Universal Multifrequency
Tone Detector (UMTD) Algorithm
User’s Guide

SPIRIT CORP

Www.spiritDSP.com/CST ’

DSP Software Source

Literature Number: SPRU638
March 2003

Q’ TeEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (T1) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI's terms
and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in accor-
dance with TI's standard warranty. Testing and other quality control techniques are used to the extent Tl deems
necessary to support this warranty. Except where mandated by government requirements, testing of all parame-
ters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using Tl components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any Tl patent right,
copyright, mask work right, or other Tl intellectual property right relating to any combination, machine, or process
in which Tl products or services are used. Information published by Tl regarding third-party products or services
does not constitute a license from Tl to use such products or services or a warranty or endorsement thereof. Use
of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without alter-
ation and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this
information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such
altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that
product or service voids all express and any implied warranties for the associated Tl product or service and is an
unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Mailing Address:
Texas Instruments

Post Office Box 655303
Dallas, Texas 75265

Copyright 00 2003, Texas Instruments Incorporated

Preface

Read This First

About This Manual

The following abbreviations are used in this document:

CPTD Call Progress Tone (Detection)

CAS Customer Alerting Signal

CMS Composite Multitone Signal

DT-AS Dual-Tone Alerting Signal

DTMF Dual Tone Multifrequency (signaling)
MF multifrequency (signaling)

UMTD Universal Multifrequency Tone Detection
XDAIS TMS320 DSP Algorithm Standard

Related Documentation From Texas Instruments

Using the TMS320 DSP Algorithm Standard in a Static DSP System
(SPRAS77)

TMS320 DSP Algorithm Standard Rules and Guidelines (SPRU352)
TMS320 DSP Algorithm Standard API Reference (SPRU360)

Technical Overview of eXpressDSP-Compliant Algorithms for DSP Software
Producers (SPRA579)

The TMS320 DSP Algorithm Standard (SPRA581)
Achieving Zero Overhead with the TMS320 DSP Algorithm Standard IALG In-
terface (SPRA716)

Related Documentation

ITU-T Recommendation E.180/Q.35. Tones in national signaling systems —
Operation, numbering, routing and mobile services, 1998.

ITU-T Recommendation E.180, Supplement 2. Various tones used in national
networks — Telephone network and ISDN. Operation, numbering, routing and
mobile service, 1994,

Related Documentation

ITU-T Recommendation Q.23. Technical features of push-button telephone
sets — International automatic and semi-automatic working, 1993.

ITU-T Recommendation Q.24. Multifrequency push-button signal reception —
International automatic and semi-automatic working, 1993.

ITU-T Recommendation Q.320, Signal code for register signalling — Specifica-
tions of signalling system R1, 1993.

ITU-T Recommendation Q.322, Multifrequency signal sender — Specifications
of signalling system r1, 1993.

ITU-T Recommendation Q.323, Multifrequency signal receiving equipment —
Specifications of signalling system R1, 1993.

ITU-T Recommendation Q.441, Signalling code — Specifications of signalling
system R2, 1993.

ITU-T Recommendation V.8. Procedures for starting sessions of data trans-
mission over the public switched telephone network — General, 1998.

ITU-T Recommendation V.25. Automatic answering equipment and general
procedures for automatic calling equipment on the general switched tele-
phone network including procedures for disabling of echo control devices for
both manually and automatically established calls — Interfaces and voiceband
modems, 1996.

Public Switched Telephone Network (PSTN); Protocol over the local loop for
display and related services; Terminal Equipment requirements; Part 1: Off-
line data transmission, ETS 300 778-1, September 1997, DE/ATA-005062-1

Public Switched Telephone Network (PSTN); Protocol over the local loop for
display and related services; Terminal Equipment requirements; Part 2: On-
line data transmission, ETS 300 778-2, September 1997, DE/ATA-005062-2

Specification of Dual Tone Multi-Frequency (DTMF); Transmitters and Receiv-
ers; Part 3: Receivers, ETSI TS 101 235-3 v1.1.1 (2000-05)

Calling Line Identification Service, British Telecommunication plc, SIN227, Is-
sue 03.

CCITT Recommendation V.23 (1988): "600/1 200-baud modem standardized
for use in the general switched telephone network”.

EIA/TIA-464-A. Private Branch Exchange (PBX) Switching Equipment for Voi-
ceband Application. ANSI/EIA/TIA, February, 1989.

Trademarks

Trademarks

TMS320™ is a trademark of Texas Instruments.

SPIRIT CORP™ is a tradmark of Spirit Corp.

All other trademarks are the property of their respective owners.
Software Copyright

CST Software Copyright [0 2003, SPIRIT Technologies, Inc.

Read This First v

If You Need Assistance

If You Need Assistance. ..

O World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/products/index.htm
DSP Solutions http://www.ti.com/dsp
320 Hotline On-line™ http://www.ti.com/sc/docs/dsps/support.htm
Microcontroller Home Page http://www.ti.com/sc/micro
Networking Home Page http://www.ti.com/sc/docs/network/nbuhomex.htm
Military Memory Products Home Page http://www.ti.com/sc/docs/military/product/memory/mem_1.htm
1 North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
Tl Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (972) 293-5050 Fax: (972) 293-5967
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
Microcontroller Hotline (281) 274-2370 Fax: (281) 274-4203 Email: micro@ti.com
Microcontroller Modem BBS (281) 274-3700 8-N-1
DSP Hotline Email: dsph@ti.com
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs
Networking Hotline Fax: (281) 274-4027
Email: TLANHOT@micro.ti.com
(O Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:
Multi-Language Support +33130701169 Fax: +33130701032
Email: epic@ti.com
Deutsch +49 8161 80 33 11 or +33 1 30 70 11 68
English +33 13070 11 65
Francais +33130701164
Italiano +33 130701167
EPIC Modem BBS +33130701199
European Factory Repair +33 493222540
Europe Customer Training Helpline Fax: +49 81 61 80 40 10
O Asia-Pacific
Literature Response Center +852 2 956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 2 551 2804 Fax: +82 2 551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/TI/
O Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)
+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071

DSP BBS via Nifty-Serve

Type “Go TIASP”

vi

If You Need Assistance

(0 Documentation

When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.
Mail: Texas Instruments Incorporated Email: dsph@ti.com Email: micro@ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the
book.

For product price & availability questions, please contact your local Product
Information Center, or see www.ti.com/sc/support http://www.ti.com/sc/sup-
port for details.

For additional CST technical support, see the TI CST Home Page
(www.ti.com/telephonyclientside) or the Tl Semiconductor KnowledgeBase
Home Page (www.ti.com/sc/knowledgebase).

If you have any problems with the Client Side Telephony software, please, read
first the list of Frequently Asked Questions at http://www.spiritDSP.com/CST.

You can also visit this web site to obtain the latest updates of CST software &
documentation.

Read This First vii

1

Contents

Introduction to Universal Multifrequency Tone Detector (UMTD) Algorithms

This chapter is a brief explanation of the Universal Multifrequency Tone Detector (UMTD) and
its use with the TMS320C5400 platform.

1.1 INtrodUCHON .. e e
1.2 XDAIS BaASICS .ottt
1.2.1 Application/Framework
122 INerface . ..o
1.2.3 Application Development i e
Universal Multifrequency Tone Detector (UMTD) Integration

1-4

1-4

1-5

1-6

This chapter provides descriptions, diagrams, and examples explaining the integration of the
Universal Multifrequency Tone Detector (UMTD) with frameworks.

2.1 OV BV BW ittt 2-2
2.2 Integration FIOW 2-4
2.3 Signal Recognitiont e 2-6
2.3 1 General ... 2-6
2.3.2 Frequency Selectioncouiiiii i 2-7
2.3.3 Amplitude Discriminationt 2-8
2.3.4 Time Selection 2-9
2.3.5 Flow Control OptionSsot 2-12
2.3.6 HostIndication Optionst e e 2-13
2.4 Parameter Definition 2-15
2.4.1 Amplitude Discriminator Optionsc.cciiiiiii i, 2-20
242 TiMeSIotFIagso 2-23
2.5 Messagesand HostInterface i 2-25
2.6 EXAMPIES .. e 2-27
2.6.1 Typical CPTD Settings for USAs PSTN oot 2-27
2.6.2 Typical DTMF Settings . .. oo v it e et 2-29
2.6.3 CPTD Settings for United Arab Emiratescoiiiiin.... 2-34
Universal Multifrequency Tone Detector (UMTD) API Descriptions 3-1

This chapter provides the user with a clear understanding of Universal Multifrequency Tone De-
tector (UMTD) algorithms and their implementation with the TMS320 DSP Algorithm Standard
interface (XDAIS).

3.1

Standard Interface StrUCIUIES oottt e e e e

Contents

3.1.1 Instance Creation Parametersc i,

3.1.2 Status StrUCIUIE . .. e e

3.2 Standard Interface FUNCLONS i e e e
3.2.1 Algorithm Initialization i e

3.2.2 Algorithm Deletion i e

3.2.3 InStance Creationit ittt e e

3.2.4 Instance Deletion e

3.3 Vendor-Specific Interface Functions i
3.3.1 Process DeteCtiont e

3.3.2 ResetDetector Statust e

3.3.3 GetActual Detector Statusttt e

A TeSt ENVITONMENt . .o
A.1 Description Of DIir€CtOry TrEE ... v ittt e ettt e
ALl TeSt PIOJECt ..ttt

XDAIS SYS M LAy IS . .ottt ittt it e e 1-4
XDAIS Layers Interaction Diagramt 1-5
Module Instance Lifetime 1-7
UMTD Integration Diagramt e 2-2
Special Information Tone Used in Most of the Countries 2-3
Typical Detector Integration FIOW i i e 2-5
Simplified UMTD Program FIOW e e e i e 2-6
Normalized Filter Frequency RESPONSEttt et e 2-7
Host Indication Example 2-14
UMTD Thresholds e e 2-17
Bit Field Position illustration 2-20
Messages Sequence for DTMF Detection (With Early Detection) 2-33

Contents Xi

Tables

2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
3-1

3-2

3-3

A-1

Xii

Amplitude Discrimination Options SUMMATYovor e [2-8]
Time Selection OptioNS SUMMANYt e 2-10
Flow Control Options SUMMArY e e e 2-12
Host Indication Options SUMMANYottt e 2-13
General Parameters for Recognized Signal Series i .. 2-15
Parameters for Recognized Signal Series i 2-17
Pointers to Series Parameters 2-18
Common UMTD Parameters i e 2-18
CMS Recognition Parameters i e e 2-19
UMTD TimMe SIOtS . .o e e e e e 2-19
Bit Field Positions in the Recognition Flags 2-20
DTMF Signal Mask for IUMTD_TSUSEDTMFMASK Option 2-21
Amplitude Discrimination OPtioNSttt e e et e 2-22
Time Selection OPtioNSot e 2-23
Flow Control OptionS i 2-24
Host Indication OptioNS it e 2-24
UMTD Detector Messages SUMMANYottt e 2-25
MeSSage StrUCIUIE e e e 2-26
HOSE COoNtroller . ..o 2-26
UMTD Detector Real-Time Status Parameters, 3-2
UMTD Detector Standard Interface Functions 3-3
Detector-Specific Interface Functions i 3-5
TestFiles for UMTD o e [A-2 |

Notes, Cautions, and Warnings

Test ENVIronment LOCAtioNottt e e e e e e e e

Test Duration

Contents

A-1

A-3

Xiii

Chapter 1

Introduction to
Universal Multifrequency Tone Detector
(UMTD) Algorithms

This chapter is a brief explanation of the Universal Multifrequency Tone Detec-
tor (UMTD) and its use with the TMS320C5400 platform.

For the benefit of users who are not familiar with the TMS320 DSP Algorithm
Standard (XDAIS), brief descriptions of typical XDAIS terms are provided.

Topic Page
L1 INtrOdUCHION .ttt et e e e e e e
1.2 XDAIS BASICS . . oottt e e e e

1-1

Introduction

1.1 Introduction

This document describes the implementation of the Universal Multifrequency
Tone Detector (UMTD) algorithms developed by SPIRIT Corp. for the
TMS320C54xx platform and is intended for integration into embedded devices
for the decoding of various telephone service tones including:

(] Standard CPTD tones:

Busy
Dial
Ringback

Reorder

[Extended set of CPTD tones for majority of countries:

U U o 0

Recall dial tone

Special ringback tone
Intercept tone

Call waiting tone

Busy verification tone
Executive override tone

Confirmation tone

DTMF signaling
MF-R1, MF-R2 signalling
Caller ID CAS tone for various standards

Modem specific tones:

Bell 103 answer tone

V.23 forward/backward mark bit
CED

CNG

ANS

ANSam, etc.

UMTD can be used as a simple spectrum analyser for custom applications
since it provides low MIPS consumption (approx. 0.06 MIPS per tone) and
good dynamic range (at least 60 dB).

Introduction

The detector can be configured easily to the most country specific CPTD
standards.

The SPIRIT UMTD software is a fully TMS320 DSP Algorithm Standard
(XDAIS) compatible, reentrant code. The UMTD interface complies with the
TMS320 DSP Algorithm Standard and can be used in multitasking environ-
ments.

The TMS320 DSP Algorithm Standard (XDAIS) provides the user with object
interface simulating object-oriented principles and asserts a set of program-
ming rules intended to facilitate integration of objects into a framework.

The following documents provide further information regarding the TMS320
DSP Algorithm Standard (XDAIS):

(1 Using the TMS320 DSP Algorithm Standard in a Static DSP System
(SPRA577)

[TMS320 DSP Algorithm Standard Rules and Guidelines (SPRU352)

]

TMS320 DSP Algorithm Standard API Reference (SPRU360)

(1 Technical Overview of eXpressDSP-Compliant Algorithms for DSP Soft-
ware Producers (SPRA579)

(1 The TMS320 DSP Algorithm Standard (SPRA581)

[Achieving Zero Overhead with the TMS320 DSP Algorithm Standard
IALG Interface (SPRA716)

However, if the user prefers to have non-XDAIS-compliant interface, for
example, when a framework is not XDAIS-oriented (it usually means that
dynamic memory management is not supported), the XDAIS interface can be
omitted, as it is merely a wrapper for the original interface.

Introduction to 1-3

XDAIS Basics

1.2 XDAIS Basics

This section instructs the user on how to develop applications/frameworks us-
ing the algorithms developed by vendors. It explains how to call modules
through a fully eXpress DSP-compliant interface.

Figure 1-1 illustrates the three main layers required in an XDAIS system:
(1 Application/Framework layer
1 Interface layer

[Vendor implementation. Refer to appendix A for a detailed illustration of
the interface layer.

Figure 1-1. XDAIS System Layers

Application/framework

Interface

A
A4

Vendor’s implementation

1.2.1 Application/Framework

Users should develop an application in accordance with their own design
specifications. However, instance creation, deletion and memory manage-
ment requires using a framework. It is recommended that the customer use
the XDAIS framework provided by SPIRIT Corp. in ROM.

The framework in its most basic form is defined as a combination of a memory
management service, input/output device drivers, and a scheduler. For a
framework to support/handle XDAIS algorithms, it must provide the framework
functions that XDAIS algorithm interfaces expect to be present. XDAIS frame-
work functions, also known as the ALG Interface, are prefixed with “ALG_". Be-
low is a list of framework functions that are required:

[ALG cr eat e - for memory allocation/algorithm instance creation
[0 ALG del et e - for memory de-allocation/algorithm instance deletion

(1 ALG acti vat e - for algorithm instance activation

XDAIS Basics

ALG deacti vat e - for algorithm instance de-activation
ALG i ni t - for algorithm instance initialization

ALG exi t - for algorithm instance exit operations

U U o U

ALG control - for algorithm instance control operations

1.2.2 Interface

Figure 1-2 is a block diagram of the different XDAIS layers and how they inter-
act with each other.

Figure 1-2. XDAIS Layers Interaction Diagram

Application/framework
l Calls

v

Concrete interface
Implements

v

Abstract interface

:

Vendor’s implementation

1.2.2.1 Concrete Interface

A concrete interface is an interface between the algorithm module and the ap-
plication/framework. This interface provides a generic (hon-vendor specific)
interface to the application. For example, the framework can call the function
MODULE_appl y() instead of MODULE VENDOR appl y() . The following
files make up this interface:

[Header file MODULE. h - Contains any required definitions/global vari-
ables for the interface.

[Source File MODULE. ¢ - Contains the source code for the interface func-
tions.

Introduction to 1-5

XDAIS Basics

1.2.2.2 Abstract Interface

This interface, also known as the IALG Interface, defines the algorithm imple-
mentation. This interface is defined by the algorithm vendor but must comply
with the XDAIS rules and guidelines. The following files make up this interface:

[Header file i MODULE. h - Contains table of implemented functions, also
known as the IALG function table, and definition of the parameter struc-
tures and module objects.

[Source Filei MODULE. ¢ - Contains the default parameter structure for the
algorithm.

1.2.2.3 Vendor Implementation

Vendor implementation refers to the set of functions implemented by the algo-
rithm vendor to match the interface. These include the core processing func-
tions required by the algorithm and some control-type functions required. A
table is built with pointers to all of these functions, and this table is known as
the function table. The function table allows the framework to invoke any of the
algorithm functions through a single handle. The algorithm instance object def-
inition is also done here. This instance object is a structure containing the func-
tion table (table of implemented functions) and pointers to instance buffers re-
quired by the algorithm.

1.2.3 Application Development

Figure 1-3 illustrates the steps used to develop an application. This flowchart
illustrates the creation, use, and deletion of an algorithm. The handle to the
instance object (and function table) is obtained through creation of an instance
of the algorithm. It is a pointer to the instance object. Per XDAIS guidelines,
software API allows direct access to the instance data buffers, but algorithms
provided by SPIRIT prohibit access.

Detailed flow charts for each particular algorithm is provided by the vendor.

XDAIS Basics

Figure 1-3. Module Instance Lifetime

Initialize parameters/
handle

A4

MODULE_init()

A4

MODULE_create()

A4

MODULE_apply()

A

No

Yes

MODULE_control()

MODULE_delete()

A4

MODULE_exit()

The steps below describe the steps illustrated in Figure 1-3.

Introduction to 1-7

XDAIS Basics

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Perform all non-XDAIS initializations and definitions. This may in-
clude creation of input and output data buffers by the framework, as
well as device driver initialization.

Define and initialize required parameters, status structures, and
handle declarations.

Invoke the MODULE i ni t () function to initialize the algorithm mod-
ule. This function returns nothing. For most algorithms, this function
does nothing.

Invoke the MODULE_cr eat e() function, with the vendor’s imple-
mentation ID for the algorithm, to create an instance of the algorithm.
The MODULE_cr eat e() function returns a handle to the created
instance. You may create as many instances as the framework can
support.

Invoke the MODULE _appl y() function to process some data when
the framework signals that processing is required. Using this func-
tion is not obligatory and vendor can supply the user with his own set
of functions to obtain necessary processing.

If required, the MODULE_control () function may be invoked to
read or modify the algorithm status information. This function also is
optional. Vendor can provide other methods for status reporting and
control.

When all processing is done, the MODULE_del et e() function is in-
voked to delete the instance from the framework. All instance
memory is freed up for the framework here.

Invoke the MODULE_exi t () function to remove the module from the
framework. For most algorithms, this function does nothing.

The integration flow of specific algorithms can be quite different from the se-
guence described above due to several reasons:

[Specific algorithms can work with data frames of various lengths and for-
mats. Applications can require more robust and effective methods for error
handling and reporting.

1 Instead of using t he MODULE_appl y() function, SPIRIT Corp. algo-
rithms use extended interface for data processing, thereby encapsulating
data buffering within XDAIS object. This provides the user with a more reli-
able method of data exchange.

Chapter 2

Universal Multifrequency Tone
Detector (UMTD) Integration

This chapter provides descriptions, diagrams, and example explaining the

integration of the Universal Multifrequency Tone Detector (UMTD) with
frameworks.

Topic Page
2.1 OVEIVIEW ..ottt e e e e e e e e e
2.2 INtegration FIOWouini e
2.3 Signal RECOGNItION\ttt
2.4 Parameter Definition i @
2.5 Messages and Host Interface @
2.6 EXamMPples ... @

2-1

Overview

2.1 Overview

Figure 2-1. UMTD Integration Diagram

2-2

Universal Multifrequency Tone Detector (UMTD) is designed to recognize the
set of Composite Multitone Signals (CMS or composite signals later). A com-
posite signal represents a sequence of partial multitone signals that can be ei-
ther successive or divided by pauses. Each partial multitone signal can be a
weighted sum of spectral components in a limited bandwidth. The sequence
can be either recurrent or standalone.

The UMTD detector performs the following operations:

(1 provides frequency selection by filtering input samples and estimates
spectrum of input signal at a given set of frequencies;

[0 makes user-defined amplitude discrimination defining whether or not a
partial multitone signal is present currently;

[makes user-defined time selection (e.g. verifies the cadences and
pauses) to make the decision about presence of a composite signaling

tone.

A large selection set of options allows the user to control the recognition on all
layers mentioned above.

Figure 2-1 illustrates a typical UMTD integration diagram.

Samples

from

codec ADC

UMTD detector

DTMF, CPTD, fax
and modem tones,
various alert signals,

custom signaling tones
9 9 » 7 Framework

This definition covers the majority of alert signals used in the telephone

services.

Figure 2-2 illustrates a typical composite signal.

Figure 2-2. Special Information Tone Used in Most of the Countries

4

A

Overview

Magnitude
>
- Time
pause (noise)
950 Hz 1400 Hz 1800 Hz 1000 msec
330 msec 330 msec 330 mse
| slot0 | slotl | slot2 | slot 3 |

Universal Multifrequency Tone

2-3

Integration Flow

2.2

2-4

Integration Flow

In order to integrate the UMTD detector into a framework, the user should (see

Figure 2-3):

Step 1: Create a handler that will accept messages from a number of UMTD
instances

Step 2: Create a UMID_Par ans structure and initialize it with required
values.

Step 3: CallUMID cr eat e() to create an instance of detector. There are
no restrictions on the maximum number of detector instances
created.

Step 4. Pass a stream with input samples (8 kHz, 16 bits) to
UMTD_det ect () routine. When detector decides that one of the
tones is valid or some significant event arises, the detector sends an
appropriate message to the host.

Step 5: Delete the detector by using UMID_del et e() when on hook state

is detected or for any other reason depending on your application.

Figure 2-3.

Typical Detector Integration Flow

Select detector
parameters

y

UMTD

_create()

\ 4

On hook?

No

Get input data buffer

Call UMTD_detect()

Yes

Integration Flow

UMTD_delete()

Messages

o—»

g Host

Universal Multifrequency Tone

Signal Recognition

2.3 Signal Recognition

2.3.1 General

Each CMS is recognized independently from each other, however, since the
different analyzed signals can share frequencies to be taken into account, only
one common frequency list is defined and used for all signals in current group.
The size of this list is the main factor influencing detector’s MIPS consumption.

Typically, 1 MIPS is needed for 16 spectrum components.

Figure 2-4 illustrates a simplified UMTD program flow.

Figure 2-4. Simplified UMTD Program Flow

Samples

{

UMTD_process

pstimate signal spectrum)

Filters:

Spectrum
components ‘0
s 1000/m bandwidt No
milliseconds passed?,
UMTD c8
status = %
Host 9
UMTD_getStatus() i 8%
[}
(8]
Partial CMS
signal v
Amplitude
discriminator
(SR}
—Cc O
i g85 Y
ol SS9 ,
Messages ags mp||t.ude
\4 criminator
Cadence recognizer: >
make time selection: _23
distinguish pauses i 89§ A4
and cadences =P -
oeEs mplitude
v criminator
Tauerice recognizer: >
make time selection: _23
distinguish pauses i.gg &
and cadences =P
a=2s
Ea

\4

TaueT

e recognizer:

make time selection:
distinguish pauses

an

cadences

2.3.2

Figure

Attenuation, dB

Signal Recognition

Frequency Selection

The user can specify any number of frequencies to be analyzed simultaneous-
ly. When the user wants to increase this value, several UMTD detector
instances can be created simultaneously, providing the user with enhanced
signal detection.

Simple and fast first order IIR filters are used for the selection. Filtering band-
width (bandwi dt h, see Table 2-8) controls frequency recognition. Also, it
defines the interval for amplitude discriminator.

Filter frequency response is shown in Figure 2-5. Normalized frequency is the
ratio of frequency deviation to filtering bandwidth. For large deviations, fre-
guency response has approximately 6 dB per octave slope.

2-5. Normalized Filter Frequency Response

Normalized frequency, Hz

Universal Multifrequency Tone 2-7

Signal Recognition

2.3.3 Amplitude Discrimination

Amplitude discrimination is invoked with the interval defined by filtering band-
width, i.e., once per 1000/bandwidth milliseconds. This decimation reduces
average MIPS consumption with an insignificant loss of quality.

Each partial multitone signal to be recognized is supplied with the options that
control its amplitude discrimination.

The amplitude discriminator outputs a binary decision whether a particular
multitone signal is present at the moment. summarizes available discriminator
options.

The output of amplitude discriminator is passed to the cadence recognizer
(see section 2.3.4) for further processing.

Table 2-1. Amplitude Discrimination Options Summary

Name Description
| UMI'D_ADI GNORE Amplitude of given frequency component is ignored.
| UMID_ADEXI ST Given frequency component must be greater than threshold level

si gnal Threshol d (see Table 2-8).

| UMID_ADCANEXI ST Given frequency component can be either greater or less than threshold level
si gnal Threshol d (see Table 2-8). However, at least one of spectrum
components marked by this option must exist.

| UMI'D_ADPAUSE Given frequency component must be less than pause threshold level
pauseThreshol d (see Table 2-8).

| UMID_ADSPURI QUS Given frequency component must be less than the spurious level
spuriousLevel regarding the maximum spectrum component (see
Table 2-8).

| UMI'D_ADDTMFROW Given frequency component is treated as DTMF ‘row’ tone. Row/column twist
ratio is verified.

| UMI'D_ADDTMFCCL Given frequency component is treated as DTMF ‘column’ tone. Column/row
twist ratio is verified.

| UMTD_ADDTMF2HARM Given frequency component is treated as DTMF second harmonics tone. 2nd
harmonics test is performed.

| UMTD_ADLOVER Given frequency component must be lower than the maximum spectrum
component.

| UMITD_ADSPURI QUSROW Given frequency component must be less than the spurious level
spuri ousRow regarding the spectrum component marked with
| UMID_ADDTMFROW(see Table 2-8).

2-8

Signal Recognition

Table 2-1. Amplitude Discrimination Options Summary (Continued)

Name Description

| UMI'D_ADSPURI QUSCCL Given frequency component must be less than the spurious level
spuriousCol regarding the spectrum component marked with
| UMTD_ADDTMFCCL (see Table 2-8).

| UMID_ADSPURI QUSROW2 Given frequency component must be less than the spurious level
spuri ousRow?2 regarding the spectrum component marked with
| UMID_ADDTMFROW(see Table 2-8).

| UMID_ADSPURI QUSCOL2 Given frequency component must be less than the spurious level
spuriousCol 2 regarding the spectrum component marked with
| UMTD_ADDTMFCCL (see Table 2-8).

2.3.4 Time Selection

The final step of CMS analysis is time selection made by cadence recognizer.
It distinguishes each CMS by the state machine controlled by the list of time
slots defined in Table 2-10.

A time slot is considered “failed” when it is shorter than given duration (includ-
ing tolerance). In this case, the detector issues message | UMTD_M-AI L (see
Table 2-17) and state machine starts execution from the first time slot.

Cadence recognizer options are shown in Table 2-2.

Universal Multifrequency Tone 2-9

Signal Recognition

Table 2-2. Time Selection Options Summary

Name

Description

| UMTD_TSGUARDTI ME

| UMID_TSQUALI TY

| UMTD_TSPOROCSI TY

Enables transition process at the beginning of this time slot. State machine
ignores signal spectrum during the first frame of this time slot.

© O, ©) ® ®

Frame 0 and 3 will not be detected as tone time slots. When frame 0 is pro-
cessed state machine is not in detected state and no state switching is per-
formed. Setting | UMID_TSGUARDTI ME option for the first time slot will not has
effect.

But when frame 3 is processed it cannot be recognized not as tone time slot
and state machine will switch continue detection with next time slot (pause slot
in this case). Pause time slot will not be detected too, so statemachine will fin-
ish detection and initiate the message | UMI'D_FAI L in case option

| UMI'D_TSGUARDTI MVE is not set for the pause timeslot. Otherwise statema-
chine ignores frame 3 and continues signal detection from frame 4. If pause
will not be detected on frame 4 when signal detection will be finished with mes-
sage | UMTD_FAI L.

Enables checking of DTMF signal level to whole signal level.

This option is used to improve talkoff performance. UMTD calculates whole
signal power, valid signal power and then calculates the ratio:

POWER, 4
POWER

ratio = .
whole

When ratio is more than si gnal Qual i t y parameter value (see Table 2-5)
UMTD decides that it is a valid signal.

Verifies tone and pause duration derivations for signals with two cadences.

__| TONE slot | PAUSE slot | TONE slot |PAUSE slot|

N-1 N-1 N N

duration

—>‘ — —>
deviations

__| TONE slot | | PAUSE slot |
N-1 N-1

Duration deviations cannot be more than 1.5 frame length.

2-10

Signal Recognition

Table 2-2. Time Selection Options Summary (Continued)

Name

Description

| UMID_TSM NTI ME

| UMTD_TSQ5BUSY

| UMITD_TSI NTERRUPTI ON

| UMI'D_TSUSEDTMFVASK

Verifies duration of tone using only mi nTi ne limit mentioned in the . After

m nTi me was reached, waits for input signal changes and then goes to the
next time slot. When option | UMTD_GONEXT was specified also UMTD does
not wait for signal changes and switches to the next time slot immediately after
m nTi me was reached.

Makes duration check specifically for Q.35 busy tone.

Enables signal interruptions. The number of frames for which signal can be
interrupted is set in parameters structure (see Table 2-5).

This option can be used only with the | UMTD_TSM NTI ME option.

> 1 frame
at least one frame
<interrupt Count Sff}ot.ﬂdt be d?thted
interruptCount attennterrupte
: eriod and before
>ninTi me is amount of frame ext time slot
- what can be not

signal interruption detected

g:}(l))?t;rftt)érturns on (interrupted)

minTime period

Signal Interruption is disappearing of the signal for some short interval. Accord-
ing to some standards, if a signal (DTMF, f.e.) disappears for less than 5 ms
and then re-appears, it still has to be considered as one signal (one digit).

Removes peak MIPS on DTMF signals detection.

This option can only be used when lower 8 bits of si gnal | D (see
Table 2-9) have values described in Table 2-12.

Universal Multifrequency Tone 2-11

Signal Recognition

Table 2-2. Time Selection Options Summary (Continued)

Name Description

| UMI'D_TSADAPTPAUSE Enables pause level calculation during tone time slots.

Received
TONE
level
Received | new PAUSE level
TONE | threshold cannot be
new PAUSE
level threshold level lower than PAUSE
- T level threshold
PAUSE set in parameters
level .-~ -} b . —
threshod | | 000000 peep—— calculated PAUSE
level threshold
a) b)

New pause level calculated using formula:

PAUSE ,45p10a = MaX PAUSE i cnoig (TONE .o X adapt_coef) .

where
PAUSEggapted = New pause threshold
PAUSEreshold = MPause field value (see Table 2-5)
TONEge = received tone level

adapt_coef = mPauseAdapt field value (see Table 2-5)

2.3.5 Flow Control Options

Additionally, time slot flags contain fields that provide flow control and host indi-
cation (see Table 2-3). They are used together with time selection options.

Table 2-3. Flow Control Options Summary

Name Description

| UMI'D_TSGONEXT Executes next time slot once this time slot is finished. Has effect if used together
with | UMID_TSM NTI ME option.

| UMID_TSREPEAT Repeats execution from the first time slot once this time slot is finished.

| UMI'D_TSBREAK Forces detector to consider the CMS detection as “failed” once this time slot is

finished, and repeats execution from the first time slot.

| UMI'D_TSGOCOMVON Continues execution from common time slot pointed by field pCormonSI ot (see
Table 2-5).

Execution always starts from the first time slot if current time slot fails.

2-12

Signal Recognition

2.3.6 Host Indication Options

The moment when the detector signals to the host about detection of time slot
is defined in Host indication options in the time slot flags (see Table 2-4).

Table 2-4. Host Indication Options Summary

Name

Description

| UMID_TSTONESTART

| UMI'D_TSTONE
| UMI'D_TSDI GNALEND

| UMI'D_TSFAI L

Enables UMTD to indicate/report the transition to the “detected” state for this
signal.

Enables UMTD to indicate the successful time slot detection
Enables UMTD to indicate the successful detection of last time slot.

Enables UMTD to indicate the detection failure (end of the “detected” state for this
time slot).

The host can receive 4 messages from UMTD: | UMID_MIONESTART,
| UMID_MTONE and | UMTD_MSI GNALEND and | UMTD_TSFAI L.

(1 Message | UMID_MTONESTART indicates successful first frame detection
and the fact that recognizer fell into “detected” state for this signal. This
message is useful for signal early detection.

[0 Message | UMID_MIONE indicates successful time slot detection, but it is
issued every time when a slot with enabled | UMID_TSTONE option is pro-
cessed and the detector is in “detected” state.

[Message | UMID_MslI GNALEND indicates successful detection of last
time slot.

(1 Message | UMID_MFAI L indicates the end of the “detected” state. For the
first time slot this message is issued only if | UMID_TSTONESTART and
| UMID_TSFAI L are present. For other time slots only option
| UMID_TSFAI L is needed.

Figure 2-6 shows the UMTD configuration to recognize a 40 ms (or more)
“tone” and following “pause” for at least 20 ms and send the first message
about tone detection after 20 ms.

Universal Multifrequency Tone 2-13

Signal Recognition

Figure 2-6. Host Indication Example

CrKe)
TORE]

| UMID_TSFAI L | | UMID_TSFAI L

Time Slot 1 Time Slot 2

E @ N \ Guardtime

Cc

Sk} | UMTD_MTONE,
8¢ | |\ 1 umro_mronesTART |11 UMID_Mrone | VT VB! CNALEND
& |

. || UMID_TSM NTI ME | UMTD_TSM NTI ME
23 g| | UMTD_TSTONESTART | H UMID_TSGUARDTI ME |
Q o -
S 22| 1 uMrD_TSTONE I'UMID_TSTCNE |
w-=9° | UMI'D_TSSI GNALEND
Iﬂi wait for 50 ms + pause for 40 ms —DI

2-14

2.4 Parameter Definition

Table 2-5. General Parameters for Recognized Signal Series

typedef struct

Parameter Definition

Name

Type

Typical
Value

Limits

Description

si gnal Threshol d

pauseThr eshol d

pauseAdapt

signal Quality

i nt errupt Count

spuri ouslLevel

spur i ousRow

spur i ousRow2

XDAS | nt 16

XDAS_| nt 16

XDAS | nt 16

XDAS_| nt 16

XDAS_| nt 16

XDAS | nt 16

XDAS_| nt 16

-30

-35

.25

.80

-10

-10

<si gnal Threshol d

<1

<1l

0...100

-12 ..

-12 ..

.-6

-6

Detector threshold, dBm

Pause threshold, dBm.
Used by amplitude dis-
criminator when option
| UMTD_ADPAUSE (see
Table 2-13) is enabled

Signal/Pause adaptation
coefficient. Used when
option | UMI'D_TSADAPT-
PAUSE (see Table 2-14)
is set.

Valid signal to whole sig-
nal power ratio. Signal/
Pause adaptation coeffi-
cient. Used when option
| UMID_TSQUALI TY (see
Table 2-14) is set.

The number of frames for
which signal can be inter-
rupted. Used when option
| UMTD_TSI NTERRUP-

Tl ON (see Table 2-14) is
set.

Spurious (out-band) sig-
nal level, dBc. Used by

amplitude discriminator

when option | UMID_AD-
SPURI OQUS (see

Table 2-13) is enabled.

Spurious (out-band) sig-
nal level, dBc. Used by
amplitude discriminator
when option | UMID_AD-
SPURI QUSROW(see
Table 2-13) is enabled.

Universal Multifrequency Tone 2-15

Parameter Definition

Table 2-5. General Parameters for Recognized Signal Series (Continued)

Typical
Name Type Value Limits Description

spuri ousCol XDAS I nt 16 -10 -12 ...-6 Spurious (out-band) sig-
nal level, dBc. Used by
amplitude discriminator
when option | UMID_AD-
SPURI QUSCCOL (see
Table 2-13) is enabled.

spuri ousCol 2

dt nf Twi st XDAS I nt 16 -5 Spurious (out-band) sig-
nal level, dBc. Used by
amplitude discriminator
when options
| UMID_ADDTM-ROW and
| UMID_ADDTM-CCL (see
Table 2-13) is enabled.

dt nf 2harm XDAS I nt 16 -3 Spurious (out-band) sig-
nal level for *2 harm. In
MF signal, dBc. Used by
amplitude discriminator
when option
| UMTD_ADDTM-2HARM
(see Table 2-13) is en-
abled.

nFr equenci es XDAS I nt 16 N/A <20 Number of frequencies to
be processed simulta-
neously

nSi gnal s XDAS | nt 16 N/A >0 Number of CMS signals
to be recognized

pSi gnal Li st const UMID_Si gnal * N/A N/A Recognized CMS signals
(see Table 2-9)

pComonSl ot const UMID_Ti neSl ot * N/A N/A Pointers to common time
slot. Used if flag
| UMID_TSGOCOMMON in
time slot parameters is
enabled (see Table 2- 10).

}

| UMID_Cener al Seri esPar ans;

Figure 2-7 illustrates typical UMTD thresholds.

2-16

Parameter Definition

Figure 2-7. UMTD Thresholds

o
g - _ e
% dtmfTwist —
s _ _ _ _ _ L o)
>
et
2 £ 4
3 S s 3 | signalThreshold
S8 < &/ signalThresho
% 7 S 5
S a 1= o
i) 2 = »
5 =]
B O L 1l ~5_____
SN
s _____ ___
N o Y - H
. pauseThreshold

frequency*

697
770
852
941

mllm L | m

1633
2*697
2*770
2*852
2*941

2*1336
2*1477
2*1633

L IUMTD_ADDTMFRON L IUMTD_ADDTMFCOL IUMTD_ADDTMF2HARM

* - non-linear scale

Table 2-6. Parameters for Recognized Signal Series

typedef struct

Typical
Name Type Value Limits Description
pFrequencylLi st const XDAS I nt 16* N/A <340 Frequency planner. Frequencies
are in Hz
bandwi dt h XDAS I nt 16 80 >0 Filtering bandwidth, Hz
par aneters const N/A N/A General series parameters
UMTD_Gener al Seri esPar ans described above (see Table 2-5)

| UMID_Ser i esPar ans;

Universal Multifrequency Tone 2-17

Parameter Definition

Table 2-7. Pointers to Series Parameters

typedef struct

Typical
Name Type Value Limits Description
pSeri eParam const N/A N/A Pointer to array containing pointers
| UMTD_Seri esPar ans* to parameters for recognized signal
series (see Table 2-6)
}
| UMTD_pt r Ser Par am
Table 2-8. Common UMTD Parameters
typedef struct
Typical
Name Type Value Limits Description
host UMID_Host N/A N/A Host controller (see section 2.5)
dBnD XDAS | nt 16 5000 Reference level of 0 dBm signal
maxLevel XDAS | nt 16 8000 Maximum level of input signal,
dBm
pSer Par amnli st | UMTD_pt r Ser Par anf N/A N/A Pointer to structures containing
data for signal series recognition
seri esCount XDAS_ I nt 16 N/A >0 Number of structures to be
analyzed during the recognition
maxBuf f er Len XDAS I nt 16 N/A >=0 Size of input data. Setting this

parameter to size of your input
frame will allow you to reduce peak
MIPS. Set 0 to adjust parameter
value automatically.

}
| UMID_Par arns;

2-18

Table 2-9. CMS Recognition Parameters

typedef struct

Parameter Definition

Typical

Name Type Value Limits Description

si gnal ed XDAS_ I nt 16 N/A N/A Enumerator of CMS signal. Each
signal has to be provided with
unique identifier. This value shall
be used by a host to distinguish
between different CMS signals.

nTi neSl ot s XDAS_ I nt 16 N/A >0 Number of time slots to be
analyzed during the recognition

pTi neSl ot s const UMID_Ti neS| ot * N/A N/A Time slots to be analyzed during
the recognition of this CMS signal
}
UMID_Si gnal ;
Table 2-10. UMTD Time Slots
typedef struct
Typical
Name Type Value Limits Description
sl ot Fl ags XDAS_I nt 16 (bitfield, see N/A N/A Flags that control actions
section 2.4.2) associated with this time slot (see
Table 2-14, Table 2-15, and
Table 2-16)

m nTi e XDAS_ I nt 16 N/A >0 Minimum duration of this time slot,
in tens of milliseconds. Interpreted
in accordance with flags (see
Table 2-14)

maxTi ne XDAS_ I nt 16 N/A >0 Duration of this time slot, in tens of
milliseconds. Interpreted in
accordance with flags (see
Table 2-14)

aADOpt i ons[] XDAS Ul nt 16[N (bitfield, N/A N/A Amplitude discriminator options

see section 2.4.1)

that control the recognition of this
CMS. Format of bit fields is defined
in Table 2-11 and Table 2-13.

}
UMTD_Ti neSl ot ;

Universal Multifrequency Tone

2-19

Parameter Definition

2.4.1 Amplitude Discriminator Options

These flags control the recognition of partial multitone signal in the current time
slot. This member consists of twenty 4-bit fields, each corresponding to an ap-
propriate frequency in the common frequency list (see Table 2-11 and
Table 2-13).

Figure 2-8. Bit Field Position illustration

The number of items in MADOpt i ons array can vary (1. . N).
sl ot Fl ags >
It depends on amount of frequencies if frequency planner
i nTi me I:I and can be calculated using following formula:
maxTi me I:I _ Nfrequencies +3
NADO - 4
aADOpt i ons

Table 2-11. Bit Field Positions in the Recognition Flags

Bit Numbers Word Number Description
0-3 0 options for frequency with index 0
4-7 0 options for frequency with index 1
8-11 0 options for frequency with index 2
12-15 0 options for frequency with index 3
0-3 1 options for frequency with index 4
4-7 1 options for frequency with index 5
8-11 1 options for frequency with index 6
12-15 1 options for frequency with index 7
0-3 2 options for frequency with index 8
4-7 2 options for frequency with index 9
8-11 2 options for frequency with index 10
12-15 2 options for frequency with index 11
0-3 3 options for frequency with index 12
4-7 3 options for frequency with index 13
8-11 3 options for frequency with index 14

2-20

Parameter Definition

Table 2-11. Bit Field Positions in the Recognition Flags (Continued)

Bit Numbers Word Number Description
12-15 3 options for frequency with index 15
0-3 4 options for frequency with index 16
4-7 4 options for frequency with index 17
8-11 4 options for frequency with index 18
12-15 4 options for frequency with index 19

Table 2-12. DTMF Signal Mask for IUMTD_TSUSEDTMFMASK Option

signallD DTMF Signal
0x..00 1 <
0 é o © ~ V) §
x..01 2 QI & | § |8 |=
row — - - - |2
(@]
0x..02 3 =
0x..10 4 697 1 2 3 A 0
0x..11 5 770 4 5 6 B |1
0x..12 6 852 71819 |C |2
0x..20 7
941 * 0 # D 3
0x..21 8
column index| O 1 2 3
0x..22 9
0x..31 0 mEnumerator
0x..03 A
o LT
0x..13 B ' ' ' '
= = x x
0x..23 c 'g’ _g’ % %
c c
0x..33 D © s 35 £
=)
0x..30 * 3
o
0x..32 #

Universal Multifrequency Tone

2-21

Parameter Definition

Table 2-13. Amplitude Discrimination Options

typedef enum

Name Value Description

| UMID_ADI GNORE 0x00 Amplitude of given frequency component is ignored

| UMI'D_ADPAUSE 0x01 Given frequency component must be lower than pause threshold level
pauseThr eshol d (see Table 2-8)

| UMID_ADSPURI QUS 0x03 Given frequency component must be less than the spurious level
spuri ousLevel regarding the maximum spectrum component
(see Table 2-8).

| UMID_ADCANEXI ST 0x04 Given frequency component can be either greater or less than thresh-
old level si gnal Thr eshol d (see Table 2-8). However, at least one
of spectrum components marked by this option must exist.

| UMID_ADEXI ST 0x05 Given frequency component must be greater than threshold level
si gnal Threshol d (see Table 2-8)

| UMTD_ADDTMFROW 0x06 Given frequency component is treated as DTMF ‘row’ tone. Row/col-
umn twist ratio is verified

| UMID_ADDTMFCCL 0x07 Given frequency component is treated as DTMF ‘column’ tone. Col-
umn/row twist ratio is verified

| UMTD_ADDTMF2HARM 0x08 Given frequency component is treated as DTMF second harmonics
tone. 2-nd harmonics test is performed.

| UMTD_ADLOVER 0x09 Given frequency component must be lower than the maximum spec-
trum component.

| UMID_ADSPURI OQUSROW O0x0A Given frequency component must be less than the spurious level
spuri ousRow regarding the spectrum component marked with
| UMI'D_ADDTMFROW (see Table 2-8).

| UMID_ADSPURI QUSCOL 0x0B Given frequency component must be less than the spurious level
spuri ousCol regarding the spectrum component marked with
| UMID_ADDTMFCCL (see Table 2-8).

| UMID_ADSPURI QUSROM2 OxOC Given frequency component must be less than the spurious level
spuri ousRow2 regarding the spectrum component marked with
| UMID_ADDTMFROW (see Table 2-8).

| UMID_ADSPURI QUSCOL2 0xOD Given frequency component must be less than the spurious level

spuriousCol 2 regarding the spectrum component marked with
| UMTD_ADDTMFCCL (see Table 2-8).

}
| UMTD_ADOpt i ons;

2-22

2.4.2 Time Slot Flags

Parameter Definition

These flags control the action of recognition state machine that must be per-
formed at current time slot. They are represented by bit fields in the time slot
flags sl ot Fl ags (see Table 2-10).

This member consists of a number of bit fields defined in Table 2-14,
Table 2-15, and Table 2-16.

2.4.2.1 Time Selection

Time selection options control the cadence recognizer.

Table 2-14. Time Selection Options

Name

Value Duration

Description

| UMI'D_TSGUARDTI ME

| UMTD_TSQUALI TY

| UMTD_TSPORCSI TY

| UMID_TSM NTI ME

| UMTD_TSQ5BUSY

| UMITD_TSI NTERRUPTI ON

| UMITD_TSUSEDTM-VASK

| UMTD_TSADAPTPAUSE

0x01

0x40

0x02

0x04

0x08

0x10

0x20

0x80

1 frame

1 time slot

>=minTime

see Note

1 frame

Enables transition process at the beginning of this time
slot. State machine ignores signal spectrum during the
first frame of time slot.

Enables checking ratio of DTMF signal level to whole
signal level.

Enables checking of tone and pause duration changes.

NOTE: This option is to used only for signals with two
cadences.

Verifies whether tone duration is within the limits of
m nTi me, specified in the .

Makes duration check specifically for Q.35 busy tone.

Enables signal interruption, but not more than one
frame per time slot.

Removes peak MIPS on DTMF signals detection.

NOTE: This option can only be used when lower 8 bits
of si gnal | D (see Table 2-9) have values described
in Table 2-12.

Enables pause level calculations during tone time
slots.

NOTE: This option is to used only for tone time slots.

Note: For IUMTD_Q35BUSY, UMTD verifies the ratio of the tone period to the silent period as well as the pause duration. The
ratio mentioned above should be between 0.67 and 1.5, and tone period may be up to 500 milliseconds shorter than the
silent period. Under no circumstances should the tone period be shorter than 100 milliseconds.

See more information on these options in Table 2-2.

Universal Multifrequency Tone 2-23

Parameter Definition

2.4.2.2 Flow Control Options

Flow control options control state machine operation.

Normally, execution goes slot-by-slot unless any slot fails. Some flags can
change this behavior.

Execution is always started from the first time slot if current time slot fails.

Table 2-15. Flow Control Options

Name Value Description

| UMI'D_TSGONEXT 0x0100 Execute next time slot once this time slot is finished.

| UMITD_TSREPEAT 0x0200 Repeat execution from the first time slot once this time slot is
finished.

| UMID_TSBREAK 0x0400 Force detector to consider the CMS detection as “failed” once this
time slot finishes, and repeat execution from the first time slot.

| UMI'D_TSGOCOMVON 0x0800 Continue execution from the common time slot pointed by field

pConmonSl| ot (see Table 2-5).

2.4.2.3 Host Indication Options

The moment and type of indication that detector signals to the host about the
detection of time slot is defined in Host indication options in the time slot flags
sl ot Fl ags (see Table 2-10). Read section 2.3.6 for more information on
these options.

Table 2-16. Host Indication Options

Name Value Description

| UMID_TSTONESTART 0x1000 Enables UMTD to indicate/report transition to the “detected” state for
this signal by sending message | UMID_MIONESTART (see
Table 2-17) to the host when this time slot is finished. This message
is issued after successful detection of first frame in time slot.

| UMID_TSTONE 0x2000 Enables UMTD to send message | UMID_MTONE (see Table 2-17)
to the host when this time slot is finished and detector is in
“detected” state.

| UMID_TSSI GNALEND 0x4000 Enables UMTD to send message | UMITD_MsSI GNALEND (see
Table 2-17) to the host when last (this) time slot is finished.

| UMID_TSFAI L 0x8000 Enables UMTD to send message | UMTD_MFAI L (see Table 2-17)

to the host when “detected” state of CMS signal is finished. It is
means - detection failed.

2-24

Messages and Host Interface

2.5 Messages and Host Interface

UMTD detector informs the host about its state by issuing the messages. The
host is attached to the detector on object creation (see section 3.2.3). The
proprietary messaging service is implemented for host interface. The detector
always sends messages to the host, so it is a one-way message flow.

The user can change message flow and receive messages from
UMTD_det ect function directly (as return value). In this case pf nHandl er
filed of host structure should be set to NULL.

Host identifies actual UMTD signals by field sender in the message. This field
is filled by value si gnal | D (see Table 2-17) corresponding to the UMTD
signal related to this message.

The field t ype identifies the bit mask of message type. All message types are
summarized in the .

Table 2-17. UMTD Detector Messages Summary

typedef enum

Enumeration Constant

Value Action

| UMTD_VNONE

| UMID_MTONESTART

| UMI'D_MTONE

| UMI'D_MSI GNALEND

| UMI'D_MFAI L

0x0000 Not a valid message. Message of this type is never issued by
UMTD to the host, but is returned by UMITD_det ect () function
when there is no message available at the moment.

0x1000 Indicates successful detection of the signal for the first frame and
the fact that the recognizer fell into the “detected” state for this
signal.

0x2000 Indicates successful time slot detection of time slot, but it is issues
as many times as slot with enabled option | UMID_TSTONE is
processed.

0x4000 Indicates successful detection of last time slot, it is issues only for
last times slot with enabled option | UMID_TSSI GNALEND.

0x8000 Indicates the end of the “detected” state. If no “detected” state was
established earlier, this message is not issued.

}
| UMID_MessageType;

Universal Multifrequency Tone 2-25

Messages and Host Interface

Table 2-18. Message Structure

typedef struct

Type Name Comment

XDAS I nt 16 sender Enumerator of CMS signal. Is filled by si gnal | Dfield of structure
UMID_Si gnal (see Table 2-9).

| UMTD_MessageType type Message type. Must be one of enums defined in Table 2-17.

}
| UMID_Message;

Table 2-19. Host Controller

typedef struct

Typical
Name Type Value Limits Description
pl nst ance Voi d* N/A N/A Internal host instance handle. It is always used
as the first parameter in the function defined
below.
pf nHandl er XDAS Void (*) N/A N/A Host callback function to be invoked when

(Voi d*, const
| UMTD_Message*)

message is sent. Messages of type
UMID_Message are defined in . UMTD uses
field npl nst ance defined above as a first
parameter for this function.

}
UMID_Host ;

2-26

Examples

2.6 Examples

2.6.1 Typical CPTD Settings for USA’'s PSTN

2.6.1.1 Header File

#i fndef UMID CPTD H

#define UMTID CPTD H 1

#i ncl ude "iuntd. h”

#i ncl ude "contypes. h”

extern const | UMID _SeriesParans CPTD seri es;
#endif //UMID CPTD H

2.6.1.2 Source File

#i ncl ude " CPTD_usa. h”

#defi ne CPTD_TONE_FLAGS | UMTD_TSFAI L

#defi ne CPTD_PAUSE_FLAGS | UMID_TSDI GNALEND| | UMTD_TSFAI L| | UMID_TSGUARDTI ME

/'l Frequency planner . Frequencies are in Hz

R e T R
static const XDAS |Int16 CPTD frequencies [] =
{

330, 350, 370, 440,

460, 480, 500, 600,

620, 640
b
e I e T
/1 Typical recognition parameters for USA busy tone
e I e T

static const | UMID Ti neSl ot busySlots [] =

{ {{0x5555, 0x9919, 0x5591, O0x5555, 0x5555}, |UMID TSLIM TS | CPTD_TONE_FLAGS,
50, 550}, // 480+620 Hz, 0,5 sec

{{0x3333, 0x3333, 0x3333, 0x3333, 0x3333}, |UMID TS@5BUSY | CPTD_PAUSE_FLAGS,
50, 550} /'l pause, indicate once

I

/1 Typical recognition parameters for USA dial tone

Universal Multifrequency Tone 2-27

Examples

static const 1UMID TinmeSlot dial Slots [] =

{ {{0x1919, 0x5559, 0x5555, 0x5555, 0x5555}, |UMID TSLIM TS | CPTD_TONE_FLAGS,
800, 10100%, /1 350+440 Hz, 1.3 sec, indicate each tine

{{0x3333, 0x3333, 0x3333, 0x3333, 0x3333}, IUMID TSLIM TS | CPTD_PAUSE_FLAGS,
50, Ox7fff} /1 pause,

/1l Typical recognition paraneters for USA ringback tone

static const | UMID Ti meSl ot ringbackSlots [] =

{ {{0x1555, 0x5919, 0x5555, 0x5555, O0x5555}, |UMID TSLIM TS | CPTD_TONE_FLAGS,
200, 2500}, // 440+480 Hz, 1 sec

{{0x3333, 0x3333, 0x3333, 0x3333, 0x3333}, |UMID TSLIM TS | CPTD_PAUSE_FLAGS,
300, Ox7fff} /| pause, 3 sec, indicate once

/'l Recogni zed CPTD signals: busy, ringback, dial tone

static const | UMID_Signal CPTD_ signals[] =
{

AddSi gnal (0x2001, busySlots),

AddSi gnal (0x2002, dial Slots),

AddSi gnal (0x2003, ringbacksSl ots)

b

const | UMID _Seri esParans CPTD series =

{
CPTD_f r equenci es, /* pFrequencylist */
20, /* bandwi dth, Hz */
{

(XDAS_I nt 16) (0x8000*0. 1189), /* (-18.5 dBn) signal Threshold */
(XDAS_I nt 16) (0x8000*0. 0631), /* (-24 dBm) pauseThreshold */
(XDAS_I nt 16) (0x8000*0. 2500), /* (-12 dBm pauseAdapt */

(XDAS_I nt 16) (0x8000*0. 700), /* signal Quality */
(XDAS_I nt 16) (0x8000*0. 5000), /* (-6 dBc) spuriousLevel */
0, I* (dBc) spuriousCol */
0, I* (dBc) spuriousRow */
0, I* (dBc) spuriousCol 2 */

2-28

Examples

0, I* (dBc) spuriousRow2 */

0, I* (dBc) dt nf Twi st */

0, I* (dBc) dtnf2harm */

si zeof (CPTD_f r equenci es) / si zeof (XDAS_I nt 16) , /* nFrequencies */
si zeof (CPTD_si gnal s)/si zeof (1 UMID_Si gnal), /* nSignals */

(1 UMTrD_Si gnal *) CPTD_si gnal s, /* pSignal List */,

NULL

}
I

2.6.2 Typical DTMF Settings

2.6.2.1 Header File

#i f ndef UMID DTMF_H_

#define UMID DTMF H_ 1

#include "iuntd.h”

extern const | UMID SeriesParans DTMF_seri es;
#endif /* UMID. DTMF H___ 1 */

2.6.2.2 Source File

#i ncl ude "DTM~_usa. h”

#define DTMF_TONE_M N_LEN 20
#defi ne DTMF_TONE_MAX_LEN Ox7ff f
#defi ne DTMF_PAUSE_M N_LEN 20
#def i ne DTMF_PAUSE_MAX_LEN Ox7ff f
#Hf 1

/1 Standard settings

#define DTMF_TS_FLAGS | UMID_TSUSEDTMFMASK| | UMID_TSM NTI ME| | UMID_TSTONES-
TART| | UMID_TSGOCOVMON| | UMTD_TSFAI L| | UMITD_TSTONE | | UMID_TSI NTERRUPTI ON

#define DTMF_PS_FLAGS | UMID_TSM NTI ME| | UMID_TSTONE| | UMTD_TSFAI L| | UMID_TSSI GNA-
LEND| | UMID_TSGUARDTI NE

#el se
/1 Robust settings

#define DTMF_TS_FLAGS | UMID_TSUSEDTMFMASK| | UMID_TSM NTI ME| | UMTD_TSTONES-
TART| | UMID_TSGOCOMMON| | UMID_TSFAI L| | UMTD_TSTONE | | UMID_TSI NTERRUPTI ON

#define DTMF_PS_FLAGS | UMID_TSM NTI ME| | UMID_TSTONE| | UMID_TSFAI L| | UMID_TSSI GNA-
LEND| | UMTD_TSGUARDTI ME| | UMTD_TSGUARDTI ME2| | UMTD_TSI NTERRUPTI ON

#endi f

Universal Multifrequency Tone 2-29

Examples

e T R T
/'l Frequency pl anner Frequencies are in Hz
e e
const XDAS_Int16 DTM-_frequencies[] =
{

697, 770, 852, 941,

1209, 1336, 1477, 1633,

1406, 1555, 1711, 1279,

1209*2, 1336*2, 1477*2, 1633*2,

1134, 1266, 617, 1030
H
e e
/1 Typical recognition paranmeters for DTMF signals
R R T

static const | UMID_Ti neSl ot

{ {{0x33c6, 0x3337, 0xb88s,
DTMF_TONE_MAX_LEN },

b
static const | UMID_Ti nmeSl ot

{ {{0x33c6, 0x3373, 0x988b,
DTMF_TONE_MAX_LEN },

}
static const | UMID_Ti neSl ot

{ {{0x33c6, 0x3733, O0x38bb,
DTMF_TONE_MAX_LEN },

b
static const | UMID_Ti nmeSl ot

{ {{0Ox3c6c, 0x3337, 0xb888,
DTMF_TONE_MAX_LEN 1},

}
static const | UMID_Ti neSl ot

{ {{0x3c6c, 0x3373, 0x988b,
DTMF_TONE_MAX_LEN },

b
static const | UMID_Ti nmeSl ot

{ {{0Ox3c6c, 0x3733, 0x38bb,
DTMF_TONE_MAX_LEN 1},

I

2-30

DTMF_Tonelslot [] =

0x8888, 0x3c9b}, DTMF TS FLAGS,

DTMF_Tone2slot [] =

0x8888, 0x3ch3}, DTMF TS FLAGS,

DTMF_Tone3slot [] =

0x8888, 0x3c33}, DTMF_TS_FLAGS,

DTMF_Tonedslot [] =

0x8888, 0x339b}, DTMF_TS FLAGS,

DTMF_Tonebslot [] =

0x8888, 0x33b3}, DTMF_TS_FLAGS,

DTMF_Tone6slot [] =

0x8888, 0x3333}, DIMF_TS_FLAGS,

DTMF_TONE_M N_LEN,

DTMF_TONE_M N_LEN,

DTMF_TONE_M N_LEN,

DTMF_TONE_M N_LEN,

DTMF_TONE_M N_LEN,

DTMF_TONE_M N_LEN,

static const | UMID_Ti nmeSl ot

{ {{O0xa6a3, 0x3337, 0xb888,
DTMF_TONE_MAX_LEN 1},

}

static const | UMID_Ti neSl ot

{ {{Oxa6a3, 0x3373, 0x988b,
DTM-_TONE_MAX_LEN 1},

}

static const | UMID_Ti neSl ot

{ {{Oxa6a3, 0x3733, 0x38bb,
DTMF_TONE_MAX_LEN 1},

b

static const | UMID_Ti nmeSl ot

{ {{0x6a33, 0x3373, 0x988b,
DTMF_TONE_MAX_LEN 1},

b

static const | UMID_Ti neSl ot

{ {{0x33c6, 0x7333, O0x3bbs,
DTMF_TONE_MAX_LEN },

b

static const | UMID_Ti neSl ot
{ {{0x3c6c, 0x7333, 0x3bb8,
DTMF_TONE_MAX_LEN 1},

}s

static const | UMID_Ti nmeSl ot

{ {{O0xa6a3, 0x7333, 0x3bbs,
DTMF_TONE_MAX_LEN 1},

b

static const | UMID_Ti neSl ot

{ {{0x6a33, 0x7333, 0x3bbs,
DTMF_TONE_MAX_LEN 1},

b

static const | UMID_Ti neSl ot

{ {{0x6a33, 0x3337, 0xd888,
DTM-_TONE_MAX_LEN 1},

b

static const | UMID Ti nmeSl ot

{ {{0x6a33, 0x3733, 0x38bb,
DTME_TONE_MAX_LEN 1},

DTMF_Tone7slot [] =
0x8888, 0x339b},

DTMF_Tone8slot [] =
0x8888, 0x33d3},

DTMF_Tone9slot [] =
0x8888, 0x3333},

DTMF_ToneOslot [] =
0x8888, 0xc3d3},

DTMF_ToneAslot [] =
0x8888, 0x3c33},

DTMF_ToneBslot [] =
0x8888, 0x3333},

DTMF_ToneCslot [] =
0x8888, 0x3333},

DTMF_ToneDslot [] =
0x8888, 0xa333},

DTMF_ToneStarsl ot []
0x8888, 0xc39b},

/1c 99
DTMF_ToneGridsl ot []
0x8888, 0xa333},

DTME_TS_FLAGS,

DTMF_TS_FLAGS,

DTME_TS_FLAGS,

DTME_TS_FLAGS,

DTMF_TS_FLAGS,

DTME_TS_FLAGS,

DTME_TS_FLAGS,

DTMF_TS_FLAGS,

DTME_TS_FLAGS,

DTME_TS_FLAGS,

Examples

DTMF_TONE_M N_LEN,

DTMF_TONE_M N_LEN,

DTMF_TONE_M N_LEN,

DTMF_TONE_M N_LEN,

DTMF_TONE_M N_LEN,

DTMF_TONE_M N_LEN,

DTMF_TONE_M N_LEN,

DTMF_TONE_M N_LEN,

DTMF_TONE_M N_LEN,

DTMF_TONE_M N_LEN,

Universal Multifrequency Tone

2-31

Examples

}
static const | UMID Ti neSl ot DTMF_PauseSlot [] =

{ {{0x1111, 0x1111, Ox1111, Ox1111, 0x1111}, DTMF_PS_FLAGS, DTMF_PAUSE M N_LEN,
DTMF_PAUSE_MAX_LEN }

I

static const | UMID_Signal DTMF_signal s[] =

{
ADD_UMTD_SI GNAL(0x4000, DTMF_Tonelsl ot),
ADD_UMTD_SI GNAL(0x4001, DTMF_Tone2sl ot),
ADD_UMID_SI GNAL(0x4002, DTMF_Tone3sl ot),
ADD_UMTD_SI GNAL(0x4010, DTM-_Tone4sl ot),
ADD_UMTD_SI GNAL(0x4011, DTMF_Tone5sl ot),
ADD_UMTD_SI| GNAL(0x4012, DTM-_Tone6sl ot),
ADD_UMTD_SI GNAL(0x4020, DTMF_Tone7sl ot),
ADD_UMTD_SI GNAL(0x4021, DTMF_Tone8sl ot),
ADD_UMID_SI GNAL(0x4022, DTMF_Tone9sl ot),
ADD_UMTD_SI GNAL(0x4031, DTMF_ToneOsl ot),
ADD_UMTD_SI GNAL(0x4003, DTMF_ToneAsl ot),
ADD_UMTD_SI| GNAL(0x4013, DTMF_ToneBsl ot),
ADD_UMTD_SI GNAL(0x4023, DTMF_ToneGCsl ot),
ADD_UMTD_SI GNAL(0x4033, DTMF_ToneDsl ot),
ADD_UMID_SI GNAL(0x4030, DTMF_ToneStarslot),
ADD_UMID_SI GNAL(0x4032, DTMF_ToneGridslot),

b
const | UMID _Seri esParans DTMF_series =
{
DTM-_f r equenci es, /'l pFrequencyli st
80, /1 bandw dth
{
(XDAS_I nt 16) (0x8000*0. 0150), /1 (-36.5 dBn) signal Threshol d
(XDAS_I nt 16) (0x8000* 0. 0080) , Il (-42 dBn) pauseThreshol d
(XDAS_I nt 16) (0x8000*0. 2500), I (-12 dBn) pauseAdapt
(XDAS_I nt 16) (0x8000*0. 7000) , I signal Quality

2-32

Examples

2, [/ i nt errupt Count
(XDAS_I nt 16) (0x8000*0. 4250), /1l (-7.4 dBc) spuriousLevel
(XDAS_| nt 16) (0x8000* 0. 8800) , /1 (-1.11 dBc) spuriousCol ”b”
(XDAS_I nt 16) (0x8000* 0. 3000), /1 (-10.5 dBc) spuriousRow "a”
(XDAS_I nt 16) (0x8000*0. 9200) , /1 (-0.72 dBc) spuriousCol2 "d”
(XDAS_I nt 16) (0x8000*0. 3430), /1 (-9.3 dBc) spuriousRow2 "c”
(XDAS_I nt 16) (0x8000*0. 2800), /1 (-11.1 dBc) dtnfTwi st
(XDAS_| nt 16) (0x8000*0. 707) , /1 (-3 dBc) dt nf2harm

si zeof (DTMF_f r equenci es)/ si zeof (XDAS I nt 16),// nFrequenci es
si zeof (DTMF_si gnal s)/si zeof (1 UMID_Signal), // nSignals
DTMF_si gnal s, /1 pSignal Li st
DTMF_PauseSl| ot /1 pCommonSl ot

I
Figure 2-9. Messages Sequence for DTMF Detection (With Early Detection)
L] 1
| TONE H !

| |

)
J

|
2

Time Slot 1 \ Time Slot

B /\ Guardtime
£
8¢ | I\ uvro_mronestart 111 uvro_vrone I\ UMD vBI GNALEND
e "detected” state

| | UMTD_TSM NTI ME | UMTD_TSM NTI ME |
E% g | UMTD_TSTONESTART I UMID_TS T VE
8 g§| - |\ UMID_TSSI GNALEND |
w-Eo

= | | UMID_TSFAI L | | UMID_TSFAI L |

|17 wait for 50 ms 4*— pause for 40 ms —’|

Universal Multifrequency Tone 2-33

Examples

2.6.3 CPTD Settings for United Arab Emirates

2.6.3.1 Header File

#i f ndef UMID CPTD ARAB H

#define UMTD CPTD ARAB H 1

#include "iunmtd. h”

extern const | UMID _Seri esParanms CPTD arab_seri es;
#endif //UMID CPTD ARAB H

2.6.3.2 Source Signal

#i ncl ude " CPTD_ar ab. h”

#defi ne CPTD_ARAB_TONE_FLAGS | UMID_TSFAI L

#def i ne CPTD_ARAB_PAUSE _FLAGS | UMID_TSSI GNALEND| | UMID_TSFAI L| | UMID_TSGUARDTI ME

/'l Frequency planner . Frequencies are in Hz

R e
static const XDAS Int1l6 CPTD arab_frequencies [] =
{

300, 350, 375, 400,

425, 440, 450
H
R e
/1 Typical recognition parameters for UAE busy tone
R e

static const | UMID Ti meSl ot arab_busySlots [] =

{ {{0x2955, 0x0592, 0x0000, 0x0000, 0x0000}, |UMID TSLIM TS |
CPTD_ARAB_TONE_FLAGS, 300, 450}, // 400/425 Hz, 0.375 sec

{{0x3333, 0x0333, 0x0000, 0x0000, 0x0000}, IUMID TSLIMTS |
CPTD_ARAB_PAUSE FLAGS, 300, 450} /1 .375 pause, indicate once

I

/1 Typical recognition parameters for UAE dial tone

static const IUMID Ti meSlot arab_dial Slots [] =

{ {{0x5515, 0x0219, 0x0000, 0x0000, 0x0000}, |UMID TSLIMTS |
CPTD_ARAB_TONE_FLAGS, 800, 10100}, // 350+440 Hz, 1.3 sec, indicate each tine

{{0x3333, 0x0333, 0x0000, 0x0000, 0x0000}, |UMID_TSM NTI ME |
CPTD_ARAB_PAUSE FLAGS, 50, Ox7fff} /1 pause,

2-34

Examples

/1l Typical recognition paraneters for UAE ringback tone

static const IUMID Ti meSl ot arab_ringbackSlots [] =
{ {{0x1955, 0x0129, 0x0000, 0x0000, 0x0000}, |UMID TSLIMTS |

CPTD_ARAB_TONE_FLAGS, 350, 450}, /1 400+450/ 425 Hz, 0.4 sec
{{0x3333, 0x0333, 0x0000, 0x0000, 0x0000}, |UMID TSLIMTS |

CPTD_ARAB_PAUSE_FLAGS, 145, 220}, /! pause, 0.2 sec
{{0x1955, 0x0129, 0x0000, 0x0000, 0x0000}, IUMID TSLIMTS |

CPTD_ARAB_PAUSE FLAGS, 350, 450}, /| 400+450/ 425 Hz, 0.4 sec
{{0x3333, 0x0333, 0x0000, 0x0000, O0x0000}, |UMID_TSM NTI ME |

CPTD_ARAB_PAUSE_FLAGS, 1900, 2100}, /| pause, 2.0 sec

}

I e

/'l Recogni zed CPTD signals: busy, ringback, dial tone

I e

static const | UMID Signal CPTD arab_signals[] =

{

AddSi gnal (0x2001, arab_busySl ots),
AddSi gnal (0x2002, arab_dial Slots),
AddSi gnal (0x2003, arab_ringbackSl ots),

b

const | UMID_Seri esParans CPTD arab_series =

{
CPTD_ar ab_frequenci es, [* pFrequencylList */
20, [* bandwi dth */
{

(XDAS_I nt 16) (0x8000*0. 1189), /* (-18.5 dBn) signal Threshold */
(XDAS_I nt 16) (0x8000*0. 0631), /* (-18 dBm pauseThreshold */
(XDAS_I nt 16) (0x8000*0. 2500), /* (-12 dBm pauseAdapt */

(XDAS_I nt 16) (0x8000*0. 7000), /* signal Quality */
0, [/* i nterrupt Count */

(XDAS_I nt 16) (0x8000*0. 5000), /* (-6 dBc) spuriousLevel */

0, I* (dBc) spuriousCol */

0, I* (dBc) spuriousRow */

0, I* (dBc) spuriousCol 2 */

Universal Multifrequency Tone 2-35

Examples

2-36

0, I* (dBc) spuriousRow2 */
0, I* (dBc) dtnfTw st */
0, I* (dBc) dt nf2harm */

si zeof (CPTD_ar ab_frequenci es)/si zeof (XDAS_I nt 16), /* nFrequencies */
si zeof (CPTD_ar ab_si gnal s)/ si zeof (1 UMID_Si gnal), /* nSignals */

(1 UMTD_Si gnal *) CPTD_ar ab_si gnal s, [* pSignal List */
NULL

Chapter 3

Universal Multifrequency Tone Detector
(UMTD) API Descriptions

This chapter provides the user with a clear understanding of Universal Multi-
frequency Tone Detector (UMTD) algorithms and their implementation with the
TMS320 DSP Algorithm Standard interface (XDAIS).

Topic Page
3.1 Standard Interface StrUCIUrESoeoreneoeeeeeeaneanns
3.2 Standard Interface FUNCHIONSouvrieeie e
3.3 Vendor-Specific Interface FUNCLIONSvouteeeieieaneen.

3-1

Standard Interface Structures

3.1 Standard Interface Structures
In this section, Standard interface structures for the UMTD are described.

Table 3-1 lists the UMTD Detector Real-time Status parameters.

3.1.1 Instance Creation Parameters

Description This structure defines the creation parameters for the algorithm. A default pa-
rameter structure is defined in “i UMTD. c”.

Structure Definition Use structure | UMID_Par ans (see Table 2-8) to provide each instance with
parameters.

Type | UMTD_Par ans is defined in “i UMID. h”.

3.1.2 Status Structure

Description This structure defines the status parameters for the algorithm. Detector status
structure is used for control purposes. Status can be received by function
UMID_get St at us() .

Structure Definition

Table 3-1. UMTD Detector Real-Time Status Parameters
typedef struct |UMID_Status

Status Type Status Name Description
XDAS I nt16 nFr equenci es Length of array pMagnut udes specified below
XDAS | nt 16* pMagnut udes Pointer to the array of signal magnitudes at given frequencies

}
| UMID_St at us;

Type | UMID_St at us defined in “i UMID. h”.

UMTD_exit

3.2 Standard Interface Functions

The following functions are all required when using the UMTD algorithm.
Table 3-2 summarizes standard interface functions of UMTD detector API.

UMID_appl y() and UMID _cont rol () are optional, but neither are sup-
ported by Spirit Corp.

Table 3-2. UMTD Detector Standard Interface Functions

Functions Description See Page...

UMID i ni t Algorithm initialization 3-3

UMID_exi t Algorithm deletion

UMID create Instance creation

UMID _del et e Instance deletion 3-4
3.2.1 Algorithm Initialization

UMTD _init Calls the framework initialization function to initialize an algorithm

Description

Function Prototype
Arguments

Return Value

This function calls the framework initialization function, ALG i nit(), to
initialize the algorithm. For UMTD detector, this function does nothing. It can
be skipped and removed from the target code according to Achieving Zero
Overhead With the TMS320 DSP Algorithm Standard IALG Interface
(SPRA716).

void UMID init ()

none

none

3.2.2 Algorithm Deletion

UMTD_exit Calls the framework exit function to remove an algorithm instance
Description This function calls the framework exit function, ALG exi t (), to remove an

Function Prototype
Arguments

Return Value

instance of the algorithm. For UMTD detector, this function does nothing. It can
be skipped and removed from the target code according to Achieving Zero
Overhead With the TMS320 DSP Algorithm Standard IALG Interface
(SPRA716).

void UMID exit ()
none

none

3-3

UMTD_create

3.2.3 Instance Creation

UMTD create Calls the framework create function to create an instance object
Description In order to create a new UMTD detector object, UMID cr eat e function

Function Prototype

Arguments

Return Value

should be called. This function calls the framework create function,
ALG creat e(), to create the instance object and perform memory allocation
tasks. Global structure UMID_SPCORP_| UMID contains UMID virtual table
supplied by SPIRIT Corp.

UMID Handl e UMID create
(const | UMID Fxns *fxns,
const UMID Parans *prns);

| UMID_Fxns * Pointer to vendor’s functions (Implementation ID).
Use reference to UMID_SPCORP_| UMID virtual table.

UMID _Paranms * Pointer to Parameter Structure. Use NULL pointer to load
default parameters.

UMID_Handl e is defined in file “UMTID. h”. This is a pointer to the created
instance.

3.2.4 Instance Deletion

UMTD_delete Calls the framework delete function to delete an instance object
Description This function calls the framework delete function, ALG del et e(), to delete

Function Prototype
Arguments

Return Value

the instance object and perform memory de-allocation tasks.
void UMID del ete (UMID_Handl e handl e)
UMID_Handl e Instance’s handle obtained from UMID _cr eat e()

none

UMTD_detect

3.3 Vendor-Specific Interface Functions

In this section, functions in the SPIRIT’s algorithm implementation and inter-
face (extended IALG methods) are described.

Table 3-3 summarizes SPIRIT’s API functions of the UMTD detector.

The whole interface is placed in the header files i UMID. h, UMID. h,
UMID_spcor p. h.

Table 3-3. Detector-Specific Interface Functions

Functions Description See Page...

UMID_det ect Sends samples to the detector and process |[3-5
detection

UMID _r eset Resets actual detector status for all signals |3-6

UMTID_get St at us

Returns current detector status 3-6

3.3.1 Process Detection

UMTD_ detect Returns valid call progress tones or special notification messages
Description Returns valid call progress tones or special notification messages.

Function Prototype

Arguments

Return Value

Restrictions

| UMTD_Message UMID_det ect
(UMID_Handl e handl e,
const XDAS Int16 in[],
XDAS I nt16 count)

handl e Pointer to UMTD instance
in Array of input samples at sample rate 8 kHz
count Number of samples to be processed

Returns bit mask with messages from UMTD when the host is not attached to
the detector on UMTD creation (field npHost in | UMID_Par ans is NULL,
see Table 2-5).

When no message is available or message is processed by the host, field
nirype of | UMTD_Message is set to | UMI'D_MNONE.

none

3-5

UMTD_ reset

3.3.2 Reset Detector Status

UMTD_reset Resets the current detector status for all signals
Description Resets the current detector status for all signals.

Function Prototype

Arguments
Return Value

Restrictions

Voi d UMID reset
(UMID_Handl e handl e)

handl e Pointer to UMTD instance
none

none

3.3.3 Get Actual Detector Status

SIS EWE Returns the current detector status

Description

Function Prototype

Arguments

Return Value

Restrictions

Returns current detector status. Just copies internal state variables into status
structure. Can be used to analyze magnitudes of all frequency components.

Voi d UMID get St at us
(UMID_Handl e handl e, XDAS Int16 index, |UMID_Sta-
tus* pStatus)

Handl e Pointer to UMTD instance
| ndex Series index
PSt at us Pointer to the status structure to be read

Actual detector status (see Table 3-1).

none

Test Environment

C54CST

Note: Test Environment Location
This chapter describes test environment for the UMTD object.

For TMS320C54CST device, test environment for standalone UMTD object
is located in the Software Development Kit (SDK) in Src\ Fl exExam
pl es\ St andal oneXDAS\ UMID.

Topic Page

A.1 Description of Directory Tree . ..ot A-2

A-1

Description of Directory Tree

A.1 Description of Directory Tree

The SDK package includes the test project “test.pjt” and corresponding refer-
ence test vectors. The user is free to modify this code as needed, without sub-
missions to SPIRIT Corp.

Table A-1. Test Files for UMTD

File Description
main.c Test file
FileC5x.c File input/output functions

.\ROM\CSTRom.s54 ROM entry address
Test.cmd Linker command file

Vectors\output.pcm Reference output test vectors

A-2

A.1.1 Test Project

Description of Directory Tree

To build and run a project, the following steps must be performed:

Step 1:
Step 2:
Step 3:
Step 4:

Step 5:

Open the project: Pr oj ect \ Open

Build all necessary files: Proj ect\ Rebui | d Al |
Initialize the DSP: Debug\ Reset CPU

Load the output-file: Fi | e\ Load pr ogram

Run the executable: Debug\ Run

Once the program finishes testing, the file Output.pcm will be written in the cur-
rent directory. Compare this file with the reference vector contained in the
directory Vectors.

Note:

Test Duration

Since the standard file I/O for EVM is very slow, testing may take several min-
utes. Test duration does not indicate the real algorithm’s throughput.

Test Environment A-3

ALG, interface |1-4

ALG_activate |1-4

ALG_control [1-5

ALG_create

ALG_deactivate

ALG_delete |[1-4

ALG_exit

ALG_init

Algorithm Deletion

Algorithm Initialization
Amplitude Discrimination [2-8
Amplitude Discrimination Options
Amplitude Discriminator Options

Application Development
steps to creating an application |1-8

Application/Framework

Bit Field, positions and flags table

CMS Recognition Parameters

Common UMTD Parameters

CPTD Settings for United Arab Emirates
CPTD Settings for USA's PSTN, example of

Detector Messages
Directory Tree

Index

DTMF Detection, Message sequence

illustration
DTMF Settings
DTMF Signal Mask for IUMTD_TSUSEDTMFMASK

Option

Environment, for testing

Examples
CPTD Settings for United Arab Emirates

DTMF Settings

Typical CPTD Settings for USA's PSTN

Flow Control Options [2-12[2-24 |
Formulas, for Bit fields
Framework

frequency planner, formula for

Frequency Selection
Functions

standard
vendor-specific

Get Actual Detector Status |3-6

Header File
CPTD Settings for United Arab Emirates
DTMF Settings
for CPTD settings for USA's PSTN
Header file
for abstract interfaces

Index-1

Index

for concrete interfaces |[1-5 Common UMTD |[2-18
Host Controller for Recognized Signal Series [2-17 |
Host Indication Example Pointers to Series

dicati _ recognized signal series
Host Indication Options |2-13,[2-24 | UMTD Time Slots
Pointers to Series Parameters

n Process Detection
IALG [1-6] E
Instance Creation
Instance Creation Parameters [3-2 Recognition Flags, for Bit Field Positions
Instance Deletion |3-4 Recognized Signal Series

Interface
abstract
concrete

vendor implementation |[1-6
Signal recognition

Reset Detector Status |[3-6

amplitude discrimination

flow control options

Message Structure frequency selection
Messages and Host Interface general [2-6 |
Host Controller host indication
Message structure time selection
UMTD Detector Messages Summary signals, composite, illustration of
Module Instance Lifetime. See Application Source File
Development DTMF Settings
for CPTD settings for USA's PSTN
Source file
for abstract interfaces

for concrete interfaces

Options Source Signal, CPTD Settings for United Arab

Amplitude Discrimination . -

amplitude discriminator Emirates

DTMF Signal Mask for Status Structure |3-2
IUMTD_TSUSEDTMFMASK Structures, standard

flow control

host indication

time selection
Test
E files
project
Parameter, definitions Test Environment
Parameter Definition [2-15 Time Selection
amplitude discriminator options [2-20 Time Selection Options
Time Slot Flags Time Slot Flags
Parameters flow control opt
CMS Recognition time selection

Index-2

Index

Universal Multifrequency Tone Detector
Examples

Messages and Host Interface

overview

UMTD. See Universal Multifrequency Tone Detector

UMTD Detector Messages Parameter Definition
UMTD Detector Real-Time Status Parameters |3-2 signal recognition
UMTD Thresholds steps to integrating into a framework

UMTD Time Slots

UMTD_apply

UMTD_control |3-3
UMTD_create [3-4

UMTD_delete [3-4 XDAIS
UMTD detect |35 Application DevelopmentF
UMTD exit Appllcatlon/Framework 1-4

- basics
UMTD_ggtStatus 3-6 Interface
UMTD_init related documentaion
UMTD_reset |3-6 System Layers, illustration of

Index-3

	IMPORTANT NOTICE
	Read This First
	About This Manual
	Related Documentation From Texas Instruments
	Related Documentation
	Trademarks
	Software Copyright
	If You Need Assistance...

	Contents
	Figures
	Tables
	Notes, Cautions, and Warnings
	Chapter 1: Introduction to Universal Multifrequency Tone Detector (UMTD\
) Algorithms
	1.1 Introduction
	1.2 XDAIS Basics
	1.2.1 Application/Framework
	1.2.2 Interface
	1.2.2.1 Concrete Interface
	1.2.2.2 Abstract Interface
	1.2.2.3 Vendor Implementation

	1.2.3 Application Development

	Chapter 2: Universal Multifrequency Tone Detector (UMTD) Integration
	2.1 Overview
	2.2 Integration Flow
	2.3 Signal Recognition
	2.3.1 General
	2.3.2 Frequency Selection
	2.3.3 Amplitude Discrimination
	2.3.4 Time Selection
	2.3.5 Flow Control Options
	2.3.6 Host Indication Options

	2.4 Parameter Definition
	2.4.1 Amplitude Discriminator Options
	2.4.2 Time Slot Flags
	2.4.2.1 Time Selection
	2.4.2.2 Flow Control Options
	2.4.2.3 Host Indication Options

	2.5 Messages and Host Interface
	2.6 Examples
	2.6.1 Typical CPTD Settings for USA’s PSTN
	2.6.1.1 Header File
	2.6.1.2 Source File

	2.6.2 Typical DTMF Settings
	2.6.2.1 Header File
	2.6.2.2 Source File

	2.6.3 CPTD Settings for United Arab Emirates
	2.6.3.1 Header File
	2.6.3.2 Source Signal

	Chapter 3: Universal Multifrequency Tone Detector (UMTD) API Descripti\
ons
	3.1 Standard Interface Structures
	3.1.1 Instance Creation Parameters
	3.1.2 Status Structure

	3.2 Standard Interface Functions
	3.2.1 Algorithm Initialization
	UMTD_init

	3.2.2 Algorithm Deletion
	UMTD_exit

	3.2.3 Instance Creation
	UMTD_create

	3.2.4 Instance Deletion
	UMTD_delete

	3.3 Vendor-Specific Interface Functions
	3.3.1 Process Detection
	UMTD_detect

	3.3.2 Reset Detector Status
	UMTD_reset

	3.3.3 Get Actual Detector Status
	UMTD_getStatus

	Appendix A: Test Environment
	A.1 Description of Directory Tree
	A.1.1 Test Project

	Index

