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ABSTRACT

The key to real-time control is reduced latency of performing sensing, processing and actuation defined 
together as the real-time signal chain. Many software benchmarks only focus on the processing aspect 
typically expressed in million instructions per second (MIPS), without full regard for the interaction between 
peripherals, CPU, and co-processors. Such benchmarks do not provide a full view of the real-time performance 
capabilities of a system. This application note describes a real-time benchmark created around a real world 
control application that highlights the intricacies of real-time control and the need for this more comprehensive 
benchmarking approach. The data from the real-time benchmark provides an insight into features of the C2000™ 

control MCUs that make it an excellent platform for real-time control applications.
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1 Introduction
A real-time benchmark gives a holistic view of signal chain performance. As illustrated in Figure 1-1, this 
includes interrupt response time, context save overhead, peripheral reads and writes along with control 
algorithms, all of which together compose a real-time control operation.

Figure 1-1. Real-Time Signal Chain

The C2000 architecture has unique capabilities that make it a microcontroller optimized for real-time control by 
minimizing the sample to output time. The benchmarking in this document demonstrates these C2000 features.

2 ACI Motor Control Benchmark Application
The ACI Motor Control Benchmark simulates the sensorless AC induction motor control application. The 
application performs all the typical operations: analog-to-digital converter (ADC) reads for sensing phase 
currents, transform blocks that operate on the sensed current and PWM writes to control phase voltages. No 
special external hardware is needed to provide stimulus as the application has a block of code that models the 
behavior of an induction motor. To simulate closed loop behavior, the expected current from the motor model is 
fed into the ADC via the DAC modules. A single ADC is configured to sense the phase A and phase B currents 
via two channels sequentially. Phase C current is not sensed as it can be derived from phase A and phase B 
currents. Three PWM writes simulate control of duty cycle of the three phase A, B and C voltages. Figure 2-1 
represents the execution blocks in the control loop interrupt routine of the benchmark application. The control 
loop interrupt is triggered at a rate of 2 KHz and 1024 iterations of the control loop interrupt routine are executed 
before the application terminates.

In this block diagram, the dark gray blocks represent the peripheral accesses, the light gray blocks represent the 
control algorithms and the white blocks represent the code blocks that are not part of a real ACI motor control 
application but are used in the benchmark for simulating the behavior of the motor.

Figure 2-1. ACI Motor Benchmark Application Block Diagram
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2.1 Source Code
The software benchmark example is available in C2000Ware.

• C28x CPU benchmark available in C2000Ware version 3.04.00.00 onwards
• CLA accelerator benchmark available in C2000Ware version 4.00.00.00 onwards.

The example can be found at the following location within the C2000Ware installation.

<C2000Ware>\examples\demos\benchmark\aci_motor_benchmark

The top level folders are:

• common
• device_support
• f28004x
• f2837x

The source code is located in the 'common' and 'device_support' folders. The 'common' folder contains device 
independent code such as transform algorithms, motor modeling code, and so forth. The 'device_support' folder 
contains code that is specific to the particular device such as device configuration, peripheral read/write. and so 
forth within sub folders named for that device.

The application is supported in Code Composer Studio™ (CCS) for TMS320F28004x and TMS320F2837x 
devices and can be executed on TMS320F28004x Launchpad as well as TMS320F2837x Launchpad. The 
respective CCS projects are located in the sub-folder 'ccs' within the 'f28004x' and 'f2837x' top level folders.

The application has multiple implementation variants; one variant uses the math engine Trigonometric Math 
Unit (TMU) for performing trigonometric calculations needed by the Park, Inverse Park and Flux Estimator 
control algorithms, the other variant uses a software library called FastRTS to perform the trigonometric 
calculations. The FastRTS library is included in C2000Ware, the library and documentation can be found at 
<C2000Ware>\libraries\math\FPUfastRTS\c28\. The goal with these two variants is to show the performance 
boost the math engine TMU can provide as compared to a software library based implementation.

Another set of implementation variants involve the CLA. One variant is with the C28x CPU offloading part of the 
compute to CLA and another variant is with the benchmarking control code executing entirely from CLA only The 
goal of these two variants is to show how CLA can be used to aid in meeting real-time goals.

2.2 CCS Project for TMS320F28004x
The project can be imported in CCS using "Import Project" option and selecting the project located at 
'f28004x\ccs'. The project comes with several pre-defined build configurations. Once the project is imported, 
the project can be built for these different build configurations that are described below:

• SignalChain_RAM_TMU:The application compiles for the full signal chain executing out of RAM using the 
TMU instructions for control algorithms like Park and Inverse Park that use trigonometric math. The build 
setting is controlled by the defines SIGNAL_CHAIN=1 and USE_FAST_TRIG_LIB=0.

• SignalChain_FLASH_TMU: The application compiles for the full signal chain similar to the 
SignalChain_RAM_TMU except that it executes out of FLASH. The build setting is controlled by the defines 
SIGNAL_CHAIN=1, USE_FAST_TRIG_LIB=0 and _FLASH.

• SignalChain_RAM_FastRTS: The application compiles for the full signal chain executing out of RAM using 
the FastRTS library instead of TMU for control algorithms like Park, Inverse Park that use trigonometric math. 
The build setting is controlled by the defines SIGNAL_CHAIN=1 and USE_FAST_TRIG_LIB=1.

• SignalChain_FLASH_FastRTS: The application compiles for the full signal chain similar to the 
SignalChain_RAM_FastRTS except that it executes out of Flash. The build setting is controlled by the defines 
SIGNAL_CHAIN=1, USE_FAST_TRIG_LIB=1 and _FLASH.

• ControlAlgo_RAM_TMU: The application compiles for just the control algorithm and not the full signal chain, 
that is, peripherals are not configured and interrupts are not generated in this build configuration. This can 
be used as a starting point for porting this application to other devices. The build setting is controlled by the 
defines SIGNAL_CHAIN=0 and USE_FAST_TRIG_LIB=0.

ACI Motor Control Benchmark Application www.ti.com
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• SignalChain_RAM_TMU_CLA_OFFLOAD: The application compiles for the full signal chain executing 
out of RAM using the TMU instructions for control algorithms like Park and Inverse Park that use 
trigonometric math on the C28x CPU side. The C28x CPU offloads some of the control code compute to 
CLA resulting in parallelized execution. The build setting is controlled by the defines SIGNAL_CHAIN=1, 
USE_FAST_TRIG_LIB=0 and CLA_OFFLOAD.

• SignalChain_FLASH_TMU_CLA_OFFLOAD: The application compiles for the full signal chain similar to 
the SignalChain_RAM_TMU except that the C28x CPU code executes out of FLASH. The build setting is 
controlled by the defines SIGNAL_CHAIN=1, USE_FAST_TRIG_LIB=0, CLA_OFFLOAD and _FLASH.

• SignalChain_RAM_CLAmath_CLA: The application compiles for the full signal chain executing out of RAM 
from CLA using the CLAmath library for control algorithms like Park and Inverse Park that use trigonometric 
math as unlike C28x CPU, the CLA accelerator does not have a TMU. The build setting is controlled by the 
defines SIGNAL_CHAIN=1, USE_FAST_TRIG_LIB=0 and CLA_CPU.

Once the application is built, load the application to the target and select the run option in CCS to execute the 
application.

The data from the seven SignalChain build configurations are used in this application report to compare TMU vs 
FastRTS execution, RAM vs Flash execution and CLA execution.

2.3 CCS Project for TMS320F2837x
The project can be imported in CCS using "Import Project" option and selecting the project located at 'f287x\ccs'. 
The project comes with several pre-defined build configurations. Once the project is imported, the project can be 
built for different build configurations which are described below:

• SignalChain_RAM_TMU: The application compiles for the full signal chain executing out of RAM using the 
TMU instructions for control algorithms like Park, Inverse Park that use trigonometric math. The build setting 
is controlled by the defines SIGNAL_CHAIN=1 and USE_FAST_TRIG_LIB=0.

• SignalChain_FLASH_TMU: The application compiles for the full signal chain similar to the 
SignalChain_RAM_TMU except that it executes out of Flash. The build setting is controlled by the defines 
SIGNAL_CHAIN=1, USE_FAST_TRIG_LIB=0 and _FLASH.

• SignalChain_RAM_TMU_CLA_OFFLOAD: The application compiles for the full signal chain executing 
out of RAM using the TMU instructions for control algorithms like Park and Inverse Park that use 
trigonometric math on the C28x CPU side. The C28x CPU offloads some of the control code compute to 
CLA resulting in parallelized execution. The build setting is controlled by the defines SIGNAL_CHAIN=1, 
USE_FAST_TRIG_LIB=0 and CLA_OFFLOAD.

• SignalChain_FLASH_TMU_CLA_OFFLOAD: The application compiles for the full signal chain similar to 
the SignalChain_RAM_TMU except that the C28x CPU code executes out of FLASH. The build setting is 
controlled by the defines SIGNAL_CHAIN=1, USE_FAST_TRIG_LIB=0, CLA_OFFLOAD and _FLASH.

• SignalChain_RAM_CLAmath_CLA: The application compiles for the full signal chain executing out of RAM 
from CLA using the CLAmath library for control algorithms like Park and Inverse Park that use trigonometric 
math as unlike C28x CPU, the CLA accelerator does not have a TMU. The build setting is controlled by the 
defines SIGNAL_CHAIN=1, USE_FAST_TRIG_LIB=0 and CLA_CPU.

Once the application is built, go into CCS menu option 'Tools->Debugger Options->Auto Run and Launch 
Options' and uncheck 'On program load or restart' option for 'Auto run to main symbol'. This is needed because 
there are limited breakpoints on this device and the printf messages in the application use CIO that requires the 
use of the break point resources. So, the Auto run to main option needs to be disabled for the application to work 
correctly. Load the application and select the run option to execute the application.

The data from the five build configurations are used in this application report to compare RAM vs Flash 
execution as F2837x has a different and better performing Flash than F28004x and to understand CLA 
execution.
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2.4 Validate Application Behavior
The application executes the control loop for 1024 iterations before terminating. The application saves the 
alpha phase current as well as the per unit motor speed for each execution iteration in buffers DLogCh1 and 
DLogCh2. These saved values can be plotted in the graphical view in CCS. The profiles of these plots are 
similar to what would be generated in a real sensorless AC induction motor application. To check that the 
application has executed correctly, halt the target after the test completes and then graph the saved values by 
opening 'Tools->Graph->Dual Time', click on 'Import' and select the graph properties file 'aci.graphProp' located 
in top level folder 'f28004x'. The same graph properties file can also be used for any of the build configuration 
applications executing on TMS320F28004x or TMS32F2337x target. The alpha phase current is plotted in 
DualTimeA graph and the per unit motor speed in DualTimeB graph. The X axis has a data point for each of the 
1024 samples and the Y axis has the respective values for each of the data points. The profile of the graphs 
should be similar to Figure 2-2 with the alpha current taking on a sinusoidal-like pattern and the motor speed 
converging to the expected value of 0.5 units.

Figure 2-2. Graphical View of Alpha Phase Current (DualTimeA) and Per Unit Motor Speed (DualTimeB)
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2.5 Benchmarking Methodology
The application uses a timer counter and a PWM counter to benchmark various parts of the application in 
cycle counts. As such, no external hardware like a scope is needed for measuring the benchmark results. The 
benchmark data is collected for each of the 1024 control loop execution iterations and output on the console 
window by printf messages in the application. The device type, CPU clock frequency and RAM or Flash (with 
wait state) execution information is output along with cycle counts (avg, max, min) for each of the application 
execution blocks. Figure 2-3 shows a sample output of execution on F28004x from RAM with TMU.

Figure 2-3. ACI Motor Benchmarking Output
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2.5.1 Details of Benchmarking With Counters

Real-time benchmarking requires measuring performance along different phases of the signal chain. As 
indicated in Figure 2-4, this can be largely broken up into three parts: hardware response, compiler generated 
context save and user code inside the interrupt service routine(ISR).

Figure 2-4. Real-Time Benchmarking Phases

Measuring execution inside the ISR is a straightforward task. The timer peripheral can be used to benchmark 
code inside the ISR by inserting pieces of code that read the timer counter before and after a block of code 
and calculating the difference. The application measures the control code and the ADC read and PWM writes 
using this method. This approach however is not possible for the compiler generated context save and for the 
hardware response measurement.

In this particular application, the PWM is used to trigger ADC sampling when the PWM counter reaches a certain 
value (timebase period) and the ADC in turn generates an interrupt when sampling completes. While it is not 
possible to measure the hardware response and the compiler generated context save separately, they can be 
measured together by reading the PWM counter as the first operation inside the ISR code and calculating the 
difference between the PWM value read and the PWM value when ADC sampling was triggered. This is the 
method by which the application measures the INT response (hardware response + compiler context save).

2.6 ERAD Module for Profiling Application
The F28004x devices have a hardware module called ERAD (Embedded Real-time Analysis and Diagnostics) 
which has comparators and counters that can be used for profiling applications. The 'f28004x' directory contains 
a script called 'aci_stats_using_erad.js' that demonstrates how the ERAD can be used non-intrusively and 
without modifying the application to measure and analyze application execution. The script can be used to 
verify the number of times the interrupt was taken (should be 1024) and also serves as an example of 
how ERAD can be used to measure execution cycles from ADC interrupt generation to ISR entry, and ISR 
user code execution. This script is only provided for ERAD demonstration and application validation purpose. 
Measurements generated by this script are not used in the real-time benchmarking analysis in this document.

Note
The script only works as is for the F28004x SignalChain_RAM_TMU configuration. The script needs to 
be modified to benchmark an application built for another configuration as the ISR addresses profiled 
in the script are hard coded for the "SignalChain_RAM_TMU" configuration build.

ACI Motor Control Benchmark Application www.ti.com
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Follow these steps to use the script:

1. Load the application compiled for 'SignalChain_RAM_TMU' configuration to the target.
2. Open Scripting Console view in CCS.
3. Start the script by typing the following command:

loadJSFile 
"C:\TI\c2000\C2000Ware_3_04_00_00\examples\demos\benchmark\aci_motor_benchmark\f
28004x\aci_stats_using_erad.js"

4. The script will print out the initial measurement that is 0 for all.
5. Run the target and once the test completes halt the target.
6. Upon halting the target the script will output the captured measurements.

Figure 2-5 shows the output from the script.

Figure 2-5. Script Output With Application Stats Profiled by ERAD

Note
The ERAD module measures the "INT to ISR cycle count" that cycles from ADC interrupt generation 
to ISR entry. This does not account for the ADC sampling and ADC trigger times that are included in 
the "INT response (trigger to ISR) cycle count" measured by the application code. Hence, the "INT to 
ISR cycle count" measured by ERAD script is less than the "INT response (trigger to ISR) cycle count" 
measured by the application code by ~10 cycles, which is equal to the ADC sampling and trigger 
duration.

3 Real-time Benchmark Data Analysis
As described in previous sections, the application has code that profiles different parts of the signal chain 
and outputs the measured execution in cycle counts to the console. An analysis of these numbers will reveal 
features of the C2000 architecture that make it optimized for real-time control. The analysis will also reveal the 
importance of a real-time benchmarking approach to truly assess a system for its real-time performance.

Note
The benchmarking data for TI C2000 devices presented in this chapter was gathered using application 
released in C2000Ware v3.04.00.00 in 2021 and executed on TMS320F280049C Launchpad 
and TMS320F28379D Launchpad. The application was executed using Code Composer Studio 
v10.1.0.00010 and compiled with TI v20.2.1.LTS compiler with optimization set to the recommended 
level - 2 (Global optimizations) and optimized for speed - 5. The application was compiled in COFF 
format.
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3.1 ADC Interrupt Response Latency
Interrupt latency is an important factor in understanding the response time of a real-time system. The typical 
method by which interrupt latency of a system is assessed is the number of cycles it takes for the hardware to 
respond to an interrupt and branch to the interrupt vector (hardware latch and respond). However, in a real-time 
application this is only part of the response latency.

Consider the sensorless ACI motor benchmark application, the PWM triggers the ADC to initiate sampling. The 
ADC takes a certain number of cycles to finish sampling or conversion, which is dependent on the system 
configuration as well as ADC capability. Once the ADC is ready it generates an interrupt. In the ACI motor 
benchmark the ADC is configured for early interrupt generation where the interrupt is generated after sampling 
completes and just as conversion starts instead of at the end of conversion. Once the ADC generates the 
interrupt, the hardware responds to the interrupt and branches to the interrupt vector. However, the interrupt 
service routine does not start executing user code right away but before that can happen some compiler 
generated context save must be performed and then the user code is executed.

In effect, as illustrated in the Figure 3-1, the real interrupt latency is an aggregate of four components: trigger 
delay + ADC sampling duration + hardware latch and respond + compiler generated context save.

Figure 3-1. ACI Motor Benchmark Interrupt Response Components

The ACI real-time benchmark outputs this value as "INT Response (trigger to ISR entry)". As can be seen 
in Figure 3-2, the C28x INT response time on an average is 49 cycles and represents the real latency for 
when an application can start responding to a sensing event for the sensorless ACI motor example. Traditional 
benchmarks do not measure the system in this fashion. The variance in the INT response cycles between the 
Min and Max value is expected as there may be additional cycles needed to complete an ongoing background 
instruction before the asynchronous interrupt event can be taken by the CPU.

Figure 3-2. ACI Motor Benchmark Interrupt Response Benchmark Data
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Table 3-1 lists a theoretical estimate of the contribution of each individual element and as can be seen the total 
cycles aligns with the minimum cycles benchmarked by the application.

Table 3-1. Theoretical Estimate of F28004x ADC INT Response Duration

Trigger Delay (1)
ADC Sampling Duration 

(2)
HW Latch and 
Response(3) Compiler Context Save(4) Total (cycles)

2 8 14 23 47

(1) From ADC timing diagram in device-specific data sheet.
(2) Configured by application per device-specific data sheet recommendation.
(3) From peripheral interrupt description in device-specific TRM.
(4) Derived from inspecting generated code and calculating cycles.

A look at the individual components that contribute to the total cycles shows that the PWM and ADC are closely 
integrated and the trigger delay contributes to few additional cycles. The ADC early interrupt generation feature 
allows the ADC conversion to proceed in parallel while the system is responding to the interrupt. This allows the 
conversion cycles to overlap with the interrupt generation and compiler context save cycles, thus reducing the 
overall time required for responding to the ADC sampling event. In comparison, for any other system that does 
not have the ADC early interrupt generation feature, the interrupt response will include the conversion cycles 
thus increasing the overall response time. The other advantage of this feature is that ADC result can be applied 
to the system closer in time to when it was sampled resulting in more accurate system control.

3.2 Peripheral Access
The ACI real-time benchmark has two peripheral access responses: ADC read and convert to float as well as 
PWM write. For the response times for each of these operations, see Figure 3-3.

Figure 3-3. ACI Motor Benchmark Peripheral Access Benchmark Data

In this particular implementation, only two ADC inputs are being read and three PWM outputs are being written. 
As can be seen in Table 3-2, in other practical applications involving motor control or digital power the number of 
these operations can be larger and can have a bigger impact on the execution duration of a control application.

In the C2000 architecture the CPU is closely integrated with the peripherals and the instruction set architecture is 
optimized for floating point operations. From the benchmark data in Table 3-3, it can be derived that it takes only 
~2 cycles to read one ADC input and convert it to float and just ~3 cycles to write one PWM output. As such, 
C2000 architecture can effectively scale to applications with large number of peripheral accesses.

www.ti.com Real-time Benchmark Data Analysis

SPRACW5A – APRIL 2021 – REVISED DECEMBER 2021
Submit Document Feedback

Real-time Benchmarks Showcasing C2000™ Control MCU's Optimized Signal 
Chain

11

Copyright © 2022 Texas Instruments Incorporated

https://www.ti.com
https://www.ti.com/lit/pdf/SPRACW5
https://www.ti.com/feedbackform/techdocfeedback?litnum=SPRACW5A&partnum=


Table 3-2 captures the estimated cycles for some real control applications based on the benchmarking data.

Table 3-2. Estimated Peripheral Access Cycles for Real Control Applications
Application Number of ADC Reads Number of PWM Writes Estimated Total Cycles

3 Phase AC
motor control application

7 3 23 (1)

Totem-pole PFC digital power 
application

10 9 47 (2)

(1) 7 ADC reads (2 cycles each) + 3 PWM writes (3 cycles each) = (7 x 2) + (3 x 3) = 23
(2) 10 ADC reads (2 cycles each) + 9 PWM writes (3 cycles each) = (10 X 2) + (9 X 3) = 47

3.3 TMU (math enhancement) Impact
Many C2000 targets have a math extension called Trigonometric Math Unit (TMU) ,which is an extension 
of the Floating-Point Unit (FPU) and enhances the instruction set of the C28x+FPU by efficiently executing 
trigonometric and arithmetic operations that are commonly used in control system applications.

The ACI motor control application has control algorithms: Park, Inverse Park and Flux estimator that 
involve trigonometric math. To demonstrate the impact that the TMU can make, the F28004x has two build 
configurations SignalChain_RAM_TMU and SignalChain_RAM_FastRTS.

In the following figures, Figure 3-4 shows the execution time derived from the benchmark cycles data and Figure 
3-5 shows application size (code and data) for the control code (driver libraries and runtime are excluded) as 
indicated in the compiler tools generated linker map file, for each of the two configurations.

Figure 3-4. Control Loop Execution Time Out of 
RAM With TMU and FastRTS Figure 3-5. Application Size Compiled for TMU and 

FastRTS

The data in the graphs show that the TMU has a two-fold impact:

• Faster Execution Time: The execution of the application becomes faster by 28%.
• Smaller Application Size: A typical trigonometric implementation involves lookup tables and floating-point 

computations to calculate common trigonometric operations. The TMU provides instructions for these 
trigonometric operations and eliminates both the lookup tables and complex floating point code. This 
translates into smaller application size allowing smaller memory devices with TMU to be able to support 
the application. In this particular example the application size reduces by 14%.
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3.4 Flash Performance
Many applications are configured to execute out of flash. As such flash performance is a critical criteria for 
measuring the capability of a real-time system. Typical benchmarks compute flash efficiency by executing 
synthetic code that may not reveal performance when executing a control application with its combinations of 
non-linear code flow, data tables and peripheral accesses.

The F28004x and F2837x have two build configurations: 'SignalChain_RAM_TMU' and 
'SignalChain_FLASH_TMU'. The execution time for these configurations are displayed in Figure 3-6 and Figure 
3-7.

Figure 3-6. TMS320F28004x Execution Time From RAM and Flash

Figure 3-7. TMS320F2837x Execution Time From RAM and Flash

The flash performance as derived from the total average execution cycles benchmark data is listed in Table 3-3.
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Table 3-3. Flash Execution Performance Compared to RAM

RAM Execution (cycles) Flash Execution (cycles)

Flash Relative 
Performance
(RAM_cycles * 100 / 
Flash_cycles) Flash Technology

TMS320F28004x 529 648 82% • 100 MHz CPU Clock
• 20 MHz Flash Speed
• 4 Wait States

TMS320F2837x 537 582 92% • 200 MHz CPU Clock
• 50 MHz Flash Speed
• 3 Wait States

As can be seen by the data in the table, the flash performance of C2000 devices for a real world application like 
ACI motor control is very good (~80-90%) when compared to the RAM performance.

3.5 Control Law Accelerator (CLA)
The CLA is a task driven fully-programmable independent 32-bit floating-point hardware accelerator that is 
designed for math intensive computations. The CLA also has access to control peripherals like ADC and PWM. 
The CLA supports eight hardware tasks. A hardware task can be initiated by the C28x CPU or by a control 
peripheral. More details on CLA can be found in the documentation linked in the References section. These 
capabilities make the CLA a powerful ally in achieving real-time system performance goals in two ways:

1. The CLA can be triggered by a peripheral and can execute the entire control loop thus freeing up the C28x 
CPU for other activities such as running communications stack and thus effectively doubling up the available 
compute power.

2. The C28x CPU can offload parts of the compute to the CLA that can reduce execution time and thus boost 
performance.

The ACI real-time benchmark has been ported to showcase both these usages of the CLA.

3.5.1 Full Signal Chain Execution on CLA

The CLA is a task driven architecture and has close integration with control peripherals. The device-specific 
TRM and data sheet have information on the peripherals that are accessible by the CLA.

The ADC can trigger a task on the CLA just like it triggers an interrupt on the C28x CPU. The CLA can also 
write to the PWM. These capabilities allow the entire ACI Signal Chain to be executed on the CLA with the ADC 
triggering the CLA task and the CLA task executing the entire control loop. While the CLA is executing the signal 
chain, the C28x CPU is idle. This demonstrates that in a more comprehensive example, the application can be 
partitioned to run the control loops from CLA and have the C28x CPU run other operations like communications 
stacks.

For the implementation, see the 'SignalChain_RAM_CLAmath_CLA' build configuration.
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Figure 3-8. ACI Motor Benchmark Output for CLA Executing Full Signal Chain

The insights from the benchmarking are detailed as follows.

3.5.1.1 CLA ADC Interrupt Response Latency

The CLA is a task driven architecture and hence does not have context save and restore overheads of a 
traditional interrupt architecture. As a result the CLA has a low interrupt latency that allows it to read the ADC 
samples "just in time". More information on this topic can be found in the CLA section of the device-specific 
TRM.

In the application, the ADC setup to trigger the CLA Task is the same as the configuration where the ADC 
triggers the C28x interrupt. Table 3-4 shows how the CLA compares to the C28x and demonstrates the low 
latency in the absence of any context save overhead.

Table 3-4. ADC Interrupt Response Latency for CLA and C28x on F28004x
Compute Core ADC Interrupt Response (cycles)
CLA 17

C28x 47

3.5.1.2 CLA Peripheral Access

The CLA is closely integrated with the ADC and PWM peripherals just like the C28x CPU. The peripheral access 
latency for CLA is similar to C28x CPU and as such the CLA is also similarly efficient. This efficiency is critical for 
control loop execution.

Table 3-5. Peripheral Access Latency for CLA and C28x on F28004x
Compute Core 2 ADC reads (cycles) 3 PWM writes (cycles)
CLA 4 6

C28x 4 9
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3.5.1.3 CLA Trigonometric Math Compute

The CLA is efficient at floating point compute. However, unlike the C28x CPU which has the TMU 
hardware accelerator, the CLA does not have a trigonometric hardware accelerator and requires a software 
implementation. The C2000Ware software package provides CLAmath library that has efficient implementation 
of trigonometric operations. In the ACI application, the CLAmath library APIs are used for Park, Inverse Park and 
Flux Estimator compute blocks that contain trigonometric operations.

Table 3-6. CLAmath Performance for F28004x
Compute Core Park/Inverse Park (cycles) Flux Estimator (cycles)
CLA 83/85 342

C28x 18/24 167

It is easy to port code created for C28x CPU utilizing TMU operations to CLA. The C28x TMU compiler intrinsics 
map to CLAmath libray functions when compiled for CLA. As such the ACI benchmark control code running on 
C28x CPU with TMU did not need to be modified to run from CLA and only required linking the CLAmath library 
and including the CLAmath.h header file.

3.5.2 Offloading Compute to CLA

The C28x CPU can software trigger a CLA task using the IACK instruction. This can be used by the C28x to 
offload computations to the CLA at specific points in the code running on the C28x CPU. The ACI benchmark 
example is fairly linear in that one control algorithm block requires an input from a previous control algorithm 
block. However there are two instances where parallelism can be introduced:

1. PID control block:

There are three instances of the PID control algorithm and one of these (PID Id instance) does not have 
dependencies on the others and can be parallelized. In the implementation, the C28x offloads the PID Id 
control execution to the CLA Task 2 while the C28x is executing the PID for Speed and Iq in parallel.

2. SVGen control block:

The SVGen control block depends on the output of the Inverse Park transform. Since this is a sensor-less 
ACI implementation additional control blocks are also present such as Flux and Speed Estimators. The 
SVGen is not dependent on these and can be parallelized with the Estimators. In the implemetation the 
C28x offloads the SVGen calculation to the CLA Task 1.

For the implementation, see the 'SignalChain_RAM_TMU_CLA_OFFLOAD' build configuration. The 
implementation demonstrates how easy it is to transition code to offload compute to the CLA. The same PID 
inline C function header file is included on the C28x source file as well as CLA source file and gets compiled into 
C28x code on C28x side and CLA code on CLA side.
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Figure 3-9. ACI Motor Benchmark Output for C28x With CLA Offloading

The opportunity to offload compute to CLA resulted in an execution cycle count reduction thus boosting 
performance by 12%.

4 C2000 Value Proposition
The ACI motor control benchmarking application is self-contained and does not require any special external 
hardware to execute. Hence, this application can be easily ported to any device to evaluate real-time control 
performance. A multi-device analysis demonstrates that the C2000 platform offers a rich feature set with an 
optimized architecture which leads to excellent performance across the real-time signal chain.

Note
1. The multi-device analysis for TI C2000 and Competition A and B devices presented in this chapter 

is based on actual measured data compiled by TI internally in 2021 with ACI motor benchmark 
example in C2000Ware 3.04.00.00 ported to these devices.

2. All of the measurements were performed by setting the tool chain to compile code for maximum 
performance/speed and operating the devices at the maximum CPU frequency.

3. The cycles/time was measured for each of the devices and the numbers were compared against 
the F28004x executing from RAM to determine relative performance. The relative performance 
is represented in each of the graphs and this is why F28004x is marked as "Reference" and is 
always 1.0.

4. In the graphs, a lower relative number indicates fewer cycles or lesser time and hence better 
performance.

5. The classification of the categories in the graph as "Entry/Mid performance" and "High 
performance" is based on TI nomenclature. The competition devices are placed in the same 
category as the TI device that competes with the competition device.
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4.1 Efficient Signal Chain Execution With Better Real-Time Response Than Higher 
Computational MIPS Devices
The ACI benchmark data reveals that C2000 devices are able to quickly respond to a sampling event and 
efficiently execute a response thus resulting in a fast sample-to-output response. This also allows for more 
available MIPS for additional operations. With a good flash execution efficiency (RAM execution time/Flash 
execution time) of 82% for F28004x (entry/mid performance device) and 92% for F2837x (high performance 
device), execution out of flash is also a viable option to meet real-time performance requirements.

* As indicated in the Note, F28004x execution from RAM is the reference.

** Best case and worse case performance numbers using faster RAM or standard RAM banks.

*** Best case and worse case performance with warm and cold cache

Figure 4-1. ACI Motor Control Benchmark Execution (relative cycles and relative time)
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4.2 Excellent Real-Time Interrupt Response With Low Latency
The C2000 devices have excellent analog peripherals. The ADCs have a fast sampling rate and early 
interrupt generation feature where in an interrupt can be triggered while the first ADC channel value in a 
sequence is still being converted. Together with an efficient interrupt architecture this translates to fewer 
cycles when responding to a trigger to an ADC sampling event.

* As indicated in the Note, F28004x execution from RAM is the reference.

Figure 4-2. ADC Interrupt Response Latency (relative cycles and relative time)
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4.3 Tight Peripheral Integration That Scales Applications With Large Number of Peripheral 
Accesses
The C2000 instruction set and tight peripheral integration make it possible to read an ADC result and convert 
to float in just 2 cycles. As such the overhead for ADC access is extremely small and hence highly scalable to 
applications with a large number of ADC accesses.

* As indicated in the Note, F28004x execution from RAM is the reference.

Figure 4-3. ADC Read and Convert to Float Efficiency (relative cycles and relative time)
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4.4 Best in Class Trigonometric Math Engine
Trigonometric operations are common in many control algorithms, Park transform is one such example. Efficient 
execution of trigonometric operations can be vital for minimizing compute duration. All Gen-3 C2000 devices 
across a wide performance range from entry/mid performance devices like F28004x to high performance 
devices like F2837x have a trigonometric math engine called Trigonometric Math Unit (TMU). The TMU 
extends the instruction set for trigonometric operations. With an easy to use programming model through the 
support of compiler intrinsics, it is easy to apply the performance boost of the TMU to real-time control algorithms 
executing on C2000 devices.

* As indicated in the Note, F28004x execution from RAM is the reference.

Figure 4-4. Park Transform With Trigonometric Math Engine (relative cycles and relative time)
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4.5 Versatile Performance Boosting Compute Engine (CLA)
Many C2000 devices have a CLA (Control Law Accelerator) which runs at the same frequency as the C28x CPU 
and can be utilized in two different ways to achieve real-time application goals.

• CLA executing full signal chain - CLA executing independent of C28x CPU, freeing up C28x CPU for other 
activities and effectively doubling the available MIPS.

• C28x CPU offloading compute to CLA - parallelism resulting in better execution performance by reducing the 
sample to output response time.

* As indicated in the Note, F28004x execution from RAM is the reference.

CLA runs from RAM only and hence does not have a Flash execution data point.

Figure 4-5. ACI Motor Control Benchmark CLA Execution (relative cycles and relative time)
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4.6 Deterministic Execution due to Low Execution Variance
Deterministic execution is highly desired for real-time systems. The C2000 family of devices have tiny prefetch 
buffers for improving Flash execution but do not have any caches. While caches can improve performance, they 
can also introduce a large variance in execution duration due to cache operations resulting from cache misses 
and coherency operations. The C2000 devices perform well without caches and in turn also allow deterministic 
execution with a low execution variance.

* F2837x execution from Flash is the reference.

Figure 4-6. ACI Motor Control Benchmark Execution Variance from Flash (relative cycles and relative 
time)
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5 Summary
This application note demonstrates that typical industry software benchmarks that focus on processing time 
alone do not effectively convey the true performance of a system when executing real-time control applications. 
Real-time benchmarking approach gives a more comprehensive and realistic picture of the real-time capabilities 
of a system. For example, the ACI motor benchmark data for F28004x device with TMU execution from 
RAM shows that the non-control-algorithm components (INT response + Read ADC + Write PWM) contribute 
about 12% of the total signal chain execution duration which would be unaccounted for in a typical software 
benchmark. This percentage will vary for different devices depending on the architecture and analog capabilities 
and can be higher for a device where the peripheral accesses or ADC sampling takes longer as well as for other 
real-time control applications with a greater number of peripheral accesses.

The real-time benchmarking data in this application note showcases the differentiated features of the C2000 
architecture such as tight peripheral integration, ADC early interrupt feature, optimized instruction set with math 
enhancement like TMU and efficient flash technology that together help reduce the sample to output response 
time and thus make the C2000 MCUs highly optimized for real-time control applications.

6 References
• Texas Instruments: TMS320F28004x Microcontrollers Technical Reference Manual
• Texas Instruments: TMS320F28004x Microcontrollers Data Sheet
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• Texas Instruments: TMU additional details - Enhancing the Computational Performance of the C2000™ 

Microcontroller Family
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