
1SPRAC80–May 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Fast Current Loop Library

Application Report
SPRAC80–May 2017

Fast Current Loop Library

Ramesh T Ramamoorthy, Santosh Kumar Athuru

ABSTRACT
This reference guide provides a description of the fast current loop software library API (application
program interface), which can be used for high-bandwidth, inner-loop control of AC servo drives with
TMS320F2837x MCUs.

This document also explains the header files that are delivered with the library, and provides information
on which CLA resources are used by the library and which PIE flags are cleared by the library.

Contents
1 Introduction ... 2

1.1 Reference Example... 2
2 FCL Library Details .. 2

2.1 API Overview .. 2
2.2 Header Files .. 2
2.3 CLA Resources Used ... 4
2.4 Flags Cleared by the Library .. 5
2.5 Application Dependencies ... 5

3 Building and Linking an Application With the Library ... 6

List of Tables

1 Summary of FCL APIs .. 2
2 Summary of Common Variables Across the Application and Library... 3
3 Summary of Common CLA Variables Across the Application and Library... 4
4 Summary of CLA Resources Used by the Library... 4

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC80

Introduction www.ti.com

2 SPRAC80–May 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Fast Current Loop Library

controlSUITE, Code Composer Studio are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

1 Introduction

1.1 Reference Example
Use this guide in conjunction with the High Bandwidth Current Control of Sensored FOC of 3-Phase
PMSM USING F2837x evaluation guide. This guide is in the controlSUITE™ at
\controlSUITE\libs\app_libs\motor_control\libs\FCL\v02_00_00_00\Examples\IDDKv2_PM_Servo_F2837x_
FCL_Example01\~Docs\FCL_Sensored FOC of PMSM_IDDK_v2.pdf.

An example is provided with the library that can be referenced for details on how to build and link or
integrate the library with an application.

The example is built to work with the IDDK evaluation platform and F2837x Control Card from TI.

When the FCL software package is installed, the FCL software library can be found at
controlSUITE\libs\app_libs\motor_control\libs\FCL\v02_00_00_00\lib The FCL example project can be
found at: controlSUITE\libs\app_libs\motor_control\libs\FCL\ v02_00_00_00\Examples

2 FCL Library Details

2.1 API Overview
Table 1 lists the FCL APIs.

Table 1. Summary of FCL APIs

API Function Description
Uint32 FCL_GetSwVersion(void); Returns a 32-bit constant; for this version the value returned is

0x00000002
void FCL_Complex_Ctrl(void); Performs the Complex control as part of the FCL
void FCL_PI_Ctrl(void); Performs the PI control as part of the FCL
void FCL_PI_CtrlWrap(void); Wrap-up function called by the user application at the

completion of the FCL in PI control mode

void FCL_QEP_wrap(void);
Called by the user application to handle the QEP feedback
completion.
This function is used only in FCL_LEVEL2.

void FCL_Complex_CtrlWrap (void); Wrap-up function called by the user application at the
completion of the FCL in Complex control mode

void FCL_initPWM(volatile struct EPWM_REGS *ePWM); Initializes PWMs for the FCL operation, this function is called by
the user application during the initialization or setup process.

void FCL_ControllerReset(void); Called to reset the FCL variables and is useful when the user
wants to stop and restart the motor.

2.2 Header Files

2.2.1 Fast_Current_Loop.h
This header file contains general variables and pointers that are used across the application and the
library.

Macro FCL_LIB is predefined when building the library and is not defined when the header file is included
in the application. This helps applications use the same header file that is used by the library.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC80

www.ti.com FCL Library Details

3SPRAC80–May 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Fast Current Loop Library

For example, in the following pointer declarations, when the header file is included in the library, the
pointers are defined as extern, but when the same header file is included in the application the pointers
are global. This helps the library work with variables that are common across the application and the
software library.
#ifdef FCL_LIB
extern
#endif
volatile struct EPWM_REGS *PwmARegs, *PwmBRegs, *PwmCRegs;

This file also defines the following typedef of a structure used by the library, but the variables of the
structure are initialized by the application, as shown in the provided example.
typedef struct currentLoopPars {

float32 CARRIER_MID, // Mid point value of carrier count
ADC_SCALE, // ADC conversion scale to pu

cmidsqrt3; // internal variable

float32 tSamp, // sampling time
Rd, // Motor resistance in D axis
Rq, // Motor resistance in Q axis
Ld, // Motor inductance in D axis
Lq, // Motor inductance in Q axis
Vbase, // Base voltage for the controller
Ibase, // Base current for the controller
wccD, // D axis current controller bandwidth
wccQ, // Q axis current controller bandwidth
Vdcbus, // DC bus voltage
BemfK, // Motor Bemf constant
Wbase; // Controller base frequency (Motor) in rad/sec

} FastCurrentLoopPars_t;

Table 2 lists the variables needed by the library, which are supposed to be defined by the application. The
same information is available in the Fast_Current_Loop.h header file delivered with the library. So it is
sufficient if applications include the header file.

Table 2. Summary of Common Variables Across the Application and Library

Variable Name Description or Use
extern volatile struct EPWM_REGS *PwmARegs, *PwmBRegs,
*PwmCRegs;

Pointers to the Motor A, B, and C phase controlling PWM
channels on the IDDK. These pointers must be initialized by the
application before using the library.

extern volatile union ADCINTFLG_REG *AdcIntFlag; Pointer to the current sensing ADC INT FLAG register. This
pointer must be initialized by the application, as shown in the
example, before using the library.

extern volatile union ADCPPB1RESULT_REG
*CurA_PPBRESULT, *CurB_PPBRESULT;

Pointers to the current sensing ADC PPB Result registers.
These pointers must be initialized by the application, as shown
in the example, before using the library.

extern Uint16 lsw; Loop switch information controlled by both the library and the
application

extern QEP qep1; QEP feedback information accessed by both the application and
the library

extern FCL_PI_CONTROLLER pi_iq; PI IQ controller information accessed and handled by the CLA
tasks and CPU inside the library and by CPU in the application

extern FCL_PI_CONTROLLER pi_id; PI ID controller information accessed by both the library and the
application

extern SVGEN svgen1; Space Vector variables generated by the library are stored here.
extern RAMPGEN rg1; —
extern SPEED_MEAS_QEP speed1; —
extern FastCurrentLoopPars_t FCL_Pars; Current Loop parameter constants that are to be initialized by

the application. A reference function is provided in the example
provided with the library.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC80

FCL Library Details www.ti.com

4 SPRAC80–May 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Fast Current Loop Library

2.2.2 Fast_Current_Loop_qep.h
This file defines the following typedef of a CLA pointer used in the library, and also defines the pointer
variable as extern.
typedef union{
volatile struct EQEP_REGS *ptr; //Aligned to lower 16-bits
Uint32 pad; //32-bits
}CLA_QEP_PTR;

This file should be included in the user application with the Fast_Current_Loop.h file. Table 3 defines the
common CLA variables across the library and the application.

Table 3. Summary of Common CLA Variables Across the Application and Library

Variable Name Description or Use
extern CLA_QEP_PTR ClaQep; Pointer to the EQEP module registers used by the application for feedback control

This pointer is to be initialized by the application before using the library, as shown in
the provided example.

2.2.3 fcl_PI.h
This file defines the following typedef of PI variables used in the library.
typedef struct { float Ref; // Input: reference set-point

float Fbk; // Input: feedback
float Err; // Output : error
float Out; // Output: controller output
float CarryOver; // Output : carrier over for next iteration
float Kp; // Parameter: proportional loop gain
float Ki; // Parameter: integral gain
float Kerr; // Parameter: gain for latest error
float KerrOld; // Parameter: gain for prev error
float Umax; // Parameter: upper saturation limit
float Umin; // Parameter: lower saturation limit

} FCL_PI_CONTROLLER;

2.3 CLA Resources Used
In this version of the library, the CLA resources in Table 4 are used and are unavailable for the user
applications when using the provided software library.

Table 4. Summary of CLA Resources Used by the Library

FLC Controller CLA Tasks Used
PI controller CLA TASK1, CLA TASK2, and CLA TASK4
Complex controller CLA TASK1, CLA TASK3, and CLA TASK4

2.3.1 CLA Task Prototypes
__interrupt void Cla1Task1();
__interrupt void Cla1Task2();
__interrupt void Cla1Task3();
__interrupt void Cla1Task4();

All the above tasks are declared and defined in the library. The assignment of the tasks to the appropriate
CLA vectors is done in the user application.

The example provided with the library shows how to assign the tasks. The relevant code snippet follows.
{

Cla1Regs.MVECT1 = (uint16_t)(&Cla1Task1);
Cla1Regs.MVECT2 = (uint16_t)(&Cla1Task2);
Cla1Regs.MVECT3 = (uint16_t)(&Cla1Task3);
Cla1Regs.MVECT4 = (uint16_t)(&Cla1Task4);

}

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC80

www.ti.com FCL Library Details

5SPRAC80–May 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Fast Current Loop Library

User applications are free to use the remaining CLA tasks, but these tasks are reserved according to
Table 4, depending on the FCL controller option chosen.

2.4 Flags Cleared by the Library
Because the library uses the previously mentioned CLA tasks, it also clears the respective PIE IFR flag
bits associated with the tasks.

2.5 Application Dependencies
The user application must initialize and clear the flags defined in this section for the library to be properly
operational.

As shown in the example, all the parameters must be initialized before enabling any interrupts in the
application initialization phase.

2.5.1 Initializing Current Loop Parameters for the Library
The following function, provided in the example code, initializes FCL_Pars, referred to in Section 2.2.1 and
Table 2.
fast_current_loop_vars_init();

2.5.2 Initializing PWM and PWM Access Pointers for the Library
The following code, shown in the example, initializes the PWM modules for the FCL library and sets the
PWM access pointers for the library. This makes the library more portable, but it adds a slight cycle count
during the execution of the library.

PwmARegs = &EPwm1Regs;
PwmBRegs = &EPwm2Regs;
PwmCRegs = &EPwm3Regs;

FCL_initPWM(PwmARegs);
FCL_initPWM(PwmBRegs);
FCL_initPWM(PwmCRegs);

2.5.3 Initializing the ADC Int Flag and ADC PPB Result Register Pointers for the Library
The following code, shown in the example, initializes the PWM modules for Fast control loop library and
sets the PWM access pointers for the library. This makes the library more portable but adds a slight cycle
count during the execution of library.
AdcIntFlag = &AdcaRegs.ADCINTFLG;
CurA_PPBRESULT = &AdcaResultRegs.ADCPPB1RESULT;
CurB_PPBRESULT = &AdcbResultRegs.ADCPPB1RESULT;

2.5.4 Initializing the EQEP Access Pointer for the Library
The following code, shown in the example, initializes the EQEP registers pointer for the library to access.
ClaQep.ptr = &EQep1Regs;

2.5.5 Configuring and Clearing the CLA TASK1 Trigger
User applications, as shown in the provided example, must be configured to trigger the CLA TASK1 by the
same event that triggers the ADC SOC.

The following code in the example shows the initializing of the CLA and setting up of the CLA TASK1
trigger. This must be performed before enabling the PWM clocks.

//initialize CLA for FCL library
main_cla();

EALLOW;
DmaClaSrcSelRegs.CLA1TASKSRCSEL1.bit.TASK1 = CLA_TRIG_EPWM1INT;

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC80

Building and Linking an Application With the Library www.ti.com

6 SPRAC80–May 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Fast Current Loop Library

Similarly, the user application must also clear the event that triggers the CLA task in the user code. This is
also shown in the example provided with the library.
PwmARegs->ETCLR.bit.INT = 1;

3 Building and Linking an Application With the Library
The provided example with the library should help users integrate the library into an application running
from flash/RAM. The appropriate linker command files are also provided with the example project.

Because the library uses CLA, RAM must be shared across the CPU and CLA. The provided example
shows how to do this as well.

The library is built with the v16.12.0 tool chain and the v210 controlSUITE device support package for the
F2837xD, in Code Composer Studio™ v7 IDE.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAC80

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	Fast Current Loop Library
	1 Introduction
	1.1 Reference Example

	2 FCL Library Details
	2.1 API Overview
	2.2 Header Files
	2.2.1 Fast_Current_Loop.h
	2.2.2 Fast_Current_Loop_qep.h
	2.2.3 fcl_PI.h

	2.3 CLA Resources Used
	2.3.1 CLA Task Prototypes

	2.4 Flags Cleared by the Library
	2.5  Application Dependencies
	2.5.1 Initializing Current Loop Parameters for the Library
	2.5.2 Initializing PWM and PWM Access Pointers for the Library
	2.5.3 Initializing the ADC Int Flag and ADC PPB Result Register Pointers for the Library
	2.5.4 Initializing the EQEP Access Pointer for the Library
	2.5.5 Configuring and Clearing the CLA TASK1 Trigger

	3 Building and Linking an Application With the Library

	Important Notice

