
Application Report
Programming Examples and Debug Strategies for the
DCAN Module

Hareesh Janakiraman Applications Engineering - C2000 Microcontroller

ABSTRACT

The DCAN peripheral is a CAN implementation on a subset of devices within the C2000™ family. Some
devices that have a DCAN peripheral include the TMS320F2837xD, TMS320F2837xS, TMS320F2807x ,
TMS320F28004x and TMS320F28002x devices. The examples are meant to be run in any C2000 MCU with a
DCAN module. For a complete list of devices that contain the DCAN module, see the C2000 Real-Time Control
Peripherals Reference Guide. This application report describes several programming examples to illustrate how
the DCAN module is set up for different modes of operation. The objective is to help you come up to speed
quickly in programming the DCAN. All programs have been extensively commented to aid easy understanding.
The examples will not run on the eCAN module on the older C2000 devices. For eCAN examples, see
Programming Examples for the TMS320x28xx eCAN.

The code examples were tested on a TMS320F28379D device; however, the examples can be easily adapted
to run on any C2000 device that features the DCAN module. Most of the examples need CAN-B (the second
CAN node) for operation. For devices that have only one CAN module (CAN-A), a second (external) CAN node
is needed to emulate the function of CAN-B. This requirement can be met by any CAN bus analysis tool. Many
inexpensive USB-bus based CAN bus analysis tools are currently available. These tools provide visibility to the
CAN bus traffic and are also capable of generating CAN bus frames and are an invaluable aid in debugging CAN
issues. An oscilloscope with built-in CAN bus triggering/decoding is a vital debugging aid as well.

The project files and examples described in this document are available for download as part of C2000Ware.

Table of Contents
1 Introduction...3

1.1 TMS320F28xx DCAN Features... 3
2 Program Descriptions.. 3
3 Debug and Design Tips to Resolve/Avoid CAN Communication Issues...9

3.1 Minimum Number of Nodes Required..9
3.2 Why a Transceiver is Needed.. 9
3.3 Debug Checklist... 10

4 Helpful Migration and Project Execution Tips..11
4.1 GPIO Reconfiguration.. 11
4.2 How to Duplicate (clone) an Existing Project... 12
4.3 How to Get Visibility Into Driverlib Files..13
4.4 Migrating From eCAN.. 13
4.5 Configuring the CANBTR Register...14

5 References.. 15
Revision History...16

List of Figures
Figure 1-1. Typical Implementation of a CAN Bus...3
Figure 2-1. can_ex1_loopback.. 4
Figure 2-2. CAN_IF1DATA Register.. 5
Figure 2-3. CAN_IF1DATB Register..5
Figure 2-4. IFxDATA Registers in CCS Expressions Window... 5
Figure 2-5. can_ex4_simple_transmit..5

www.ti.com Table of Contents

SPRACE5A – MAY 2019 – REVISED MAY 2021
Submit Document Feedback

Programming Examples and Debug Strategies for the DCAN Module 1

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SPRU566
https://www.ti.com/lit/pdf/SPRU566
https://www.ti.com/lit/pdf/SPRA876
https://www.ti.com/tool/C2000WARE?keyMatch=&tisearch=search-everything&usecase=software
https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACE5A&partnum=

Figure 2-6. Waveform at the CANRXA Pin..6
Figure 2-7. can_ex8_Remote_Tx-PEAK... 7
Figure 2-8. can_ex8_Remote_Tx-28x... 7
Figure 2-9. can_ex9_Remote_Answer.. 8
Figure 4-1. Directory Containing the .projectspec Files...12
Figure 4-2. Project Directories in CCS Workspace..12
Figure 4-3. CCS Error Message.. 13

List of Tables
Table 2-1. Extended ID Frame (passing filter criterion)... 8
Table 2-2. Standard ID Frame (exact match)...8
Table 2-3. Standard ID Frame (passing filter criterion).. 9
Table 4-1. GPIO Pin Mapping Used for the Examples...11
Table 4-2. eCAN-DCAN Registers and Bits Equivalence.. 14

Trademarks
C2000™ and Code Composer Studio™ are trademarks of Texas Instruments.
All trademarks are the property of their respective owners.

Trademarks www.ti.com

2 Programming Examples and Debug Strategies for the DCAN Module SPRACE5A – MAY 2019 – REVISED MAY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACE5A&partnum=

1 Introduction
CAN is a serial protocol that was originally developed for automotive applications. Due to its robustness
and reliability, it now finds applications in diverse areas such as Industrial equipment, appliances, medical
electronics, trains, air crafts, and so forth. CAN protocol features sophisticated error detection (and isolation)
mechanisms and lends itself to simple wiring at the physical level.

Figure 1-1 shows the typical implementation of the CAN bus.

CANH

CANL

CAN Bus-LineRL

CAN

Controller

(Node #1)

DSP or Cµ

CAN

Transceiver

CAN

Controller

(Node #n)

DSP or Cµ

CAN

Transceiver

CAN

Controller

(Node #2)

DSP or Cµ

CAN

Transceiver

CAN

Controller

(Node #3)

DSP or Cµ

CAN

Transceiver

RL

Figure 1-1. Typical Implementation of a CAN Bus

1.1 TMS320F28xx DCAN Features
• Full implementation of CAN protocol, version 2.0B
• 32 mailboxes, each with the following properties:

– Configurable as receive or transmit
– Configurable with standard or extended identifier
– Has a programmable receive mask (every mailbox has its own mask)
– Supports data and remote frame
– Composed of 0 to 8 bytes of data
– Employs a programmable interrupt scheme with two interrupt levels

• Automatic reply to a remote request message
• Automatic retransmission of a frame in case of loss of arbitration or error

2 Program Descriptions
This section provides a brief description of the example projects, along with applicable waveforms captured with
an oscilloscope. Note that the examples are within C2000Ware.

• can_ex1_loopback.c

This example illustrates the use of self-test mode. A message is transmitted once per second, using a simple
delay loop for timing. The message that is sent is a 2 byte message that contains an incrementing pattern.
This example sets up the CAN controller in "External" Loopback test mode. Data transmitted is visible on the
CANTXA pin and is received internally back to the CAN Core. It is important that the GPIO mapping in device.h
file in this project is edited to reflect the GPIO pins that are used for CAN function in your hardware. Otherwise,
the transmitted data will not be seen on CANTXA pin.

www.ti.com Introduction

SPRACE5A – MAY 2019 – REVISED MAY 2021
Submit Document Feedback

Programming Examples and Debug Strategies for the DCAN Module 3

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACE5A&partnum=

Figure 2-1 shows the activity on the CANTXA pin.

Figure 2-1. can_ex1_loopback

• can_ex2_loopback_interrupts.c

Similar to can_ex1_loopback.c, but uses interrupts.

• can_ex3_external_transmit.c

This example shows basic setup of CAN in order to transmit and receive messages. It sets up CAN-A as the
transmitter and CAN-B as the receiver. A receive interrupt is asserted on CAN-B to verify the received data.

• can_ex4_simple_transmit.c

This example illustrates how to setup the CAN module for transmission. It could prove very useful to check the
hardware connections of the CAN circuit.

Program Descriptions www.ti.com

4 Programming Examples and Debug Strategies for the DCAN Module SPRACE5A – MAY 2019 – REVISED MAY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACE5A&partnum=

Figure 2-2, Figure 2-3 and Figure 2-4 show how data is stored in the IFxDATA registers.

Figure 2-2. CAN_IF1DATA Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data_3 Data_2 Data_1 Data_0

R/W-0h R/W-0h R/W-0h R/W-0h

Figure 2-3. CAN_IF1DATB Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data_7 Data_6 Data_5 Data_4

R/W-0h R/W-0h R/W-0h R/W-0h

Figure 2-4. IFxDATA Registers in CCS Expressions Window

With the above configurations, data is transmitted in the order shown in Figure 2-5.

Figure 2-5 depicts the waveform on the CANTXA pin.

Figure 2-5. can_ex4_simple_transmit

www.ti.com Program Descriptions

SPRACE5A – MAY 2019 – REVISED MAY 2021
Submit Document Feedback

Programming Examples and Debug Strategies for the DCAN Module 5

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACE5A&partnum=

Figure 2-6 shows the waveform at the CANRXA pin. Note that during the ACK phase, the transmitting node
transmits a recessive, but it is driven low by the receiver.

Figure 2-6. Waveform at the CANRXA Pin

• can_ex5_simple_receive.c

This example is a simple illustration of how to setup the CAN module for reception. This example could prove
very useful to generate an ACK for another CAN node.

• can_ex8_Remote_Tx.c

This example demonstrates the ability of the CAN-A module to transmit a Remote-frame and receive a response
in the same mailbox. CAN-B node is configured to respond to the Remote frame. If CAN-B is not available, a
CAN bus analyzer may be used to provide a response. Note that the response time from such equipment may
be more, because it involves some overhead due to the application running on the PC.

Program Descriptions www.ti.com

6 Programming Examples and Debug Strategies for the DCAN Module SPRACE5A – MAY 2019 – REVISED MAY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACE5A&partnum=

Figure 2-7 shows the response from a bus analyzer. Note that it takes about 13 ms for the response to show up
on the bus.

Figure 2-7. can_ex8_Remote_Tx-PEAK

Figure 2-8 shows the response from CAN-B. Response is in microseconds in this case.

Figure 2-8. can_ex8_Remote_Tx-28x

www.ti.com Program Descriptions

SPRACE5A – MAY 2019 – REVISED MAY 2021
Submit Document Feedback

Programming Examples and Debug Strategies for the DCAN Module 7

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACE5A&partnum=

• can_ex9_Remote_Answer.c

Figure 2-9 demonstrates the ability of the module to respond to a Remote-frame. A remote frame is transmitted
from the CAN bus analyzer and the module responds.

Figure 2-9. can_ex9_Remote_Answer

• can_ex10_Mask.c

This example demonstrates acceptance mask filtering. It can be used to evaluate the effects of MXtd & MDir
bits. Table 2-1 shows the various scenarios and the outcomes. Mailbox direction was set to Receive (Dir = 0) ,
An extended ID was written to the mailbox (Xtd = 1) and filtering enabled (UMask = 1). MXtd and MDir bits were
cycled through the four possible combinations.

• An Ext ID frame, satisfying the filtering criterion, is transmitted. MXtd & Mdir bits have no bearing on the
frame reception in all four cases.

Table 2-1. Extended ID Frame (passing filter criterion)
MXtd Mdir Outcome

1 1 Frame received

1 0 Frame received

0 1 Frame received

0 0 Frame received

• An STD ID frame, with exact match for the 11 applicable bits (bits 28:18), is transmitted. In the case where
MXtd is 0, the Xtd bit of the mailbox was not used for filtering. Rather, the 11 applicable bits were found to be
matching and, hence, the frame was received.

Table 2-2. Standard ID Frame (exact match)
MXtd Mdir Outcome

1 1 Frame not received

1 0 Frame not received

0 1 Frame received

0 0 Frame received

Program Descriptions www.ti.com

8 Programming Examples and Debug Strategies for the DCAN Module SPRACE5A – MAY 2019 – REVISED MAY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACE5A&partnum=

• An STD ID frame, with passing filter criterion for the 11 applicable bits (bits 28:18), is transmitted. In the case
where MXtd is 0, the Xtd bit of the mailbox was not used for filtering. Rather, the 11 applicable bits were
found to be matching and the hence the frame was received.

Table 2-3. Standard ID Frame (passing filter criterion)
MXtd Mdir Outcome

1 1 Frame not received

1 0 Frame not received

0 1 Frame received

0 0 Frame received

It is important to remember that the stored Message Identifier will be over-written by the identifier of the received
frame. In order for acceptance filtering to work correctly for subsequent frames, the message object must be
reinitialized with the original identifier.

3 Debug and Design Tips to Resolve/Avoid CAN Communication Issues
This section illustrates some of the common mistakes and oversights while implementing a CAN bus. This is
followed by some debugging tips useful to troubleshoot bus issues.

3.1 Minimum Number of Nodes Required
Unless working in the self-test mode, a minimum of two nodes are needed on the CAN bus for the following
reason: When a node transmits a frame on the CAN bus, it expects an acknowledgment (ACK) from at least one
other node on the network. Any time a CAN node successfully receives a message it will automatically transmit
an ACK, unless that feature has been turned off "silent mode", where a node receives the frame, but does not
provide an ACK; the DCAN module has this feature). The node that provides the ACK does not need to be the
intended recipient of the frame, although it could very well be. (All active nodes on the bus will provide an ACK,
regardless of whether they are the intended recipients of that frame or not).

When the transmitting node does not receive an ACK, it results in an ACK error and the transmitting node
keeps re-transmitting the frame forever. The Transmit Error Counter (TEC) will increment to 128 and stop there.
REC stays at 0. Node will not go bus-off. In this situation, the TxRqst bit for the transmitting mailbox does not
get set. No interrupts will be generated either. If another node is brought into the network, the TEC will start
decrementing (all the way to 0) with every successful transmit.

3.2 Why a Transceiver is Needed
One cannot directly connect CANTX of node-A to CANRX of node-B and vice versa and expect successful CAN
communication. In this case, CAN is unlike other serial interfaces like SCI or SPI. For example, SCI can be
made to work with a RS232 transceiver or through a direct connection (SCITX of one node to SCIRX of another
node and vice versa). However, CAN bus needs a CAN transceiver for the following reason: In addition to
converting the single-ended CAN signal for differential transmission, the transceiver also loops back the CANTX
pin to the CANRX pin of a node. This is because a CAN node needs to be able to monitor its own transmission.
Why?

• This has to do with the ACK requirement mandated by the CAN protocol. When a node transmits a frame
on the CAN bus, it expects an ACK from at least one other node on the network. For the ACK phase, the
transmitter puts out a 1 and expects to read back a 0.

• During arbitration, a node with a higher-priority MSGID needs to be able to override a 1 with a 0. Here again,
the transmitter needs to be able to read back the transmitted data. When a node puts out a 1 and reads back
a 0 during the arbitration phase, it loses arbitration.

www.ti.com Debug and Design Tips to Resolve/Avoid CAN Communication Issues

SPRACE5A – MAY 2019 – REVISED MAY 2021
Submit Document Feedback

Programming Examples and Debug Strategies for the DCAN Module 9

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACE5A&partnum=

3.3 Debug Checklist
This section highlights some common mistakes in the design and implementation of a CAN bus network.

3.3.1 Programming Issues

• Is clock to the CAN module enabled? Check for this if writes to CAN registers are not going through. Clock is
enabled through a bit in the PCLKCRn register.

• Comment all EDIS from your code until you get it to work. You could add it later. Many registers and bits are
EALLOW protected and a write may not go through if EALLOW is not active.

• Try your code without interrupts first. Use polling instead. Once polling works, you can add interrupts later.
• If a specific mailbox is not working, have you attempted to use a different mailbox? Have the mailboxes been

enabled and the mailbox direction correctly configured?
• When attempting to initiate communication on the bus for the very first time, ensure that the the mailbox in

the transmitting node and the receiving node are programmed with the same MSGID. Do not use Acceptance
Mask Filtering initially. Filtering could be added later once it is confirmed there are no hardware issues with
the bus.

3.3.2 Physical Layer Issues

• Has the bus been terminated correctly (with 120-Ω) at either ends (only)? The bus must be terminated only at
either ends and with a 120-Ω resistor. In other words, no more than two terminator resistors may be present
on the bus, unless split termination is followed, in which case there will be two resistors on either ends.
While designing a CAN bus system, it is important that the termination resistors can be enabled/disabled from
outside the system enclosure. This scheme makes it easy when nodes have to be added/removed to/from
the network.

• Are all CAN nodes configured for the same bit-rate? Mis-matched node bit rates would repeatedly introduce
error frames on the bus. Capture the output of a node on the oscilloscope to physically verify the bit-time.

• Have you tried a lower bit-rate? Say, 50 kbps, for example? Timing issues concerning propagation delays
may be caught trying a lower bit-rate. Ensure that CANBTR register has the programmed value.

• Have you tried to reduce the bus length and number of nodes?
• Before the occurrence of the error condition, were any error-frames seen on the bus? This could point to

timing violations or noise issues.
• How many nodes are there in the bus? (In non-self-test mode, there must be at least two nodes on the

network, due to the acknowledge (ACK) requirement mandated by the CAN protocol)

3.3.3 Hardware Debug Tips

• To see the waveform until the ACK phase, a transceiver must be connected to the node. Without a
transceiver, the node immediately goes into an error state.

• Check if the CAN frame is correctly seen at the CANRX pin of the MCU and it is of the expected bit-rate.
• If using an oscilloscope with a built-in CAN trigger, make sure that the signal configured for triggering

matches the signal being probed on the board. Many oscilloscopes are capable of triggering on CAN-transmit
(CANTX), CAN-receive (CANRX), CAN_H and CAN_L signals, in addition to Start-of_Frame (SOF), Remote
frames, Error frames and specific MSGIDs.

• If the scope does not decode the waveform, make sure input threshold value for the channel is correct. This
is similar to the “trigger level” that is normally used for signals.

Debug and Design Tips to Resolve/Avoid CAN Communication Issues www.ti.com

10 Programming Examples and Debug Strategies for the DCAN Module SPRACE5A – MAY 2019 – REVISED MAY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACE5A&partnum=

4 Helpful Migration and Project Execution Tips
This section provides some tips for GPIO reconfiguration, project cloning, migrating from eCAN and bit-timing
configuration.

4.1 GPIO Reconfiguration
The example programs run under the Driverlib frame work. They were tested with the following GPIO
configuration for the CAN pins (see Table 4-1).

Table 4-1. GPIO Pin Mapping Used for the Examples
CAN Function GPIO

CANTXA GPIO71

CANRXA GPIO70

CANTXB GPIO72

CANRXB GPIO73

The C2000Ware examples, by default, have the following GPIO configuration for CAN operation:

#define DEVICE_GPIO_CFG_CANRXA GPIO_30_CANRXA // "pinConfig" for CANA RX
#define DEVICE_GPIO_CFG_CANTXA GPIO_31_CANTXA // "pinConfig" for CANA TX
#define DEVICE_GPIO_CFG_CANRXB GPIO_10_CANRXB // "pinConfig" for CANB RX
#define DEVICE_GPIO_CFG_CANTXB GPIO_8_CANTXB // "pinConfig" for CANB TX

This may have to be modified depending on which GPIO pins are used for CAN operation in your hardware. This
is a very important step and, if applicable, must be done for every example project. Use the procedure discussed
in Section 4.1.1 to change the GPIO configuration.

4.1.1 How to Change the GPIO Assignment for the CAN Pins

The example C file has the following statements:

GPIO_setPinConfig(DEVICE_GPIO_CFG_CANRXA);
GPIO_setPinConfig(DEVICE_GPIO_CFG_CANTXA);
GPIO_setPinConfig(DEVICE_GPIO_CFG_CANRXB);
GPIO_setPinConfig(DEVICE_GPIO_CFG_CANTXB);

• The function GPIO_setPinConfig(uint32_t pinConfig) is in gpio.c file.
• The argument DEVICE_GPIO_CFG_CANRXA is in device.h file.

#define DEVICE_GPIO_CFG_CANRXA GPIO_30_CANRXA // "pinConfig" for CANA RX

The constant #define GPIO_30_CANRXA 0x00081C01U is defined in pin_map.h file.

To change the GPIO mapping, edit the device.h file as follows: (Table 4-1 was used as an example).

// Modified configuration
#define DEVICE_GPIO_CFG_CANRXA GPIO_70_CANRXA // "pinConfig" for CANA RX
#define DEVICE_GPIO_CFG_CANTXA GPIO_71_CANTXA // "pinConfig" for CANA TX
#define DEVICE_GPIO_CFG_CANRXB GPIO_73_CANRXB // "pinConfig" for CANB RX
#define DEVICE_GPIO_CFG_CANTXB GPIO_72_CANTXB // "pinConfig" for CANB TX

Note

device.h file is unique to every example directory in the workspace. The edits you make for one
project will not get carried over across other projects.

For the ControlCARD, CANTXA is on GPIO31 and CANRXA is on GPIO30. CANTXB is on GPIO8 and CANRXB
is on GPIO10. GPIOs will be different on Launchpad. For more information, see the board schematics in the /
boards directory in C2000ware.

www.ti.com Helpful Migration and Project Execution Tips

SPRACE5A – MAY 2019 – REVISED MAY 2021
Submit Document Feedback

Programming Examples and Debug Strategies for the DCAN Module 11

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACE5A&partnum=

4.2 How to Duplicate (clone) an Existing Project
1. All projects start their life as a .projectspec file. They exist in

C:\ti\c2000\C2000Ware_1_00_05_00\driverlib\f2837xd\examples\cpu1\can\CCS directory. Note that the
exact path would depend on the version of C2000ware installed in your computer.

Figure 4-1. Directory Containing the .projectspec Files
2. Make a copy of an existing .projectspec file. For example, suppose you want to create a new project

called can_ex4_simple_transmit. Start by making a copy of can_ex1_loopback.projectspec and rename it as
can_ex4_simple_transmit.projectspec.

3. Open can_ex4_simple_transmit.projectspec and replace the two instances of can_ex1_loopback with
can_ex4_simple_transmit, the name of the new testcase.

4. In the C:\ti\c2000\C2000Ware_1_00_05_00\driverlib\f2837xd\examples\cpu1\can directory, make a copy of
the can_ex1_loopback.c file and rename it as can_ex4_simple_transmit.c. This is very important because
when the .projectspec file is imported into Code Composer Studio™, it copies the new file into the target
directory when it executes the following statement: <file action="copy" path="../can_ex4_simple_transmit.c"
targetDirectory="" />.

5. Import the can_ex4_simple_transmit.projectspec file into CCS. Note that the
project directories are created under C:\Users\Your_name\workspace_v8, not in:
\ti\c2000\C2000Ware_1_00_05_00\driverlib\f2837xd\examples\cpu1\can.

Figure 4-2. Project Directories in CCS Workspace

Helpful Migration and Project Execution Tips www.ti.com

12 Programming Examples and Debug Strategies for the DCAN Module SPRACE5A – MAY 2019 – REVISED MAY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACE5A&partnum=

4.3 How to Get Visibility Into Driverlib Files
While single-stepping through the test cases, if the code calls a function in a Driverlib file, CCS may display an
error message as shown in Figure 4-3.

Figure 4-3. CCS Error Message

If this happens, click on “Locate File” and point to the Driverlib directory. For example, C:\Users\
Your_name\workspace_v7\can_ex2_loopback_interrupts\ device\driverlib.

4.4 Migrating From eCAN
This section provides some helpful hints if you are migrating from the eCAN module to the DCAN module. DCAN
follows a very different register structure compared to eCAN and hence code written for one module cannot be
migrated to another. The following section highlights the differences, but also illustrates the functional similarities
between the two modules.

The following features are available in DCAN that are not available in eCAN:

• Parity check mechanism for all RAM modules.
• Automatic Retransmission (upon loss of arbitration) can be disabled.
• Silent mode (Node listens passively).
• Mailbox RAM may be combined to form FIFO buffers.
• Data can be monitored on CANTX pin in self-test mode.

The following are the features that are available in eCAN that are not available in DCAN:

• Timestamping of messages.
• Transmission priority configuration (TPL).
• Data-byte order configuration (DBO).
• Direct access to the mailbox RAM by the CPU - In DCAN, mailbox RAM is accessed through the Interface

(IFx) registers. The IFx registers may be thought of as a "window" through which the mailbox RAM is
accessed.

www.ti.com Helpful Migration and Project Execution Tips

SPRACE5A – MAY 2019 – REVISED MAY 2021
Submit Document Feedback

Programming Examples and Debug Strategies for the DCAN Module 13

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACE5A&partnum=

Table 4-2 shows the equivalent registers and bit-fields in eCAN and DCAN and also some functional differences.

Table 4-2. eCAN-DCAN Registers and Bits Equivalence
Function eCAN DCAN Comments
CAN module software reset bit CANMC.SRES CAN_CTL.SWR

Automatic bus-on (after bus-off) CANMC.ABO CAN_CTL.ABO

Self-test mode CANMC.STM CAN_CTL.Test Further selection needed for
DCAN in CAN_TEST register

Configuration mode CANMC.CCR CAN_CTL.Init

Configuration mode enabled CANES.CCE CAN_CTL.CCE

Mailbox interrupt source CANGIFx.MIVy CAN_INT.INTnID

Interrupt line selection (for
mailbox)

CANMIL CAN_IP_MUX21

Interrupt line selection (for error &
status)

CANGIM.GIL Hardwired to CANINT0

CAN to PIE interrupt line0 enable CANGIM.I0EN CAN_CTL.IE0

CAN to PIE interrupt line1 enable CANGIM.I1EN CAN_CTL.IE1

Transmit Error Counter CANTEC.TEC CAN_ERRC.TEC

Receive Error Counter CANREC.REC CAN_ERRC.REC

Bus-off status CANES.BO CANES.Boff

Early warning (TEC or REC = 96) CANES.EW CANES.EWarn

Error passive CANES.EP CANES.EPass

Acceptance mask register LAM CAN_IFxMSK

Acceptance mask filter for a
Mailbox

LAM.LAM CAN_IFnMSK.Msk Mask bit behavior is opposite

Mailbox message-ID register MSGID CAN_IF1ARB

Mailbox enable or disable CANME.MEn CAN_IFnARB.MsgVal In DCAN, MBX can remain
"enabled" while configuring the
MSGID.

Extended Identifier MSGID.IDE CAN_IFxARB.Xtd

Mailbox direction CANMD.MDn CAN_IFxARB.Dir

Message ID MSGID.ID CAN_IFxARB.Id

Lost message indication CANRML.RMLn CAN_IFxMCTL.MsgLst

Transmission request CANTRS.TRSn CAN_IFxMCTL.TxRqst

of bytes in a frame MSGCTRL.DLC CAN_IFxMCTL.DLC

Transmit or Receive priority Higher numbered MBX has
priority

Lower numbered MBX has
priority

Enabling/disabling interrupts for a
specific mailbox

CANMIM IFnMCTL.TxIE or IFnMCTL.RxIE

4.5 Configuring the CANBTR Register
In this section, the usage of the various bit-fields in the CANBTR register is illustrated.

The formula for bit-rate is:

�

u �

CAN module input clock
Bit rate

BRP Bit time
(1)

Where BRP is the value of (BRPreg + 1) and Bit-time = (TSEG1reg + 1) + (TSEG2reg + 1) + 1

In the above equations BRPreg , TESG1reg and TSEG2reg represent the actual values written in the
corresponding fields in the CANBTR register. The parameters TSEG1reg, TSEG2reg, SJWreg, and BRPreg are
automatically enhanced by 1 when the CAN module accesses these parameters. If the BRPE field is used, it
should be concatenated with the BRP field.

Helpful Migration and Project Execution Tips www.ti.com

14 Programming Examples and Debug Strategies for the DCAN Module SPRACE5A – MAY 2019 – REVISED MAY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACE5A&partnum=

Example 1

Assume the following parameters are desired with a CAN module clock of 200 MHz:

Bit-rate = 500 kbps, SJW = 4, TSEG1 = 9 & TSEG2 = 6.

This is achieved by writing a value of 0x000058D8 in the CANBTR register. Here, TSEG1reg = 8, TSEG2reg = 5,
SJWreg = 3, and BRPreg = 24

Effective BRP value = (BRPreg + 1) = 25

Effective TSEG1 value = (TSEG1reg + 1) = 9

Effective TSEG2 value = (TSEG2reg + 1) = 6

Effective SJW value = (SJWreg + 1) = 4

Bit-time = (TSEG1reg + 1) + (TSEG2reg + 1) + 1 = 16

Plugging these numbers into the bit-rate equation:

200
500

25 16
�

u

 MHz
Bit rate kbps

(2)

Example 2

Assume the following parameters are desired with a CAN module clock of 200 MHz:

Bit-rate = 50 kbps, SJW = 4, TSEG1 = 9 & TSEG2 = 6.

This is achieved by writing a value of 0x000358F9 in the CANBTR register. Here, TSEG1reg = 8, TSEG2reg =
5, SJWreg = 3, BRPE = 11b , BRP = 111001b. Effective BRPreg = 11111001b (249). Note that BRPE field is
concatenated with the BRP field.

Effective BRP value = (BRPreg + 1) = 250

Effective TSEG1 value = (TSEG1reg + 1) = 9

Effective TSEG2 value = (TSEG2reg + 1) = 6

Effective SJW value = (SJWreg + 1) = 4

Bit-time = (TSEG1reg + 1) + (TSEG2reg + 1) + 1 = 16

Plugging these numbers into the bit-rate equation:

200
50

250 16
�

u

 MHz
Bit rate kbps

(3)

5 References
• Texas Instruments: Introduction to the Controller Area Network (CAN)
• Texas Instruments: Controller Area Network Physical Layer Requirements
• Texas Instruments: Basics of Debugging the Controller Area Network (CAN) Physical Layer
• Texas Instruments: Calculator for CAN Bit Timing Parameters
• Texas Instruments: Overview of 3.3V CAN (Controller Area Network) Transceivers
• Texas Instruments: Simplify CAN Bus Implementations With Chokeless Transceivers
• Texas Instruments: Critical Spacing of CAN Bus Connections
• Texas Instruments: Improved CAN Network Security with TI’s SN65HVD1050 Transceiver
• Texas Instruments: Message Priority Inversion on a CAN Bus
• Texas Instruments: Piccolo MCU CAN Module Operation Using the On-Chip Zero-Pin Oscillator
• Texas Instruments: C2000 Real-Time Control Peripherals Reference Guide
• Texas Instruments: Programming Examples for the TMS320x28xx eCAN

www.ti.com References

SPRACE5A – MAY 2019 – REVISED MAY 2021
Submit Document Feedback

Programming Examples and Debug Strategies for the DCAN Module 15

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com/lit/pdf/SLOA101
https://www.ti.com/lit/pdf/SLLA270
https://www.ti.com/lit/pdf/SLYT529
https://www.ti.com/lit/pdf/SPRAC35
https://www.ti.com/lit/pdf/SLLA337
https://www.ti.com/lit/pdf/SLLY020
https://www.ti.com/lit/pdf/SLLA279
https://www.ti.com/lit/pdf/SLYT249
https://www.ti.com/lit/pdf/SLYT325
https://www.ti.com/lit/pdf/SPRABI7
https://www.ti.com/lit/pdf/SPRU566
https://www.ti.com/lit/pdf/SPRA876
https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACE5A&partnum=

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision * (May 2019) to Revision A (May 2021) Page
• Updated the numbering format for tables, figures and cross-references throughout the document...................3
• Updates were made in Section 2..3
• Updates were made in Section 4.4...13

Revision History www.ti.com

16 Programming Examples and Debug Strategies for the DCAN Module SPRACE5A – MAY 2019 – REVISED MAY 2021
Submit Document Feedback

Copyright © 2021 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACE5A&partnum=

IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,
costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2021, Texas Instruments Incorporated

https://www.ti.com/legal/termsofsale.html
https://www.ti.com

	Table of Contents
	1 Introduction
	1.1 TMS320F28xx DCAN Features

	2 Program Descriptions
	3 Debug and Design Tips to Resolve/Avoid CAN Communication Issues
	3.1 Minimum Number of Nodes Required
	3.2 Why a Transceiver is Needed
	3.3 Debug Checklist
	3.3.1 Programming Issues
	3.3.2 Physical Layer Issues
	3.3.3 Hardware Debug Tips

	4 Helpful Migration and Project Execution Tips
	4.1 GPIO Reconfiguration
	4.1.1 How to Change the GPIO Assignment for the CAN Pins

	4.2 How to Duplicate (clone) an Existing Project
	4.3 How to Get Visibility Into Driverlib Files
	4.4 Migrating From eCAN
	4.5 Configuring the CANBTR Register

	5 References
	Revision History

