
1SPRUIJ8–March 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Fast Current Loop (C28x) Library

User's Guide
SPRUIJ8–March 2018

Fast Current Loop (C28x) Library

This user's guide provides a description of the Fast Current Loop (C28x) software library API (Application
Program Interface), which can be used for high bandwidth, inner loop control of AC servo drives with
TMS320F2837x, F28004x, F2806x or F28M3x MCUs.

This document also explains the header files that are delivered along with the library. In this version of the
library, CLA is not used.

Contents
1 Introduction ... 2
2 FCL Library Details .. 2
3 Building and Linking an Application With the Library ... 6

List of Tables

1 Summary of FCL APIs .. 2
2 Summary of Common Variables Across the Application and Library ... 3

Trademarks
Code Composer Studio is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ8

Introduction www.ti.com

2 SPRUIJ8–March 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Fast Current Loop (C28x) Library

1 Introduction

1.1 Reference Example
An example project using this library, Dual Motor Control Using FCL and Performance Analysis Using
SFRA on TMS320F28379D LaunchPad, is available in ControlSUITEthat can be referenced for details on
how to build and link or integrate the library with an application. The example is built to work with the
LAUNCHXL F28379D evaluation platform from TI.

The FCL software library can be found at
controlSUITE\libs\app_libs\motor_control\libs\FCL_SFRA\v01_00_00_00\lib.

The FCL example project can be found at: controlSUITE\libs\app_libs\motor_control\libs\FCL_SFRA\
v01_00_00_00\Example

2 FCL Library Details

2.1 API Overview
Table 1 lists the FCL APIs.

Table 1. Summary of FCL APIs

API Function Description
Uint32 FCL_GetSwVersion(void); Returns a 32-bit constant; for this version the value returned is

0x00000004
void FCL_initPWM(MOTOR_VARS * m); Initializes all motor control PWMs for FCL operation, this function

is called by the user application during initialization process.
void FCL_PI_Ctrl(MOTOR_VARS * motor); Performs the PI control as part of the FCL
void FCL_PI_CtrlWrap(MOTOR_VARS * motor); Wrap-up function called by the user application at the

completion of the FCL in PI control mode
void FCL_CC_Ctrl(MOTOR_VARS * motor); Performs the Complex control as part of the FCL
void FCL_CC_CtrlWrap (MOTOR_VARS * motor); Wrap-up function called by the user application at the

completion of the FCL in Complex control mode

void QepPosEstModule(MOTOR_VARS * motor); Function to calculate the rotor position from electrical zero of the
motor phase A, using QEP data

void FCL_QEP_wrap(MOTOR_VARS * motor); Function to wrap up the QEP application at the completion of
Fast Current Loop routine

2.2 Header Files

2.2.1 Fast_Current_Loop.h
This header file contains general variables and pointers that are used across the application and the
library.

Macro FCL_LIB is predefined when building the library and is not defined when the header file is included
in the application. This helps applications use the same header file that is used by the library.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ8

www.ti.com FCL Library Details

3SPRUIJ8–March 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Fast Current Loop (C28x) Library

For example, in the following pointer declarations, when the header file is included in the library, the
pointers are defined as extern, but when the same header file is included in the application the pointers
are global. This helps the library work with variables that are common across the application and the
software library.
#ifdef FCL_LIB
extern
#endif
uint32_t FF_COMP
#ifndef FCL_LIB
= 0
#endif
;

#ifdef FCL_LIB
extern
#endif
uint32_t COMPLEX_PIC
#ifndef FCL_LIB
= 1
#endif
;

Table 2 lists the variables needed by the library, which are supposed to be defined by the application. The
same information is available in the Fast_Current_Loop.h header file delivered with the library. So it is
sufficient if applications include the header file.

Table 2. Summary of Common Variables Across the Application and Library

Variable Name Description or Use
extern uint32_t FF_COMP; Variable that set up feed forward compensation within

FCL_PI_Ctrl()
extern uint32_t COMPLEX_PIC; Variable that enables complex PI controller within FCL_PI_Ctrl()

2.2.2 motorVars.h
This file also defines the following typedef of a structure that contains all variables, structures and pointers
needed to run a motor. It helps to easily pass data between library and example project. The variables of
the structure should be initialized by the application before being used by the library.
// **
// Motor variables - for Field Oriented Control
// **
typedef struct {

//==
// Pointers for various on-chip peripherals used in the library
//==
volatile struct EPWM_REGS * PwmARegs, // PWM reg for phase A

* PwmBRegs, // PWM reg for phase B
* PwmCRegs; // PWM reg for phase C

volatile struct EQEP_REGS * QepRegs; // QEP reg for QEP sensor

volatile struct SPI_REGS * SpiRegs; // SPI reg for DRV830x

volatile struct CMPSS_REGS * CmpssARegs, // CMPSS for phase curent A
* CmpssBRegs, // CMPSS for phase curent B
* CmpssCRegs; // CMPSS for phase curent C

volatile uint32_t * CurA_PPBRESULT, // ADCPPBRESULT - phase cur A
* CurB_PPBRESULT, // ADCPPBRESULT - phase cur B
* CurC_PPBRESULT; // ADCPPBRESULT - phase cur C

volatile uint16_t * Vdc_AdcResult; // ADC result - DC bus voltage

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ8

FCL Library Details www.ti.com

4 SPRUIJ8–March 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Fast Current Loop (C28x) Library

volatile uint32_t * pwmCompA, // CMP reg for phase A pwm
* pwmCompB, // CMP reg for phase B pwm
* pwmCompC; // CMP reg for phase C pwm

//==

// Transform variables
CLARKE clarke; // clarke transform
PARK park; // park transform
IPARK ipark; // inv park transform

// Controller variables
PIDREG3 pid_pos; // (optional - for eval)
PI_CONTROLLER pi_pos;
PID_CONTROLLER pid_spd;
CURRENT_CONTROLLER cntlr_id;
CURRENT_CONTROLLER cntlr_iq;

FastCurrentLoopPars_t FCL_Pars; // FCL params variable

SVGEN svgen; // SVPWM variable

RMPCNTL rc; // ramp control

RAMPGEN rg; // sweep angle generator for forced angle control

PHASEVOLTAGE volt; // motor voltages

SPEED_MEAS_QEP speed; // speed calc

QEP qep; // QEP variables

DRV8301_Vars drv8301; // DRV8301 parameters

DRV8305_Vars drv8305; // DRV8305 parameters

float32 currentAs, // phase A
currentBs, // phase B
currentCs, // phase C
currentSenseScale; // Fbk current sense scale

float32 T; // sampling time
float32 Speed0; // prev speed
float32 SFRA_noiseD, // SFRA_noise D signal

SFRA_noiseQ, // SFRA_noise Q signal
SFRA_noiseW; // SFRA noise speed signal

float32 BaseInverterVoltage,
BaseMotorVoltage,
BaseInverterCurrent,
BaseMotorCurrent,
BaseFrequency;

_iq offset_shntA, // shunt current feedback A - offset @ 0A
offset_shntB, // shunt current feedback B - offset @ 0A
offset_shntC, // shunt current feedback C - offset @ 0A

VdTesting, // Vd reference (pu)
VqTesting, // Vq reference (pu)
IdRef, // Id reference (pu)
IqRef, // Iq reference (pu)
SpeedRef, // speed ref (pu)
angMax, // maximum rotation per step
ElecTheta, // position encoder - elec angle (pu)
MechTheta; // position encoder - mech angle (pu)

int32 alignCntr, // rotor alignment time at start up, Id current ramp up

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ8

www.ti.com FCL Library Details

5SPRUIJ8–March 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Fast Current Loop (C28x) Library

alignCnt; // rotor alignment time cntr

QepStatus_t lsw; // Qep status (loop switch)
RunStop_t RunMotor; // Motor run/ stop

Uint16 TripFlagDMC, // motor trip flag
clearTripFlagDMC, // clear trip flag
SpeedLoopPrescaler, // Speed loop pre scalar
SpeedLoopCount, // Speed loop counter
PosSenseReverse, // position sense reverse flag
newCmdDRV; // send new command to DRV

} MOTOR_VARS;

2.2.3 FCL_pars.h
This file defines the typedef of a structure that contains all variables needed to set up FCL parameters.
The variables of the structure should be initialized by the application before being used by the library.

//***
// FCL parameters
//***
typedef struct currentLoopPars {

float32 CARRIER_MID, // Mid point value of carrier count
ADC_SCALE, // ADC conversion scale to pu
cmidsqrt3; // internal variable

float32 tSamp, // sampling time
Rd, // Motor resistance in D axis
Rq, // Motor resistance in Q axis
Ld, // Motor inductance in D axis
Lq, // Motor inductance in Q axis
Vbase, // Base voltage for the controller
Ibase, // Base current for the controller
FccD, // D axis current controller bandwidth in Hz
FccQ, // Q axis current controller bandwidth in Hz
wccD, // D axis current controller bandwidth
wccQ, // Q axis current controller bandwidth
Vdcbus, // DC bus voltage
BemfK, // Motor Bemf constant
Wbase; // Controller base frequency (Motor) in rad/sec

} FastCurrentLoopPars_t;

2.3 CLA Resources Used
In this version of the library, CLA is not used.

2.4 Flags Cleared by the Library
The library is constructed as functional module for certain specific task and the task of clearing the
flags are outside the scope of the library. The application project using this library should address the
task of clearing the flags.

2.5 Application Dependencies
The user application must perform initializationsdefined in this section for the library to be properly
operational.

As shown in the example, all the parameters must be initialized before enabling any interrupts in the
application initialization phase.

2.5.1 Initializing Current Loop Parameters for the Library
The following function, provided in the example code, initializes FCL_Pars, referred to in Section 2.2.3.
fast_current_loop_vars_init_MOTOR_1();

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ8

Building and Linking an Application With the Library www.ti.com

6 SPRUIJ8–March 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Fast Current Loop (C28x) Library

fast_current_loop_vars_init_MOTOR_2();

2.5.2 Initializing PWM and PWM Access Pointers for the Library
The following code, shown in the example, initializes the PWM modules for the FCL library and sets the
PWM access pointers for the library. This makes the library more portable, but it adds a slight cycle count
during the execution of the library.
motor1.PwmARegs = &EPwm1Regs; // set up EPWM for motor 1 phase A
motor1.PwmBRegs = &EPwm2Regs; // set up EPWM for motor 1 phase B
motor1.PwmCRegs = &EPwm3Regs; // set up EPWM for motor 1 phase C

FCL_initPWM(&motor1);

2.5.3 Initializing the ADC Int Flag and ADC PPB Result Register Pointers for the Library
The following code, shown in the example, initializes the PWM modules for Fast control loop library and
sets the PWM access pointers for the library. This makes the library more portable but adds a slight cycle
count during the execution of library.
motor1.CurA_PPBRESULT = &(AdccResultRegs.ADCPPB1RESULT.all); //motor 1 current A
motor1.CurB_PPBRESULT = &(AdcbResultRegs.ADCPPB1RESULT.all); //motor 1 current B
motor1.CurC_PPBRESULT = &(AdcaResultRegs.ADCPPB1RESULT.all); //motor 1 current C
motor1.Vdc_AdcResult = &VFB_DC1;

2.5.4 Initializing the EQEP Access Pointer for the Library
The following code, shown in the example, initializes the EQEP registers pointer for the library to access.

motor1.QepRegs = &EQep1Regs; // set up EQEP for motor 1

3 Building and Linking an Application With the Library
The provided example with the library should help users integrate the library into an application running
from flash/RAM. The appropriate linker command files are also provided with the example project.

The library is built with the v17.9.0.STS tool chain and the v210 controlSUITE device support package for
the F2837xD, in Code Composer Studio™ v7 IDE.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUIJ8

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	Fast Current Loop (C28x) Library
	1 Introduction
	1.1 Reference Example

	2 FCL Library Details
	2.1 API Overview
	2.2 Header Files
	2.2.1 Fast_Current_Loop.h
	2.2.2 motorVars.h
	2.2.3 FCL_pars.h

	2.3 CLA Resources Used
	2.4 Flags Cleared by the Library
	2.5 Application Dependencies
	2.5.1 Initializing Current Loop Parameters for the Library
	2.5.2 Initializing PWM and PWM Access Pointers for the Library
	2.5.3 Initializing the ADC Int Flag and ADC PPB Result Register Pointers for the Library
	2.5.4 Initializing the EQEP Access Pointer for the Library

	3 Building and Linking an Application With the Library

	Important Notice

