words. The minimum block size depends on the address
alignment of the RPTB instruction. For odd alignment the minimum is 8 words and for even alignment
the minimum is 9 words. The assembler checks the size and alignment of your RPTB blocks.
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Example 17. Repeat Block

; find the largest element and put its address in XAR6
.align 2
NOP
RPTB VECTOR_MAX_END, AR7 ; RA (repeat active) = 1. AR7 contains RC
MOVL ACC,XAR0
MOV32 R1H,*XAR0++ ; RSIZE (block size)
MAXF32 R0H,R1H ; Max: 127 x 16 words
MOVST0 NF,ZF ; Min: 8 words (odd aligned)
MOVL XAR6,ACC,LT ; 9 words (even aligned)

VECTOR_MAX_END: ; RE (end address)
; RA = 0

A repeat block is interruptible and allows for nested interrupts. When an interrupt is taken, RA is
automatically copied into a shadow (RAS) bit. Likewise, when the interrupt returns, RA is loaded from
RAS. Interrupts are the only discontinuities allowed within a repeat block. Instructions such as branch,
call, and trap are not allowed. Single repeat instructions like RPT || MACF32 can be used in a repeat
block.

In some cases, the RB register must be saved to and restored from the stack in an interrupt service
routine. The rules are follows:
• High-Priority Interrupt Service Routine

A high-priority interrupt is defined as one that cannot itself be interrupted. That is nesting interrupts
within this routine is not allowed. In a high-priority interrupt, the RB register only needs to be saved
to and restored from the stack if the interrupt service routine contains a repeat block. If the interrupt
does not have a repeat block, then there is no need to save and restore RB.

• Low-Priority Interrupt Service Routine
A low priority interrupt is any interrupt that can itself be interrupted. That is it allows nested
interrupts. In a low-priority interrupt, the RB register must always be saved to and restored from the
stack. The save and restore of RB must be done while interrupts are disabled. Failure to save and
restore RB will result in corruption of the RAS bit.

Example 18. Handling RB Within an Low-Priority Interrupt

_ISR: ; RAS = RA, RA = 0
...
PUSH RB ; Save RB
...
CLRC INTM ; Enable interrupts after saving RB
...
RPTB VECTOR_MAX_END, AR7
MOVL ACC,XAR0
...
...
MOVL XAR6,ACC,LT

VECTOR_MAX_END:
...
SETC INTM ; Disable interrupts
...
POP RB ; Restore RB
...
IRET ; RA = RAS, RAS = 0
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3.8 Moves Between C28x and FPU Registers

3.8.1 Copy From C28x Register to FPU Register

3.8.2 Copy From FPU Register to C28x Register

www.ti.com Instruction Set Overview

Moves between the C28x registers and FPU registers is a fairly infrequent operation. Due to the
pipeline, additional alignment is required for these operations. As with any pipeline conflict, the
assembler will issue an error if the alignment is not implemented properly.

The following instructions copy the contents of a C28x register to an FPU register.
• MOV32 RaH,@XARn
• MOV32 RaH,@ACC
• MOV32 RaH,@T
• MOV32 RaH,@P

When one of these instructions is used, 4 delay slots must be inserted before the destination register
can be used. This is shown in Example 19

Example 19. Copy From C28x Register to FPU Register

MOV32 R0H, @ACC ; Copy ACC into R0H
NOP
NOP ; Wait 4 instructions
NOP
NOP
ADDF32 R2H,R1H,R0H ; Can use R0H

The delay slots in Example 19 cannot be filled with any conversion instruction or the FRAC32
(fractional) instruction. Otherwise any other non-conflicting instruction can be used.

The following instructions copy the contents of an FPU register into a C28x register:
• MOV32 @XARn,RaH
• MOV32 @ACC,RaH
• MOV32 @XT,RaH
• MOV32 @P,RaH

These instructions require an additional alignment cycle between when RaH is updated and when it can
be copied to the C28x register. This delay is in addition to any normal pipeline delay. That is a single
cycle instruction requires 1 alignment as shown in Example 20while a 2p instruction will require 2
delays as shown in Example 21

Example 20. Copy From FPU Register to C28x Register Following a Single -Cycle Instruction

MINF32 R0H,R1H ; Single cycle instruction, updates R0H
NOP ; 1 Alignment cycle required before copy
MOV32 @ACC,R0H ; Copy R0H to ACC

Example 21. Copy From FPU Register to C28x Register Following a 2p Instruction

ADDF32 R0H,R1H,R2H ; 2p instruction
NOP ; Delay for ADDF32 to complete
NOP ; R0H Updated. Required alignment cycle before copy
MOV32 @ACC,R0H ; Copy R0H to ACC
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4 Interrupt Context Save and Restore

4.1 High-Priority Interrupt Context Save and Restore

Interrupt Context Save and Restore www.ti.com

This section describes high- and low-priority interrupt context save and restore and specifying priority in
C/C++.

The fast interrupt context save and restore for high-priority interrupts on the C28x has been retained for
the C28x+FPU. Recall that a high-priority interrupt is defined as an interrupt service routine that does
not allow nested interrupts. Example 22 shows a full high-priority interrupt context save for the
C28x+FPU. As on the C28x, the following critical registers are automatically saved on an interrupt:
ACC, P, XT, ST0, ST1, IER, DP, AR0, AR1, PC. The remaining C28x registers are pushed onto the
stack if used within the ISR. There are two new instructions in Example 22: RB must be saved if it is
used in the interrupt and the FPU registers are copied to their shadow registers using the SAVE
instruction. SAVE and RESTORE should only be used in high-priority interrupts. The PUSH RB and
SAVE instructions are both single cycle and add little overhead to the C28x context save and restore.
You can also set flags with the SAVE instruction.

The context save shown in Example 22 takes 22 cycles. This is the worst case and assumes you save
all of the registers.

Example 22. High-Priority Interrupt Service Routine Context Save

_HighestPriorityISR:
ASP ; Align stack
PUSH RB ; Save RB if used <-- New for FPU
PUSH AR1H:AR0H ; Save if used
PUSH XAR2
PUSH XAR3
PUSH XAR4
PUSH XAR5
PUSH XAR6
PUSH XAR7
PUSH XT
SPM 0 ; Set C28 modes
CLRC AMODE
CLRC PAGE0,OVM
SAVE RNDF32=1 ; FPU registers <-- New for FPU

; set FPU mode
...
...

;
; 22 Cycles worst case (all registers saved)

TMS320C28x FPU Primer20 SPRAAN9A–July 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAN9A


www.ti.com Interrupt Context Save and Restore

The high-priority restore code is shown in Example 23. The RESTORE instruction is used to copy the
FPU registers from the shadow back to the active register set and POP RB is used to restore the RB
register from the stack. The context restore takes 19 cycles worst case.

Example 23. High-Priority Interrupt Service Routine Context Restore

...

...
RESTORE ; FPU registers ; <-- new for FPU
POP XT ; Restore registers
POP XAR7
POP XAR6
POP XAR5
POP XAR4
POP XAR3
POP XAR2
POP AR1H:AR0H
POP RB ; Restore RB ; <-- new for FPU
NASP ; Un-align stack
IRET ; Return

;
;
; 19 Cycles worst case (all registers restored)
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4.2 Low-Priority Interrupt Context Save and Restore
Interrupt Context Save and Restore www.ti.com

Low-priority interrupts are those interrupt routines that allow nested interrupts. In low-priority interrupts,
where time is not as critical, save and restore the FPU result and STF registers using the stack as
shown in Example 24. This keeps the FPU shadow registers available for your time-critical high-priority
interrupts as shown in Section 4.1. In a low-priority interrupt you must also save the RB register. Failure
to save RB results in corruption of the RAS (repeat active shadow) bit. The time from when the interrupt
is acknowledged by the CPU to the end of the context save is 42 cycles. This is a worst case value and
assumes you need to save all of the registers. Interrupts are disabled for 21 cycles of these cycles.

The corresponding context restore is shown in Example 25. The context restore takes 32 cycles worst
case and interrupts are disabled for 14 cycles.

Example 24. Low-Priority Interrupt Service Routine Context Save

_LowerPriorityISR:
MOVW DP,#PIE ; Set PIE Interrupt Priority
MOV AL,@PIEIERn
OR IER,#INTn_PRIORITY_MASK
AND IER,#IER_PRIORITY_MASK
MOV @PIEIERn,#PIEIERn_PRIORITY_MASK
MOV @PIEACK,#0xFFFF
MOV *SP++,AL
ASP ; Align Stack Pointer
PUSH RB ; Save RB <-- New for FPU
CLRC INTM ; Enable Interrupts
PUSH AR1H:AR0H ; Save XAR0 to XAR7
PUSH XAR2
PUSH XAR3
PUSH XAR4
PUSH XAR5
PUSH XAR6
PUSH XAR7
PUSH XT ; Save XT
MOV32 *SP++,STF ; Save STF <-- New for FPU
MOV32 *SP++,R0H ; Save R0H <-- New for FPU
MOV32 *SP++,R1H ; Save R1H <-- New for FPU
MOV32 *SP++,R2H ; Save R2H <-- New for FPU
MOV32 *SP++,R3H ; Save R3H <-- New for FPU
MOV32 *SP++,R4H ; Save R4H <-- New for FPU
MOV32 *SP++,R5H ; Save R5H <-- New for FPU
MOV32 *SP++,R6H ; Save R6H <-- New for FPU
MOV32 *SP++,R7H ; Save R7H <-- New for FPU
SPM 0 ; Set default C28 modes
CLRC AMODE
CLRC PAGE0,OVM
SETFLG RNDF32=1 ; Set default FPU modes <-- New for FPU
...
...
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4.3 Specifying Interrupt Priority in C/C++

www.ti.com Interrupt Context Save and Restore

Example 25. Low-Priority Interrupt Service Routine Context Restore

...

...
MOV32 R7H,*--SP ; Restore R7H <-- New for FPU
MOV32 R6H,*--SP ; Restore R6H <-- New for FPU
MOV32 R5H,*--SP ; Restore R5H <-- New for FPU
MOV32 R4H,*--SP ; Restore R4H <-- New for FPU
MOV32 R3H,*--SP ; Restore R3H <-- New for FPU
MOV32 R2H,*--SP ; Restore R2H <-- New for FPU
MOV32 R1H,*--SP ; Restore R1H <-- New for FPU
MOV32 R0H,*--SP ; Restore R0H <-- New for FPU
MOV32 STF,*--SP ; Restore STF <-- New for FPU
POP XT ; Restore XT
POP XAR7 ; Restore XAR0 to XAR7
POP XAR6
POP XAR5
POP XAR4
POP XAR3
POP XAR2
POP AR1H:AR0H
MOVW DP,#PIE
SETC INTM ; Disable Interrupts
POP RB ; Restore RB <-- New for FPU
NASP ; Un-align Stack Pointer
MOV AL,*--SP
MOV @PIEIERn,AL ; Restore PIE Interrupt Priority
IRET ; Return From Interrupt

Two new pragma statements have been added to the compiler to allow you to specify the priority of an
interrupt when writing in C or C++ code. In this context, a high priority interupt is defined as one that
can not itself be interrupted. A low priority interrupt is defined as one that can be interrupted.

The pragma statements are shown in Example 26.

Example 26. Pragma Statement to Specific Interrupt Priority

//
// Specify a High-Priority Interrupt:
// This interrupt cannot itself be interrupted
//

#pragma INTERRUPT (function_name, HPI)
 
//
// Specify a Low-Priority Interrupt:
// The user has chosen to re-enable interrupts
// in this routine. This causes it to be a low-priority
// interrupt
//

#pragma INTERRUPT (function_name, LPI)
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5 Development Tools and Documentation

5.1 Instruction Set Reference Guides

5.2 Development Tools and Software

Development Tools and Documentation www.ti.com

The main difference between the two is how the repeat block (RB) register and context save are
handled. The compiler follows these rules when working with interrupt service routines:
• Interrupts are never enabled by the compiler. It is always up to you to enable interrupts by clearing

the INTM bit.
• The compiler always saves and restores RB in a low-priority interrupt.
• The compiler only saves and restores RB in a high-priority interrupt if a repeat block instruction is

used within the interrupt service routine.
• The compiler only uses the SAVE and RESTORE functions in high-priority interrupts.
• The compiler will always assume interrupts are low-priority by default. This is compatible with code

written for the C28x.

This section lists the various tools and documentation that will help you develop your floating-point
application.

• TMS320C28x CPU and Instruction Set Reference Guide (SPRU430)

This document lists all of the C28x fixed-point instructions, pipeline behavior, registers and interrupt
response. Everything in this document applies to both the C28x fixed-point as well as C28x+FPU
controllers
• TMS320C28x Floating Point Unit and Instruction Set Reference Guide (SPRUEO2)

The FPU instruction set reference guide lists all of the instructions that have been added to support
single-precision floating-point operations. This includes all the FPU instructions such as move, math
and conversion instructions as well as their pipeline behavior. This users guide should be considered a
supplement to the CPU guide (SPRU430).

• Code Composer Studio and Codegen Tools
Code Composer Studio v3.3 and later support the C28x+FPU. Make sure you have installed the latest
service release. As of this date, SR12 is the latest version. The service release contains the flash plugin
as well as gel files for the floating-point devices and bug fixes. The compiler is a seperate release. This
was done so customers using older compilers would not overwrite the compiler they are using when
evaluating the floating-point unit. You need to install version compiler version 5.0.0 or later to build code
for the floating-point unit. The 5.0.0 compiler can build both fixed-point as well as floating-point code. To
tell the compiler to build floating-point, use the compiler switches: -v28 --float_support=fpu32. In CCS
this option is in the build options under compiler-> advanced: floating point support. Without the
float_support flag, the tools will build fixed-point code.
• Standard Run-time Support Libraries
When building for floating-point you need to make sure all associated libraries have also been built for
floating-point. The standard run-time support (RTS) libaries built for floating-point included with the
compiler have fpu32 in their name. For example rts2800_fpu32.lib and rts2800_fpu_eh.lib have been
built for the floating-point unit. The "eh" version has exception handling for C++ code. Using the
fixed-point RTS libraries will result in the linker issuing an error for incompatible object files.
• C28x FPU Fast RTS Library (SPRC664)

The fast RTS library contains hand-coded optimized math routines such as division, square root, atan2,
sin and cos. This library can be linked into your project before the standard runtime support library to
give your application a performance boost. As an example, the standard RTS library uses a polynomial
expansion to calculate the sin function. The fast RTS library, however, uses a math look-up table in the
boot ROM of the device. Using this look-up table method results in approximately a 20 cycle savings
over the standard RTS calculation.
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5.3 Converting From IQmath to Floating-Point
www.ti.com Development Tools and Documentation

Texas Instruments TMS320C28x IQmath Library is collection of highly optimized and high precision
mathematical Function Library for C/C++ programmers to seamlessly port the floating-point algorithm
into fixed point code devices. Likewise if code has been written in IQmath it can quickly be converted to
floating-point. Therefore there are advantages to using the IQmath library for all projects. To convert a
project that has been written in IQmath to native floating point follow these steps:
• In the IQmath header file, select FLOAT_MATH. The header file will convert all IQmath function

calls to their floating-point equivalent.
• When writing a floating-point number into a device register, you need to convert the floating-point

number to an integer as shown in Example 27. Likewise when reading a value from a register it will
need to be converted to float. In both cases, this is done by multiplying the number by a conversion
factor. For example to convert a floating-point number to IQ15, multiply by 32768.0. Likewise, to
convert from an IQ15 value to a floating-point value, multiply by 1/32768.0 or 0.000030518.0. One
thing to note: The integer range is restricted to 24-bits for a 32-bit floating-point value.

Example 27. Converting Register Accesses From IQmath to Floating-point

//
// Example:
// Convert from float to IQ15

//
// If MATH_TYPE == IQ_MATH
// Use the IQmath conversion function
//

#if MATH_TYPE == IQ_MATH
PwmReg = (int16)_IQtoIQ15(Var1);

//
// If MATH_TYPE == FLOAT_MATH
// Scale by 2^15 = 32768.0
//

#else // MATH_TYPE is FLOAT_MATH
PwmReg = (int16)(32768.0L*Var1);

#endif

• Take advantage of the Delfino on-chip floating point unit by doing the following:
– Use C28x codegen tools version 5.0.2 or later.
– Tell the compiler it can generate native C28x floating-point code. To do this, use the –v28

--float_support=fpu32 compiler switches. In Code Composer Studio V3.3 the float_support switch
is on the advanced tab of the compiler options.

– Use the correct run-time support library for native 32-bit floating-point. For C code this is
rts2800_fpu32.lib. For C++ code with exception handling, use rts2800_fpu32_eh.lib.

– Use the C28x FPU Fast RTS library (SPRC664) to get a performance boost from math functions
such as sin, cos, div, sqrt, and atan. The Fast RTS library should be linked in before the normal
run-time support library as described in the documentation.
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6 Comparing the C28x+FPU to the Control Law Accelerator

7 References

Comparing the C28x+FPU to the Control Law Accelerator www.ti.com

The C2000 Control Law Accelerator (CLA) was introduced on C2000 Piccolo microcontrollers. The CLA
is a 32-bit floating-point math accelerator that runs in parallel with the main CPU. The CLA is
completely programmable in assembly. The differences include, but are not limited to, those shown in
Table 10.

The biggest thing to keep in mind is the CLA is independent from the main CPU where as the FPU unit
is a superset on top of the C28x fixed-point CPU and can not be thought of as independent. The CLA
has its own bus structure, register set, pipeline and processing unit. In addition the CLA is interrupt
driven and can access specific peripheral registers directly. This makes it ideal for handling time-critical
control loops but it can also be used for filtering or math algorithms.

Table 10. FPU Compared to CLA
CLA C28x + FPU

Execution In parallel with main CPU. FPU instructions do not execute in parallel with fixed-point.
Result Registers 4 (MR0 - MR3) 8 (R0H - R7H)
Pipeline Independent 8 stage Shares fetch and decode with fixed-point
Memory Access Specific memory blocks and Entire device

message RAM
Register Access Specific registers Entire device
Repeat Instructions None Repeat MACF32 & repeat block (RPTB)
Flow Control Native call/return/branch Uses C28x fixed-point flow control
Math and Conversion Single cycle 2p cycles
Nested Interrupts No, no stack pointer Supported
Addressing Modes Direct and indirect All C28x addressing modes
Programming Assembly C, C++, Assembly

• TMS320C28x Floating Point Unit and Instruction Set Reference Guide (SPRUEO2)
• TMS320C28x CPU and Instruction Set Reference Guide (SPRU430)
• C28x FPU Fast RTS Library (SPRC664)
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