
TMS320DM644x DMSoC
ATA Controller

User's Guide

Literature Number: SPRUE21

December 2005

2 SPRUE21–December 2005

Contents

Preface ... 5
1 Introduction.. 7

1.1 Purpose of the Peripheral.. 7

1.2 Features.. 7

1.3 Functional Block Diagram ... 8

1.4 Supported Use Cases.. 8

1.5 Industry Standard(s) Compliance... 9

1.6 Terminology Used in This Document .. 9

2 Peripheral Architecture .. 9
2.1 Clock Control .. 9

2.2 Signal Descriptions.. 10

2.3 Pin Multiplexing.. 12

2.4 Protocol Description(s) ... 12

2.5 General Architecture .. 12

2.6 DMA and PIO Data Transaction Overview... 17

2.7 Attached Device Reset Considerations .. 21

2.8 Initialization... 22

2.9 Interrupt Support .. 25

2.10 EDMA Event Support ... 28

2.11 Power Management... 29

2.12 Emulation Considerations .. 29

3 Supported Use Cases .. 29
3.1 Interfacing to a Standard ATA/ATAPI Device ... 29

3.2 Interfacing to a Standard ATA/ATAPI Device Through a Level-Shifter 30

3.3 Interfacing to Compact Flash .. 31

4 Registers.. 33
4.1 Primary IDE Channel DMA Control Register (BMICP) ... 34

4.2 Primary IDE Channel DMA Status Register (BMISP) .. 35

4.3 Primary IDE Channel DMA Descriptor Table Pointer Register (BMIDTP) 36

4.4 Primary IDE Channel Timing Register (IDETIMP) .. 37

4.5 IDE Controller Status Register (IDESTAT) .. 38

4.6 Ultra-DMA Control Register (UDMACTL) .. 39

4.7 Miscellaneous Control Register (MISCCTL) ... 40

4.8 Task File Register Strobe Timing Register (REGSTB)... 41

4.9 Task File Register Recovery Timing Register (REGRCVR) ... 42

4.10 Data Register Access PIO Strobe Timing Register (DATSTB) ... 43

4.11 Data Register Access PIO Recovery Timing Register (DATRCVR).. 44

4.12 Multiword DMA Strobe Timing Register (DMASTB) .. 45

4.13 Multiword DMA Recovery Timing Register (DMARCVR) .. 46

4.14 Ultra-DMA Strobe Timing Register (UDMASTB) .. 47

4.15 Ultra-DMA Ready-to-Pause Timing Register (UDMATRP) .. 48

4.16 Ultra-DMA Timing Envelope Register (UDMATENV)... 49

4.17 Primary IO Ready Timer Configuration Register (IORDYTMP) ... 50

SPRUE21–December 2005 Table of Contents 3

List of Figures

1 ATA Controller Block Diagram ... 8
2 Physical Region Descriptor (PRD) Table Entry .. 18
3 Primary IDE Channel DMA Control Register (BMICP) .. 34
4 Primary IDE Channel DMA Status Register (BMISP) ... 35
5 Primary IDE Channel DMA Descriptor Table Pointer Register (BMIDTP) .. 36
6 Primary IDE Channel Timing Register (IDETIMP) ... 37
7 IDE Controller Status Register (IDESTAT) ... 38
8 Ultra-DMA Control Register (UDMACTL) ... 39
9 Miscellaneous Control Register (MISCCTL) .. 40
10 Task File Register Strobe Timing Register (REGSTB) ... 41
11 Task File Register Recovery Timing Register (REGRCVR) .. 42
12 Data Register Access PIO Strobe Timing Register (DATSTB) .. 43
13 Data Register Access PIO Recovery Timing Register (DATRCVR)... 44
14 Multiword DMA Strobe Timing Register (DMASTB) ... 45
15 Multiword DMA Recovery Timing Register (DMARCVR) ... 46
16 Ultra-DMA Strobe Timing Register (UDMASTB) ... 47
17 Ultra-DMA Ready-to-Pause Timing Register (UDMATRP) ... 48
18 Ultra-DMA Timing Envelope Register (UDMATENV).. 49
19 Primary IO Ready Timer Configuration Register (IORDYTMP) .. 50

List of Tables

1 Supported IDE Controller Signals .. 10
2 Unsupported IDE Controller Signals ... 12
3 Description of Single Physical Region Descriptor (PRD) Table Entry... 18
4 Identifying the ATA Controller Interrupt Sources... 25
5 DMA Driven Interrupt Conditions... 28
6 ATA/ATAPI Device Interface Connections for a Standard ATA/ATAPI Device 29
7 ATA/ATAPI Device Interface Connections for a Standard ATA/ATAPI Device Through a Level-Shifter 31
8 ATA/ATAPI Device Interface Connections for a Compact Flash Device ... 32
9 ATA Host Controller Registers ... 33
10 ATA Controller Registers in the Attached Device .. 33
11 Primary IDE Channel DMA Control Register (BMICP) Field Descriptions.. 34
12 Primary IDE Channel DMA Status Register (BMISP) Field Descriptions ... 35
13 Primary IDE Channel DMA Descriptor Table Pointer Register (BMIDTP) Field Descriptions.................... 36
14 Primary IDE Channel Timing Register (IDETIMP) Field Descriptions... 37
15 IDE Controller Status Register (IDESTAT) Field Descriptions ... 38
16 Ultra-DMA Control Register (UDMACTL) Field Descriptions ... 39
17 Miscellaneous Control Register (MISCCTL) Field Descriptions.. 40
18 Task File Register Strobe Timing Register (REGSTB) Field Descriptions ... 41
19 Task File Register Recovery Timing Register (REGRCVR) Field Descriptions.................................... 42
20 Data Register Access PIO Strobe Timing Register (DATSTB) Field Descriptions 43
21 Data Register Access PIO Recovery Timing Register (DATRCVR) Field Descriptions 44
22 Multiword DMA Strobe Timing Register (DMASTB) Field Descriptions... 45
23 Multiword DMA Recovery Timing Register (DMARCVR) Field Descriptions 46
24 Ultra-DMA Strobe Timing Register (UDMASTB) Field Descriptions... 47
25 Ultra-DMA Ready-to-Pause Timing Register (UDMATRP) Field Descriptions 48
26 Ultra-DMA Timing Envelope Register (UDMATENV) Field Descriptions ... 49
27 Primary IO Ready Timer Configuration Register (IORDYTMP) Field Descriptions................................ 50

List of Figures4 SPRUE21–December 2005

Preface
SPRUE21–December 2005

Read This First

About This Manual

The AT attachment/ATA packet interface (ATA/ATAPI), also known as IDE controller, is the traditional
choice of the communication medium between a portable computer (PC) and a hard-disk drive. Ever since
its adoption by the industry, it has been the choice of interface between a PC and a common storage
medium. This standard interface provides a common attachment interface for system manufacturers,
system integrators, software suppliers, and suppliers of intelligent storage devices.

Notational Conventions

This document uses the following conventions.

• Hexadecimal numbers are shown with the suffix h. For example, the following number is 40
hexadecimal (decimal 64): 40h.

• Registers in this document are shown in figures and described in tables.

– Each register figure shows a rectangle divided into fields that represent the fields of the register.
Each field is labeled with its bit name, its beginning and ending bit numbers above, and its
read/write properties below. A legend explains the notation used for the properties.

– Reserved bits in a register figure designate a bit that is used for future device expansion.

Related Documentation From Texas Instruments

The following documents describe the TMS320DM644x Digital Media System-on-Chip (DMSoC). Copies
of these documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the
search box provided at www.ti.com.

The current documentation that describes the DM644x DMSoC, related peripherals, and other technical
collateral, is available in the C6000 DSP product folder at: www.ti.com/c6000.

SPRUE14 — TMS320DM644x DMSoC ARM Subsystem Reference Guide. Describes the ARM
subsytem in the TMS320DM644x Digital Media System-on-Chip (DMSoC). The ARM subsystem is
designed to give the ARM926EJ-S (ARM9) master control of the device. In general, the ARM is
responsible for configuration and control of the device; including the DSP subsystem, the video
processing subsystem, and a majority of the peripherals and external memories.

SPRUE15 — TMS320DM644x DMSoC DSP Subsystem Reference Guide. Describes the digital signal
processor (DSP) subsystem in the TMS320DM644x Digital Media System-on-Chip (DMSoC).

SPRUE19 — TMS320DM644x DMSoC Peripherals Overview Reference Guide. Provides an overview
and briefly describes the peripherals available on the TMS320DM644x Digital Media
System-on-Chip (DMSoC).

SPRAA84 — TMS320C64x to TMS320C64x+ CPU Migration Guide. Describes migrating from the
Texas Instruments TMS320C64x digital signal processor (DSP) to the TMS320C64x+ DSP. The
objective of this document is to indicate differences between the two cores. Functionality in the
devices that is identical is not included.

SPRU732 — TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C64x and TMS320C64x+ digital
signal processors (DSPs) of the TMS320C6000 DSP family. The C64x/C64x+ DSP generation
comprises fixed-point devices in the C6000 DSP platform. The C64x+ DSP is an enhancement of
the C64x DSP with added functionality and an expanded instruction set.

SPRUE21–December 2005 Preface 5

http://www-s.ti.com/sc/techlit/sprue14
http://www-s.ti.com/sc/techlit/sprue15
http://www-s.ti.com/sc/techlit/sprue19
http://www-s.ti.com/sc/techlit/spraa84
http://www-s.ti.com/sc/techlit/spru732

www.ti.com

Related Documentation From Texas Instruments

SPRU871 — TMS320C64x+ DSP Megamodule Reference Guide. Describes the TMS320C64x+ digital
signal processor (DSP) megamodule. Included is a discussion on the internal direct memory access
(IDMA) controller, the interrupt controller, the power-down controller, memory protection, bandwidth
management, and the memory and cache.

SPRAAA6 — EDMA v3.0 (EDMA3) Migration Guide for TMS320DM644x DMSoC. Describes migrating
from the Texas Instruments TMS320C64x digital signal processor (DSP) enhanced direct memory
access (EDMA2) to the TMS320DM644x Digital Media System-on-Chip (DMSoC) EDMA3. This
document summarizes the key differences between the EDMA3 and the EDMA2 and provides
guidance for migrating from EDMA2 to EDMA3.

Read This First6 SPRUE21–December 2005

http://www-s.ti.com/sc/techlit/spru871
http://www-s.ti.com/sc/techlit/spraaa6

1 Introduction

1.1 Purpose of the Peripheral

1.2 Features

User's Guide
SPRUE21–December 2005

ATA Controller

The AT attachment/ATA packet interface (ATA/ATAPI), also known as IDE controller, is the traditional
choice of the communication medium between a portable computer (PC) and a hard-disk drive. Ever since
its adoption by the industry, it has been the choice of interface between a PC and a common storage
medium. This standard interface provides a common attachment interface for system manufacturers,
system integrators, software suppliers, and suppliers of intelligent storage devices.

This document describes the ATA controller on the TMS320DM644x Digital Media System-on-Chip
(DMSoC). The ATA controller provides a glueless interface to storage media to be used by video and
audio applications for video and audio data storage.

The AT attachment/ATA packet interface (ATA/ATAPI) is an interface that is most commonly used by PCs
and portable devices to interface a host processor with data storage or audio devices. The ATA interface
debuted in the mid 1980s as an interface between a hard-disk drive and a PC by way of a ribbon cable.
Ever since then, other devices, mostly storage, including compact Flash and compact disks have widely
adopted the ATA/ATAPI interface, leveraging from its proven capability as the means for connecting to a
host processor. These allowed device manufacturers to avoid developing and supporting a proprietary
interface that would significantly limit the use of their devices. The ATA/ATAPI interface is popular due to
its simplicity, low cost, reliability, compatibility, as well as its wide acceptance and long history of use
within the PC industry market.

The DM644x DMSoC supports an onboard ATA/ATAPI host controller module (IDE controller) allowing it
to exploit access to a vast majority of available data storage and audio devices. The onboard IDE host
controller performs PIO, multiword, and ultra-DMA transactions with ATA and ATAPI compliant devices.
Hard-disk drive, compact disk (CD), compact Flash (CF), and DVD are some ATA/ATAPI-compliant
devices that the IDE host controller is destined to interface with. This allows applications like streaming
media and digital still cameras the means for easy access to commonly used external storage devices.

The content described here assumes the knowledge of ATA/ATAPI-6 and compact Flash v2.0
specifications and should be used in conjunction with this document.

The IDE host controller logic supports PIO, multiword DMA and ultra-DMA (ultra-ATA) modes. The ATA
controller has the following features:

• Single channel capable for connecting up to two ATA/ATAPI devices
• Supports interface to compact Flash (CF) configured in True-IDE mode
• Supports PIO modes 0, 1, 2, 3, and 4
• Supports multiword DMA modes 0, 1, and 2
• Supports ultra-DMA modes 0, 1, 2, 3, 4, and 5
• Full scatter gather DMA capability
• Programmable timing parameters provide support of any multiple ATA timing options mode at any

processor clock frequency

SPRUE21–December 2005 ATA Controller 7

www.ti.com

1.3 Functional Block Diagram

Peripheral
Interface

INTRQ_EM_RNW

IDE Controller
Register File

Interrupt

DMA
Engine

DMA Read
FIFO

DMA Read
FIFO

ARM CPU

ARM
Interrupt

Controller

System
Memory

IDE Timing
Control

IDE Host
Interface

GPIO

WAIT BSYN

DMARQ

ATA CS0

DMACK

ATA CS1

ATA0_EM_BA0

READ OE

EM_D[15:0]

WRITE OE

HDDIR

RESET

ATA1_EM_BA1

ATA2_EM_BA2

1.4 Supported Use Cases

Introduction

The ATA controller is shown in Figure 1.

Figure 1. ATA Controller Block Diagram

The IDE controller is commonly used to interface to ATA and ATAPI devices. Devices like hard disk drives
are ATA devices. Devices like CDs, compact flash, and DVDs are ATAPI devices. Both ATA and ATAPI
devices use the same identical interface and differ partly in protocol (specifically the way command is
delivered to the attached device). This difference is transparent to the IDE host controller and meaningful
to the driver/firmware that is running on the host supporting the attached device. For ATA devices, all
commands and commands parameters are register-driven while ATAPI devices make use of both
register-driven and packet-driven commands. Consult the ATA/ATAPI-6 specification for more information.

For information on how to interface to a standard ATA/ATAPI device, see Section 3.1.

For information on how to interface to a standard ATA/ATAPI device with a higher I/O voltage requirement
using a level-shifter, see Section 3.2.

For information on how to interface to a compact Flash (CF) device, see Section 3.3.

8 ATA Controller SPRUE21–December 2005

www.ti.com

1.5 Industry Standard(s) Compliance

1.6 Terminology Used in This Document

2 Peripheral Architecture

2.1 Clock Control

Peripheral Architecture

The IDE controller supports the ATA/ATAPI-6 and compact flash 2.0 specifications. The specific modes of
operations (PIO, multiword, and ultra-DMA) depend on the frequency at which the IDE controller operates.
For this reason, not all modes supported by the specification and device may be used if the clocking to the
IDE controller is low. The actual mode supported (subset of the ATA/ATAPI standard) by the device is
directly tied to the IDE controller clock sourcing. For more information on the clocking provided to the
peripheral, see Section 2.1. In addition to possible reduction of mode support due to low frequency
clocking, the processor does not pin out all the signals available in the ATA/ATAPI specification. Additional
signals (necessary to support wide range of devices) that are not present within the ATA/ATAPI standard
specification are also available. See Section 2.2 for more information on the signals supported on this
peripheral.

The following is a brief explanation of some terms used in this document:

Term Meaning

ATA/ATAPI AT attachment/ATA packet interface

ATA controller ATA/ATAPI controller peripheral

CF Compact Flash

device External ATA/ATAPI device attached to the IDE controller

DMA DMA within the ATA controller, not the processor EDMA system

host Processor IDE controller (this peripheral), unless otherwise specified

IDE controller Synonymous with ATA controller

processor DM644x Digital Media Processor

This section discusses the architecture of the ATA controller.

The IDE controller uses a single programmable clock for its operation. This clock needs to be reconfigured
prior to enabling access to the attached ATA/ATAPI device. The maximum clock frequency supplied to the
ATA controller is dependent upon the clock frequency of the processor. See the device specific data
manual for more information on the processor voltage and speed characteristics.

SYSCLK5 (PLL1 output frequency divided by 6) is the source of the clock to the ATA peripheral. To
ensure proper operation, the operating frequency of the ATA controller clock should be chosen in such a
way that it is at least twice as fast as the ATA data strobe frequency in order to achieve expected
throughput.

SPRUE21–December 2005 ATA Controller 9

www.ti.com

2.2 Signal Descriptions
Peripheral Architecture

2.2.1 ATA/ATAP Interface Signals Supported by the ATA Controller

Table 1 describes the signals supported by the IDE controller interface.

Table 1. Supported IDE Controller Signals

Direction From IDE
Terminal Name Controller: In/Out Description

ATA_CS0 Output Chip Select Signals 0 and 1
ATA_CS1 These are the chip select signals from the host used to select the Command Block or

Control Block registers. ATA_CS0 is asserted during Command Block register
accesses. ATA_CS1 is asserted during Control Block register accesses. When
DMACK is asserted, ATA_CS0 and ATA_CS1 are both asserted and transfers will be
16 bits wide.

ATA0_EM_BA0 Output Device Address Bits[2:0]
ATA1_EM_BA1 This is a 3-bit binary coded address asserted by the host to access a register or data
ATA2_EM_A0 port in the attached device.

EM_D[15:0] Input/Output Host Read/Write Data Bus

This is a 16-bit bi-directional data interface between the host and the device. Data
transfers are 16-bits wide except for CF devices that implement 8-bit data transfers. In
this case, EM_D[7:0] will be used for 8-bit register transfers.

DMARQ Input Device DMA Request

The device will assert this signal, used for DMA data transfers between host and
device, when the device is ready to transfer data to or from the host in any of the DMA
modes. For multiword transfers, the direction of data transfer is controlled by
READ_OE and WRITE_OE. This signal is used in a handshake manner with DMACK,
that is, the device will wait until the host asserts DMACK before negating DMARQ,
and re-asserting DMARQ if there is more data to transfer. For multiword DMA
transfers, the DMARQ/DMACK handshake is used to provide flow control during the
transfer. For ultra-DMA, the DMARQ/DMACK handshake is used to indicate when the
function of interface signals changes.

This signal will be released when the device is not selected.

DMACK Output Host DMA Acknowledge

This signal is used by the host in response to DMARQ to initiate DMA transfers. For
multiword DMA transfers, the DMARQ/DMACK handshake is used to provide flow
control during the transfer. For ultra-DMA, the DMARQ/DMACK handshake is used to
indicate when the function of interface signals changes.

When DMACK is asserted, ATA_CS0 and ATA_CS1 is not asserted and transfers are
16 bits wide.

WAIT_BSYN Input Device I/O ready during PIO transaction
DMA ready during ultra-DMA write
DMA strobe during ultra-DMA read

WAIT_BSYN is negated to extend the host transfer cycle of any host register access
(PIO 8-bit) or PIO data access when the device is not ready to respond to a transfer
request. If the device requires that the host transfer cycle time be extended, the device
will assert the WAIT_BSYN signal. Devices that support PIO modes 3 and above are
required by the ATA/ATAPI specification to support WAIT_BSYN.

For ultra-DMA data-write transaction, this signal is a flow control signal for data-out
bursts. This signal is asserted by the device to indicate to the host that the device is
ready to receive Ultra DMA data-out bursts. The device may negate WAIT_BSYN to
pause an Ultra DMA data-out burst.

For ultra-DMA data-read transaction, this signal is a data-in strobe signal from the
device for data-in burst. Both the rising and falling edges of WAIT_BSYN latch the
data from EM_D[15:0] into the host. The device may stop generating WAIT_BSYN
edges to pause an ultra DMA data-in burst.

This signal is released when the device is not selected.

ATA Controller10 SPRUE21–December 2005

www.ti.com

Peripheral Architecture

Table 1. Supported IDE Controller Signals (continued)

Direction From IDE
Terminal Name Controller: In/Out Description

READ_OE Output PIO Read Transaction Indicator
DMA Ready during Ultra-DMA Read
DMA Data Strobe during Ultra-DMA Write

READ_OE is the strobe signal used by the host to read device registers or data. Data
is transferred on the negation of this signal.

When performing ultra-DMA data read transaction, this signal is used by the host for
flow control during data-in bursts. This signal is asserted by the host to indicate to the
device that the host is ready to receive ultra-DMA data-in bursts. The host may negate
READ_OE to pause an ultra DMA data-in burst.

When performing ultra-DMA data write transaction, the host uses the READ_OE to
strobe the ultra-DMA data-out burst.

Both the rising and falling edges of READ_OE latch the data from EM_D[15:0] into the
device. The host may stop generating READ_OE edges to pause an ultra DMA
data-out burst.

WRITE_OE Output PIO Write Transaction Indicator
Stop Ultra-DMA Data Read/Write Bursts

WRITE_OE is the strobe signal used by the host to write device registers (PIO 8-bit)
or data (PIO 16-bit). Data is transferred on the negation of this signal.

The host will negate WRITE_OE prior to initiation of an ultra DMA burst. The host will
negate WRITE_OE before data is transferred in an ultra-DMA burst. Assertion of
WRITE_OE by the host during an ultra-DMA burst signals the termination of the ultra
DMA burst.

INTRQ_EM_RNW Input Attached Device Interrupt Request

This signal is used by the selected device to interrupt the host system when interrupt
pending is set. When the nIEN bit is cleared to zero and the device is selected, INTRQ
is enabled. When the nIEN bit is set to one or the device is not selected, the INTRQ
signal is disabled.

When asserted, this signal should be negated by the device within 400 ns of the
negation of READ_OE that reads the Status register to clear interrupt pending. When
asserted, this signal should be negated by the device within 400 ns of the negation of
WRITE_OE that writes the Command register to clear interrupt pending.

When the device is selected by writing to the Device register while interrupt pending is
set, INTRQ_EM_RNW should be asserted within 400 ns of the negation of
WRITE_OE that writes the device register. When the device is deselected by writing to
the device register while interrupt pending is set, INTRQ_EM_RNW should be
released within 400 ns of the negation of WRITE_OE that writes the device register.

This signal shares a function with an EMIF signal. For simplicity, in the remainder of
this document this signal will be referred to as INTRQ.

HDDIR Output External Level Shifter Direction Indicator

This signal is used when a 3.3 V or 5.0 V tolerant ATA/ATAPI devices are used to
interface with the IDE controller. This signal indicates the direction of the current data
transfer.

Although this signal provides direction control, it is the responsibility of the user to
enable the shifter properly. The processor does not provide an enable control for the
level shifter.

SPRUE21–December 2005 ATA Controller 11

www.ti.com

2.3 Pin Multiplexing

2.4 Protocol Description(s)

2.5 General Architecture

Peripheral Architecture

2.2.2 ATA/ATAPI/Compact Flash Specification Signals Not Supported by This Peripheral

The processor supports all the signals needed to realize the supported modes of operation. Table 2 lists
some of the signals that are present within the ATA/ATAPI specification that are not available. In addition,
the processor supports additional signals to interface to devices that are 3.3 V and 5.0 V tolerant devices.

Table 2. Unsupported IDE Controller Signals

Name Description

RESET This signal is used by the IDE controller to perform a hardware reset on the attached ATA/ATAPI device.
A GPIO signal can be used for this purpose due to lack of a dedicated ATA reset signal on the
processor.

Cable Select (CSEL) The processor host IDE controller requires the use of the proper type cable based on the maximum
mode of operation in which the external device is intended to operate. Specifically, if the external device
supports UDMA mode greater than mode2, then it is expected that an 80-conductor ribbon cable be
used to connect the IDE controller with the ATA device. The use of a 40-conductor ribbon cable with
higher UDMA mode of operation would result in reduced throughput due to the introduction of error from
signals propagating on adjacent conductors. This signal is not necessary because an 80-conductor cable
must be used with the DM644x.

Cable ID (CBLID) The Cable ID signal is used by attached devices in order to configure themselves as master or slave
without the need for a jumper configuration setting. The host does not need to have a dedicated signal to
drive this signal. This task is achieved by tying the appropriate pin (on the header on the processor side)
low external to the processor.

True IDE Mode Selector This signal needs to be driven low prior to power-up in order to configure a Compact Flash in True IDE
(ATA_SEL) mode. Since any Compact Flash mounted to work with the processor is only useful in True IDE mode,

the state of this signal is tied to ground by the header. Note that CF devices use a 50 pin header that is
different from the standard ATA/ATAPI header.

The DM644x ATA/ATAPI controller peripheral signals share pins on the processor package with other
processor functions. For detailed information on the processor pin multiplexing and configuration, see the
pin multiplexing information in the device-specific data manual.

The IDE controller supports the protocols defined in the ATA/ATAPI-6 and compact Flash 2.0
specifications.

2.5.1 Programmable Timing Registers

The IDE controller implements several programmable timing registers that allow users to reprogram the
key IDE interface signal timings for the four transfer types: 8-bit task file registers accesses, 16-bit PIO
data accesses, multiword DMA transfers, and ultra-DMA transfers. This allows the host controller to
effectively be reconfigured to support a wide range of input clock frequencies and any target interface for
all transfer types.

The default state for the programmable timing registers logic is disabled; that is, the TIMORIDE bit in the
miscellaneous control register (MISCCTL) is 0. The programmable timing registers should be enabled by
setting the TIMORIDE bit to 1 for proper operation. The IDE controller may not be able to operate correctly
if the programmable timing registers are not enabled.

ATA Controller12 SPRUE21–December 2005

www.ti.com

Peripheral Architecture

Four sets of programming timing registers exist to support the four types of IDE transfers. In addition, the
MISCCTL upper bits allow for a common control over the write data hold time for three of the four
transfers: task file writes, PIO writes, and multiword DMA writes. The write data hold time in MISCCTL
must satisfy the worst case requirement of these three modes.

• The task file register strobe timing register (REGSTB) and the task file register recovery timing register
(REGRCVR) control the timing parameters for 8-bit accesses of the task file registers.

• The data register PIO strobe timing register (DATSTB) and the data register PIO recovery timing
register (DATRCVR) control the timing parameters for PIO data accesses.

• The DMA strobe timing register (DMASTB) and the DMA recovery timing register (DMARCVR) control
timings for multiword DMA accesses.

• The ultra DMA strobe timing register (UDMASTB), the ultra DMA ready-to-stop timing register
(UDMATRP), and the ultra DMA timing envelope register (UDMATENV) control the timing of ultra DMA
accesses.

The timing override registers are programmed with a value indicating the number of clock cycles (minus
1 cycle) that the IDE controller will wait to meet a particular timing parameter. You identify the minimum or
maximum value for a timing parameter from the IDE specification, determine the IDE clock frequency, and
then calculate the number of clock cycles necessary to meet that timing parameter. For example, if the
required IDE controller clock frequency is 99 MHz (10.10 ns period), then to meet a minimum IDE
interface timing requirement of 25 ns, 3 clock cycles are required (3 cycles × 10.10 ns = 30.3 ns). This
means that the corresponding timing register that controls the parameter would be programmed with a 2
(3 clock cycles minus 1 cycle). If the IDE controller clock frequency is 50 MHz (20 ns) and a minimum
timing requirement of 55 ns is to be met, this would require at least 3 clock cycles (3 cycles × 20 ns =
60 ns); therefore, the timing register should be programmed with a value of 2.

Note that programming the HWNHLDnP bits in MISCCTL controls the write data hold times used for task
file registers writes, PIO data writes, and multiword DMA data writes. Since a single timing programmable
parameter is used for all three types of write transfers, the value programmed here will be the largest
among the three transfers: PIO-8 bit, PIO-16-bit, and multiword DMA.

2.5.1.1 Programming 8-bit Task File Timing Registers

The REGSTB, REGRCVR, and MISCCTL are used in reprogramming the timings for 8-bit task file register
accesses. The required IDE timing parameters for 8-bit task file register accesses are defined in the
ATA/ATAPI-6 specification.

The REGSTB and REGRCVR can be programmed to match the parameters t0 (cycle time), t2 (strobe
time), and t2i (recovery time). The HWNHLD bits in MISCCTL are used to program the hold time for the
write data (t4 parameter).

The REGSTB directly controls the number of clock cycles that the READ_OE and WRITE_OE strobes will
be asserted during 8-bit task file accesses. This corresponds to the strobe width timing parameter, t2.

The REGRCVR defines the number of clock cycles for the recovery time between task file accesses. This
corresponds to recovery timing parameter, t2i.

The sum of both parameters (t2 + t2i) must be equal or greater than the cycle time, t0. The HWNHLDnP
bits in MISCCTL allow control over the number of clock cycles for the write data hold time during task file
writes.

With knowledge of the IDE controller clock frequency, you can program the appropriate number of clock
cycles to match the timing requirements. Note that the timing registers must be programmed with a value
one less than the desired number of cycles, so a value of 0 specifies 1 clock cycle, a value of 1 specifies
2 clock cycles, etc.

Example 1 and Example 2 illustrate how the 8-bit task file timing registers can be programmed.

SPRUE21–December 2005 ATA Controller 13

www.ti.com

Peripheral Architecture

Example 1. 8-Bit Task File Timing Registers Programming for Mode 0

Programming task file accesses for mode 0 operation using an IDE controller clock frequency of
66 MHz (15 ns period).

For mode 0 operation, t2 requires a minimum of 290 ns, this translates to a minimum of 20 clock cycles
(20 cycles × 15 ns = 300 ns). There is no requirement for t2i in mode 0 operation, but t0 requires a
minimum of 600 ns, or 40 clock cycles. This means REGSTB and REGRCVR can be programmed to
any combination equaling 40 (or more) clock cycles, with REGSTB specifying at least 20 clock cycles.

Sample programming values are REGSTB = 13h (20 clock cycles) and REGRCVR = 13h (20 clock
cycles), or REGSTB = 1Fh (32 clock cycles) and REGRCVR = 7h (8 clock cycles). In addition, the
minimum write data hold time specified is 30 ns, so the HWNHLDnP bits in MISCCTL should be
programmed to a value of at least 2 clock cycles. A sample value is HWNHLDnP = 2h (3 clock cycles)
providing enough hold time and margin.

Example 2. 8-Bit Task File Timing Registers Programming for Mode 4

Programming task file accesses for mode 4 operation using an IDE controller clock frequency of
99 MHz (10.10 ns period).

For mode 4 operation, t2 requires a minimum of 70 ns, this translates to a minimum of 7 clock cycles (7
cycles × 10.10 ns = 70.70 ns). t2i is defined to be at least 25 ns, this translates to a minimum of 3 clock
cycles (3 cycles × 10.10 ns = 30.30 ns). The minimum cycle time t0 is 120 ns, or 12 clock cycles. This
means REGSTB and REGRCVR can be programmed to any combination equaling 12 (or more) clock
cycles, with REGSTB specifying at least 7 cycles and REGRCVR specifying at least 3 cycles.

Sample programming values are REGSTB = 7h (8 clock cycles) and REGRCVR = 3h (4 clock cycles),
or REGSTB = 8h (9 clock cycles) and REGRCVR = 2h (3 clock cycles). In addition, the minimum write
data hold time specified is 10 ns, so the HWNHLDnP bits in MISCCTL should be programmed to a
value of at least 1 clock cycle. A sample value is HWNHLDnP = 1h (2 clock cycles) providing enough
hold time and margin.

2.5.1.2 Programming Data Register Timing Register Access

The DATSTB and DATRCVR are used in reprogramming the timings for 16-bit PIO data accesses. The
required IDE timing parameters for 8-bit task file register accesses are defined in the ATA/ATAPI-6
specification.

The DATSTB and DATRCVR can be programmed to match the parameters t0 (cycle time), t2 (strobe
time), and t2i (recovery time). The HWNHLDnP bits in MISCCTL are used to program the hold time for the
write data (t4 parameter).

The DATSTB directly controls the number of clock cycles that the READ_OE and WRITE_OE strobes will
be asserted during the PIO data access. This corresponds to the strobe width timing parameter, t2.

The DATRCVR defines the number of clock cycles for the recovery (de-assert) time for the PIO data
access. This corresponds to recovery timing parameter, t2i.

The sum of both parameters (t2 + t2i) must be equal or greater than the cycle time, t0. The HWNHLDnP
bits in MISCCTL allow control over the number of clock cycles for the write data hold time during PIO data
writes.

With knowledge of the IDE controller clock frequency, you can program the appropriate number of clock
cycles to match the timing requirements. Note that the timing registers must be programmed with a value
one less than the desired number of cycles, so a value of 0 specifies 1 clock cycle, a value of 1 specifies
2 clock cycles, etc.

Example 3 and Example 4 illustrate how the data register access timing registers can be programmed.

ATA Controller14 SPRUE21–December 2005

www.ti.com

Peripheral Architecture

Example 3. Data Register Timing Registers Programming for Mode 2

Programming PIO data accesses for mode 2 operation using an IDE controller clock frequency of
33 MHz (30 ns period).

For mode 2 operation, t2 requires a minimum of 100 ns, this translates to a minimum of 4 clock cycles
(4 cycles × 30 ns = 120 ns). There is no requirement for t2i in mode 2 operation, but the minimum
requirement for t0 is 240 ns, or 8 clock cycles. This means DATSTB and DATRCVR can be
programmed to any combination equaling 8 (or more) clock cycles, with DATSTB specifying at least
4 clock cycles.

Sample programming values are DATSTB = 3h (4 clock cycles) and DATRCVR = 3h (4 clock cycles),
or REGSTB = 5h (6 clock cycles) and DATRCVR = 1h (2 clock cycles). In addition, the minimum write
data hold time specified is 15 ns, so the HWNHLDnP bits in MISCCTL should be programmed to a
value of at least 1 clock cycle. A sample value is HWNHLDnP = 0h (0 clock cycles) providing enough
hold time and margin.

Example 4. Data Register Timing Registers Programming for Mode 3

Programming PIO data accesses for mode 3 operation using an IDE controller clock frequency of
99 MHz (10.10 ns period).

For mode 3 operation, t2 requires a minimum of 80 ns, this translates to a minimum of 8 clock cycles
(8 cycles × 10.10 ns = 80.80 ns). The minimum requirement on t2i is defined to be 70 ns, this translates
to a minimum of 7 clock cycles (7 cycles × 10.10 ns = 70.70 ns). The minimum cycle time t0 is 180 ns,
or 18 clock cycles. This means that DATSTB and DATRCVR can be programmed to any combination
equaling 18 (or more) clock cycles, with DATSTB specifying at least 8 cycles and DATRCVR specifying
at least 7 cycles.

Sample programming values are DATSTB = 9h (10 clock cycles) and DATRCVR = 7h (8 clock cycles),
or DATSTB = Ah (11 clock cycles) and DATRCVR = 6h (7 clock cycles). In addition, the minimum write
data hold time specified is 10 ns, so the HWNHLDnP bits in MISCCTL should be programmed to a
value of at least 1 clock cycle. A sample value is HWNHLDnP = 0h (1 clock cycle) providing enough
hold time and margin.

2.5.1.3 Programming Multiword DMA Register Accesses

The DMASTB and DMARCVR are used in reprogramming the timings for multiword DMA transfers. The
required IDE timing parameters for multiword DMA transfers are defined in the ATA/ATAPI-6 specification.

The DMASTB and DMARCVR can be programmed to match the parameters t0 (cycle time), tD (strobe
time), and tKW (recovery time for DMA write). The HWNHLDnP bits in MISCCTL are used to program the
hold time for the write data (tH parameter).

The DMASTB directly controls the number of clock cycles that the READ_OE and WRITE_OE strobes will
be asserted during multiword DMA transfers. This corresponds to the strobe width timing parameter, tD.

The DMARCVR defines the number of clock cycles for the recovery time for multiword DMA transfers.
This corresponds to recovery timing parameters, tKR and tKW.

The sum of both parameters must be equal or greater than the cycle time, t0. The HWNHLDnP bits in
MISCCTL allow control over the number of clock cycles for the write data hold time during multiword DMA
data writes.

With knowledge of the system clock frequency, you can program the appropriate number of clock cycles
to match the timing requirements. Note that the timing registers must be programmed with a value one
less than the desired number of cycles, so a value of 0 specifies 1 clock cycle, a value of 1 specifies
2 clock cycles, etc.

Example 5 and Example 6 illustrate how the timing of the multiword DMA registers can be programmed.

SPRUE21–December 2005 ATA Controller 15

www.ti.com

Peripheral Architecture

Example 5. Multiword DMA Register Access Programming for Mode 0

Programming multiword DMA transfers for mode 0 operation using an IDE controller clock frequency of
66 MHz (15 ns period).

For mode 0 operation, tD requires a minimum of 215 ns, this translates to a minimum of 15 clock cycles
(15 cycles × 15 ns = 225 ns). The minimum requirement on tKW is 215 ns (for writes), this translates to
a minimum of 15 clock cycles (15 cycles × 15 ns = 225 ns). The minimum requirement for t0 is 480 ns,
or 32 clock cycles. This means DMASTB and DMARCVR can be programmed to any combination
equaling 32 (or more) clock cycles, with both DMASTB and DMARCVR specifying at least 15 clock
cycles.

Sample programming values are DMASTB = Fh (16 clock cycles) and DMARCVR = Fh (16 clock
cycles), or DMASTB = 10h (17 clock cycles) and DMARCVR = Eh (15 clock cycles). In addition, the
minimum write data hold time specified is 20 ns, so the HWNHLDnP bits in MISCCTL should be
programmed to a value of at least 2 clock cycles. A sample value is HWNHLDnP = 2h (3 clock cycles)
providing enough hold time and margin and also covering the PIO and task file mode 0 timings.

Example 6. Multiword DMA Register Access Programming for Mode 2

Programming multiword DMA transfers for mode 2 operation using an IDE controller clock frequency of
99 MHz (10.10 ns period).

For mode 2 operation, tD requires a minimum of 70 ns, this translates to a minimum of 7 clock cycles (7
cycles × 10.10 ns = 70.70 ns). The minimum requirement on tKW is 25 ns, this translates to a minimum
of 3 clock cycles (3 cycles × 10.10 ns = 30.30 ns). The minimum cycle time t0 is 120 ns, or 12 clock
cycles. This means that DMASTB and DMARCVR can be programmed to any combination equaling
12 (or more) clock cycles, with DMASTB specifying at least 7 cycles and DMARCVR specifying at least
3 cycles.

Sample programming values are DMASTB = 7h (8 clock cycles) and DMARCVR = 3h (4 clock cycles),
or DMASTB = 8h (9 clock cycles) and DMARCVR = 2h (3 clock cycles). In addition, the minimum write
data hold time specified is 10 ns, so the HWNHLDnP bits in MISCCTL should be programmed to a
value of at least 1 clock cycle. A sample value is HWNHLDnP = 2h (3 clock cycles) providing enough
hold time and margin and also covering the PIO and task file mode 2 timings.

2.5.1.4 Programming Ultra-DMA Register Accesses

The UDMASTB, UDMATRP, and UDMATENV are used in reprogramming the timings for ultra-DMA
transfers. The required IDE timings parameters for ultra-DMA transfers are defined in the ATA/ATAPI-6
specification.

The UDMASTB, UDMATRP, and UDMATENV can be programmed to match the parameters tCYC (cycle
time), t2CYCTYP (two cycle time), tRP (ready-to-pause), and tENV (time envelope).

The UDMASTB directly controls the number of clock cycles for the ultra-DMA strobe during ultra-DMA
transfers. This corresponds to the strobe width timing parameter, tCYC, which is ½(t2CYCTYP).

The UDMATRP defines the number of clock cycles for the ready-to-pause timing parameter, tRP.

The UDMATENV indicates the number of clock cycles for the timing envelope timing parameter, tENV.

With knowledge of the IDE controller clock frequency, you can program the appropriate number of clock
cycles to match the timing requirements. Note that the timing registers must be programmed with a value
one less than the desired number of clock cycles, so a value of 0 specifies 1 clock cycle, a value of 1
specifies 2 clock cycles, etc.

Example 7 and Example 8 illustrate how the timing of the ultra-DMA registers can be programmed.

ATA Controller16 SPRUE21–December 2005

www.ti.com

2.6 DMA and PIO Data Transaction Overview

Peripheral Architecture

Example 7. Ultra-DMA Register Access Programming for Mode 5

Programming ultra-DMA transfers for mode 5 operation using an IDE controller clock frequency of
99 MHz (10.10 ns period).

For mode 5 operation, t2CYC is 40 ns (tCYC = 20 ns), this translates to a minimum of 2 clock cycles
(2 cycles × 10.10 ns = 20.20 ns) per UDMA cycle. The requirement on tRP is 85 ns, this translates to a
minimum of 9 clock cycles (9 cycles × 10 ns = 90.90 ns). tENV has a minimum value of 20 ns and a
maximum value of 50 ns, so this needs to be 2 to 5 clock cycles (2 × 10 ns = 20.20 ns to
5 × 10 ns = 50.50 ns).

Sample programming values are UDMASTB = 1h (2 clock cycles), UDMATRP = 8h (9 clock cycles),
and UDMATENV = 2h (3 clock cycles).

Example 8. Ultra-DMA Register Access Programming for Mode 4

Programming ultra-DMA transfers for mode 4 operation using an IDE controller clock frequency of
66 MHz (15 ns period).

For mode 4 operation, t2CYC is 60 ns (tCYC = 30 ns), this translates to a minimum of 2 clock cycles
(2 cycles × 15 ns = 30 ns) per UDMA cycle. The requirement on tRP is 100 ns, this translates to a
minimum of 7 clock cycles (7 cycles × 15 ns = 105 ns). tENV has a minimum value of 20 ns and a
maximum value of 55 ns, so this needs to be 2 to 4 clock cycles (2 cycles × 15 ns = 30 ns to
4 cycles × 15 ns = 60 ns).

Sample programming values are UDMASTB = 1h (2 clock cycles), UDMATRP = 6h (7 clock cycles),
and UDMATENV = 2h (3 clock cycles).

The IDE controller supports a dedicated DMA controller in order to handle DMA transfers between host
memory and attached ATA/ATAPI device. This occurs for both multiword and ultra-DMA transfers during
DMA writes to and reads from the device. The DMA controller includes logic to manage the physical
region descriptors (PRDs) that describe the DMA transfers, and controls a set of 32-bit wide FIFOs
(256-byte read FIFO and 256-byte write FIFO resident within the IDE controller) to temporarily store data
for DMA transfers.

When pre-fetching and post-writing is enabled, the dedicated DMA controller also controls PIO sector
writes and reads even though this is a PIO transaction. The internal FIFO is reused for these PIO
transfers to store the pre-fetch/post-write data. During PIO reads, the sector data is pre-fetched into the
FIFO and then read out of the FIFO by firmware. During PIO write, the PIO write sector data is stored in
the FIFO and then eventually written out through the IDE interface to the device.

2.6.1 DMA Controller and FIFO Operation

The DMA controller is the primary initiator for DMA transfers for both multiword and ultra-DMA read and
write transfers. For any ATA DMA writes to the device, the DMA controller will initiate a read transfer from
host memory to fill up its internal FIFO and then transfer the data out of the FIFO to the ATA device. For
ATA DMA read transfers from the device to host/system memory, the DMA controller will initiate a read
transfer and read data from the ATA device into the internal FIFO and then transfer the data from the
FIFO into host memory. The DMA controller makes use of the physical region descriptors to identify buffer
locations and sizes of data (in bytes) to be transferred for its data transaction.

The difference between multiword DMA and ultra-DMA transfers is mostly on the signaling part of the
transaction. For multiword DMA transactions, the host IDE controller is responsible for strobing data. In
addition, a single word is transferred per strobe cycle. For ultra-DMA data transactions, data strobing is

SPRUE21–December 2005 ATA Controller 17

www.ti.com

Memory Region Physical Base Address
PRDx word

byte 3

E
O

T

PRDx word

byte 2 byte 1 byte 0

0

0reserved Byte Count

Memory
Region

Peripheral Architecture

handled by the entity that is sending the data. If the data transaction is a write to a disk, then the host IDE
controller is responsible for strobing the data. However, if the data transaction is a read from a disk, then
the attached device is responsible for strobing the data. In addition, during ultra-DMA transactions, one
word (2 bytes/word) is transferred for every edge of the strobe within a single strobe cycle increasing the
throughput.

2.6.1.1 Physical Region Descriptors (PRDs)

The physical region descriptors (PRDs) define the physical memory regions that data is transferred from
(when moving data from host memory to the ATA device) or transferred to (when moving data from the
ATA device to host memory). The DMA controller contains the logic and control for handling the physical
region descriptors. When a DMA transfer is started, the DMA controller will issue a two-word burst to read
the first descriptor from memory. It then decodes and stores the byte transfer count and the source or
target memory address, and then starts the DMA operation using the descriptor information. Once a PRD
has been completely processed by the DMA controller and the entire DMA transfer has completed, the
next PRD in the table will be fetched and processed. If all PRD entries have been processed, an interrupt
is generated.

The DMA interface is used to control data transfers to and from host memory and the FIFO internal to the
IDE controller block. The DMA engine contains the bus master IDE control registers. These registers are
the primary IDE channel DMA control register (BMICP), the primary IDE channel DMA status register
(BMISP), and the primary IDE channel DMA descriptor pointer register (BMIDTP).

The DMA engine interfaces to the DMA interface to the processor on one end and the IDE controller
interface on the other. The IDE controller block strobes data into and out of the FIFO in the DMA engine
block, based on the setting of the read/write direction bit (DMADIR bit in BMICP).

The BMIDTP is the pointer to a physical region descriptor table in system memory. This descriptor table
contains physical region descriptors, which describe areas of memory that are involved in the data
transfer. The descriptor table must be aligned on a 4-byte boundary and the table cannot cross a 64 KB
boundary in memory.

The physical memory region to be transferred is described by a physical region descriptor (PRD). Each
PRD entry is 8 bytes in length (Figure 2 and Table 3). The first 4 bytes specify the byte address of a
physical memory region; the next two bytes specify the count of the region in bytes (64K byte limit per
region). A value of zero in these two bytes indicates 64K. Bit 7 of the last byte indicates the end of the
table (EOT) when set to 1.

Figure 2. Physical Region Descriptor (PRD) Table Entry

Table 3. Description of Single Physical Region Descriptor (PRD) Table Entry

PRDx Word Bit Description

0 31-0 Memory region physical base address for PRDx (Must be 2-bytes aligned, even).

1 31 End of descriptor table marker (last PRD marker).

1 30-16 Reserved

1 15-0 Byte count (must be even). A value of 0 implies 64 Kbytes size.

ATA Controller18 SPRUE21–December 2005

www.ti.com

Peripheral Architecture

DMA activity is started when the host software sets the DMA start/stop bit (DMASTART bit in BMICP). The
DMA engine state machine starts fetching the first entry in the PRD table. Once the PRD is fetched, the
DMA engine state machine starts moving data between system memory and the FIFO. If the end of table
(EOT) bit is 0, a new PRD table entry is fetched when the current physical region data transfer is
complete. Data transfer continues until the last block of data is moved and the EOT bit is set to 1.

By linking multiple PRDs where each PRD identifies a buffer within the reach of the dedicated ATA DMA,
the IDE controller can perform a single transaction where data is read from (or written to) multiple (PRD
entries) buffers allowing the realization of the scatter gather capability.

When all data transfers for the DMA command submitted to the device are complete, the ATA/ATAPI
device asserts INTRQ (if enabled). The DMA channel waits until the last data words have been moved
to/from system memory before setting the interrupt bit (and passing the interrupt to the host interrupt
handler) and clearing the bus master IDE active bit (IDEACT bit in BMISP).

2.6.1.2 DMA Driven Disk Write Transfer Operation

To perform an ATA DMA write operation to an attached ATA/ATAPI device, a physical descriptor region is
programmed by firmware indicating a system memory address to transfer data from and the number of
bytes to transfer. The BMIDTP register is initialized with the start address of the first physical region
descriptor. The DMA write command is then issued to the drive, and the DMA transfer starts when
firmware programs the DMASTART bit in the primary IDE channel DMA control register (BMICP). When
the DMASTART bit is set, the DMA controller issues a two-word (8 bytes) request to read the first physical
region descriptor (PRD) entry from memory. This information is stored and processed by the DMA
controller to indicate where in memory to start reading data from and also the size of data (in bytes) to
transfer to the device. The DMA controller will then read out the data from host/system memory in bursts
starting at the specified transfer address. Data read from the system memory is stored in the FIFO. The
DMA controller will issue consecutive read bursts until it fills the FIFO. The transfer will start up again
when the IDE controller starts emptying out the FIFO and space is available in the FIFO. When the DMA
finishes processing the current PRD, based on the state of the EOT field of the current PRD, it will either
fetch the next PRD or wait until the FIFO is fully empty to generate an interrupt (and also set the
INTRSTAT bit in the primary IDE channel DMA status register, BMISP) and also clear the IDEACT bit in
BMISP indicating the end of the transfer. The total data size entered within the PRD tables for a given
DMA transaction should be equal to the data size value entered via command. The combination of status
bit settings by the DMA controller and the attached device will allow you to identify the user entry
condition.

2.6.1.3 DMA Driven Disk Read Transfer Operation

To perform an ATA DMA read operation from an attached ATA/ATAPI device, a physical descriptor region
is programmed by firmware indicating a system memory address to transfer the disk data to and the
number of bytes to transfer. The BMIDTP register is initialized with the start address of the first physical
region descriptor. The DMA read command is then issued to the drive, and the DMA transfer is started
when firmware programs the DMASTART bit in the primary IDE channel DMA control register (BMICP).
When the DMASTART bit is set, the DMA controller first issues a two-word (8 bytes) request to read the
first physical region descriptor (PRD) entry from memory. This information is stored and processed by the
DMA controller to indicate where in memory to store the data read from the disk and also the size (in
bytes) of data transfer. The IDE controller will facilitate the reception of data from the attached device and
store read data within the read FIFO. This occurs for both multiword and ultra-DMA writes. The IDE
interface control logic continues reading words from the ATA device and storing them into the FIFO. The
DMA controller routes read data to the system/host memory based on the PRD entries. This continues
until the size entered in the PRD is exhausted or the FIFO becomes empty. When enough data to fill all
the sizes noted within the PRD entries has been stored at the host/system memory, the DMA generates
an interrupt (also sets the INTRSTAT bit in the primary IDE channel DMA status register, BMISP) and also
clears the IDEACT bit in BMISP indicating the end of the transfer. The total data size entered within the
PRD tables for a given DMA transaction should be equal to the data size value entered via command. he
combination of status bit settings by the DMA controller and the attached device will allow you to identify
the user entry condition.

SPRUE21–December 2005 ATA Controller 19

www.ti.com

Peripheral Architecture

2.6.1.4 Miscellaneous Cases

2.6.1.4.1 Multiword and Ultra-DMA Abort

After any type of DMA transfer has been initiated (multiword or ultra-DMA read or write), firmware is
allowed to prematurely abort the transfer. A DMA transfer is initiated when a PRD has been set up and the
DMASTART bit in the primary IDE channel DMA control register (BMICP) has been set to 1. After this
time, firmware is allowed to prematurely terminate the transfer if it has not completed yet by writing a 0 to
the DMASTART bit. When a DMA abort is detected by the IDE DMA controller, the DMA state machine
will immediately abort the current transfer and return to an idle state. The IDE interface state machine will
finish its current word transfer and terminate the transfer. The FIFO logic will be reset, so any words
currently in the FIFO are lost. Also, any data transferred from memory to disk (during disk writes) or from
the disk to memory (during disk reads) should be considered invalid, as it is will not be clear which words
were actually transferred.

2.6.1.4.2 Ultra-DMA Pause

Pauses in the data flow occur whenever one side of the transfer is not keeping up with the data flow.

For disk read transfers where data is being read from the disk and transferred to system memory, this
occurs when the IDE controller is filling up the FIFO (with read data from the attached device) faster than
the on-board DMA can write data in to host/system memory. When this situation occurs, the IDE controller
pauses the transfer by deasserting the READ_OE line. After READ_OE is deasserted, the host may
receive up to three additional words from the device before transfers are fully halted. Once read data has
been moved out of the FIFO to host/system memory and there is more space available in the FIFO, the
IDE controller ends the pause and starts the UDMA transfer again.

For disk write transfers where data is being read from host/system memory and written to the disk, the
IDE controller only pauses the write transfer if there is no more data to be read out of the FIFO and send
through the ATA interface to the drive. This occurs when the host/system memory bus throughput is less
than that of the ATA interface.

The attached ATA/ATAPI device can also pause the write transfer by deasserting the WAIT_BSYN signal.
When this occurs, the IDE controller simply stops reading data out of the FIFO and pauses. When the
attached device is ready to resume the write transfer it will reassert the WAIT_BSYN, which allows the
IDE controller to start reading data out of the FIFO.

2.6.1.4.3 Ultra-DMA Terminate

The IDE controller can terminate an ultra-DMA read or write transfer at any time. This can occur when
firmware tries to interrupt an ultra-DMA transfer with a PIO read of the status register. When this situation
occurs, the IDE controller will issue an ultra-DMA terminate by deasserting the DMACK signal. The IDE
controller will then issue the PIO read to the device, complete the PIO read, and then start up the
ultra-DMA transfer again. DMA activity on the host side is transparent to this intermediate task and data
will continue to be transferred until the appropriate FIFO thresholds are reached. Once the IDE controller
completes the PIO read it will continue with its ultra-DMA transfer.

Termination of an ultra-DMA transfer also occurs when firmware decides to abort the entire DMA transfer
(as described in Section 2.6.1.4.1). When this occurs, the host controller terminates the request by
deasserting the DMACK signal. In addition, the IDE controller is reset back to an idle state.

2.6.1.5 PIO Data Transaction

For PIO data transaction, the CPU is responsible to continually perform access to the data register in
order to perform PIO disk read or write transaction. The firmware is also responsible to keep track of the
size of the data to be transferred. One disadvantage of performing PIO data transaction is low throughput.
The host CPU is much faster than the maximum attainable interface speed (PIO mode 4), which forces
the host CPU to halt for a significant amount of time for each single word transfer.

20 ATA Controller SPRUE21–December 2005

www.ti.com

2.7 Attached Device Reset Considerations

Peripheral Architecture

2.6.1.6 PIO Pre-Fetch/Post-Write Feature

The IDE host controller has a pre-fetch/post-write feature that would alleviate, when enabled, the wait time
incurred to the host CPU by the slower IDE interface by allowing the CPU to perform burst read/write PIO
data accesses. It does so by making use of the DMA controller logic and its associated FIFO for storing
PIO read/write data. This is transparent to the CPU and the firmware (user). All the firmware has to do is
enable the pre-fetch/post-write feature, by setting the PREPOST0/1 bits in the primary IDE channel timing
register (IDETIMP) prior to performing PIO data-in/data-out access. For PIO disk write operation, write
data is intercepted by the DMA controller and sent to the write FIFO that eventually gets driven out to the
attached device. For PIO disk read transactions, data read is stored in the read FIFO and the CPU can
perform burst read access to the data register once enough data from the attached device has been read
onto the read FIFO.

2.7.1 Attached Device Hardware Reset Considerations

ATA/ATAPI specification-compliant devices include a hardware signal that can be used by a host to
perform hardware reset. The processor does not have a dedicated signal for this purpose. If this capability
is desired, use of a processor GPIO signal to reset the attached device is recommended.

2.7.2 Attached Device Software Reset Considerations

The IDE controller can perform software reset in one of two ways:

1. By writing to bit 2 (SRST field) of the device control register
2. By invoking a DEVICE RESET command (applicable to ATAPI device only)

The host can perform software reset to attached devices by writing to bit 2 (SRST bit) of the device control
register. Note that both devices would respond to the write, regardless of which device is selected.

An ATAPI device (packet device) allows the use of the additional command DEVICE RESET to perform a
reset to a selected device. This command is available to a packet device only and is not supported by
ATA devices.

2.7.3 Peripheral Hardware Reset Considerations

When a hardware reset occurs on the processor, all of the peripheral registers are reset to their default
values (as shown in Section 4) and the IDE controller interface is disabled.

2.7.4 Peripheral Software Reset Considerations

The ATA controller peripheral can be reset by the processor Power and Sleep Controller (PSC) by two
methods:

• Disabling and enabling the ATA controller peripheral
• Performing a synchronized reset

For more detailed information on the use of the processor Power and Sleep Controller (PSC), see the
TMS320DM644x DMSoC ARM Subsystem Reference Guide (SPRUE14).

SPRUE21–December 2005 ATA Controller 21

www.ti.com

2.8 Initialization

Peripheral Architecture

Proper host initialization needs to take place prior to accessing attached ATA/ATAPI device. From the
host side, the programmable timing registers are required to be programmed appropriately for the type of
control (PIO 8-bit) and data (PIO, multiword, or ultra-DMA) transaction to be used. It is important that the
programming of the registers on the host side matches the device side mode of operation. For this reason,
it is recommended that the firmware initialize the host IDE controller registers for PIO mode0 (for both PIO
8-bit and PIO 16-bit) and interrogate the device for its current settings and its capability. After determining
the attached current settings and capability, the firmware can reconfigure the attached device with a new
configuration or reconfigure its own programmable timing registers to match the device's current capability.

2.8.1 Host Initialization

The correct values needed to program the ATA register file are dependent upon the clock frequency used
by the IDE controller. This frequency is programmable and the firmware needs to be aware of this
frequency prior to configuring the IDE controller registers. The IDE controller registers can be initialized in
multiple ways. Initialization examples are provided in the following sections.

2.8.1.1 PIO 8-Bit and PIO 16-Bit Initialization

PIO 8-bit transactions are always used for control transactions and PIO-16 bit transactions are used for
data transactions. The IDE controller should be programmed with the lowest mode, which is mode 0 for
both control and data, since the device-operating mode is not known and the lowest mode is supported by
all other higher modes.

CAUTION
The value programmed in MISCCTL is the largest of the PIO 8-bit,
PIO-16-bit, and multiword DMA write hold time values, since this timing
parameter is used by the three transfers.

1. Identify the IDE controller clock frequency.
2. Initialize the programmable timing registers for PIO 8-bit mode 0 timing:

– Task file register strobe timing register (REGSTB)
– Task file register recovery timing register (REGRCVR)
– Miscellaneous control register (MISCCTL)

3. Initialize the programmable timing registers for PIO 16-bit mode 0 timing:

– Data register PIO strobe timing register (DATSTB)
– Data register PIO recovery timing register (DATRCVR)
– Miscellaneous control register (MISCCTL)

4. Enable the use of the programmable timing registers (over-ride timing):

– Miscellaneous control register (MISCCTL)
5. Enable access to attached devices:

– Primary IDE channel timing register (IDETIMP)

22 ATA Controller SPRUE21–December 2005

www.ti.com

Peripheral Architecture

2.8.1.2 Multiword DMA Initialization

It is important that the attached device capability is identified prior to invoking any type of DMA activity. In
addition, prior to using a DMA transaction, it is the responsibility of the firmware to configure the mode for
the type of DMA transaction to be used (in this case it is multiword DMA, not ultra-DMA). When this step
is performed, the attached device uses the selected DMA signaling when a data transaction that utilizes
the DMA is invoked. The host has a register field that is programmed to select the type of DMA to use.
The attached devices do not have this selection capability. When a DMA mode transaction is requested,
devices use the DMA mode type programmed most recently. In this section, the initialization steps
configure the use for multiword DMA mode

CAUTION
The value programmed in MISCCTL is the largest of the PIO 8-bit,
PIO-16-bit, and multiword DMA write hold time values, since this timing
parameter is used by the three transfers.

1. Identify the IDE controller clock frequency.
2. Initialize the programmable timing registers for PIO 8-bit mode 0 timing:

– Task file register strobe timing register (REGSTB)
– Task file register recovery timing register (REGRCVR)
– Miscellaneous control register (MISCCTL)

3. Initialize the programmable timing registers for PIO 16-bit mode 0 timing:

– Data register PIO strobe timing register (DATSTB)
– Data register PIO recovery timing register (DATRCVR)
– Miscellaneous control register (MISCCTL)

4. Enable the use of the programmable timing registers (over-ride timing):

– Miscellaneous control register (MISCCTL)
5. Enable access to attached devices:

– Primary IDE channel timing register (IDETIMP)
6. Invoke IDENTIFY DEVICE command on to the attached device.
7. Read device configuration data.
8. Identify if multiword DMA is supported. If so, select mode value to configure and continue.
9. If it is necessary to change the device configuration or to configure the device to use multiword DMA

transactions on the next DMA command posting, perform the SET FEATURES command.

– This command may need to be performed more than once: once for PIO mode selection and once
for multiword DMA mode selection. If modes other than PIO mode 0 are selected, then it will be
necessary to reconfigure the PIO 8-bit and PIO 16-bit for the appropriate mode.

10. Configure the multiword DMA programmable timing registers for the multiword DMA mode that
matches the attached device operation:

– DMA strobe timing register (DMASTB)
– DMA recovery timing register (DMARCVR)
– Miscellaneous control register (MISCCTL)

11. Select multiword DMA mode instead of ultra-DMA:

– Ultra DMA control register (UDMACTL)
12. Configure PRD table entry address

– Primary IDE channel DMA descriptor pointer register (BMIDTP)
13. Configure PRD table entries.

You are now ready to perform PIO 8-bit, PIO 16-bit, and multiword DMA access.

SPRUE21–December 2005 ATA Controller 23

www.ti.com

Peripheral Architecture

2.8.1.3 Ultra-DMA Initialization

It is important that the attached device capability is identified prior to invoking any type of DMA activity. In
addition, prior to using a DMA transaction, it is the responsibility of the firmware to configure the mode for
the type of DMA transaction to be used. When this step is performed, the attached device uses the
selected DMA signaling when a data transaction that utilizes DMA is invoked. The host has a register field
that is programmed to select the type of DMA to use. The attached devices do not have this selection
capability. When a DMA mode transaction is requested, devices use the DMA mode type programmed
most recently. In this section, the initialization steps configure the use for ultra-DMA mode.

1. Identify the IDE controller clock frequency.
2. Initialize the programmable timing registers for PIO 8-bit mode 0 timing:

– Task file register strobe timing register (REGSTB)
– Task file register recovery timing register (REGRCVR)
– Miscellaneous control register (MISCCTL)

3. Initialize the programmable timing registers for PIO 16-bit mode 0 timing:

– Data register PIO strobe timing register (DATSTB)
– Data register PIO recovery timing register (DATRCVR)
– Miscellaneous control register (MISCCTL)

4. Enable the use of the programmable timing registers (over-ride timing):

– Miscellaneous control register (MISCCTL)
5. Enable access to attached devices:

– Primary IDE channel timing register (IDETIMP)
6. Invoke IDENTIFY DEVICE command on to the attached device.
7. Read device configuration data.
8. Identify if ultra-DMA is supported. If so, select mode value to configure and continue.
9. If it is necessary to change the device configuration or to configure the device to use ultra-DMA

transactions on the next DMA command posting, perform the SET FEATURES command.

– This command may need to be performed more than once: once for PIO mode selection and once
for ultra-DMA mode selection. If modes other than PIO mode 0 are selected, then it will be
necessary to reconfigure the PIO 8-bit and PIO 16-bit for the appropriate mode.

10. Configure the ultra-DMA programmable timing registers for the ultra-DMA mode that matches the
attached device operation:

– Ultra DMA strobe timing register (UDMASTB)
– Ultra DMA ready-to-stop timing register (UDMATRP)
– Ultra DMA timing envelope register (UDMATENV)

11. Select ultra-DMA mode instead of multiword DMA:

– Ultra DMA control register (UDMACTL)
12. Configure PRD table entry address

– Primary IDE channel DMA descriptor pointer register (BMIDTP)
13. Configure PRD table entries

You are now ready to perform PIO 8-bit, PIO 16-bit, and ultra-DMA access.

24 ATA Controller SPRUE21–December 2005

www.ti.com

2.9 Interrupt Support

Peripheral Architecture

2.8.2 Attached Device Initialization

After power-on reset, the attached ATA/ATAPI device comes up in a default mode that might not be
known by the host firmware. However, as long as it is a functional device, it should be ready to
communicate with the firmware. It is recommended that the host firmware configures the host IDE
controller to generate PIO mode 0 timing (since this is the lowest mode and a subset of all higher modes)
for communicating with the attached device for its initial communication with the attached device. After the
firmware configures the host controller to operate in PIO mode 0, select the appropriate IDE controller
clock frequency, enable the programmable timing registers, and enable the device register access. Start
by invoking the IDENTIFY DEVICE command to retrieve device information. Based on the data retrieved,
the firmware reconfigures the attached device and then the IDE controller with the identical fastest PIO
and DMA modes supported. The firmware uses the SET FEATURES command to configure the attached
device. Consult the ATA/ATAPI specification along with the particular device specification for more
information.

The IDE host DMA controller is ultimately responsible for dispatching interrupts to the ARM CPU interrupt
controller that is used to interrupt the system processor for various conditions. There are three sources for
interrupt generation:

• PIO transaction
• DMA transaction
• WAIT_BSYN (IORDY) timer timeout

2.9.1 Interrupt Events and Sources

Three interrupt events and two interrupt status bit fields (INTRSTAT and IORDYINT) are available to
record interrupt existence. A single vector within the ARM CPU interrupt vector space exists and is used
as the ATA interrupt entry to handle all the three events. The associated interrupt service routine is
responsible for identifying the interrupt source and providing service accordingly.

The ATA interrupt source could be the WAIT_BSYN (IORDY) timer, the attached device, or the DMA
controller. Regardless of the source of the interrupt, the DMA controller is eventually responsible for
dispatching the interrupt to the CPU.

Upon receiving an interrupt, the interrupt service routine (ISR) identifies the source by examining the state
of the INTRSTAT and IORDYINT bits. If the IORDYINT bit is set and an interrupt is received, then the
source of the interrupt is the WAIT_BSYN (IORDY) timer. However, if an interrupt is received and none of
the two bits have been set, then the source of the interrupt is a PIO transaction. If an interrupt is received
and the INTRSTAT bit is set, then the interrupt occurred due to a successful DMA transaction. A summary
of these states is shown in Table 4.

When any of the interrupt status bits is set, the ISR is responsible for clearing the interrupt flag by writing
a 1 to the bit. If this is not done, the ISR may have difficulty identifying the source of the interrupt correctly
when the next interrupt is received.

Table 4. Identifying the ATA Controller Interrupt Sources

Interrupt Source INTRSAT Bit IORDYINT Bit

PIO transaction 0 0

DMA transaction 1 1

IORDY timeout 0 1

SPRUE21–December 2005 ATA Controller 25

www.ti.com

Peripheral Architecture

2.9.1.1 ATA Interrupt Source: WAIT_BSYN (IORDY) Timer

The WAIT_BSYN (IORDY) timer interrupt is generated by the IDE controller logic when the IDE controller
WAIT_BSYN (IORDY) timer is programmed with a non-zero value and the device fails to deassert the
WAIT_BSYN signal before the timer runs out when performing PIO transactions.

If the IORDY (WAIT_BSYN) timer register is written with a non-zero value, the timer starts counting when
the attached device asserts the WAIT_BSYN signal. If the attached device fails to deassert the
WAIT_BSYN signal before the timer runs out, an interrupt is generated. This allows the host controller not
to wait an indefinite amount of time in the event that the external device hangs and never comes back to
complete its transaction.

When the interrupt is generated, the IORDYINT bit is set in the primary IDE channel DMA status register
(BMISP). The interrupt can be cleared by writing a 1 to the IORDYINT bit. This will deassert the interrupt
and also clear the IORDYINT status bit. This feature can be used with any of the PIO transactions (control
or data).

2.9.1.2 Acknowledging IORDY Timer Interrupt

When an IORDY timer is enabled and the attached device did not de-assert the IORDY signal prior to the
IORDY timer counting down to zero, an IORDY timer interrupt would be generated. At this time, a bit that
signifies the IORDY timer interrupt (IORDYINT) would be set within BMISP. At the same time, the interrupt
is routed on to the CPU. After the CPU ISR determines that the cause of the interrupt (by reading BMISP),
it clears the IORDY timer interrupt by writing a 1 into the IORDYINT bit. The firmware can also re-initialize
the primary IO ready timer configuration register (IORDYTMP) with the timer count (based on the IDE
controller clock) value if future interrupt is to be expected.

Note: This feature and operation is transparent to the attached device and no function is
required to be performed on the device side.

2.9.1.3 ATA Interrupt Source: Attached Device

For some non-data and PIO data transactions to an attached ATA device, the attached device will assert
the INTRQ signal when a user has chosen to be interrupted by clearing bit 1 of the device control register
within the attached device prior to posting the transaction. For non-data commands, the device would
assert the INTRQ signal after the completion of the command (for example, the SET FEATURES
command). For commands that require a data-in or data-out transaction, an interrupt would be generated
based on the direction of the data flow. For data-in transactions, the attached device generates the
interrupt by asserting the INTRQ signal when the device is ready to transfer the data. For data-out
transactions, the attached device generates the interrupt by asserting the INTRQ signal when the device
is finished receiving the data. The timeline and the number of interrupts generated depends on the type of
command issued. For PIO Read/Write Sector, a single interrupt is generated for each sector transferred.
For writes, an interrupt is generated after each sector is transferred. If the number of sectors transferred
per transaction is more than one, then more than one interrupt would be generated. For the Read/Write
Block command, a single interrupt is generated for each transfer prior to the start of data transfer for
data-in transactions and after the end of the transfer for data-out transactions. If the data-in and data-out
transaction is PIO driven, none of the interrupt status bits (INTRSTAT and IORDYINT) would be set.
However, the received interrupt would be passed to the CPU by the DMA controller. The ISR is
responsible for deasserting the WAIT_BSYN (IORDY) interrupt by reading the status/command register of
the device.

26 ATA Controller SPRUE21–December 2005

www.ti.com

Peripheral Architecture

2.9.1.4 Acknowledging Attached Device Interrupt

When a device is ready or finished with a data transaction or when a device finishes executing certain
commands, it generates an interrupt to the host in order to indicate the completion status. The device
communicates its status by asserting the INTRQ_EM_RNW signal. The device asserts the
INTRQ_EM_RNW signal only if the host has enabled interrupt generation by clearing the nIEN of the
Device Control Register prior to invoking a command that generates an interrupt.

Once a device asserts the INTRQ_EM_RNW signal, the signal remains asserted until the host
acknowledges the interrupt. The host acknowledges the interrupt by reading the Status Register. Upon
reading the Status Register, the device would de-assert (stops driving) the INTRQ_EM_RNW signal.

Note: The firmware should refrain from reading the Status Register to get the status of the
device when it is expecting an interrupt from the attached device since this might cause
the interrupt to be cleared if the interrupt arrived while the Status Register read is taking
place causing the firmware to miss an interrupt. The firmware can read the alternate
Status Register and avoid the possibility of in advertent interrupt acknowledgment.

2.9.1.5 ATA Interrupt Source: DMA Controller

For any type of DMA transfer (multiword or ultra-DMA reads and writes), the interrupt is asserted once the
DMA transfer has completed. For DMA data-in transactions (data reads from the attached ATA device to
host/system memory), the DMA interrupt will be generated once the last data word that has been read
from the attached ATA device is written to the host/system memory. For DMA data-out transactions (data
writes to the attached ATA device from host/system memory), the interrupt is issued once the last data
word has been read from system memory and written to the ATA device. When the interrupt signal is
asserted, the INTRSTAT bit in the primary IDE channel DMA status register (BMISP) is set to a 1. The
interrupt can be cleared by writing a 1 to the INTRSTAT bit. This deasserts the interrupt and clears the
INTRSTAT bit. Note that an interrupt may not be generated if the data length described by the PRD table
does not match the length specified by the ATA/ATAPI command. The state of the INTRSTAT and
IDEACT bits in the BMISP register are used to identify the state and condition of the DMA controller (see
Section 4.2 for more information). When the attached device is configured to generate interrupts, by
clearing bit 1 of the device control register, the attached device generates an interrupt at the end of the
DMA transaction and asserts the INTRQ signal.

Note that even though both the DMA and attached devices are capable of generating interrupts for the
same transaction (this happens during DMA read/write transactions), the final interrupt generated to the
CPU is a single interrupt. There are only two bits that identify the three sources. In this case, both the ATA
controller DMA as well as the attached ATA device have generated an interrupt. However, only a single
interrupt would be received and the ISR would treat the interrupt as a DMA interrupt only. It is the duty of
the firmware to read the Status/Command register (in the attached device) in order to deassert (clear) the
WAIT_BSYN (IORDY) interrupt. This is the normal case when the PRD size entered for the DMA
controller is equal to the command size entered to the attached device.

There are times when the user/firmware violates this normal condition by entering different values (that is,
the PRD size entered is not equal to the command size entered). Even though this condition should be
avoided, other status bits can be used to identify the status and condition of the transaction. Note that the
interrupt is not always generated when the equality of size entered is violated. Table 5 summarizes the
possible interrupt conditions for a DMA driven data transaction. The column Interrupt Source displays the
source of the interrupt during a DMA driven data transaction; it is either the attached device or the DMA
controller.

SPRUE21–December 2005 ATA Controller 27

www.ti.com

2.10 EDMA Event Support

Peripheral Architecture

Table 5. DMA Driven Interrupt Conditions

Interrupt SourceINTRSTAT IDEACT
Bit Bit Device DMA (Host) Description

0 1 No No DMA transfer is in progress. Too early to generate an interrupt.

1 0 Yes Yes The IDE device generated an interrupt and the physical region descriptors
have been exhausted. This is normal completion where the size of the
physical memory regions is equal to the IDE device transfer size. The
ARM CPU will receive an interrupt.

1 1 Yes No DMA Size > CMD Size: The IDE device generated an interrupt. The
controller has not reached the end of the physical memory regions. This is
a valid completion case when the size of the physical memory regions is
larger than the IDE device transfer size. The ARM CPU will receive an
interrupt even though the DMA is not done.

0 0 No No DMA Size < CMD Size. If the DMAERROR bit in BMISP is 1, there was a
problem transferring data to/from memory. If the DMAERROR bit is 0, the
descriptor table specified a smaller buffer size than the programmed IDE
transfer size. The ARM CPU will not receive an interrupt.

Note: When performing a DMA transaction, the attached device should always be configured to
generate an interrupt. If this step is omitted, no interrupt will be generated.

2.9.2 Acknowledging Interrupt for DMA Transaction

After a successful DMA transaction, the device generates an interrupt to notify the host by driving the
INTRQ_EM_RNW signal. The Host DMA logic is eventually responsible for passing the interrupt to the
host CPU. In addition to passing the interrupt to the host, the DMA logic also sets interrupt bit within the
BMISP register.

The host CPU firmware is then responsible for acknowledging and clearing the interrupt received. For a
DMA interrupt, the following three tasks (in the order shown) should be carried out to properly
acknowledge and clear the DMA interrupt bit field:

1. Read Device Status Register: If the INTRQ_EM_RNW signal is driven by the device, reading the
status register is a form of acknowledgment to the device and the device will stop driving the
INTRQ_EM_RNW as soon as the read to the Status Register is done.

2. Clear the DMA Start/Stop bit: This bit is set to start a DMA transaction. When a DMA transaction is
done, this bit stays set even though the DMA is done. In order to continue with a future DMA
transaction, this bit must be cleared prior to initiating a new transaction.

3. Clear the DMA interrupt status bit within the BMISP register: This bit is set by the DMA to signify the
type of interrupt (DMA in this case) received. It needs to be cleared for identifying the next/future DMA
interrupts.

The order that the above three operations can be done is any combination, except steps 3, 2, 1. You must
not sequence your DMA acknowledge operations as steps 3, 2, 1, and if you do, then it is most likely that
you will be receiving additional false interrupt. The DMA logic would falsely think that an interrupt from PIO
transaction is received, following the DMA transaction, when in fact there was none.

2.9.3 Interrupt Multiplexing

On the DM644x DMSoC, the ATA/ATAPI controller interrupt is not multiplexed with any other interrupt
source.

The ATA/ATAPI controller peripheral does not utilize the processor EDMA system. The controller has it's
own dedicated DMA system.

28 ATA Controller SPRUE21–December 2005

www.ti.com

2.11 Power Management

2.12 Emulation Considerations

3 Supported Use Cases

3.1 Interfacing to a Standard ATA/ATAPI Device

Supported Use Cases

The ATA/ATAPI controller can be placed in reduced power modes to conserve power during periods of
low activity. The power management of the peripheral is controlled by the processor Power and Sleep
Controller (PSC). The PSC acts as a master controller for power management of all of the peripherals on
the processor. For detailed information on power management procedures using the PSC, see the
TMS320DM644x DMSoC ARM Subsystem Reference Guide (SPRUE14).

The ATA/ATAPI controller is not affected by emulation suspend events such as breakpoints and halts and
continues to run when these events occur.

The following sections describe how to interface the ATA controller.

3.1.1 Hardware Interface to a Standard ATA/ATAPI Device

The traditional 40-pin or upgraded 80-pin conductor cable is commonly used to interface with hard-disk
drive type storage. The correct ribbon cable size to use mostly depends on the speed the application
requires. If ultra-DMA modes 2 and greater are to be used, the 80-conductor ribbon cable must be used;
otherwise, there will be problems with data integrity due to data corruption resulting from noise
(cross-talk). Table 6 shows a mapping of the processor ATA/ATAPI controller signals with those on a
generic hard-disk drive.

Table 6. ATA/ATAPI Device Interface Connections for a Standard ATA/ATAPI Device

Processor Attached
ATA/ATAPI ATA/ATAPI
Controller Signal Device Signal Description

ATA_CS[1:0] CS[1:0] Chip select 0 and 1, used by host to select command block and control block
registers. During DMA transfers, both CS0 and CS1 are negated.

ATA0_EM_BA0 DA[2:0] DA[2:0] specifies register or data port address.
ATA1_EM_BA1
ATA2_EM_A0

EM_D[15:0] D[15:0] D[15:0] is a 16-bit bi-directional Host Data Bus.

DMARQ DMARQ DMARQ is driven by the device to request DMA transfer.

DMACK DMACK DMACK is driven by the host to acknowledge DMA transfer.

WAIT_BSYN IORDY/DDMARDY/ IORDY is negated by device to extend PIO transfer. DDMARDY flow control for
STROBE ultra-DMA data-out (write) transfer. DSTROBE is data strobe signal for ultra-DMA

data-in transfer.

READ_OE DIOR/HDMARDY/ DIOR is PIO transaction Read Strobe. HDMARDY flow control for ultra-DMA data-in
HSTROBE(1) (read) transfer. HSTROBE is data strobe signal for ultra-DMA data-out transfer.

WRITE_OE DIOW /STOP(1) DIOR is PIO transaction Write Strobe. STOP is used to signal ultra-DMA burst transfer
termination.

INTRQ_EM_RNW INTRQ(1) Interrupt Request used by device to extend host PIO data.

GPIO signal used RESET Reset used by host to reset the device.
as a RESET

HDDIR N/A This signal is meaningful if the device to be connected to is higher (greater than 1.8 V)
voltage tolerant.

(1) The ATA/ATAPI specification applies different signal names to this signal depending on the mode of operation.

SPRUE21–December 2005 ATA Controller 29

www.ti.com

3.2 Interfacing to a Standard ATA/ATAPI Device Through a Level-Shifter

Supported Use Cases

3.1.2 Software Configuration for Interfacing to a Standard ATA/ATAPI Device

The following is a recommendation of how the firmware performs a host and device initialization. The
initialization steps are:

1. Identify IDE controller clock frequency.
2. Initialize programmable timing registers for PIO mode 0 register access based on the clock frequency.
3. Initialize programmable timing registers for PIO mode 0 data access based on the clock frequency.
4. Enable programmable timing logic.
5. Enable IDE register access.
6. Perform IDENTIFY FEATURE command to determine the device capability.
7. Configure device with modes supported by both host and device.
8. Configure host with modes supported by both host and device.

Both the ATA controller and device are now ready to perform data transaction. For a detailed description
of the software configuration of both the ATA controller and the external device, see Section 2.8.

3.2.1 Interfacing to 3.3 V and 5.0 V ATA/ATAPI Devices

The IDE controller provides glueless interface to 1.8 V tolerant ATA/ATAPI devices. If you need to
interface with devices that are 3.0 V and 5.0 V tolerant, an additional logic/buffer (level shifter) is required
external to the processor. This is to drive the signal sourced by the processor at a level acceptable to the
external device I/O buffer, since the processor I/O buffers do not meet the external device voltage or drive
needs. The HDDIR signal indicates the direction of the transfer to the buffer/level-shifter. The processor
does not supply a dedicated signal to enable/disable the level shifter. The level shifter is enabled or
disabled by direct tie-off external to the processor.

3.2.2 Hardware Interface to an ATA/ATAPI Device Through a Level-Shifter

The traditional 40-pin or upgraded 80-pin conductor cable is commonly used to interface with hard-disk
drive type storage. The correct ribbon cable size to use mostly depends on the speed the application is
supposed to support. If ultra-DMA modes 2 and greater are to be used, the 80-conductor ribbon cable
must be used; otherwise, there will be problems with data integrity due to data corruption resulting from
noise (cross-talk). Table 7 shows a mapping of the processor ATA/ATAPI controller signals with those on
a generic hard-disk drive.

3.2.3 Software Configuration for Interfacing to a Standard ATA/ATAPI Device Through a Level-Shifter

The following is a recommendation of how the firmware performs a host and device initialization. The
initialization steps are:

1. Identify IDE controller clock frequency.
2. Initialize programmable timing registers for PIO mode 0 register access based on the clock frequency.
3. Initialize programmable timing registers for PIO mode 0 data access based on the clock frequency.
4. Enable programmable timing logic.
5. Enable IDE register access.
6. Perform IDENTIFY FEATURE command.
7. Configure device with modes supported by both host and device.
8. Configure host with modes supported by both host and device.

Both the ATA controller and device are now ready to perform data transaction. For a detailed description
of the software configuration of both the ATA controller and the external device, see Section 2.8.

ATA Controller30 SPRUE21–December 2005

www.ti.com

3.3 Interfacing to Compact Flash

Supported Use Cases

Table 7. ATA/ATAPI Device Interface Connections for a Standard ATA/ATAPI Device Through a
Level-Shifter

Processor Attached
ATA/ATAPI ATA/ATAPI
Controller Signal Device Signal Description

ATA_CS[1:0] CS[1:0] Chip select 0 and 1, used by host to select command block and control block
registers. During DMA transfers, both CS0 and CS1 are negated.

ATA0_EM_BA0 DA[2:0] DA[2:0] specifies register or data port address.
ATA1_EM_BA1
ATA2_EM_A0

EM_D[15:0] D[15:0] D[15:0] is a 16-bit bi-directional Host Data Bus.

DMARQ DMARQ DMARQ is driven by the device to request DMA transfer.

DMACK DMACK DMACK is driven by the host to acknowledge DMA transfer.

WAIT_BSYN IORDY/DDMARDY/ IORDY is negated by device to extend PIO transfer. DDMARDY flow control for
STROBE ultra-DMA data-out (write) transfer. DSTROBE is data strobe signal for Ultra DMA

data-in transfer.

READ_OE DIOR/HDMARDY/ DIOR is PIO transaction Read Strobe. HDMARDY flow control for ultra-DMA data-in
HSTROBE(1) (read) transfer. HSTROBE is data strobe signal for Ultra DMA data-out transfer.

WRITE_OE DIOW/STOP(1) DIOR is PIO transaction Write Strobe. STOP is used to signal ultra-DMA burst transfer
termination.

INTRQ_EM_RNW INTRQ(1) Interrupt Request used by device to extend host PIO data.

GPIO signal used RESET Reset used by host to reset the device.
as a RESET

HDDIR N/A This signal is meaningful if the device to be connected to is higher (greater than 1.8 V)
voltage tolerant.

(1) The ATA/ATAPI specification applies different signal names to this signal depending on the mode of operation.

3.3.1 Hardware Interfacing to Compact Flash

The compact Flash (CF) is a storage medium that is capable of being configured in multiple modes (Flash
mode, I/O mode, and true-IDE mode). The CF is required to be configured in true-IDE mode in order for it
to interface to a host via an ATA/ATAPI standard interface. Since it is capable of operating in multiple
modes, configuring the CF to operate in true-IDE mode requires additional steps if hot insertion capability
needs to be utilized. This additional step is due to compact Flash device general configuration and has no
ties with the functionality of the IDE controller.

In order for a compact Flash device to be configured in true-IDE mode, the CF-specific signal, ATA_SEL,
should be driven low prior to power cycling. The processor IDE controller does not have a dedicated signal
to drive this ATA_SEL signal. This signal should be tied low external to the processor. Hot insertion is not
supported.

The IDE host controller is used to interface to a multitude of storage devices. Devices like hard-disk
drives, compact disks, or DVDs use the standard 40-pin or 80-pin ribbon cable to connect with the IDE
controller. However, compact Flash (CF) devices use a 50-pin connector since it complies with the
PCMCIA standard.

The CF should also be configured to operate in true-IDE mode in order to connect with the IDE controller.
For true-IDE mode, the IDE controller terminals are connected to the corresponding CF terminals as
defined in the compact Flash specification.

Table 8 shows a mapping of the processor ATA/ATAPI controller signals with those on a compact Flash
device.

SPRUE21–December 2005 ATA Controller 31

www.ti.com

Supported Use Cases

Table 8. ATA/ATAPI Device Interface Connections for a Compact Flash Device

DM644x Attached
ATA/ATAPI ATA/ATAPI
Controller Signal Device Signal Description

ATA_CS[1:0] CS[2:1] Chip select 0 and 1, used by host to select command block and control block
registers, respectively, within the compact Flash device in true-IDE mode.

ATA0_EM_BA0 DA[2:0] Lower 3 bits of address are used in compact Flash. Upper address bits A[10:3] should
ATA1_EM_BA1 be grounded by host when in true-IDE mode.
ATA2_EM_A0

EM_D[15:0] D[15:0] Host Data Bus

DMARQ Unconnected DMA unsupported on compact Flash spec 2.0

DMACK Unconnected DMA unsupported on compact Flash spec 2.0

WAIT_BSYN WAITN I/O Ready signal used by device to extend host PIO data transfer cycles.

READ_OE IORDY Host I/O read strobe

WRITE_OE IOWR Host I/O write strobe

INTRQ_EM_RNW INTRQ Interrupt Request used by device to extend host PIO data.

GPIO signal used RESET Reset used by host to reset the device. Note that RESET is typically active high for
as a RESET compact Flash devices, but is active low for true-IDE devices.

N/A ATASEL Grounded Prior to power-up. If hot insertion is supported, it is necessary to reset the
CF card for proper configuration.

3.3.2 Software Configuration for Interfacing to Compact Flash

The following is a recommendation of how the firmware performs a host and device initialization. The
initialization steps are:

1. Identify IDE controller clock frequency.
2. Initialize programmable timing registers for PIO mode 0 data access.
3. Enable programmable timing logic.
4. Enable IDE register access.
5. Perform IDENTIFY FEATURE command.
6. Configure device with modes supported by both host and device.
7. Configure dost with modes supported by both host and device.

Both the ATA controller and device are now ready to perform data transaction. For a detailed description
of the software configuration of both the ATA controller and the external device, see Section 2.8.

32 ATA Controller SPRUE21–December 2005

www.ti.com

4 Registers
Registers

Table 9 lists the memory-mapped registers for the ATA controller. See the device-specific data manual for
the memory address of these registers.

Table 10 lists the registers that are in the attached device, but not in the DM644x processor.

Table 9. ATA Host Controller Registers

Offset Acronym Register Description Section

ATA Bus Master Interface DMA Engine Registers

0h BMICP Primary IDE Channel DMA Control Register Section 4.1

2h BMISP Primary IDE Channel DMA Status Register Section 4.2

4h BMIDTP Primary IDE Channel DMA Descriptor Table Pointer Register Section 4.3

ATA Configuration Registers

40h IDETIMP Primary IDE Channel Timing Register Section 4.4

47h IDESTAT IDE Controller Status Register Section 4.5

48h UDMACTL Ultra-DMA Control Register Section 4.6

50h MISCCTL Miscellaneous Control Register Section 4.7

54h REGSTB Task File Register Strobe Timing Register Section 4.8

58h REGRCVR Task File Register Recovery Timing Register Section 4.9

5Ch DATSTB Data Register Access PIO Strobe Timing Register Section 4.10

60h DATRCVR Data Register Access PIO Recovery Timing Register Section 4.11

64h DMASTB Multiword DMA Strobe Timing Register Section 4.12

68h DMARCVR Multiword DMA Recovery Timing Register Section 4.13

6Ch UDMASTB Ultra-DMA Strobe Timing Register Section 4.14

70h UDMATRP Ultra-DMA Ready-to-Pause Timing Register Section 4.15

74h UDMATENV Ultra-DMA Timing Envelope Register Section 4.16

78h IORDYTMP Primary IO Ready Timer Configuration Register Section 4.17

Table 10. ATA Controller Registers in the Attached Device

Offset Register Name Register Description Read/Write

Primary Channel Command Block Registers

1F0h Data PIO Read/Write Data Register Access Read/Write

1F1h Error Error Register Read

1F1h Features Features Register Write

1F2h Sector Count Sector Count Register Read/Write

1F3h LBA Low LBA Low (known as Sector Number on previous ATA Specs) Read/Write

1F4h LBA Mid LBA Mid (known as Cylinder Low on previous ATA Specs) Read/Write

1F5h LBA High LBA High (known as Cylinder High on previous ATA Specs) Read/Write

1F6h Device Device Register (known as Drive/Head on previous ATA Specs) Read/Write

1F7h Status Status Register Read

1F7h Command Command Register Write

Primary Channel Control Block Registers

3F6h Alt-Status Alternate Status Register Read

3F6h Device Control Device Control Register Write

SPRUE21–December 2005 ATA Controller 33

www.ti.com

4.1 Primary IDE Channel DMA Control Register (BMICP)

Registers

The primary IDE channel DMA control register (BMICP) is a 16-bit wide register used to indicate the
direction of the DMA. It is also used to initiate DMA transfers to/from the IDE devices. BMICP is shown in
Figure 3 and described in Table 11.

Writing a 1 to the DMASTART bit starts the DMA engine; DMA operation begins when this bit changes
from a 0 to a 1. The ATA controller transfers data between the IDE device and memory only when the
DMASTART bit is set; a DMA transfer terminates, if the DMASTART bit is written with a 0, and cannot be
resumed. The DMASTART bit remains set when a DMA transfer is completed.

If the DMASTART bit is cleared to 0 while a DMA operation is still active (the IDEACT bit in BMISP is 1)
and the device has not yet finished its data transfer (the INTRSTAT bit in BMISP is 0), the DMA
transaction is aborted and data transferred from the device may not be written to memory. The
DMASTART bit should be cleared to 0 after a data transfer is completed (as indicated by the IDEACT or
INTRSTAT bits in BMISP). Note that the descriptors must be set up in memory and the descriptor starting
address written to the primary IDE channel DMA descriptor table pointer register (BMIDTP) before setting
the DMASTART bit.

Figure 3. Primary IDE Channel DMA Control Register (BMICP)

15 8

Reserved

R-0

7 4 3 2 1 0

Reserved DMADIR Reserved DMASTART

R-0 R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 11. Primary IDE Channel DMA Control Register (BMICP) Field Descriptions

Bit Field Value Description

15-4 Reserved 0 Reserved

3 DMADIR DMA data transfer direction. DMADIR must not be changed while a DMA transfer is in progress.

0 DMA read (write to IDE device).

1 DMA write (read from IDE device).

2-1 Reserved 0 Reserved

0 DMASTART DMA start/stop control.

0 Stop DMA operation.

1 Start DMA operation.

ATA Controller34 SPRUE21–December 2005

www.ti.com

4.2 Primary IDE Channel DMA Status Register (BMISP)

Registers

The primary IDE channel DMA status register (BMISP) is a 16-bit wide register used to indicate interrupt
presence, DMA error condition, as well as DMA activity (state). BMISP is shown in Figure 4 and described
in Table 12.

Figure 4. Primary IDE Channel DMA Status Register (BMISP)

15 8

Reserved

R-0

7 4 3 2 1 0

Reserved IORDYINT INTRSTAT DMAERROR IDEACT

R-0 R/W1C-0 R/W1C-0 R/W1C-0 R-0

LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear (writing 0 has no effect); -n = value after reset

Table 12. Primary IDE Channel DMA Status Register (BMISP) Field Descriptions

Bit Field Value Description

15-4 Reserved 0 Reserved

3 IORDYINT IORDY timeout. Write a 1 to clear this bit.

0 IORDY timer functionality is disabled.

1 IORDY timer functionality is enabled and the WAIT (IORDY) timer times-out before the target device
being accessed deasserts WAIT_BSYN during a transfer.

2 INTRSTAT IDE interrupt status. INTRSTAT is set by the rising edge of the IDE device interrupt pin; write a 1 to
clear this bit. After a DMA transfer is initiated, INTRSTAT is set when all data has been transferred to
system memory (read commands) or to the device (write commands). If a DMA transfer has not been
initiated, software can use INTRSTAT to determine if an IDE device has asserted its interrupt line.

Because INTRSTAT is set at the rising edge of the IDE interrupt, INTRSTAT will not necessarily
represent the current state of the IDE interrupt signal.

0 IDE interrupt is inactive.

1 IDE interrupt is active.

1 DMAERROR DMA error. DMAERROR is set when the controller encounters an error in transferring data to or from
memory; write a 1 to clear this bit.

DMAERROR can only be set due to an internal buffer overflow or underflow. Under normal conditions,
this should not occur.

0 No DMA error.

1 DMA buffer underflow or overflow.

0 IDEACT IDE active. IDEACT is set when the DMASTART bit in BMICP is written with a 1. IDEACT is cleared
when the final DMA transfer for a region is performed (that is, where the EOT bit is set in the region
descriptor) and all data has been transferred to system memory (device read) or to the device (device
write), or when a DMA transfer is aborted by writing the DMASTART bit with a 0. See Table 5.

0 IDE is inactive

1 IDE is active.

SPRUE21–December 2005 ATA Controller 35

www.ti.com

4.3 Primary IDE Channel DMA Descriptor Table Pointer Register (BMIDTP)

Registers

The primary channel DMA descriptor table pointer register (BMIDTP) is a 32-bit wide register used to
describe the starting address of the DMA descriptor table. BMIDTP must be programmed appropriately
before setting the DMASTART bit in the primary IDE channel DMA control register (BMICP). Bits 0 and 1
are permanently tied low, as descriptors must be aligned on a 4-byte boundary. BMIDTP is shown in
Figure 5 and described in Table 13.

The content of the BMIDTP is updated automatically with the next PRD address after completing a DMA
transfer to/from the buffer location pointed by the current PRD if the EOT (End-of-Table) bit is cleared (see
section Section 2.6.1.1 for more information). For this reason, proper initialization of the BMIDTP register
is required prior to any DMA transaction.

Figure 5. Primary IDE Channel DMA Descriptor Table Pointer Register (BMIDTP)

31 16

BMIDTP

R/W-0

15 2 1 0

BMIDTP 0 0

R/W-0 R-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 13. Primary IDE Channel DMA Descriptor Table Pointer Register (BMIDTP) Field Descriptions

Bit Field Value Description

31-2 BMIDTP 0-3FFF FFFFh Descriptor base address pointer.

1-0 Reserved 0 Reserved

ATA Controller36 SPRUE21–December 2005

www.ti.com

4.4 Primary IDE Channel Timing Register (IDETIMP)

Registers

The primary IDE channel timing register (IDETIMP) is a 16-bit wide register used to control the
enable/disable capability for the IDE interface as well as control for PIO data pre-fetch/post-write
capability. IDETIMP is shown in Figure 6 and described in Table 14.

If the pre-fetch/post-write capability is enabled, the CPU can perform burst read/write data transfer since
the DMA FIFO will be used to store outgoing and incoming data temporarily.

Figure 6. Primary IDE Channel Timing Register (IDETIMP)

15 14 8

IDEEN Reserved

R/W-0 R-0

7 6 5 3 2 1 0

Reserved PREPOST1 Reserved PREPOST0 Reserved

R-0 R/W-0 R-0 R/W-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 14. Primary IDE Channel Timing Register (IDETIMP) Field Descriptions

Bit Field Value Description

15 IDEEN IDE decode enable.

0 PIO transactions targeting the IDE device registers (command and control blocks) are not decoded;
accesses to these address spaces do not initiate activity on the IDE interface.

1 PIO transactions targeting the IDE device registers (command and control blocks) are decoded and
drive the IDE interface.

14-7 Reserved 0 Reserved

6 PREPOST1 Device 1 PIO prefetch and postwrite enable.

0 PIO data prefetch and postwrite for device 1 is disabled.

1 PIO data prefetch and postwrite for device 1 is enabled.

5-3 Reserved 0 Reserved

2 PREPOST0 Device 0 PIO prefetch and postwrite enable.

0 PIO data prefetch and postwrite for device 0 is disabled.

1 PIO data prefetch and postwrite for device 0 is enabled.

1-0 Reserved 0 Reserved

SPRUE21–December 2005 ATA Controller 37

www.ti.com

4.5 IDE Controller Status Register (IDESTAT)

Registers

The IDE controller status register (IDESTAT) is an 8-bit wide register used to return the logic value of
various IDE interface signals. IDESTAT is shown in Figure 7 and described in Table 15.

Figure 7. IDE Controller Status Register (IDESTAT)

7 6 5 4 3 0

Reserved DMARQ INTRQ DMACKN Reserved

R-0 R-0 R-0 R-1 R-0

LEGEND: R = Read only; -n = value after reset

Table 15. IDE Controller Status Register (IDESTAT) Field Descriptions

Bit Field Value Description

7 Reserved 0 Reserved

6 DMARQ Exact value of the DMARQ signal line being sent from the device to the host controller.

0 DMARQ signal line is logic low.

1 DMARQ signal line is logic high.

5 INTRQ Exact value of the INTRQ signal line being sent from the device to the host controller.

0 INTRQ signal line is logic low.

1 INTRQ signal line is logic high.

4 DMACKN Exact value of the DMACKN signal line being sent from the host controller to the device. The default
value is inactive high.

0 DMACKN signal line is logic low.

1 DMACKN signal line is logic high.

3-0 Reserved 0 Reserved

ATA Controller38 SPRUE21–December 2005

www.ti.com

4.6 Ultra-DMA Control Register (UDMACTL)

Registers

The ultra-DMA control register (UDMACTL) is a 16-bit wide register used to enable each individual drive
for ultra-DMA transfers. For multiword DMA (not ultra-DMA) operation, UDMACTL should be programmed
with a 0. UDMACTL is shown in Figure 8 and described in Table 16.

From the device/drive perspective, the type of DMA transfer (multiword or ultra-DMA) to be used on the
next transfer depends on the latest DMA configuration invoked by the host firmware using the SET
FEATURES command. Consult the ATA/ATAPI specification for more information.

Figure 8. Ultra-DMA Control Register (UDMACTL)

15 8

Reserved

R-0

7 2 1 0

Reserved UDMAP1 UDMAP0

R-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 16. Ultra-DMA Control Register (UDMACTL) Field Descriptions

Bit Field Value Description

15-2 Reserved 0 Reserved

1 UDMAP1 Primary device 1 ultra-DMA enable.

0 Ultra-DMA is disabled for device 1. Multiword DMA operation is enabled for device 1.

1 Ultra-DMA is enabled for device 1.

0 UDMAP0 Primary device 0 ultra-DMA enable.

0 Ultra-DMA is disabled for device 0. Multiword DMA operation is enabled for device 0.

1 Ultra-DMA is enabled for device 0.

SPRUE21–December 2005 ATA Controller 39

www.ti.com

4.7 Miscellaneous Control Register (MISCCTL)

Registers

The miscellaneous control register (MISCCTL) is a 32-bit wide register used to provide miscellaneous
configuration for the IDE controller PIO 8-bit, PIO 16-bit, and multiword DMA write hold time. All three
transactions share the same field. The value programmed should be large enough to satisfy all three
transfers. In addition, MISCCTL has fields that control the enable/disable capability of the programmable
timing registers. MISCCTL is shown in Figure 9 and described in Table 17.

Figure 9. Miscellaneous Control Register (MISCCTL)

31 23 22 20 19 18 16

Reserved HWNHLD1P Rsvd HWNHLD0P

R-0 R/W-0 R-0 R/W-0

15 1 0

TIMORIDE

R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 17. Miscellaneous Control Register (MISCCTL) Field Descriptions

Bit Field Value Description

31-23 Reserved 0 Reserved

22-20 HWNHLD1P 0-7h WRITE_OE write data hold time for slave controller. HWNHLD1P specifies the number of clock cycles
minus 1 that the write data is held past the deassertion of the WRITE_OE strobe for the slave controller
during PIO and multiword DMA transfers.

This field is only valid when the TIMORIDE bit is set to 1.

0 1 clock cycle.

1h-7h 2 clock cycles to 8 clock cycles.

19 Reserved 0 Reserved

18-16 HWNHLD0P 0-7h WRITE_OE write data hold time for master controller. HWNHLD0P specifies the number of clock cycles
minus 1 that the write data is held past the deassertion of the WRITE_OE strobe for the master
controller during PIO and multiword DMA transfers.

This field is only valid when the TIMORIDE bit is set to 1.

0 1 clock cycle.

1h-7h 2 clock cycles to 8 clock cycles.

15-1 Reserved 0 Reserved

0 TIMORIDE IDE interface timing control.

0 IDE interface timing is controlled by the internal timing parameters of the IDE controller.

1 IDE interface timing is controlled by the timing override registers (REGSTB, REGRCVR, DMASTB,
DATRCVR, DMASTB, DMARCVR, UDMASTB, UDMATRP and UDMATENV).

ATA Controller40 SPRUE21–December 2005

www.ti.com

4.8 Task File Register Strobe Timing Register (REGSTB)

Registers

The task file register strobe timing register (REGSTB) is a 32-bit wide register used in conjunction with the
TIMORIDE bit in the miscellaneous control register (MISCCTL). REGSTB is used to define the PIO 8-bit
transaction strobe assertion time width in clock cycles for both the master and slave devices. REGSTB is
shown in Figure 10 and described in Table 18.

Figure 10. Task File Register Strobe Timing Register (REGSTB)

31 16

Reserved

R-0

15 14 8 7 6 0

Rsvd REGSTB1P Rsvd REGSTB0P

R-0 R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 18. Task File Register Strobe Timing Register (REGSTB) Field Descriptions

Bit Field Value Description

31-15 Reserved 0 Reserved

14-8 REGSTB1P 0-7Fh Register access slave strobe width for the controller. REGSTB1P specifies the number of clock cycles
minus 1 that the READ_OE and WRITE_OE is asserted during accesses to the IDE slave’s 8-bit task
file registers.

This field is only valid when the TIMORIDE bit in MISCCTL is set to 1.

0 1 clock cycle.

1h-7Fh 2 clock cycles to 128 clock cycles.

7 Reserved 0 Reserved

6-0 REGSTB0P 0-7Fh Register access master strobe width for the controller. REGSTB0P specifies the number of clock cycles
minus 1 that the READ_OE and WRITE_OE is asserted during accesses to the IDE master’s 8-bit task
file registers.

This field is only valid when the TIMORIDE bit in MISCCTL is set to 1.

0 1 clock cycle.

1h-7Fh 2 clock cycles to 128 clock cycles.

SPRUE21–December 2005 ATA Controller 41

www.ti.com

4.9 Task File Register Recovery Timing Register (REGRCVR)

Registers

The task file register recovery timing register (REGRCVR) is a 32-bit wide register used in conjunction
with the TIMORIDE bit in the miscellaneous control register (MISCCTL). REGRCVR is used to define the
PIO 8-bit transaction strobe deassertion time width in clock cycles for both the master and slave devices.
REGRCVR is shown in Figure 11 and described in Table 19.

Figure 11. Task File Register Recovery Timing Register (REGRCVR)

31 16

Reserved

R-0

15 14 8 7 6 0

Rsvd REGRCV1P Rsvd REGRCV0P

R-0 R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 19. Task File Register Recovery Timing Register (REGRCVR) Field Descriptions

Bit Field Value Description

31-15 Reserved 0 Reserved

14-8 REGRCV1P 0-7Fh Register access slave recovery time for the controller. REGRCV1P specifies the number of clock cycles
minus 1 between READ_OE or WRITE_OE negation and assertion during accesses to the IDE slave’s
8-bit task file registers.

This field is only valid when the TIMORIDE bit in MISCCTL is set to 1.

0 1 clock cycle.

1h-7Fh 2 clock cycles to 128 clock cycles.

7 Reserved 0 Reserved

6-0 REGRCV0P 0-7Fh Register access master recovery time for the controller. REGRCV0P specifies the number of clock
cycles minus 1 between READ_OE or WRITE_OE negation and assertion during accesses to the IDE
master’s 8-bit task file registers.

This field is only valid when the TIMORIDE bit in MISCCTL is set to 1.

0 1 clock cycle.

1h-7Fh 2 clock cycles to 128 clock cycles.

ATA Controller42 SPRUE21–December 2005

www.ti.com

4.10 Data Register Access PIO Strobe Timing Register (DATSTB)

Registers

The data register PIO strobe timing register (DATSTB) is a 32-bit wide register used in conjunction with
the TIMORIDE bit in the miscellaneous control register (MISCCTL). DATSTB is used to define the PIO
16-bit data transaction strobe assertion time width in clock cycles for both the master and slave devices.
DATSTB is shown in Figure 12 and described in Table 20.

Figure 12. Data Register Access PIO Strobe Timing Register (DATSTB)

31 16

Reserved

R-0

15 14 8 7 6 0

Rsvd DATSTB1P Rsvd DATSTB0P

R-0 R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 20. Data Register Access PIO Strobe Timing Register (DATSTB) Field Descriptions

Bit Field Value Description

31-15 Reserved 0 Reserved

14-8 DATSTB1P 0-7Fh Slave data register access strobe width for the controller. DATSTB1P specifies the number of clock
cycles minus 1 that the READ_OE and WRITE_OE is asserted during accesses to the IDE slave’s 8-bit
data register.

This field is only valid when the TIMORIDE bit in MISCCTL is set to 1.

0 1 clock cycle.

1h-7Fh 2 clock cycles to 128 clock cycles.

7 Reserved 0 Reserved

6-0 DATSTB0P 0-7Fh Master data register access strobe width for the controller. DATSTB0P specifies the number of clock
cycles minus 1 that the READ_OE and WRITE_OE is asserted during accesses to the IDE master’s
8-bit data register.

This field is only valid when the TIMORIDE bit in MISCCTL is set to 1.

0 1 clock cycle.

1h-7Fh 2 clock cycles to 128 clock cycles.

SPRUE21–December 2005 ATA Controller 43

www.ti.com

4.11 Data Register Access PIO Recovery Timing Register (DATRCVR)

Registers

The data register PIO recovery timing register (DATRCVR) is a 32-bit wide register used in conjunction
with the TIMORIDE bit in the miscellaneous control register (MISCCTL). DATRCVR is used to define the
PIO 16-bit data transaction strobe deassertion time width in clock cycles for both the master and slave
devices. DATRCVR is shown in Figure 13 and described in Table 21.

Figure 13. Data Register Access PIO Recovery Timing Register (DATRCVR)

31 16

Reserved

R-0

15 14 8 7 6 0

Rsvd DATRCV1P Rsvd DATRCV0P

R-0 R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 21. Data Register Access PIO Recovery Timing Register (DATRCVR) Field Descriptions

Bit Field Value Description

31-15 Reserved 0 Reserved

14-8 DATRCV1P 0-7Fh Slave data register access recovery time for the controller. DATRCV1P specifies the number of clock
cycles minus 1 between READ_OE or WRITE_OE negation and assertion during accesses to the IDE
slave’s 8-bit data register.

This field is only valid when the TIMORIDE bit in MISCCTL is set to 1.

0 1 clock cycle.

1h-7Fh 2 clock cycles to 128 clock cycles.

7 Reserved 0 Reserved

6-0 DATRCV0P 0-7Fh Master data register access recovery time for the controller. DATRCV0P specifies the number of clock
cycles minus 1 between READ_OE or WRITE_OE negation and assertion during accesses to the IDE
master’s 8-bit data register.

This field is only valid when the TIMORIDE bit in MISCCTL is set to 1.

0 1 clock cycle.

1h-7Fh 2 clock cycles to 128 clock cycles.

ATA Controller44 SPRUE21–December 2005

www.ti.com

4.12 Multiword DMA Strobe Timing Register (DMASTB)

Registers

The DMA strobe timing register (DMASTB) is a 32-bit wide register used in conjunction with the
TIMORIDE bit in the miscellaneous control register (MISCCTL). DMASTB is used to define the multiword
DMA data transaction strobe assertion time width in clock cycles for both the master and slave devices.
DMASTB is shown in Figure 14 and described in Table 22.

Figure 14. Multiword DMA Strobe Timing Register (DMASTB)

31 16

Reserved

R-0

15 14 8 7 6 0

Rsvd DMASTB1P Rsvd DMASTB0P

R-0 R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 22. Multiword DMA Strobe Timing Register (DMASTB) Field Descriptions

Bit Field Value Description

31-15 Reserved 0 Reserved

14-8 DMASTB1P 0-7Fh Slave DMA access strobe width for the controller. DMASTB1P specifies the number of clock cycles
minus 1 that the READ_OE and WRITE_OE is asserted during accesses to the IDE slave device during
a DMA data transfer.

This field is only valid when the TIMORIDE bit in MISCCTL is set to 1.

0 1 clock cycle.

1h-7Fh 2 clock cycles to 128 clock cycles.

7 Reserved 0 Reserved

6-0 DMASTB0P 0-7Fh Master DMA access strobe width for the controller. DMASTB0P specifies the number of clock cycles
minus 1 that the READ_OE and WRITE_OE is asserted during accesses to the IDE master device
during a DMA data transfer.

This field is only valid when the TIMORIDE bit in MISCCTL is set to 1.

0 1 clock cycle.

1h-7Fh 2 clock cycles to 128 clock cycles.

SPRUE21–December 2005 ATA Controller 45

www.ti.com

4.13 Multiword DMA Recovery Timing Register (DMARCVR)

Registers

The DMA recovery timing register (DMARCVR) is a 32-bit wide register used in conjunction with the
TIMORIDE bit in the miscellaneous control register (MISCCTL). DMARCVR is used to define the
multiword DMA data transaction strobe deassertion time width in clock cycles for both the master and
slave devices. DMARCVR is shown in Figure 15 and described in Table 23.

Figure 15. Multiword DMA Recovery Timing Register (DMARCVR)

31 16

Reserved

R-0

15 14 8 7 6 0

Rsvd DMARCV1P Rsvd DMARCV0P

R-0 R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 23. Multiword DMA Recovery Timing Register (DMARCVR) Field Descriptions

Bit Field Value Description

31-15 Reserved 0 Reserved

14-8 DMARCV1P 0-7Fh Slave DMA access recovery time for the controller. DMARCV1P specifies the number of clock cycles
minus 1 between READ_OE or WRITE_OE negation and assertion during accesses to the IDE slave
device during a DMA data transfer.

This field is only valid when the TIMORIDE bit in MISCCTL is set to 1.

0 1 clock cycle.

1h-7Fh 2 clock cycles to 128 clock cycles.

7 Reserved 0 Reserved

6-0 DMARCV0P 0-7Fh Master DMA access recovery time for the controller. DMARCV0P specifies the number of clock cycles
minus 1 between READ_OE or WRITE_OE negation and assertion during accesses to the IDE master
device during a DMA data transfer.

This field is only valid when the TIMORIDE bit in MISCCTL is set to 1.

0 1 clock cycle.

1h-7Fh 2 clock cycles to 128 clock cycles.

ATA Controller46 SPRUE21–December 2005

www.ti.com

4.14 Ultra-DMA Strobe Timing Register (UDMASTB)

Registers

The ultra-DMA strobe register (UDMASTB) is a 32-bit wide register used in conjunction with the
TIMORIDE bit in the miscellaneous control register (MISCCTL). UDMASTB is used to define the
ultra-DMA data transaction half-strobe width (tcyc) in clock cycles for both the master and slave devices.
UDMASTB is shown in Figure 16 and described in Table 24.

Figure 16. Ultra-DMA Strobe Timing Register (UDMASTB)

31 16

Reserved

R-0

15 12 11 8 7 4 3 0

Reserved UDMSTB1P Reserved UDMSTB0P

R-0 R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 24. Ultra-DMA Strobe Timing Register (UDMASTB) Field Descriptions

Bit Field Value Description

31-12 Reserved 0 Reserved

11-8 UDMSTB1P 0-Fh Slave ultra-DMA access strobe width for the controller. UDMSTB1P specifies the number of clock
cycles minus 1 that the WAIT_BSYN is asserted during accesses to the IDE slave device during an
ultra-DMA data transfer.

This field is only valid when the TIMORIDE bit in MISCCTL is set to 1.

0 1 clock cycle.

1h-Fh 2 clock cycles to 16 clock cycles.

7-4 Reserved 0 Reserved

3-0 UDMSTB0P 0-Fh Master ultra-DMA access strobe width for the controller. UDMSTB0P specifies the number of clock
cycles minus 1 that the WAIT_BSYN is asserted during accesses to the IDE master device during an
ultra-DMA data transfer.

This field is only valid when the TIMORIDE bit in MISCCTL is set to 1.

0 1 clock cycle.

1h-Fh 2 clock cycles to 16 clock cycles.

SPRUE21–December 2005 ATA Controller 47

www.ti.com

4.15 Ultra-DMA Ready-to-Pause Timing Register (UDMATRP)

Registers

The ultra DMA ready-to-pause timing register (UDMATRP) is a 32-bit wide register used in conjunction
with the TIMORIDE bit in the miscellaneous control register (MISCCTL). UDMATRP is used to define the
minimum time in clock cycles after WAIT_BSYN is negated after which the recipient may assert
WRITE_OE or negate DMARQ for both the master and slave devices. UDMATRP is shown in Figure 17
and described in Table 25.

Figure 17. Ultra-DMA Ready-to-Pause Timing Register (UDMATRP)

31 16

Reserved

R-0

15 13 12 8 7 5 4 0

Reserved UDMTRP1P Reserved UDMTRP0P

R-0 R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 25. Ultra-DMA Ready-to-Pause Timing Register (UDMATRP) Field Descriptions

Bit Field Value Description

31-13 Reserved 0 Reserved

12-8 UDMTRP1P 0-1Fh Slave ultra-DMA ready-to-pause time for the controller. UDMTRP1P specifies the number of clock
cycles minus 1 between the HREADY and STOP signals during ultra-DMA accesses to the IDE slave
device.

This field is only valid when the TIMORIDE bit in MISCCTL is set to 1.

0 1 clock cycle.

1h-1Fh 2 clock cycles to 32 clock cycles.

7-5 Reserved 0 Reserved

4-0 UDMTRP0P 0-1Fh Master ultra-DMA ready-to-pause time for the controller. UDMTRP0P specifies the number of clock
cycles minus 1 between the HREADY and STOP signals during ultra-DMA accesses to the IDE master
device.

This field is only valid when the TIMORIDE bit in MISCCTL is set to 1.

0 1 clock cycle.

1h-1Fh 2 clock cycles to 32 clock cycles.

ATA Controller48 SPRUE21–December 2005

www.ti.com

4.16 Ultra-DMA Timing Envelope Register (UDMATENV)

Registers

The ultra-DMA timing envelope register (UDMATENV) is a 32-bit wide register used in conjunction with the
TIMORIDE bit in the miscellaneous control register (MISCCTL). UDMATENV is used to define the time in
clock cycles when:

• the host asserts DMACK until it negates WRITE_OE and asserts READ_OE at the beginning of an
ultra-DMA data-in burst during a data-in transfer for both the master and slave devices

• the host asserts DMACK until it negates WRITE_OE at the beginning of an ultra-DMA data-out burst
for both the master and slave devices

UDMATENV is shown in Figure 18 and described in Table 26.

Figure 18. Ultra-DMA Timing Envelope Register (UDMATENV)

31 16

Reserved

R-0

15 12 11 8 7 4 3 0

Reserved UDMTNV1P Reserved UDMTNV0P

R-0 R/W-0 R-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 26. Ultra-DMA Timing Envelope Register (UDMATENV) Field Descriptions

Bit Field Value Description

31-12 Reserved 0 Reserved

11-8 UDMTNV1P 0-Fh Slave ultra-DMA tenv timing parameter for the controller. UDMTNV1P specifies the number of clock
cycles minus 1 for the tenv timing parameter during ultra-DMA transfers to the IDE slave device.

This field is only valid when the TIMORIDE bit in MISCCTL is set to 1.

0 1 clock cycle.

1h-Fh 2 clock cycles to 16 clock cycles.

7-4 Reserved 0 Reserved

3-0 UDMTNV0P 0-Fh Master ultra-DMA tenv timing parameter for the controller. UDMTNV0P specifies the number of clock
cycles minus 1 for the tenv timing parameter during ultra-DMA transfers to the IDE master device.

This field is only valid when the TIMORIDE bit in MISCCTL is set to 1.

0 1 clock cycle.

1h-Fh 2 clock cycles to 16 clock cycles.

SPRUE21–December 2005 ATA Controller 49

www.ti.com

4.17 Primary IO Ready Timer Configuration Register (IORDYTMP)

Registers

The primary IO ready timer configuration register (IORDYTMP) is a 32-bit wide register used to enable a
timeout value, in CPU clock cycles, for a PIO modes 3 and 4 transaction in order to limit the amount of
time a device can extend its wait state to complete its transaction. Writing a 0 value disables the IORDY
timer. IORDYTMP is shown in Figure 19 and described in Table 27.

Figure 19. Primary IO Ready Timer Configuration Register (IORDYTMP)

31 18 17 16

Reserved IORDYTMP

R-0 R/W-0

15 0

IORDYTMP

R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 27. Primary IO Ready Timer Configuration Register (IORDYTMP) Field Descriptions

Bit Field Value Description

31-18 Reserved 0 Reserved

17-0 IORDYTMP 0-3FFFFh IORDY timeout value for the ATA controller.

0 IORDY timer is disabled.

ATA Controller50 SPRUE21–December 2005

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2005, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

	Table of Contents
	Preface
	1 Introduction
	1.1 Purpose of the Peripheral
	1.2 Features
	1.3 Functional Block Diagram
	1.4 Supported Use Cases
	1.5 Industry Standard(s) Compliance
	1.6 Terminology Used in This Document

	2 Peripheral Architecture
	2.1 Clock Control
	2.2 Signal Descriptions
	2.3 Pin Multiplexing
	2.4 Protocol Description(s)
	2.5 General Architecture
	2.6 DMA and PIO Data Transaction Overview
	2.7 Attached Device Reset Considerations
	2.8 Initialization
	2.9 Interrupt Support
	2.10 EDMA Event Support
	2.11 Power Management
	2.12 Emulation Considerations

	3 Supported Use Cases
	3.1 Interfacing to a Standard ATA/ATAPI Device
	3.2 Interfacing to a Standard ATA/ATAPI Device Through a Level-Shifter
	3.3 Interfacing to Compact Flash

	4 Registers
	4.1 Primary IDE Channel DMA Control Register (BMICP)
	4.2 Primary IDE Channel DMA Status Register (BMISP)
	4.3 Primary IDE Channel DMA Descriptor Table Pointer Register (BMIDTP)
	4.4 Primary IDE Channel Timing Register (IDETIMP)
	4.5 IDE Controller Status Register (IDESTAT)
	4.6  Ultra-DMA Control Register (UDMACTL)
	4.7 Miscellaneous Control Register (MISCCTL)
	4.8 Task File Register Strobe Timing Register (REGSTB)
	4.9 Task File Register Recovery Timing Register (REGRCVR)
	4.10 Data Register Access PIO Strobe Timing Register (DATSTB)
	4.11 Data Register Access PIO Recovery Timing Register (DATRCVR)
	4.12 Multiword DMA Strobe Timing Register (DMASTB)
	4.13 Multiword DMA Recovery Timing Register (DMARCVR)
	4.14 Ultra-DMA Strobe Timing Register (UDMASTB)
	4.15 Ultra-DMA Ready-to-Pause Timing Register (UDMATRP)
	4.16 Ultra-DMA Timing Envelope Register (UDMATENV)
	4.17 Primary IO Ready Timer Configuration Register (IORDYTMP)

