
TMS320C6474 DSP
Semaphore

User's Guide

Literature Number: SPRUG14
October 2008

2 SPRUG14–October 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

Contents

Preface .. 5
1 Module Overview ... 6

1.1 Introduction .. 6
1.2 Semaphore Architecture ... 6
1.3 Terms and Abbreviations .. 7

2 Semaphore Operation... 8
2.1 Semaphore Access Modes .. 8
2.2 Interrupt Handling ... 8
2.3 Error Handling ... 9
2.4 Status Query... 9
2.5 Releasing Semaphore Resources .. 9

3 Emulation Considerations ... 9
4 Semaphore Usage Examples ... 10

4.1 CSL API Calls .. 10
4.2 Accessing Semaphore Resource When Free ... 12
4.3 Accessing Semaphore Resource When Not Free .. 13
4.4 Accessing Semaphore Resource in Combined Mode .. 14

5 Semaphore Registers.. 15
5.1 Register Memory Map .. 15
5.2 Register Descriptions ... 16

5.2.1 Peripheral ID Register (PID)... 16
5.2.2 End-of-Interrupt Register (EOI) ... 17
5.2.3 Direct Register (DIRECTx) .. 18
5.2.4 Indirect Register (INDIRECTx) .. 19
5.2.5 Query Register (QUERYx)... 20
5.2.6 Flag Register (FLAGx) ... 21
5.2.7 Flag Set Register (FLAG_SETx).. 21
5.2.8 Error Register (ERR) ... 22
5.2.9 Error Clear Register (ERROR_CLR) ... 23

SPRUG14–October 2008 Table of Contents 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

www.ti.com

List of Figures
1 TMS320C6474 Semaphore Block Diagram .. 7
2 Peripheral ID Register (PID) .. 16
3 End-of-Interrupt Register (EOI)... 17
4 Direct Register (DIRECTx) .. 18
5 Indirect Register (INDIRECTx) ... 19
6 Query Register (QUERYx) .. 20
7 Flag Register (FLAGx)... 21
8 Flag Set Register (FLAG_SETx) ... 21
9 Error Register (ERR)... 22
10 Error Clear Register (ERROR_CLR) .. 23

List of Tables
1 Register Memory Map ... 15
2 Peripheral ID Register (PID) Field Descriptions.. 16
3 End-of-Interrupt Register (EOI) Field Descriptions .. 17
4 Direct Register (DIRECTx) Field Descriptions.. 18
5 Indirect Register (INDIRECTx) Field Descriptions ... 19
6 Query Register (QUERYx) Field Descriptions.. 20
7 Flag Register (FLAGx) Field Descriptions .. 21
8 Flag Set Register (FLAG_SETx) Field Descriptions... 21
9 Error Register (ERR) Field Descriptions .. 22
10 Error Register (ERROR_CLR) Field Descriptions ... 23

List of Figures4 SPRUG14–October 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

Preface
SPRUG14–October 2008

Read This First

About This Manual
The TMS320C6474 semaphore module is used to support atomic arbitration among multiple CPUs for
shared resources/peripherals. This document describes the usage of the semaphore and some of the CSL
calls used to configure/use semaphore module.

Notational Conventions
This document uses the following conventions.
• Hexadecimal numbers are shown with the suffix h. For example, the following number is 40

hexadecimal (decimal 64): 40h.
• Registers in this document are shown in figures and described in tables.

– Each register figure shows a rectangle divided into fields that represent the fields of the register.
Each field is labeled with its bit name, its beginning and ending bit numbers above, and its
read/write properties below. A legend explains the notation used for the properties.

– Reserved bits in a register figure designate a bit that is used for future device expansion.

Related Documentation From Texas Instruments
The following documents describe the TMS320C6474 DSP. Copies of these documents are available on
the Internet at www.ti.com. Tip: Enter the literature number in the search box provided at www.ti.com.

SPRU189 — TMS320C6000 DSP CPU and Instruction Set Reference Guide. Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C6000 digital signal processors
(DSPs).

SPRU198 — TMS320C6000 Programmer's Guide. Describes ways to optimize C and assembly code for
the TMS320C6000™ DSPs and includes application program examples.

SPRU301 — TMS320C6000 Code Composer Studio Tutorial. Introduces the Code Composer Studio™
integrated development environment and software tools.

SPRU321 — Code Composer Studio Application Programming Interface Reference Guide.
Describes the Code Composer Studio™ application programming interface (API), which allows you
to program custom plug-ins for Code Composer.

SPRU871 — TMS320C64x+ Megamodule Reference Guide. Describes the TMS320C64x+ digital signal
processor (DSP) megamodule. Included is a discussion on the internal direct memory access
(IDMA) controller, the interrupt controller, the power-down controller, memory protection, bandwidth
management, and the memory and cache.

Trademarks
TMS320C6000, Code Composer Studio are trademarks of Texas Instruments.

All other trademarks are the property of their respective owners.

SPRUG14–October 2008 Preface 5
Submit Documentation Feedback

www.ti.com
http://www-s.ti.com/sc/techlit/spru189
http://www-s.ti.com/sc/techlit/spru198
http://www-s.ti.com/sc/techlit/spru301
http://www-s.ti.com/sc/techlit/spru321
http://www-s.ti.com/sc/techlit/SPRU871
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

1 Module Overview

1.1 Introduction

1.2 Semaphore Architecture

User's Guide
SPRUG14–October 2008

TMS320C6474 Semaphore

In the TMS320C6474 device, multiple CPUs attempt to access shared resources simultaneously. To avoid
resource conflict, the semaphore module is used to access shared resources in mutual exclusion. Unlike
the software flag checking mechanism, the semaphore module is atomic, to satisfy the read-modify-write
operation successfully.

The semaphore module allows acquisition of a semaphore resource/peripheral through read operations
and also by posting a write request.

The number of resources the semaphore can handle is parameterized and, for the TMS320C6474 device,
the following parameters are pre-programmed:
• NUM_SEM: Number of semaphore resources. In the device, the value is 32.
• QUEUE_DEPTH: Number of entries in each request queue. In the device, the value is 2.

The semaphore module has unique interrupts for each of the DSP cores (masters) to identify when that
master has acquired the requested resource. Likewise, there are unique error interrupts to each DSP core
when a particular master attempts to access the semaphore resource that is already locked by the
same/other master. For each semaphore peripheral there are three different registers associated with it to
acquire the resource: direct, indirect, or combined mechanism.

Semaphore resources are not directly connected within the module. Through software programming
hardware resources can be allocated to any of the semaphore resources. Figure 1 shows the basic
building blocks of semaphore module.

In Figure 1, m is the number of semaphore resources (i.e., 32) and n is the number of the master (i.e., 3).
There are three 32-bits registers associated with each semaphore resource: DIRECT, INDIRECT, and
QUERY registers. For each DSP core there is a FLAG register to notify the status of all 32 semaphore
resources. The ERR register shows the different types of errors and the semaphore peripheral ID and
master ID that caused the specific error. Upon receiving the error or interrupt event, the DSP core clears
the particular bit field of the FLAG register by programming the FLAG register and writing to the
semaphore end-of-interrupt (EOI) register to re-arm or re-enable a particular master's error/interrupt line.

TMS320C6474 Semaphore6 SPRUG14–October 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

sM r1
sM r2

sM rn

SEM m

s1r1
s1r2

s1rn

s0r1
s0r2

s0rn

CFGBUS

semint 0

semint 1

semint n

semerr 0

semerr 1

semerr n

ERR

SEM 1 SEM 0

FLAG 0

FLAG 1

FLAG 2

1.3 Terms and Abbreviations

www.ti.com Module Overview

Figure 1. TMS320C6474 Semaphore Block Diagram

CPU — Central Processing Unit of the C64x+ Core

DSP — Digital Signal Processor

CSL — Chip Support Library

API — Application Programmer Interface

SPRUG14–October 2008 TMS320C6474 Semaphore 7
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

2 Semaphore Operation

2.1 Semaphore Access Modes

2.2 Interrupt Handling

Semaphore Operation www.ti.com

Any of the DSP cores can use the shared semaphore resources.

Any semaphore resource can be accessed by three different modes:
• Direct Mode

In direct access mode, a resource is accessed by reading the DIRECTx (x is the semaphore peripheral
number) register. Since there is no physical connection between the semaphore resources and the
registers, any register can be mapped to any resource by software programming.
If the resource is free, access is immediately granted to the requested core. The FREE bit of the
DIRECTx register is set to 1 signifying that the resource is free and access is granted to the requested
core. The OWNER field of the DIRECTx register is set to the requested core ID.
If the resource is not available, no further action is taken by the semaphore module. The FREE bit of
the DIRECTx register is set to 0 signifying that the resource is in use and the requested master should
start a fresh request. In any case, there is no interrupt issued and there is no specific bit field set in the
FLAGy (y is the granted core ID) register.

• Indirect Mode
In indirect access mode, a resource is accessed by writing to the DIRECTx, INDIRECTx, or QUERYx
(x is the semaphore peripheral number) register. Since there is no physical connection between the
semaphore resources and the registers, any register can be mapped to any resource by software
programming.
If the resource is free, access is immediately granted to the requested core. The FREE bit of the
DIRECTx, INDIRECTx, or QUERYx register is set to 1 signifying that the resource is free and acces is
granted to the requested core. The OWNER field of the DIRECTx, INDIRECTx, or QUERYx register is
set to the requested core ID. An interrupt is immediately issued to the requested core.
If the resource is not available, the request is added to the request queue assigned to the semaphore
resource. When the resource becomes free, an interrupt is issued and the FREE bit of the DIRECTx,
INDIRECTx, or QUERYx register is set to 1 signifying that access is now granted to the requested
core. An interrupt is issued in this case. The specific bit field for the semaphore resource of the FLAGy
(y is the granted core ID) register is set.

• Combined Mode
In combined access mode, a resource is accessed by reading the INDIRECTx (x is the semaphore
peripheral number) register. Since there is no physical connection between the semaphore resources
and the registers, any register can be mapped to any resource by software programming.
If the resource is free, access is immediately granted to the requested core. The FREE bit of the
INDIRECTx register is set to 1 signifying that the resource is free and access is granted to the
requested core. The OWNER field of the INDIRECTx register is set to the requested core ID. No grant
interrupt or flag register settings happen in this case.
If the resource is not available, the request is added to the request queue assigned to the semaphore
resource. When the resource becomes free, an interrupt is issued and the FREE bit of the INDIRECTx
register is set to 1 signifying that access is now granted to the requested core. An interrupt is issued in
this case. The specific bit field for the semaphore resource of the FLAGy (y is the granted core ID)
register is set.

The first interrupt occurs when the pending queued request is serviced. To ensure that a re-arm of the
master's interrupt occurs prior to the next access by the same or other resource, the master should:
• read the FLAGx (x is the particular master id) register
• clear the flag bit by programming the specific bit field for the semaphore resource of the FLAGx

register
• write to the EOI register.

TMS320C6474 Semaphore8 SPRUG14–October 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

2.3 Error Handling

2.4 Status Query

2.5 Releasing Semaphore Resources

3 Emulation Considerations

www.ti.com Emulation Considerations

The first error interrupt occurs when there is a semaphore access error. To ensure that a re-arm of the
master's error interrupt occurs prior to the next access violation, the master should:
• read the ERR register to determine the error type
• clear the error by programming the ERR_CLEAR register
• write to the EOI register.

Before acquiring any semaphore resource, the requested core checks the availability of the resource by
reading the QUERYx (x is the semaphore peripheral number) register. The FREE bit signifies whether a
particular resource is free or not; when FREE=0 the resource is not free, when FREE=1 the resource is
free. The OWNER field has a master ID that currently holds the resource (when FREE=0) or shows 0x00
(when FREE=1). Before taking any action on a resource, check the resource status.

When the master that is granted access is finished with the shared resource, it must free the resource so
that another master can access it. Writing 1 to the FREE bit of the DIRECTx, INDIRECTx, or QUERYx
register releases the specific resource.

During debug, when using the emulator, the CPU(s) may be halted. During emulation halt, the debugger
reads to certain semaphore registers is ignored to avoid changing semaphore state. In other words, the
debugger read of semaphore registers (DIRECTx, INDIRECTx) does not change the state of the
semaphore peripheral. But, during emulation halt, the debugger checks the semaphore peripheral status
via the QUERYx register.

SPRUG14–October 2008 TMS320C6474 Semaphore 9
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

4 Semaphore Usage Examples

4.1 CSL API Calls

Semaphore Usage Examples www.ti.com

This section provides some of the API call lists and examples to access semaphore resources.

This section provides the basic usage of the semaphore module using different CSL API calls. Three
typical modes of accessing peripherals are illustrated with examples. Example 1 shows some of the API
call lists.

Example 1. Sample API Call Lists

########CSL_sem_API ##########
#define HW_SEM_RELEASE 1
#define HW_SEM_REQUEST 0
/*******************/
/* ENUMERATIONS */
/*******************/
typedef enum {

CSL_SEM_ID0 = 0,
CSL_SEM_ID1 = 1,
CSL_SEM_ID2 = 2,

}CSL_SemOwnerId;

typedef enum {
CSL_SEM_ERR0 = 0,
CSL_SEM_ERR1 = 1,
CSL_SEM_ERR2 = 2,
CSL_SEM_ERR3 = 3,
CSL_SEM_ERR4 = 4

}CSL_SemError;

typedef enum {
CSL_SEM_NOTFREE = 0, /* Semaphore is not available */
CSL_SEM_FREE = 1 /* Semaphore is available */

}CSL_SemFlag;

typedef enum {
CSL_SEM_REARM_SEMINT0 = 0,
CSL_SEM_REARM_SEMINT1 = 1,
CSL_SEM_REARM_SEMINT2 = 2,
CSL_SEM_REARM_SEMINT_ALL = 0x10

}CSL_SemEOISet

typedef enum {
CSL_SEM_QUERY_REVISION,
CSL_SEM_QUERY_ERROR,
CSL_SEM_QUERY_FLAGS,
CSL_SEM_QUERY_STATUS,
CSL_SEM_QUERY_DIRECT,
CSL_SEM_QUERY_INDIRECT

}CSL_SemHwStatusQuery;

TMS320C6474 Semaphore10 SPRUG14–October 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

www.ti.com Semaphore Usage Examples

Example 1. Sample API Call Lists (continued)
typedef enum {

CSL_SEM_CMD_EOI_WRITE,
CSL_SEM_CMD_FLAG_SET,
CSL_SEM_CMD_FREE_DIRECT,
CSL_SEM_CMD_WRITE_POST_DIRECT,
CSL_SEM_CMD_FREE_INDIRECT,
CSL_SEM_CMD_WRITE_POST_INDIRECT,
CSL_SEM_CMD_FREE_QUERY,
CSL_SEM_CMD_WRITE_POST_QUERY,
CSL_SEM_CMD_CLEAR_ERR,
CSL_SEM_CMD_CLEAR_FLAGS

}CSL_SemHwControlCmd;
/*******************/
/* DATA STRUCTURES */
/*******************/
typedef struct _CSL_SemFlagClear_Arg{

CSL_BitMask32 mask;
CSL_SemOwnerId masterId;

}CSL_SemFlagSetClear_Arg;

typedef struct {
CSL_SemRegsOvly regs;

} CSL_SemBaseAddress;

typedef struct {
CSL_BitMask16 flags;

} CSL_SemParam;

typedef struct {
Uint16 contextInfo;

} CSL_SemContext;

typedef struct CSL_SemObj{
CSL_InstNum instNum;
int semNum;
CSL_SemRegsOvly regs;

}CSL_SemObj;

typedef volatile CSL_SemObj *CSL_SemHandle;

typedef struct {
int semNum;
CSL_SemOwnerId semOwner;
CSL_SemFlag semFree;

} CSL_SemVal;

typedef struct CSL_SemFaultStatus {
int semNum;
CSL_SemError errorMask;
Uint16 faultID;

}CSL_SemFaultStatus;

SPRUG14–October 2008 TMS320C6474 Semaphore 11
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

4.2 Accessing Semaphore Resource When Free
Semaphore Usage Examples www.ti.com

A CPU accesses a shared peripheral (semaphore resource) by reading the semaphore direct (DIRECTx)
register when the resource is free to use. Checking the semaphore query (QUERYx) register is the way to
verify whether a particular resource is free or still in use by other CPU. If the FREE bit of QUERYx (where
x is the semaphore peripheral ID) register is 1, the requested CPU directly locks the peripheral by reading
the DIRECTx register and the requested peripheral is immediately granted access. After finishing the
access, the CPU must release the resource by writing 1 to the FREE bit of the DIRECTx register so that
another CPU can access the same resource.

Example 2 shows a semaphore resource (NUM = 4) acquired using the direct-read mode.

Example 2. Sample Code to Access Semaphore in Direct-Read Mode

CSL_SemVal query;
CSL_SemHandle mySemHandle;
CSL_SemObj mySemObj;
CSL_SemContext SemContext;
CSL_SemParam mySemParam;

mySemParam.flags = 4;
CSL_semInit(&SemContext);

mySemHandle = CSL_semOpen(&mySemObj, 0,&mySemParam, NULL);

if(mySemHandle != NULL) {
CSL_semGetHwStatus(mySemHandle,CSL_SEM_QUERY_STATUS,&query);

}

if(query.semFree == CSL_SEM_FREE) {
CSL_semGetHwStatus(mySemHandle, CSL_SEM_QUERY_DIRECT,&query);

}
CSL_semGetHwStatus(mySemHandle,CSL_SEM_QUERY_STATUS,&query);
if (query.semFree != CSL_SEM_FREE) {

// Do peripheral access
}
else {

// return error.
}

CSL_semHwControl(mySemHandle, CSL_SEM_CMD_FREE_DIRECT,NULL);
/* END Of Main code */

TMS320C6474 Semaphore12 SPRUG14–October 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

4.3 Accessing Semaphore Resource When Not Free
www.ti.com Semaphore Usage Examples

In certain situations when a shared resource is in use by another master, the requesting master/CPU can
still post a request indirectly so that when the resource becomes available the requested master/CPU gets
the access. Writing to the semaphore indirect (INDIRECTx) register when the resource is not free is the
way to post a request in the request queue for the particular semaphore peripheral. Checking the
semaphore query (QUERYx) register is the way to verify whether a particular resource is free or still in use
by other CPU. If the FREE bit of the QUERYx (where x is the semaphore peripheral ID) register is 0
(indicating resource is in use), then the requested CPU can post a request by writing to the INDIRECTx
register. When the resource becomes free, the master is notified by the interrupt and the requested
peripheral is granted access. After finishing the access the CPU must release the resource by writing 1 to
the FREE bit of the INDIRECTx register so that another CPU can access the same resource.

Example 3 shows a semaphore resource (NUM = 22) acquired using indirect-write mode.

Example 3. Sample Code to Access Semaphore in Indirect-Write Mode

CSL_SemVal query;
CSL_SemHandle mySemHandle;
CSL_SemObj mySemObj;
CSL_SemContext SemContext;
CSL_SemParam mySemParam;

mySemParam.flags = 22;
CSL_semInit(&SemContext);

mySemHandle = CSL_semOpen(&mySemObj, 0,&mySemParam, NULL);

if(mySemHandle != NULL) {
CSL_semGetHwStatus(mySemHandle,CSL_SEM_QUERY_STATUS,&query);

}

if(query.semFree == CSL_SEM_FREE) {
// Direct access
CSL_semGetHwStatus(mySemHandle,CSL_SEM_QUERY_DIRECT,&query);

}

CSL_semGetHwStatus(mySemHandle,CSL_SEM_QUERY_STATUS,&query);

if (query.semFree != CSL_SEM_FREE) {
// Indirect access
CSL_semHwControl(mySemHandle, CSL_SEM_CMD_WRITE_POST_INDIRECT,NULL);
// Release the previously locked semaphore

CSL_semHwControl(mySemHandle, CSL_SEM_CMD_FREE_DIRECT,NULL);
}
// Get the semaphore status.Still lock. This time for indirect pending access
CSL_semGetHwStatus(mySemHandle,CSL_SEM_QUERY_STATUS,&query);
if (query.semFree != CSL_SEM_FREE) {

// do semaphore access
}
else {

// Return error
}

CSL_semHwControl(mySemHandle, CSL_SEM_CMD_FREE_INDIRECT,NULL);
/* END Of Main code */

SPRUG14–October 2008 TMS320C6474 Semaphore 13
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

4.4 Accessing Semaphore Resource in Combined Mode
Semaphore Usage Examples www.ti.com

A semaphore resource can be accessed in combination of direct-read mode and indirect-write mode.
When the resource is free, access is immediately granted and when the resource is not free, it posts a
request in the request queue.

Example 4 shows a semaphore resource (NUM = 0) acquired using combined-access mode.

Example 4. Sample Code to Access Semaphore in Combined-Access Mode

CSL_SemVal query;
CSL_SemHandle mySemHandle;
CSL_SemObj mySemObj;
CSL_SemContext SemContext;
CSL_SemParam mySemParam;

mySemParam.flags = 0;
CSL_semInit(&SemContext);

mySemHandle = CSL_semOpen(&mySemObj, 0,&mySemParam, NULL);

if(mySemHandle != NULL) {
CSL_semGetHwStatus(mySemHandle,CSL_SEM_QUERY_STATUS,&query);

}

if(query.semFree == CSL_SEM_FREE) {
CSL_semGetHwStatus(mySemHandle, CSL_SEM_QUERY_INDIRECT,&query);

}
CSL_semGetHwStatus(mySemHandle,CSL_SEM_QUERY_STATUS,&query);
if (query.semFree != CSL_SEM_FREE) {

// Do peripheral access
}
else {

// return error.
}

CSL_semHwControl(mySemHandle, CSL_SEM_CMD_FREE_QUERY,NULL);
/* END Of Main code */

TMS320C6474 Semaphore14 SPRUG14–October 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

5 Semaphore Registers

5.1 Register Memory Map

www.ti.com Semaphore Registers

This section provides the semaphore memory map and descriptions of the peripheral registers.

Table 1. Register Memory Map
Offset Acronym Description See
0x000 PID Peripheral Revision ID Register Section 5.2.1
0x00C EOI EOI Register Section 5.2.2

0x100 - 0x17C DIRECT0-31 Direct Registers 0-31 Section 5.2.3
0x200 - 0x27C INDIRECT0-31 Indirect Registers 0-31 Section 5.2.4
0x300 - 0x37C QUERY0-31 Query Registers 0-31 Section 5.2.5

0x400 FLAG0 Flag0 Register (for C64x+ Core0) Section 5.2.6
0x404 FLAG1 Flag1 Register (for C64x+ Core1) Section 5.2.6
0x408 FLAG2 Flag2 Register (for C64x+ Core2) Section 5.2.6
0x480 FLAG_SET0 Flag Set0 Register (for C64x+ Core0) Section 5.2.7
0x484 FLAG_SET1 Flag Set1 Register (for C64x+ Core1) Section 5.2.7
0x488 FLAG_SET2 Flag Set2 Register (for C64x+ Core2) Section 5.2.7
0x500 ERR Error Register Section 5.2.8
0x504 ERROR_CLR Error Clear Register Section 5.2.9

SPRUG14–October 2008 TMS320C6474 Semaphore 15
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

5.2 Register Descriptions

5.2.1 Peripheral ID Register (PID)

Semaphore Registers www.ti.com

The following are some sample semaphore peripheral registers.

The semaphore peripheral ID (PID) register is shown in Figure 2 and described in Table 2.

Figure 2. Peripheral ID Register (PID)

31 30 29 28 27 16
SCHEME Reserved FUNC

R-0x1 R-0x R-0x802

15 11 10 8 7 6 5 0

RTL MAJOR CUSTOM MINOR
R-0x0 R-0x1 R-0x0 R-0x0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 2. Peripheral ID Register (PID) Field Descriptions
Bit Field Value Description

31-30 SCHEME 01b Used to distinguish which ID scheme is used.
29-28 RSVD 00 Reserved. Read returns 0. Write has no effect.
27-16 FUNC 0x802 Specifies module family
15-11 RTL 0000b RTL Version
10-8 MAJOR 01b Major Revision
7-6 CUSTOM 00b Special/Custom Revision
5-0 MINOR 000000b Minor Revision

TMS320C6474 Semaphore16 SPRUG14–October 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

5.2.2 End-of-Interrupt Register (EOI)

www.ti.com Semaphore Registers

The semaphore end-of-interrupt (EOI) register is used for re-arming the error/interrupt line after serving
the existing error/interrupt. The EOI register is shown in Figure 3 and described in Table 3.

Figure 3. End-of-Interrupt Register (EOI)

31 16
Reserved

W

15 8 7 0

Reserved INTERRUPT/ERROR SELECT
W W

LEGEND: W = Write only; -n = value after reset

Table 3. End-of-Interrupt Register (EOI) Field Descriptions (1)

Bit Field Value Description
31-8 Reserved Reserved, Write has no effect
7-0 INTERRUPT/ERROR Selection of particular Error/Interrupt line to re-arm.

SELECT 0x00 Re-enable semint0 (For C64x+ Core0)
0x01 Re-enable semint1 (For C64x+ Core1)
0x02 Re-enable semint2 (For C64x+ Core2)
0x10 Re-enable All Error interrupt (For all C64x+ Cores)

(1) Reading of the EOI register will result in a memory-read exception being generated.

SPRUG14–October 2008 TMS320C6474 Semaphore 17
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

5.2.3 Direct Register (DIRECTx)

Semaphore Registers www.ti.com

The semaphore direct (DIRECTx) register acquires the semaphore resource in direct-read mode as well
as indirect-write mode. If the resource is free, the FREE field of the DIRECTx (x is the semaphore
peripheral ID being requested) signifies whether the resource is granted or not. The DIRECTx register is
shown in Figure 4 and described in Table 4.

Figure 4. Direct Register (DIRECTx)

31 16
Reserved
R-0x0000

15 8 7 1 0

OWNER Reserved FREE
R-0x00 R-0x00 R/W-

0x1

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 4. Direct Register (DIRECTx) Field Descriptions
Bit Field Value Description

31-16 Reserved 0x0000 Reserved. Read returns 0. Write has no effect.
15-8 OWNER 0x00 When FREE = 0: Semaphore resource owner ID

When FREE = 1: The value returns 0x00
7-1 Reserved 0x00 Reserved. Read returns 0. Write has no effect.
0 FREE Read Operation:

0 Semaphore is not granted.
1 Semaphore is granted to the Master. FREE is cleared by the hardware at the end of the access.

Write Operation:
0 Request is posted in the queue (indirect mode).
1 Semaphore is freed.

TMS320C6474 Semaphore18 SPRUG14–October 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

5.2.4 Indirect Register (INDIRECTx)

www.ti.com Semaphore Registers

The semaphore indirect (INDIRECTx) register acquires the semaphore resource in indirect-write mode. If
the resource is free, the FREE bit of the INDIRECTx (x is the semaphore peripheral ID being requested)
signifies whether the resource is granted or not. In addition, an interrupt is sent to the requested master.
The INDIRECT register is shown in Figure 5 and described in Table 5.

Figure 5. Indirect Register (INDIRECTx)

31 16
Reserved
R-0x0000

15 8 7 1 0

OWNER Reserved FREE
R-0x00 R-0x00 R/W-

0x1

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 5. Indirect Register (INDIRECTx) Field Descriptions
Bit Field Value Description

31-16 Reserved 0x0000 Reserved. Read returns 0. Write has no effect.
15-8 OWNER 0x00 When FREE = 0: Semaphore resource owner ID

When FREE = 1: The value returns 0x00
7-1 Reserved 0x00 Reserved. Read returns 0. Write has no effect.
0 FREE Read Operation:

0 Semaphore is not granted.
1 Semaphore is granted to the Master. FREE is cleared by the hardware at the end of the access.

Write Operation:
0 Request is posted in the queue (indirect mode).
1 Semaphore is freed.

SPRUG14–October 2008 TMS320C6474 Semaphore 19
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

5.2.5 Query Register (QUERYx)

Semaphore Registers www.ti.com

Each semaphore query register (QUERYx) checks the current semaphore resource status and also can
be used for indirect-write mode to access the particular resource. Reading the QUERYx (x is the
semaphore peripheral ID being accessed) register does not affect the status of the particular peripheral.
The QUERY register is shown in Figure 6 and described in Table 6.

Figure 6. Query Register (QUERYx)

31 16
Reserved
R-0x0000

15 8 7 1 0

OWNER Reserved FREE
R-0x00 R-0x00 R/W-

0x1

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 6. Query Register (QUERYx) Field Descriptions
Bit Field Value Description

31-16 Reserved 0x0000 Reserved. Read returns 0. Write has no effect.
15-8 OWNER 0x00 When FREE = 0: Semaphore resource owner ID

When FREE = 1: The value returns 0x00
7-1 Reserved 0x00 Reserved. Read returns 0. Write has no effect.
0 FREE Read Operation:

0 Semaphore is not granted
1 Semaphore is not granted to the Master

Write Operation:
0 Request is posted in the queue (indirect mode)
1 Semaphore is freed

TMS320C6474 Semaphore20 SPRUG14–October 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

5.2.6 Flag Register (FLAGx)

5.2.7 Flag Set Register (FLAG_SETx)

www.ti.com Semaphore Registers

Each semaphore flag (FLAGx, where x is the Master ID) register checks whether the particular
master/core is currently holding the semaphore resource or not. There is one register for each core and
the particular bit field signifies the holding status of the particular semaphore peripheral by the requested
master. Once access to the particular semaphore resource is complete, the corresponding flag bit is
cleared by writing a 1 to the particular bit of the FLAG register. The FLAGx register is shown in Figure 7
and described in Table 7.

Figure 7. Flag Register (FLAGx)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
F31 F30 F29 F28 F27 F26 F25 F24 F23 F22 F21 F20 F19 F18 F17 F16

R-0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

F15 F14 F13 F12 F11 F10 F9 F8 F7 F6 F5 F4 F3 F2 F1 F0
R-0x0000

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 7. Flag Register (FLAGx) Field Descriptions
Bit Field Value Description

31-0 Fy Semaphore Flag Value
0x0 Semaphore resource y is not owned by the master x
0x1 Semaphore resource y is owned by the master x

Each semaphore flag set (FLAG_SETx, where x is the Master ID) register sets the flag bit of the particular
semaphore peripheral. This register is implemented to check, by software programming, whether any
resource can be accessed by the any of the masters. There is one register for each core and writing to the
particular bit field sets the semaphore flag registers (FLAGx) corresponding bit-field value. The
FLAG_SETx register is shown in Figure 8 and described in Table 8.

Figure 8. Flag Set Register (FLAG_SETx)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
F31 F30 F29 F28 F27 F26 F25 F24 F23 F22 F21 F20 F19 F18 F17 F16

W-0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

F15 F14 F13 F12 F11 F10 F9 F8 F7 F6 F5 F4 F3 F2 F1 F0
W-0x0000

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 8. Flag Set Register (FLAG_SETx) Field Descriptions
Bit Field Value Description

31-0 Fy Semaphore Flag Set
0x0 Do nothing
0x1 Semaphore flag y is cleared

SPRUG14–October 2008 TMS320C6474 Semaphore 21
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

5.2.8 Error Register (ERR)

Semaphore Registers www.ti.com

The semaphore error (ERR) register updates any kind of error that occurs while acquiring a semaphore
resource by any core. By reading the ERR register the particular master/core should clear the particular
error and program the EOI register so that a re-arm occurs for the next semaphore access by the same
master. The ERR register is shown in Figure 9 and described in Table 9.

Figure 9. Error Register (ERR)

31 16
Reserved
R-0x0000

15 8 7 3 2 0

FAULTID SEM_NUM ERR
R-0x00 R-0x0 R-0x0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 9. Error Register (ERR) Field Descriptions
Bit Field Value Description

31-16 Reserved 0x0000 Reserved. Read returns 0. Write has no effect.
15-8 FAULTID 0x00 Master ID number that caused the error
7-3 SEM_NUM 0x00 Semaphore peripheral ID number (0 to 31)
2-0 ERR Semaphore error code.

000 No semaphore access error has occurred.
001 Master ID FAULTID attempted to free semaphore NUM when it was already free.
010 Master ID FAULTID attempted to free semaphore NUM while not currently owned by FAULTID.
011 Master ID FAULTID attempted to acquire semaphore NUM while it was already owned by

FAULTID.
100 Master ID FAULTID attempted to acquire semaphore NUM while FAULTID already had a request

pending.

TMS320C6474 Semaphore22 SPRUG14–October 2008
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

5.2.9 Error Clear Register (ERROR_CLR)

www.ti.com Semaphore Registers

The semaphore error clear (ERROR_CLR) register clears the existing error code. The master should
reprogram the EOI register after clearing the error so that a re-arm occurs for the next error event. The
ERROR_CLR register is shown in Figure 10 and described in Table 10.

Figure 10. Error Clear Register (ERROR_CLR)

31 16
Reserved
R-0x0000

15 8 7 3 2 0

FAULTID SEM_NUM ERR
R-0x00 R-0x0 R-0x0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 10. Error Register (ERROR_CLR) Field Descriptions
Bit Field Value Description

31-16 Reserved 0x0000 Reserved. Read returns 0. Write has no effect.
15-8 FAULTID 0x00 Master ID number that caused the error
7-3 SEM_NUM 0x00 Semaphore peripheral ID number (0 to 31)
2-0 ERR Semaphore error code.

000 No semaphore access error has occurred.
001 Master ID FAULTID attempted to free semaphore NUM when it was already free.
010 Master ID FAULTID attempted to free semaphore NUM while not currently owned by FAULTID.
011 Master ID FAULTID attempted to acquire semaphore NUM while it was already owned by

FAULTID.
100 Master ID FAULTID attempted to acquire semaphore NUM while FAULTID already had a request

pending.

SPRUG14–October 2008 TMS320C6474 Semaphore 23
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUG14

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Clocks and Timers www.ti.com/clocks Digital Control www.ti.com/digitalcontrol
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
RFID www.ti-rfid.com Telephony www.ti.com/telephony
RF/IF and ZigBee® Solutions www.ti.com/lprf Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://www.ti.com/clocks
http://www.ti.com/digitalcontrol
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lprf
http://www.ti.com/video
http://www.ti.com/wireless

	Table of Contents
	Preface
	1 Module Overview
	1.1 Introduction
	1.2 Semaphore Architecture
	1.3 Terms and Abbreviations

	2 Semaphore Operation
	2.1 Semaphore Access Modes
	2.2 Interrupt Handling
	2.3 Error Handling
	2.4 Status Query
	2.5 Releasing Semaphore Resources

	3 Emulation Considerations
	4 Semaphore Usage Examples
	4.1 CSL API Calls
	4.2 Accessing Semaphore Resource When Free
	4.3 Accessing Semaphore Resource When Not Free
	4.4 Accessing Semaphore Resource in Combined Mode

	5 Semaphore Registers
	5.1 Register Memory Map
	5.2 Register Descriptions
	5.2.1 Peripheral ID Register (PID)
	5.2.2 End-of-Interrupt Register (EOI)
	5.2.3 Direct Register (DIRECTx)
	5.2.4 Indirect Register (INDIRECTx)
	5.2.5 Query Register (QUERYx)
	5.2.6 Flag Register (FLAGx)
	5.2.7 Flag Set Register (FLAG_SETx)
	5.2.8 Error Register (ERR)
	5.2.9 Error Clear Register (ERROR_CLR)

