
TMS320C6211/TMS320C6211B

Digital Signal Processors

Silicon Errata

Silicon Revisions 1.0, 1.1, 2.1, 2.2, 3.0, and 3.1

SPRZ154L
October 1999

Revised May 2004

Copyright 2004, Texas Instruments IncorporatedCopyright 2004, Texas Instruments Incorporated

SPRZ154LTMS320C6211, TMS320C6211B Silicon Errata

2

REVISION HISTORY

This silicon errata revision history highlights the technical changes made to the SPRZ154K revision to make it an
SPRZ154L revision.

Scope: Applicable updates to the C62x device family, specifically relating to the C6211 and C6211B devices, have been
incorporated.

PAGE(S)
NO. ADDITIONS/CHANGES/DELETIONS

13 Updated the second paragraph under Details for Advisory 3.1.1, EMIF: Async Read Setup Uses Write Setup Value.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

3

Contents
1 Introduction 5.

1.1 Quality and Reliability Conditions 5.

TMX Definition 5.
TMP Definition 5.
TMS Definition 5.

1.2 Revision Identification 6.

2 Silicon Revision 3.1 Known Design Exceptions to Functional Specifications and Usage Notes 7.
2.1 Usage Notes for Silicon Revision 3.1 7.

HPI: Illegal Memory Access Can Result in Unexpected HPI Behavior 7.
EMIF: L2 Cache Operations Block Other EDMA Operations to EMIF
(C671x/C621x Devices: All Silicon Revisions) 8.
C671x/C621x Asynchronous Writes Setup Timing (C671x/C621x Devices: All Silicon Revisions) 13.

2.2 Silicon Revision 3.1 Known Design Exceptions to Functional Specifications 13.

Advisory 3.1.1 EMIF: Async Read Setup Uses Write Setup Value 13.

Advisory 3.1.2 EMIF: Control Signals Not Inactive Before Asserting HOLDA 14.

Advisory 3.1.3 EMIF: One Cycle Asynchronous Write Setup 14.

Advisory 3.1.4 JTAG: Boundary Scan Shift-DR Register Is Latched on the Falling Edge of TCK 14.

Advisory 3.1.5 EDMA/L2 Controller: Potential EDMA Lockout From L2 SRAM 15.

Example GEL File 19.

Advisory 3.1.6 EMIF: Data Corruption can Occur in SDRAM When HOLD Feature is Used 21.

Advisory 3.1.7 EDMA: EDMA Blocked from Accessing L2 During Long String of Stores to the
Same Bank in L2 RAM 22.

3 Silicon Revision 3.0 Known Design Exceptions to Functional Specifications and Usage Notes 28.
3.1 Usage Notes for Silicon Revision 3.0 28.

HPI: Illegal Memory Access Can Result in Unexpected HPI Behavior 28.
3.2 Silicon Revision 3.0 Known Design Exceptions to Functional Specifications 28.

Advisory 3.0.1 HPI: HPID Read/Write Accesses Must Be Terminated with a Fixed-Mode Access 28.

4 Silicon Revision 2.2 Known Design Exceptions to Functional Specifications 30.
Advisory 2.2.2 HPI: Read Data Corrupted in Fixed-Address Mode and FETCH Read Requests 30.

Advisory 2.2.4 JTAG: Boundary Scan Does Not Function 31.

Advisory 2.2.6 HPI: Write Request During HPI Timeout Causes HPI Lock-Up 31.

Advisory 2.2.7 HPI: HRDY Behavior 32.

5 Silicon Revision 2.1 Known Design Exceptions to Functional Specifications 33.

6 Silicon Revision 1.1 Known Design Exceptions to Functional Specifications 33.
Advisory 1.1.1 EMIF: ARDY Sampled During Entire Strobe Period 33.

Advisory 1.1.3 Clock: CLKOUT1 Only Available in PLL x4 Mode 33.

Advisory 1.1.4 JTAG: Boundary Scan Output Shift 34.

Advisory 1.1.5 JTAG: TCK Always Required 34.

Advisory 1.1.6 Interrupt: EXT_INT4 Synchronized to CLKOUT2 34.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

4

Advisory 1.1.8 HPI: Software Handshaking Causes Corrupt Read Data 29.

Advisory 1.1.9 EDMA: User PaRAM Access During EDMA Active Events May Corrupt PaRAM 29.

Advisory 1.1.14 EDMA: Interrupt 0 Incorrectly Set in CIPR 29.

Advisory 1.1.15 L1 Hangs on Access to SRAM Address Mapped as Cache 30.

Advisory 1.1.16 L1D Cache: Data Corruption if L1D Powered Up to Wrong State 30.

Assembly Code (bug.asm) 32.

Linker File (lnk.cmd) 32.

Advisory 1.1.17 EDMA: Extra Elements Transferred in Element Synchronization Mode (FS = 0) 33.

Advisory 1.1.18 EMIF: EMIF Address Lines Are In Undefined States Upon Exiting Reset −
May Cause Problems in Shared Memory System 34.

7 Silicon Revision 1.0 Known Design Exceptions to Functional Specifications 35.
Advisory 1.0.7 EDMA: SDINT and External Interrupts Not Received by EDMA 35.

Advisory 1.0.10 EMIF: Potential Reset Problem When CLKOUT2 is Tied to ECLKIN 35.

Advisory 1.0.12 Access to Invalid Address in Interrupt Selector Space 36.

Advisory 1.0.13 Interrupt Selector Values Reversed for McBSP Interrupts 36.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

5

1 Introduction

This document describes the known exceptions to the functional specifications for the TMS320C6211 and
TMS320C6211B digital signal processors. [See the TMS320C6211, TMS320C6211B Fixed-point Digital Signal
Processors data sheet (literature number SPRS073).] These exceptions are applicable to the TMS320C6211 and
TMS6211B devices (256-pin Ball Grid Array, GFN suffix).

For additional information, see the latest version of TMS320C6000 DSP Peripherals Overview Reference Guide
(literature number SPRU190).

The advisory numbers in this docuemnt are not sequential. Some advisories have been moved to the next revision
and others have been removed and documented in the user’s guide. When advisories are moved or deleted, the
remaining advisory numbers remain the same and are not resequenced.

1.1 Quality and Reliability Conditions

TMX Definition

Texas Instruments (TI) does not warranty either (1) electrical performance to specification, or (2) product reliability
for products classified as “TMX.” By definition, the product has not completed data sheet verification or reliability
performance qualification according to TI Quality Systems Specifications.

The mere fact that a “TMX” device was tested over a particular temperature range and voltage range should not, in
any way, be construed as a warranty of performance.

TMP Definition

TI does not warranty product reliability for products classified as “TMP.” By definition, the product has not
completed reliability performance qualification according to TI Quality Systems Specifications; however, products
are tested to a published electrical and mechanical specification.

TMS Definition

Fully-qualified production device

All trademarks are the property of their respective owners.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

6

1.2 Revision Identification

The device revision can be determined by the lot trace code marked on the top of the package. The location of the
lot trace code for the GFN package is shown in Figure 1 and the revision ID codes are listed in Table 1. The
revision ID described here is not to be confused with the CPU revision ID that is in the Control Status Register.

DSP

TMS320C6211GFN

C21-YMLLLLS

Revision ID Code
shown for Rev. 2.1

DSP

TMS320C6211BGFN

C31-YMLLLLS

Revision ID Code
shown for Rev. 3.1

NOTE: Qualified devices are marked with the letters “TMS” at the beginning of the device name, while
nonqualified devices are marked with the letters “TMX” or “TMP” at the beginning of the device name.

Figure 1. Example, Revision ID Code for TMS320C6211 and TMS320C6211B (GFN)

Silicon revision is identified by a code on the chip. The code is of the format Cxx-YMLLLLS. If xx is 10, then the silicon is
revision 1.0. If xx is 11 then the silicon is revision 1.1 and so on.

Table 1. Revision ID Codes

Revision ID Code Silicon Revision Comments

10 1.0 TMX320C6211

11 1.1 TMX320C6211

21 2.1 TMS320C6211

22 2.2
TMS320C6211
Silicon Revision 2.2 is functionally the same as revision
2.1. It is optimized from revision 2.1 for yield improvement.

30 3.0 TMS320C6211B

31 3.1 TMS320C6211B

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

7

2 Silicon Revision 3.1 Known Design Exceptions to Functional Specifications and Usage
Notes

2.1 Usage Notes for Silicon Revision 3.1

Usage Notes highlight and describe particular situations where the device’s behavior may not match presumed or
documented behavior. This may include behaviors that affect device performance or functional correctness. These
notes will be incorporated into future documentation updates for the device (such as the device-specific data
sheet), and the behaviors they describe will not be altered in future silicon revisions.

HPI: Illegal Memory Access Can Result in Unexpected HPI Behavior

On C6211/C6211B all silicon revisions, the DSP has a reserved memory range that is mapped to the internal FIFO
of the HPI for EDMA engine usage. This reserved memory range is located at 0x60000000 − 0x7FFFFFFF in the
memory map. If CPU code (or a host access) happens to read/write from/to this memory range, the internal HPI
state machine can be corrupted, causing one or more of the following occurrences:

• Host reads/writes through the HPI fail. HPI reads return incorrect data, and/or HPI writes result in incorrect
data being written.

• Host reads/writes through the HPI take an unexpectedly long time. The HRDY signal stays high (not ready)
for an extended period of time.

• HPI locks up. HRDY stays high indefinitely.

The most common cause of this illegal access is uninitialized or stray pointers. To verify that the DSP program
does not perform this illegal memory access, the user can use the Advanced Event Triggering tools featured in
Code Composer Studio Integrated Development Environment (IDE) version 2.1 or later, with the latest emulation
driver. Below are the step-by-step instructions on how to trap a CPU access to the memory range 0x60000000 −
0x7FFFFFFF:

1. Start Code Composer Studio IDE with the proper setup and GEL file.

2. Load the program.

3. Under the Tools menu, select Advanced Event Triggering > Event Analysis

4. Right-click on the bottom left panel that appears, select “Set Hardware Watchpoint”.

5 Name the watchpoint; choose to watch for “Data Memory Reads” or “Data Memory Writes”; select the
inclusive range start address (0x60000000) and end address (0x7FFFFFFF); select the data size from 32-,
16-, or 8-bit to watch for word, halfword, or byte reads/writes, respectively. Then, click Apply.

6 The watchpoint now is enabled, indicated by the blue “E” icon. Now, run the program.

7. When a read/write to the specified memory range is detected, the CPU halts, and the blue “E” icon changes
to a red “T” icon.

Code Composer Studio is a trademark of Texas Instruments.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

8

Notes:

The CPU halts a few cycles after the specified memory access is detected. Without a CPU stall, the number of
cycles is around 4 cycles. This means that when the CPU halts, the PC points to a few instructions after the one
that caused the trap to trigger.

The hardware watchpoint restricts the trap to be set up for either read or write accesses, but not both. Therefore,
the user may need to repeat this procedure several times for each read and write trap.

The above step-by-step method only catches illegal accesses made by the CPU, and does not catch illegal
accesses made by the EDMA or a peripheral that uses the EDMA.

EMIF: L2 Cache Operations Block Other EDMA Operations to EMIF (C671x/C621x Devices: All Silicon
Revisions)

When using the L2 cache on the C671x/C621x devices, for a given EMIF-to-CPU frequency ratio, an L2 writeback
or L2 writeback-invalidate operation may block other EDMA requests from accessing the EMIF until the operation
completes. If the other EDMA requests to the EMIF have hard real-time deadlines, these deadlines may be missed
if the deadline is shorter than the time required to complete the L2 writeback operation. The McBSP and McASP
peripherals are most sensitive to this issue, as the buffering local to the McBSP/McASP peripheral can only hold
data for at most one sample at a time before data loss occurs.

On the C671x/C621x devices, all cache requests to EMIF address ranges are serviced on the highest priority level
of the EDMA (priority 0). All programmed EDMA or QDMA transfers (e.g., EDMA transfers to service the McBSP or
paging data from EMIF to/from L2) and peripheral-initiated transfers (such as HPI) are limited to using priority 1 or
priority 2 queues of the EDMA; therefore an L2 writeback or L2 writeback-invalidate operation may block the lower
priority request.

Program-initiated cache coherency operations (such as L2 writeback and L2 writeback-invalidate operations) are
submitted to the EDMA as a long string of cache operations. For block-based writeback commands, the maximum
length of the cache writeback operation is under user control via the programmed address range. The length of the
range writeback directly impacts the amount of time that the cache traffic may block other accesses to EMIF. The
total potential block-out time equals the amount of time for the cache transfer and is calculated as follows:

Cache transfer size * EMIF clock cycle time = Total potential block-out time

For example, if the user performs an L2 writeback operation to external memory for 2048 words with a 100-MHz
EMIF, the external EMIF bus may be blocked for: 2048 words * 10 ns ≅ 20 µs.

Global cache operations (such as L2 writeback-all or L2 writeback-invalidate-all) are also submitted to the EDMA
as a long string of cache operations. However, the length of the global cache operation is not controllable by the
user and can be as long as the depth of the L2 cache size (up to 64 Kbytes). If the user performs an L2
writeback-all operation to external memory using a 100-MHz EMIF, and L2 is set to the maximum cache size, the
external EMIF bus may be blocked for 16 384 words * 10 ns ≅ 160 µs. Since this can block the EMIF for long
periods of time, the user should avoid using global cache operations at the same time as real-time data transfers.
In general, this is not a limiting factor since global cache operations are primarily performed during system
initialization, task switches, or other non real-time code segments.

As the sample rate is system-dependent, the user must calculate the time between serial samples to determine the
best approach to avoid data loss. The user may break large cache operations into smaller blocks, and transmit
each of these blocks using the CACHE_wbInvL2() and CACHE_wbL2() CSL functions. By breaking the large
cache operations into smaller blocks, other peripherals are then allowed to access the EDMA.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

9

If the EMIF frequency is more than half of the CPU frequency, the device is able to service the L2 writeback
requests faster than the requests can be issued, leaving some EMIF bandwidth available to service other EDMA
requests, so the block-out problem is less noticeable. Therefore, breaking down cache operations into smaller
blocks is more critical when the EMIF frequency is less than half of the CPU frequency. Figure 2 shows the
minimum required latency between McBSP transfers to EMIF at 200-MHz CPU and 50-MHz EMIF when breaking
down the cache operations. These McBSP transfers were performed with concurrent cache operations to EMIF,
creating a block-out scenario. With the 1024-word cache writeback-invalidate operation broken into 32-word
blocks, the McBSP is able to perform almost 10 times faster. The performance improvement is similar when
breaking down the writeback-only operation.

10

9

8

7

6

5

4

3

2

1

0
0

CACHE_wblnvL2
(Entire Operation)

(256-Word Blocks)
CACHE_wblnvL2

(128-Word Blocks)
CACHE_wblnvL2

(64-Word Blocks)
CACHE_wblnvL2

CACHE_wblnvL2
(32-Word Blocks)

Number of Words in Writeback-Invalidate

Minimum
Latency

(�s)

64 128 256 512 1024

Figure 2. Minimum Required Latency Between McBSP Events for a Successful Transfer with
Concurrent L2 Writeback-Invalidates at 200-MHz CPU and 50-MHz EMIF, Using Entire Operations and

Block Breakdown

For example, if the CPU is running at 200 MHz with a 50-MHz EMIF and you have a McBSP hard real-time
deadline of 5 µs, Figure 2 shows that a 1024-word L2 writeback-invalidate may cause data loss since back-to-back
McBSP events can only be serviced at ~8 µs. By breaking down the L2 writeback-invalidate into 256-word blocks,
you can then meet the 5-µs McBSP deadline. In other words, when performing a 1024-word L2
writeback-invalidate operation with the CPU and EMIF conditions cited above, the McBSP events can be serviced
in ~8 µs for the entire operation (one whole block), in ~4 µs when breaking it into 256-word blocks, in ~2.5 µs when
breaking it into 128-word blocks, etc.

When the CPU is set to 225 MHz and the EMIF is set to 100 MHz, breaking down the cache operations will still
improve the block-out problem. Figure 3 shows the improvement in the McBSP’s performance with this frequency
ratio.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

10

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0

Original CACHE_wblnvL2
(Entire Operation)

(256-Word Blocks)
CACHE_wblnvL2

(128-Word Blocks)
CACHE_wblnvL2

(64-Word Blocks)
CACHE_wblnvL2

CACHE_wblnvL2
(32-Word Blocks)

Number of Words in Writeback-Invalidate

Minimum
Latency

(�s)

64 128 256 512 1024

Figure 3. Minimum Required Latency Between McBSP Events for a Successful Transfer With
Concurrent Writeback-Invalidates at 225-MHz CPU and 100-MHz EMIF, Using Entire Operations and

Block Breakdown

When the CPU is set to 150 MHz and the EMIF is set to 100 MHz, there is virtually no benefit from breaking down
the coherency cache operations. Figure 4 shows the McBSP’s performance with this frequency ratio.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

11

0.375

0.370

0.365

0.360

0.355

0.350

0.345

0.340

0.335

0.330

0.325
0

CACHE_wblnvL2
(Entire Operation)

(256-Word Blocks)
CACHE_wblnvL2

(128-Word Blocks)
CACHE_wblnvL2

(64-Word Blocks)
CACHE_wblnvL2

CACHE_wblnvL2
(32-Word Blocks)

Number of Words in Writeback-Invalidate

Minimum
Latency

(�s)

64 128 256 512 1024

Figure 4. Minimum Required Latency Between McBSP Events for a Successful Transfer With
Concurrent Writeback-Invalidates at 150-MHz CPU and 100-MHz EMIF, Using Entire Operations and

Block Breakdown

Breaking down the cache operations into smaller blocks takes longer to complete than performing the entire cache
function as one large block. Figure 5 shows how much extra overhead is incurred by breaking down an L2
writeback-invalidate operation to transfer 1024 words with different sized blocks and at various frequency ratios.
Notice that for the 200-MHz CPU and the 50-MHz EMIF frequency ratio, where the new functions are most critical
for peripherals such as the McBSP, the least overhead is incurred.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

12

40

35

30

25

20

15

10

5

0

Latency

(�s)

CPU/EMIF Frequency Ratio (MHz)

200 CPU
50 EMIF

225 CPU
100 EMIF

150 CPU
100 EMIF

CACHE_wblnvL2
(Entire Operation)

(256-Word Blocks)
CACHE_wblnvL2

(128-Word Blocks)
CACHE_wblnvL2

(64-Word Blocks)
CACHE_wblnvL2

CACHE_wblnvL2
(32-Word Blocks)

Figure 5. 1024-Word L2 Writeback-Invalidate Performance at Various Frequency Ratios With Old and
New CACHE-wbInvL2()

To avoid cache operations blocking other time-sensitive EDMA accesses, observe the following guidelines:

1. Avoid placing real-time data in EMIF address range. Instead, real-time data should be placed in the L2
address range.

2. If data must be placed in the EMIF address range:

− Avoid global cache operations in favor of block-based cache operations.

− Block-based cache operations should be submitted in small blocks, such that the total amount of time
that the EMIF is blocked is less than the amount of time between serial samples.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

13

C671x/C621x Asynchronous Writes Setup Timing (C671x/C621x Devices: All Silicon Revisions)

For a C671x/C621x asynchronous write cycle, the address (EA) and strobe (CE and BE) signals have setup time
or WRSETUP cycles as programmed in the EMIF CE Control Register. However, the data lines (ED) may become
valid one cycle later than the address (EA) and strobe (CE and BE) signals. In other words, the setup period of the
ED may be one cycle less than the programmed value in the WRSETUP field of the EMIF CE Control Register.
The exact ED setup timing depends on the access width and EMIF bus width as follows:

• Access Size ≤ EMIF Bus Width

− For EMIF access size less than or equal to the EMIF bus width, every asynchronous write has data
line (ED) setup of one less than the programmed value in the WRSETUP field of the CE Control
Register. For example, for every 32-bit access (CPU instruction STW) on a 32-bit-wide EMIF, the ED
setup is one cycle less than the value programmed in the WRSETUP field, while the CE, BE, and EA
setup are exactly as programmed in the WRSETUP field.

• Access Size > EMIF Bus Width

− For EMIF access size greater than the EMIF bus width, the first write will have ED setup one cycle less
than the programmed value in the WRSETUP field. Remaining writes for the same write command will
have ED setup matching the WRSETUP field. The CE, BE, and EA setup are also exactly as
programmed in the WRSETUP field. For example, for every 32-bit access (CPU instruction STW) on
an 8-bit-wide EMIF, the ED setup for the first byte is one cycle less than the value programmed in the
WRSETUP field, but the ED setup for the remaining three bytes is exactly as programmed in the
WRSETUP field.

Therefore, users should configure the WRSETUP field properly to ensure sufficient ED setup time. For example, if
ED setup requires 3 cycles, the WRSETUP field should be programmed to 4.

2.2 Silicon Revision 3.1 Known Design Exceptions to Functional Specifications

EMIF: Async Read Setup Uses Write Setup ValueAdvisory 3.1.1

Revision(s) Affected: 1.0, 1.1, 2.1, 2.2, 3.0, and 3.1

Details: When the EMIF is performing read from async memory and write to SDRAM continuously, the
EMIF sometimes incorrectly uses the async’s Write Setup (CECTLx[31:28]) as its Read Setup
(CECTLx[19:16]) value.

This advisory only applies when EMIF reads from async memory and performs accesses to
SDRAM. Other modes are not affected.

Workaround: Use the same read setup and write setup value in the appropriate fields of CE Space Control
Register (CECTLx).

EMIF: Control Signals Not Inactive Before Asserting HOLDAAdvisory 3.1.2

Revision(s) Affected: 1.0, 1.1, 2.1, 2.2, 3.0, and 3.1

Details: Within the same EMIF clock cycle as the HOLDA signal is asserted, the EMIF deasserts its
control signals. This may cause the control signals to be floating in asserted state, and may
cause undesired memory accesses.

This advisory only applies if the HOLDA signal is used.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

14

Workaround: Connect a weak pull up resistor (~1K) to each CE pin where HOLDA signal is used.

EMIF: One Cycle Asynchronous Write SetupAdvisory 3.1.3

Revision(s) Affected: 1.0, 1.1, 2.1, 2.2, 3.0, and 3.1

Details: The EMIF may give only one EMIF clock cycle of async write setup, instead of the value
programmed in the EMIF CE Space Control Register. This condition only occurs when an
async write is issued while there is an ongoing async read within the same or different CE
space. This may result in async write data corruption if the setup/strobe time of the async
memory is not met.

Workaround: For robust operation, it must be assumed that in the above condition, the EMIF gives only one
EMIF clock cycle of write setup to async memory, independent of the write setup value
programmed in the CE Space Register. Most asynchronous memory latches write data at the
rising edge of WE, which sometimes can workaround the problem. Therefore, care must be
taken such that write setup (one cycle) + write strobe (programmable) meets the write
setup/strobe requirement of the async memory. Slowing down the EMIF clock may be needed
to ensure that the timings meet.

JTAG: Boundary Scan Shift-DR Register Is Latched on the Falling Edge of TCKAdvisory 3.1.4

Revision(s) Affected: 3.0 and 3.1

Details: The Boundary Scan Shift-DR Register is latched on the falling edge of TCK, instead of the
rising edge of TCK. This causes boundary scan hardware/software to see an extra cell when
the chip is in boundary scan mode.

Workaround: The BSDL files for this part have been modified to reflect this advisory.

EDMA/L2 Controller: Potential EDMA Lockout From L2 SRAMAdvisory 3.1.5

Revision(s) Affected: 1.0, 1.1, 2.1, 2.2, 3.0, and 3.1

Details: Under certain conditions, an EDMA transfer can be denied the use of L2 for a longer period of
time than expected. This can cause the EDMA to miss data transfers that have real-time
service requirements (such as certain serial port transfers). This condition may manifest itself
in the following phenomena:

• McBSP transmits repeated data (transmit underrun)

• McBSP receives data late or misses data

• Audio channels in TDM mode “rotate”

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

15

• EDMA transfers triggered by timers or external interrupts do not happen or happen
late

• EDMA transfers take longer than expected

• EDMA events are missed

This problem is very sensitive to code/execution alignment. Any minor edit to code can make
the problem seem to disappear. The scenario is only applicable when all of the following five
conditions are true:

1. L2 is allocated as both cache and SRAM.

2. EDMA is transferring into or out of L2 SRAM

3. There is an L1P miss that also misses in L2, and must be fetched from external
memory

4. This “missed” instruction is immediately followed by a section of code that produces
a flood of stores that miss L1D, but hit in L2 cache or L2 SRAM

5. The “flood of stores” happens at a rate of at least 1 every other CPU cycle

In this scenario, the next CPU fetch packet does not reside in either L1P or L2 cache;
therefore, it causes an L1P and L2 miss. An L2 cache line (128 bytes, 4 fetch packets) must
be fetched from external memory. The fetch from external memory is split into two requests
(two halves) of 64 bytes, or two fetch packets each. In this document, the two halves are
labeled A and B, respectively, as shown in Figure 6. The first half (A) to arrive in L2 is the half
in which the missed fetch packet resides. This first half is immediately forwarded to L1P so
that CPU can resume execution before the second half (B) is fetched from external memory.
The second half of the L2 line (B) is to be fetched and written to L2 later.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

16

EDMA/L2 Controller: Potential EDMA Lockout From L2 SRAM (Continued)

L2 CACHE

L2 SRAM

Bank 0Bank 1Bank 2Bank 3

1) Flood of L1D
write misses / L2
write hits caused

by code in A

3) EDMA servicing
McBSP or other
peripheral

2) Second half of L2 read
fill due to previous L1P
miss (B), requires use of
all banks

L2

Note: The #) Indicates the order of Occurrence/Priority

Figure 6. Problem Scenario

At this time, the CPU executes the newly returned code in A (in the first 2 fetch packets
returned). The cache architecture increases write throughput by not performing write-allocate
in case of L1D miss. All CPU stores that miss in L1D are sent directly to L2. This code in A
contains a series (flooding) of stores that miss L1D, but hit in L2. These stores are generated
at a rate of at least 1 every other cycle.

The lockout condition occurs only when the second half (B) of the L2 cache line fill starts.
When the B is ready, it attempts to write to L2. It will be unable to do so, however, because the
line fill operation accesses all four banks of L2 whereas one bank is always busy servicing the
higher priority L1D misses from the code in A. Thus, the line fill (B) cannot complete until the
flood of writes from A has stopped. The line fill stays at the head of queue in the EDMA
controller, so any other EDMA transfers that access L2 will also be blocked until the flood of
stores has stopped and the L2 line fill (B) has completed.

The amount of time that an EDMA transfer is locked out of L2 is determined by the code
running on the DSP (A), and ultimately by the amount of time that L1D write misses are
happening in succession. When all of the conditions are met, the second half of the L2 line fill
and the EDMA will be locked out of L2 as long as the flood of stores is sustained.

Certain library functions that satisfy all of the above problem conditions may fall into this
EDMA lockout problem. As an example, the memcpy library routine involves a series of CPU
writes at a rate >= 1 write per every 2 cycles. THE EDMA lockout problem may exist if all other
conditions are satisfied. The workarounds stated below may also be used in this case.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

17

EDMA/L2 Controller: Potential EDMA Lockout From L2 SRAM (Continued)

Exceptions: The lockout problem does not exist if L2 is configured to be all cache or all SRAM:

• If L2 is all cache, then EDMA transfers servicing other peripherals do not access L2.
They access external memory directly, and lockout does not occur. Since the DSP
does not keep external coherency, L1/L2 caches do not know of external memory
being modified. If this section in external memory is cached, frequent cache cleans
may be needed so that the caches are coherent with external memory.

• If L2 is all SRAM, then there will not be second half of L2 fill (B). When there is L1P
miss, L2 controller will only fetch L1P line size in a single request. The cache line is
immediately passed to L1P by the L2 controller.

The flooding of write misses by itself cannot lock out the EDMA from L2 for an extended
period of time. The EDMA and the write misses can access L2 concurrently, provided that the
EDMA and the L1D write misses access different L2 banks.

NOTE: The lockout does not occur for L1D read misses in A that hit or miss in the L2. If an L1D read
miss hits in L2, there is no L2 line fill to trigger the problem. Lockout also cannot happen if an L1D
read miss also misses L2. For coherency reason, in this case L2 prevents the flood of stores from
happening by stalling the CPU until the entire L2 line fill has completed.

Workaround: If the problem exists, perform the following steps:

1. Use the simulator tool described below to detect and pinpoint locations of potential
problems.

2. At the code locations where the simulator points, perform the software workarounds
described below.

3. Apply the compiler tools workaround described below. Use this step only if no other
workaround is feasible.

Software Workaround

Code Modification:

• Avoid the flood of L1D write misses. Pre-read all data locations prior to writing them.
This will allocate them in L1D, preventing the L1D write misses from occurring. Recall
that L1D read misses do not cause problems.

• Make sure that any algorithm or code segment that naturally produces a long string of
writes inserts gaps in the write sequence such that writes occur at a frequency slower
than 1 write miss every other cycle. The term ”long” is based on the system
requirements. Gaps in the L1D write misses means that the second half of the L2 read
fill is given a chance to access L2.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

18

EDMA/L2 Controller: Potential EDMA Lockout From L2 SRAM (Continued)

Code Location:

• Run the algorithm or code segment that contains A from internal SRAM. There will not
be L2 code read fill (A or B) coming into L2. The simulator can be used to detect such
code segment. See simulator section below for details.

• Ensure the problematic segment of algorithm or code is in cache. This can be
accomplished by issuing any CPU read/load instruction from the beginning of the
problematic code segment in external memory, that will cause both L1D and L2 miss.
Assuming the code segment is not yet in L1/L2 cache, Performing CPU load
instruction generates an L1D request, and CPU stalls until the code missed and data
is returned from L2. After the load instruction, code segment will reside in the L2
cache, and an L2 read fill due to L1P miss will not occur.

Tools

C6x1x Simulator

The simulator can be used to detect potential EDMA lock-out problem. This capability is
featured in the simulator as part of Code Composer Studio version 2.1 package.

This version of simulator includes the detection logic to monitor the amount of CPU stores that
miss in L1D but hit in L2 cache or SRAM, which could possibly lock out the EDMA from
accessing L2 because of the conditions described above.

The user can input a window size limit (W) in which the stores are monitored. During
simulation run, if W/2 or more of such stores occur within W cycles, simulator will halt and a
warning message will be printed. A log file is automatically generated and stored as
“L2_write_hits.log” in the CCS “Start in Directory” (default to MYPROJECTS). The user can
run past the warning to find other potential problems, but the log file will have only the last
case detected.

There are two ways to activate this capability:

• The user can manually set the window size (W) values in the address location
0x60000000. For example, the following code can be used in the command window to
set the window size of L2 store hits to 15:
?*(int *) 0x60000000 = 15;

• The GEL file init6x1x.gel file (see Example GEL File) can be used to automatically add
the EDMA lockout detection capability in the simulator. Upon loading this GEL file, a
new menu item will appear under GEL −> EDMA Lockout Detection Warning −>
Window_Size_In_Cycles. Upon activating the menu item, a dialog window will appear
in which the user can input the window size W (in cycles) to monitor the L1D−L2
writes.

By default, this memory location (0x60000000) has zero value, which means the monitor is
disabled. Writing non-zero values to this location enables the monitor, and writing a zero
disables it.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

19

EDMA/L2 Controller: Potential EDMA Lockout From L2 SRAM (Continued)

C6000 Compiler

The C compiler / codegen tools can be used to prevent this EDMA starvation problem from
happening. Starting from version 4.20 of the tools, a new compiler option is featured:

• −−edma_bugN, where N is an optional parameter which specifies the number of CPU
cycles between the EDMA accesses being starved. So if EDMA service is needed
every 10000 cycles, then the user can do −−edma_bug10000.

NOTES: 1. Compiling code with this option affects code size and performance. Only use this option if
problem exists and no workarounds are feasible.

2. −mv6211 option needs to be used with the –−edma_bugN option.
3. This new option ensures that any software pipelined loop that takes up more than N cycles

are modified such that there is less than 1 store every 2 cycles.
4. Any software pipelined loops that are known to be shorter than N cycles are unaffected.
5. This compiler option only affects software-pipelined code. Any store instructions outside of a

software-pipelined loop are not affected by this option.
6. Hand-coded assembly or already compiled object code will not be automatically corrected

by this option. The simulator can be used on such code to detect potential problems.

Example GEL File
/*

* init6x1x.gel

*

 * This GEL file (init6x1x.gel) is loaded on the command line of Code Composer. It provides example code

 * on how to reset the C6x DSP and initialize the External Memory Interface. You may have to edit

 * settings in emif_init() to your own specifications as the example is applicable to the C6211/6711 DSK.

 *

 * The StartUp() function is called every time you start Code Composer. You can customize this function to

 * initialize wait states in the EMIF or to perform other initialization.

 */

StartUp()

{

 /* uncomment the following line to initialize the

 EMIF registers on the C6x when Code Composer starts up */

 emif_init();

 dma_lockout_init();

}

/*

 * Menuitem creates a selection available beneath the GEL menu selection in Code Composer Studio.

 */

menuitem ”Resets”;

hotmenu ClearBreakPts_Reset_EMIFset()

{

 GEL_BreakPtReset();

 GEL_Reset();

 emif_init();

}

/***/

emif_init()

{

/*−−−*/

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

20

EDMA/L2 Controller: Potential EDMA Lockout From L2 SRAM (Continued)
/* EMIF REGISTER VALUES FROM SPRU269B */

/*−−−*/

#define EMIF_GCTL 0x01800000

#define EMIF_CE1 0x01800004

#define EMIF_CE0 0x01800008

#define EMIF_CE2 0x01800010

#define EMIF_CE3 0x01800014

#define EMIF_SDRAMCTL 0x01800018

#define EMIF_SDRAMTIMING 0x0180001C

 #define EMIF_SDRAMEXT 0x01800020

 *(int *)EMIF_GCTL = 0x00003040;/* EMIF global control register */

 *(int *)EMIF_CE1 = 0x40f40323; /* CE1 − 32-bit asynch access after boot*/

 *(int *)EMIF_CE0 = 0xFFFFFF30; /* CE0 − SDRAM */

 *(int *)EMIF_CE2 = 0x40f40323; /* CE2 − 32−bit asynch on daughterboard */

 *(int *)EMIF_CE3 = 0x40f40323; /* CE3 − 32−bit asynch on daughterboard */

 *(int *)EMIF_SDRAMCTL = 0x07117000; /* SDRAM control register (100 MHz)*/

 *(int *)EMIF_SDRAMTIMING = 0x0000061A; /* SDRAM Timing register */

}

/*

 * Menuitem creates a selection available beneath the GEL menu selection in Code Composer Studio.

 */

menuitem ”EDMA Lockout Detection Warning”;

dialog L2_Store_Hits(win_l2 ”Window size in cycles”)

{

 #define L2_STORE_HITS_WINDOW_REG_ADDR 0x60000000

 *(int *)L2_STORE_HITS_WINDOW_REG_ADDR = win_l2;

}

dma_lockout_init()

{

 #define L2_STORE_HITS_WINDOW_REG_ADDR 0x60000000

 *(int *)L2_STORE_HITS_WINDOW_REG_ADDR = 0x0;

}

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

21

EMIF: Data Corruption can Occur in SDRAM When HOLD Feature is UsedAdvisory 3.1.6

Revision(s) Affected: 1.0, 1.1, 2.1, 2.2, 3.0, and 3.1

Details: When using EMIF in a system where the HOLD feature is used, data can be corrupted in the
SDRAM that is on the EMIF. When the SDRAM refresh counter within the EMIF expires
around the same time a HOLD request is asserted, the DSP starts a refresh of the SDRAM.
Before the tRFC specification is met, the DSP generates a DCAB command and asserts
HOLDA, thus violating tRFC specification for SDRAM.

Workaround: Since both the DSP and the other processor can act as a master, external arbitration logic is
needed. There are three possible workarounds:

1. Program the arbitration logic to take care of SDRAM refresh. Disable refresh on DSP.
Since the DSP is no longer responsible for refresh of SDRAM, the arbitration logic
ensures tRFC specification is not violated.

2. Use one of the DSP internal timers to provide an output signal to the arbitration logic that
indicates refresh is pending. The arbitration logic would then be responsible for
de-asserting HOLD and starting its own timer to estimate when the refresh operation has
completed. Once the timer within the arbitration logic expires, the arbitration logic should
assert HOLD if needed.

3. Use two of the DSP internal timers to output two signals that indicate the start and end of
a refresh operation to the arbitration logic. The arbitration logic would then be responsible
for de-asserting HOLD between the start and end of a refresh operation.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

22

EDMA: EDMA Blocked from Accessing L2 During Long String of Stores to the Same Bank
in L2 RAM

Advisory 3.1.7

Revision(s) Affected: 1.0, 1.1, 2.1, 2.2, 3.0, and 3.1

Details: If the CPU is storing data to a bank of L2 memory on the same cycle that the EDMA is trying
to access the same bank, the CPU will always be given priority. (For example, the EDMA will
be blocked from accessing that bank until the CPU access is complete.) (Note that the EDMA
and CPU can access different banks of L2 on the same cycle.) If the CPU stores to the same
bank on every cycle for a long period of time, an EDMA access to that bank can be blocked
long enough to miss a hard deadline.

L2 memory is organized as 4 banks with each bank 64 bits wide (see Figure 7).

0x00000000 0x00000004

0x000000240x00000020

Bank 0

0x0000000C

0x0000002C

0x00000008

0x00000028

Bank 1 Bank 3Bank 2

0x00000030

0x00000010 0x0000001C

0x0000003C0x00000034

0x00000014

0x00000038

0x00000018

0x0000FFE0 0x0000FFE4 0x0000FFE8 0x0000FFEC 0x0000FFF0 0x0000FFF4 0x0000FFF8 0x0000FFFC

NOTE: Each address in Figure 7 is an address for a 32-bit word.

Figure 7. L2 Memory Organization

A conflict occurs when the CPU is trying to access a bank of L2 on the same cycle as the
EDMA is trying to access the same L2 bank. For example, if the CPU were trying to store a
32-bit word to location 0x0000 0000, and on the same cycle the EDMA is trying to transfer a
32-bit word at location 0x0000 0024 to the McBSP to be transmitted, then a conflict would
occur since both are trying to access Bank0.

Waiting for a single store to complete would only delay the EDMA access by several cycles,
which is not normally a problem. However, a problem can occur when the CPU continually
stores data to the same bank of L2 for a long period of time. The problem occurs when the
EDMA has a hard deadline to meet, e.g., it must transfer a word from L2 to the McBSP every
5 µs. If the duration of the sequence of continuous stores is longer than 5µs, then the EDMA
will be blocked from accessing that bank of L2 long enough to miss the deadline and a
transmit underrun error will occur in the McBSP.

It should be noted that a series of CPU stores that causes a real-time system problem (an
EDMA transfer to miss a deadline) is most likely to occur in looped code. For example, if a
particular code segment caused the EDMA to be blocked for four cycles, a system problem
caused by the delayed EDMA transfer would likely not occur. If that same code segment were
repeated in a loop of 1000 iterations, then the EDMA transfer would be blocked for a total of
(4 * 1000 =) 4000 cycles. In this latter case, the EDMA transfer is more likely to miss a hard
deadline causing a system problem.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

23

EDMA: EDMA Blocked from Accessing L2 During Long String of Stores to the Same Bank in L2 RAM (Continued)

There are four criteria that must be met in order for a loop to continually block a bank of L2. All
of the conditions must be met for the problem to occur.

1. The total duration of time the EDMA is blocked (or the total duration of a loop, in the case
of looped code) is close to or longer than the hard deadline.

2. In a given sequence of code, the total number of stores must be greater than or equal to
the number of cycles on which no store occurs. In the case of looped code, in one iteration
of a loop, the total number of stores must be greater than or equal to the number of cycles
on which no store occurs, or, in other words, the length of one iteration in cycles is less
than or equal to twice the number of stores.

Figure 8 outlines this scenario. Note that the STW instruction represents a store of any word
size (32-, 16-, or 8-bit).

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

24

EDMA: EDMA Blocked from Accessing L2 During Long String of Stores to the Same Bank in L2 RAM (Continued)

STW

II STW

II ADD

Cycle 1

Bad Sequence

Cycle 2

II SUB

II ADD

ADD

Cycle 3
II MV

II B

ADD

II ADD

Cycle 3

II ADD

II B

Bad Sequence

ADD

Cycle 2

ADD

II MV

II SUB

II ADD

Cycle 1 II STW

II ADD

STW

ADD

II MPY

II SUB

Cycle 4

II SUB

II MPY

II ADD

Cycle 4

Cycle 3

ADD

II B

Good Sequence

ADD

II ADD

II SUB

II MV

Cycle 2

ADD

II ADD

II STWCycle 1

STW

Cycle 5

II ADD

MPY

II ADD

Total Cycles: 3
Total Stores: 2

Total Cycles: 4
Total Stores: 2 Total Stores: 2

Total Cycles: 5

Figure 8. Pseudo Code Example With Parallel Stores (Criteria 2)

In most looped code, more than one instruction would likely be executed on each cycle,
i.e., instructions would be executed in parallel. In this case, as long as a store is one of the
instructions being executed in parallel on a particular cycle, that cycle counts as a cycle on
which a store occurs. Instructions with parallel bars (||) at the beginning of the line of
assembly execute in parallel with instructions on the preceding line.

In the C6000 core, up to 2 stores can occur per cycle. In this case, each store must be
counted individually. That is, even though both stores occur on the same cycle, they still
must be counted as two stores. All other rules apply (see Figure 8).

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

25

EDMA: EDMA Blocked from Accessing L2 During Long String of Stores to the Same Bank in L2 RAM (Continued)

3. All stores in the loop must be to the same bank of L2. If there are any stores to another
bank, this will free the first bank long enough for the EDMA access to get in (see
Figure 9).

A0 = 0x00000000
A2 = 0x00000020
A8 = 0x00000008

STW A1, *A0 Store to
Bank 0

II ADD

II ADD

Cycle 1

Bad sequence

II SUB

ADD

Cycle 2 II STW A1, *A0 Store to
Bank 0

II MV
Cycle 3

STW A1, *A2

II B

Store to
Bank 0

II ADD

STW A1, *A8

Cycle 3

II ADD

II B

II MV

Store to
Bank 1

II STW A1, *A0

II ADD

Cycle 2

ADD

II SUB

Good sequence

STW A1, *A0

Cycle 1 II ADD

Store to
Bank 0

Store to
Bank 0

Total Cycles: 3
Total Stores: 3 Total Stores: 3

Total Cycles: 3

Figure 9. Pseudo Code Example Stores to Specified Banks (Criteria 3)

In the case of two stores occurring on the same cycle, in parallel, the same rules apply. If
both stores are to the same bank (and there are no other stores in the sequence to a
different bank), then a problem may occur. If each of the parallel stores is to a different
bank, then the problem cannot occur.

4. There are no loads that miss in L1 (therefore access L2). It does not matter which bank
the load is accessing (see Figure 10).

A load from L2 provides enough of a gap to allow the EDMA to access L2. The good
sequence would not cause a problem even if the load were executed in parallel with one
of the stores, as long as the load occurred somewhere in the sequence. Notice that
although the good sequence satisfies criteria 2 and 3, it would not cause a problem.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

26

EDMA: EDMA Blocked from Accessing L2 During Long String of Stores to the Same Bank in L2 RAM (Continued)

Total Cycles: 3
Total Loads: 1
Total Stores: 2

A0 = 0x00000000
A2 = 0x00000020
A8 = 0x00000008

STW A1, *A0

II ADD

II ADD

Cycle 1

Bad Sequence

II SUB

ADD

Cycle 2 II ADD

II MV
Cycle 3

STW A1, *A2

II B

II ADD

STW A1, *A2

Cycle 3

II ADD

II B

II MV

II LDW *Ax, A1

II ADD

Cycle 2

ADD

II SUB

Good Sequence

STW A1, *A0

Cycle 1 II ADD

Bank # does
not Matter

Total Cycles: 3
Total Stores: 2
Total Loads: 0

Figure 10. Pseudo Code Example Stores and Loads (Criteria 4)

Workaround: Step 1

Determine the hard deadlines for the system of interest.

Step 2

Use the compiler switch −edma_warnN to find potential problem loops. The compiler switch
only checks for criteria 1 and 2.

For more detailed information on the compiler switch, see the Using the −edma_warnN
Compiler Switch to Detect a CPU L2 EDMA Lockout Application Report (literature number
SPRA916).

The −edma_warnN option was not available until the release of Code Composer Studio IDE
2.20.23.

Step 3

After Step 2, a list of potential problem loops now exists. The programmer must now examine
each of these potential problem loops to see if they meet the two additional criteria for being a
problem loop (remember that the compiler switch in step 2 only checked for criteria 1 and 2).
This is done by closely examining the source code and assembly output of that source code.

For more detailed information on how to interpret the source code and the assembly output of
that source code, see the Using the −edma_warnN Compiler Switch to Detect a CPU L2
EDMA Lockout Application Report (literature number SPRA916).

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

27

EDMA: EDMA Blocked from Accessing L2 During Long String of Stores to the Same Bank in L2 RAM (Continued)

Step 4

The final step is to fix the remaining problem loops. There are a number of fixes that can be
implemented, and which fix to implement is highly system dependent. Each fix attempts to
break one of the criteria of a problem loop. Only one fix is needed for each loop.

A. Reduce the duration of the loop by breaking into smaller loops. If a particular problem loop
has a length of 4 cycles (determined by looking at the software pipeline kernel in the
assembly file), and the loop runs 200 times, then the total loop duration is ~800 cycles. If
the deadline is 586 cycles, then loop could cause a problem (assuming the loop meets all
the other criteria). The workaround is to break the loop into four smaller loops of
50 iterations each. Then any one loop will only run for 200 cycles allowing the EDMA
transfer to complete between the smaller loops.

B. Try to break criteria 2. The quickest way to do this is to turn off optimization for the file
containing the problem loop (this is done in the File Specific Options for the file). Instead
of using the compiler switch −o3, use the compiler switch −o1 for the particular problem
file. This will cause the problem loop to not be software pipelined and less likely to meet
criteria 2. The downside to this fix is that all the loops in the particular file will be
un-optimized, not just the problem loop.

C. Try to break criteria 3. One way of doing this is to rearrange the data structures so that a
loop does not have to stride an array by a factor of 8. The other way of implementing this
is to possibly combine two different loops so that the array stride becomes a different
factor other than 8.

D. Try to break criteria 4. One way of doing this is to place a dummy load in the loop.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

28

3 Silicon Revision 3.0 Known Design Exceptions to Functional Specifications and Usage
Notes

3.1 Usage Notes for Silicon Revision 3.0

Usage Notes highlight and describe particular situations where the device’s behavior may not match presumed or
documented behavior. This may include behaviors that affect device performance or functional correctness. These
notes will be incorporated into future documentation updates for the device (such as the device-specific data
sheet), and the behaviors they describe will not be altered in future silicon revisions.

HPI: Illegal Memory Access Can Result in Unexpected HPI Behavior

This usage note is applicable to C6211/C6211B all silicon revisions. To avoid extensive duplication, see the HPI:
Illegal Memory Access Can Result in Unexpected HPI Behavior usage note under Usage Notes for Silicon
Revision 3.1.

3.2 Silicon Revision 3.0 Known Design Exceptions to Functional Specifications

Some silicon revision 3.0 advisories are shared with silicon revision 3.1. See the advisories for silicon revision 3.1.

HPI: HPID Read/Write Accesses Must Be Terminated with a Fixed-Mode AccessAdvisory 3.0.1

Revision(s) Affected: 3.0

Details: The auto-increment HPI read utilizes an internal buffer and prefetch mechanism to increase
throughput. The prefetch mechanism may conflict with the internal buffer flush that is caused
by HPIA or HPIC write. This conflict may cause the next auto-increment read access to return
stale data in the first few words.

Workaround: Terminate every auto-increment HPID read with a fixed-mode HPID read, and terminate every
HPID write with a fixed-mode HPID write. For example, to read 14 words in auto-increment
mode, do not do:

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

29

HPI: HPID Read/Write Accesses Must Be Terminated with a Fixed-Mode Access (Continued)

HPIA write
HPID++ read (1st word, autoincrement)
HPID++ read (2nd word, autoincrement)
...
HPID++ read (14th word, autoincrement)
HPIA write (set up HPIA for next access)
HPID++ read
...

But, do this instead:

HPIA write
HPID++ read (1st word, autoincrement)
HPID++ read (2nd word, autoincrement)
...
HPID++ read (13th word, autoincrement)
HPID read (14th word, FIXED-MODE)
HPIA write (set up HPIA for next access)
HPID++ read
...

This brings the HPI to a clean state after an auto-increment access. The next HPIA / HPIC
write will not conflict with in-flight data from previous HPID++ read/write.

Note that different host mechanisms (software/hardware) are needed to migrate between
systems with rev 3.0 and rev 2.x/1.x silicons, due to advisories 3.0.1, 2.2.2, and 2.2.6.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

30

4 Silicon Revision 2.2 Known Design Exceptions to Functional Specifications

HPI: Read Data Corrupted in Fixed-Address Mode and FETCH Read RequestsAdvisory 2.2.2

Revision(s) Affected: 1.0, 1.1, 2.1, and 2.2

Details: During an HPI read access in fixed address mode (HCNTL[1:0] = 11b), the internal HPI data
pointers become corrupted; therefore, the wrong data will be returned. Any fixed-mode reads
from that point onward will lag behind by 1 read. Example 1 shows a failing sequence.

Example 1. Failing sequence

HPIA write 0x00000000

HPID++ write 0x00112233 (to address 0x0)

HPID++ write 0x44556677 (to address 0x4)

HPID++ write 0x8899AABB (to address 0x8)

HPID++ write 0xCCDDEEFF (to address 0xC)

HPIA write 0x00000000 (reset address to 0)

HPID read returns 0x00112233 (correct, but internal HPI data pointers become corrupted)

HPIA write 0x00000004

HPID read returns 0x00112233 (incorrect — expected 0x44556677, lags by 1 read)

HPIA write 0x00000008

HPID read returns 0x44556677 (incorrect — expected 0x8899AABB, lags by 1 read)

HPIA write 0x0000000C

HPID read returns 0x8899AABB (incorrect — expected 0xCCDDEEFF, lags by 1 read)

This problem also exists when the FETCH bit in the HPIC register is used to read from HPID.

Autoincrement mode reads (HCNTL[1:0] = 10b), HPIC reads (HCNTL[1:0] = 00b), and HPIA
reads (HCNTL[1:0] = 01b) function properly. In addition, host writes in all modes function
properly.

Internal reference number DSPvd01120.

Workaround: For HPI reads, avoid using the fixed mode (HCNTL[1:0] = 11b) or the FETCH bit in the HPIC.
Use only the autoincrement mode (HCNTL[1:0] = 10b).

Note that different host mechanisms (software/hardware) are needed to migrate between
systems with rev 3.0 and rev 2.x/1.x silicons, due to advisories 3.0.1, 2.2.2, and 2.2.6.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

31

JTAG: Boundary Scan Does Not FunctionAdvisory 2.2.4

Revision(s) Affected: 1.0, 1.1, 2.1, and 2.2

Details: Boundary scan mode does not work.

Internal reference numbers DSPvd01207, DSPvd02060, DSPvd02061, DSPvd02062,
DSPvd02063, DSPvd02064, and DSPvd02280.

Workaround: Do not use boundary-scan mode.

HPI: Write Request During HPI Timeout Causes HPI Lock-UpAdvisory 2.2.6

Revision(s) Affected: 1.0, 1.1, 2.1, and 2.2

Details: An internal HPI circuit times out after 128 CPU cycles since the last HPID access (i.e., 128
cycles every 2 halfword accesses). When HPI times out, the read/write request cycle is
assumed completed and the read and write FIFOs of the HPI are flushed. The HRDY signal
goes high during timeout/flushing process.

If an incoming write request to HPI occurs at the same time as the timeout, then this boundary
condition may lead to incorrect write being issued to the HPI, and may cause the HPI to be
stuck in a NOT READY state, indicated by the HRDY signal staying high indefinitely.

Workaround: Perform any one of the following workarounds:

• Do writes quickly enough so that the HPI never times out. Keep them separated under
100 CPU cycles, if possible.

• If the above method is not possible, writes to HPID should be separated over
150 CPU cycles to avoid the 128-cycle mark plus the time it takes to time out and
flush. After time-out, wait for HRDY to become READY (low) again before performing
additional transfers.

• For a write access around the 128-cycle time-out, perform an HPIA write to flush the
FIFO before any subsequent data writes. The HPIA write must be done only when
HRDY indicates READY.

Note that different host mechanisms (software/hardware) are needed to migrate between
systems with rev 3.0 and rev 2.x/1.x silicons, due to advisories 3.0.1, 2.2.2, and 2.2.6.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

32

HPI: HRDY BehaviorAdvisory 2.2.7

Revision(s) Affected: 1.0, 1.1, 2.1, and 2.2

Details: The HRDY signal goes inactive (not ready) after each word access in autoincrement mode,
even if the internal buffer is ready. In autoincrement mode, HRDY should be inactive (not
ready) after a word access only when the internal buffer is:

• Empty in HPI read operation

• Full in HPI write operation

Workaround: Be sure to observe the HRDY signal when accessing the HPI. The HRDY signal must be
active (ready) when performing HPI reads/writes.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

33

5 Silicon Revision 2.1 Known Design Exceptions to Functional Specifications

Revisions 2.1 and 2.2 are functionally the same; Revision 2.2 has been optimized.

6 Silicon Revision 1.1 Known Design Exceptions to Functional Specifications

EMIF: ARDY Sampled During Entire Strobe PeriodAdvisory 1.1.1

Revision(s) Affected: 1.0 and 1.1

Details: During asynchronous memory accesses, ARDY is sampled during every cycle of the strobe
period. If ARDY is sampled low (not ready), then the strobe counter will not decrement. This
means that the strobe period will be extended by the number of cycles (during the strobe
period) that the asynchronous memory is not ready, rather than extending the strobe period
only if the memory is not ready at the end (three cycles before end-of-strobe) of the strobe
period.

Internal reference number DSPvd00697.

Workaround: If asynchronous memory has a long access time, and is expected to be “not ready” for much
of the access, keep the strobe period as short as possible, and lengthen the setup and hold
timings to compensate. ARDY is not sampled during the setup or hold period and will not
delay the access.

Clock: CLKOUT1 Only Available in PLL x4 ModeAdvisory 1.1.3

Revision(s) Affected: 1.0 and 1.1

Details: The CLKOUT1 signal is only available when the PLL is in x4 mode. When operating in x1
(bypass) mode, CLKOUT1 will remain a static low. The internal clock throughout the device is
unaffected.

Internal reference number DSPvd00724.

Workaround: If using the CPU clock to drive an input clock (such as ECLKIN on the EMIF), use CLKIN
when running in x1 mode, rather than CLKOUT1.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

34

JTAG: Boundary Scan Output ShiftAdvisory 1.1.4

Revision(s) Affected: 1.0 and 1.1

Details: Boundary-scan mode does not function.

Internal reference number DSPvd00725.

Workaround: Do not use the boundary scan function on revision 1.x devices.

JTAG: TCK Always RequiredAdvisory 1.1.5

Revision(s) Affected: 1.0 and 1.1

Details: The JTAG test clock (TCK) is required, even when an emulator is not connected. It is
necessary to provide a system clock to TCK for proper device functionality.

Internal reference number DSPvd00809.

Workaround: Provide a clock source to TCK, independent of the emulator. A 10-MHz TCK is recommended.
A solution is to divide down the CLKIN frequency to 5 MHz−10 MHz, and drive the resultant
clock into TCK. By removing the TCK pin on the emulation header, the emulator may be
plugged into the system and run normally (XDS510 uses TCK_RET as its clock source,
which will still be connected).

Interrupt: EXT_INT4 Synchronized to CLKOUT2Advisory 1.1.6

Revision(s) Affected: 1.0 and 1.1

Details: All external interrupts are synchronized to ECLKIN, with the exception of EXT_INT4. This
signal is synchronized to CLKOUT2. The setup and hold timings for the signal are valid as per
the data sheet, with the exception that the reference clock edge is to CLKOUT2.

Workaround: None required. All external interrupts are internally synchronized to prevent metastability,
regardless of their reference clock.

XDS510 is a trademark of Texas Instruments.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

35

HPI: Software Handshaking Causes Corrupt Read DataAdvisory 1.1.8

Revision(s) Affected: 1.0 and 1.1

Details: Software handshaking forces data to be lost for reads if the normal HPI handshaking is used.
This is not a problem for writes.

Internal reference number DSPvd00849.

Workaround: Do not use software handshaking for read accesses to the HPI. The hardware ready signal
(HRDY) should be used.

EDMA: User PaRAM Access During EDMA Active Events May Corrupt PaRAMAdvisory 1.1.9

Revision(s) Affected: 1.0 and 1.1

Details: If the user performs an access to the EDMA parameter RAM (read/write) while active EDMA
events are being processed, the parameter RAM (PaRAM) may get corrupted.

Internal reference number DSPvd00823.

Workaround: To prevent this problem from occurring, the user should disable all events in the EDMA Event
Enable Register (EER) and Channel Chain Enable Register (CCER) before accessing the
EDMA PaRAM. After accessing the PaRAM, the events may be re-enabled by writing back to
the EDMA EER and CCER registers. The EDMA internally latches any events that come in
during the interim when the events are disabled, therefore no events will be lost when
implementing this software workaround. However, if the same event occurs more than once
after the event is disabled, the EDMA will only register the event once in the Event
Register (ER).

EDMA: Interrupt 0 Incorrectly Set in CIPRAdvisory 1.1.14

Revision(s) Affected: 1.0 and 1.1

Details: Interrupt 0 is unexpectedly set in the Channel Interrupt Pending Register (CIPR) by the EDMA.
Because of this, use of interrupt 0 as a channel-completion event (i.e., as a TCC value with
TCINT enabled) in the EDMA is not recommended; therefore, all channels programmed to
generate an interrupt should use non-zero TCC values. The functionality of EDMA channel 0
is not affected by this.

Internal reference number DSPvd00957.

Workaround: For any EDMA channel, if TCINT is enabled, do not use TCC = 0000b to signal channel
completion interrupt.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

36

L1 Hangs on Access to SRAM Address Mapped as CacheAdvisory 1.1.15

Revision(s) Affected: 1.0 and 1.1

Details: If a section of L2 mapped as cache (instead of memory-mapped SRAM) is accessed directly
by either of the L1 controllers (L1D or L1P) at its SRAM address, the L1 controller cache will
hang.

Internal reference number DSPvd00866.

Workaround: Use the memory map option of Code Composer Studio to ensure that the L2 cache section is
not mapped.

L1D Cache: Data Corruption if L1D Powered Up to Wrong StateAdvisory 1.1.16

Revision(s) Affected: 1.0 and 1.1

Details: On C6211 devices, certain test logic associated with the L1D controller may power up
initialized to an incorrect state. In this case, any of the following conditions will cause data
corruption:

• An L1D load hit occurs during a stall

• An L1D load miss occurs during a stall

• An L1D store miss occurs during a stall

The data at the address pointed to by the current load or store operation will be corrupted with
the last value present on the associated store data bus. Although infrequent, stalls can have a
variety of causes, such as: program cache miss, data cache miss, and data cache store buffer
stall. Thus, there is no viable software workaround.

Data corruption is consistent once the L1D is powered up to the incorrect state. A power cycle
may correct the problem if the L1D is initialized to a correct state. For devices and
environments sensitive to this problem, the L1D is typically powered up to the invalid state
approximately 60%−80% of the power cycles. The device may be sensitive to how long it was
powered down or powered on, as well as to other factors such as temperature.

Workaround: Perform one of the following two workarounds:

1. Board Modification

Note that all of the following must be removed on corrected silicons (once available). Perform
all of the following hardware modifications to ensure that L1D is powered up to a correct state
(see Figure 11):

• Disconnect pin B4 (currently a VSS ground pin) from ground. Tie pin B4 to the inverse
of RESET (pin A13). Pin B4 is actually a test pin that controls the internal test logic. It
was documented as a VSS ground pin to prevent users from accidentally enabling the
device test modes. To ensure that the L1D controller is in the correct state, pin B4
must be asserted high to force the device into a test mode during device reset
(RESET asserted low). Upon release from reset (RESET deasserted high), pin B4
needs to be deasserted low to return to the normal functional mode.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

37

L1D Cache: Data Corruption if L1D Powered Up to Wrong State (Continued)

• Pull down EMU[5:2] (pins B12, C11, B10, and D10) to ground with 4.7-kΩ resistors.

• During power up, RESET (pin A13) must be asserted for a minimum of 1.5M CPU
cycles. For example, when running parts at 150 MHz (6.67-ns CPU cycles), assert
RESET low for a minimum of 10 ms.

• While RESET is active low, inputs EXT_INT4 and EXT_INT5 should be high to allow
the test mode to run to completion. Both pins include internal pullups, so undriven
inputs will meet this requirement.

• The JTAG test clock (TCK) is required, even when an emulator is not connected.
Provide a clock source to TCK, independent of the emulator. A 10 MHz TCK is
recommended. A solution is to divide down the CLKIN frequency to 5 MHz − 10 MHz,
and drive the resultant clock into TCK. By removing the TCK pin on the emulation
header, the emulator may be plugged into the system and run normally (XDS510
uses TCK_RET as its clock source, which will still be connected).

EMU5

EMU4

EMU3

EMU2

A13

B4

B12

C11

B10

D10

GND

Resistors

Disconnect pin B4
from ground

EXT_INT4

EXT_INT5

C2

C1

4.7-kΩ

During power up, assert
RESET low for a minimum
of 1.5 M CPU clock cycles

Do not drive EXT_INT4
and EXT_INT5 low

when RESET is low

RESET

VSS

TMS320C6211

Figure 11. Board Modification

2. Test Code

The following test code (bug.asm) allows continued development and checks for incorrect
power-up state. Keep cycling power and running bug.asm until it passes, indicating a valid
power up.

Test code bug.asm creates an L1D load-miss condition during a stall. If the L1D controller is
powered up to an incorrect state, the load-miss operation corrupts the data in address 0x4010
(pointed to by the load-miss operation). This test code checks for data corruption at that
address.

Create a .out file with the following assembly code (bug.asm) and linker command file
(lnk.cmd). Run to breakpoint “exit”. If A0 = 0xFFFFDEAD, the device is powered up to an
incorrect state. Recycle power and re-run the test code. If A0 = 0x01234, the device is
powered up to a correct state and will remain in this correct state until the next power cycle.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

38

L1D Cache: Data Corruption if L1D Powered Up to Wrong State (Continued)

Assembly Code (bug.asm)
.global _main
.sect “vectors”

RESET B _main
NOP 5
.text

_main:
init: MVKL 0x00004010, B5 ; B5 = 0x00004010

STW B5, *B5 ; store data 0x4010 in address
0x4010

MVKL 0x00003000, A3 ; A3 = 0x00003000
MVKL 0xffffdead, B7 ; B7 = 0xffffdead
MVKL 0x00004000, A8 ; A8 = 0x00004000

bug: STW B7, *A3 ; Store Miss to cache line B
STW A8, *A8 ; Store Miss to cache line A (Stall

occurs
; here due to
; STW/LDW to same cache line)

 || LDW *B5, B9 ; Load Miss to cache line A. This
load causes

; corruption to address 0x4010 (B5)
; but loads good data

LDW *B5, B10 ; Load Hit to cache line A
NOP 4

check: CMPEQ B10, B5, B1 ; compare loaded value in B10 to ex-
pected

; value (0x4010)
 [B1] MVKL 0x01234, A0 ; passed (B10 = 0x4010). Set A0 =
0x1234.
 [!B1] MVKL 0xffffdead, A0 ; failed (B10 does not equal
0x4010).

; Set A0 = 0xffffdead

exit: IDLE

Linker File (lnk.cmd)
MEMORY
{ vecs: o = 00000000h l = 00000200h
 IRAM: o = 00000200h l = 00001000h
}
SECTIONS
{ .text > IRAM

vectors > vecs
}

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

39

EDMA: Extra Elements Transferred in Element Synchronization Mode (FS = 0)Advisory 1.1.17

Revision(s) Affected: 1.0 and 1.1

Details: The EDMA transfers one extra element than the value specified in the element count (EC) if all
of the following conditions are true:

• The element count reload (ECRLD) is set to 0.

• The EDMA channel is in element synchronization mode (FS = 0).

• The EDMA channel is set up to transfer N elements, but more than N synchronization
events are received before the EDMA channel is disabled.

For example, when the element count is set to N and the above conditions are met, the EDMA
transfers N + 1 elements instead of N elements. Furthermore, this (N + 1)th element transfer
repeats until the EDMA channel is disabled by writing a ‘0’ to the corresponding event in the
Event Enable Register (EER) or until the synchronization events are stopped. When transfer
completion interrupt is enabled, an EDMA completion interrupt will occur after N transfers as
expected, but the (N + 1)th item may still get transferred if the above conditions are met.

Internal reference number DSPvd00990.

Workaround: For EDMA transfers with the above conditions, perform any one of the following workarounds:

• Configure element count to be one less than the number of transfers desired. For
example, for an N-element transfer, set element count to N − 1. Note that in this case,
the EDMA still transfers the Nth element repeatedly. This workaround should be
removed for future silicon revisions that have this problem fixed.

• Use the linking mechanism of the EDMA. Link the EDMA transfer to a dummy EDMA
transfer. The dummy transfer should copy one word to disable the particular event in
the Event Enable Register (EER). For the dummy EDMA transfer, set the Frame
Count (FC) = FS = 0, destination address equal to the address of EER. The first
EDMA channel transfers exactly N elements − the same as the value specified in
element count. Upon completion of the N-element transfer, the EDMA channel
parameters are reloaded with the dummy transfer parameters. The next sync event
will trigger the dummy transfer, which will write to the EER and disable the event.

• Use the EDMA transfer completion interrupt. The interrupt service routine (ISR) should
disable the Event Enable Register (EER) of the particular EDMA channel. This must
be done as soon as possible in the ISR to avoid the (N + 1)th element getting
transferred. Once the event is disabled, EDMA transfer will stop.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

40

Advisory 1.1.18 EMIF: EMIF Address Lines Are In Undefined States Upon Exiting Reset − May Cause
Problems in Shared Memory System

Revision(s) Affected: 1.0 and 1.1

Details: The EMIF drives the address outputs (EA[21:2]) to unknown states upon exiting reset. For a
normal DSP/memory interface, this is not a problem. In a shared-memory system, the
potential exists for device damage if the EMIF address signals from multiple DSPs are bussed
together before tying to the external memory device. This condition can occur when the HOLD
input to the DSP is active upon exiting reset. In this case, there is a period of 2 to 5 ECLKOUT
cycles during which the EMIF will drive the address outputs to unknown states before placing
the address signals into the high-impedance (High-Z) state in response to the HOLD input.
During this 2- to 5-ECLKOUT-cycle period, the address busses may be in contention with one
another. For signals that drive to a known state (such as control signal outputs), there is no
potential for device damage since all of the outputs drive to the same logical level before
entering the HOLD state. But if one of the address signals of a DSP is the opposite of that of
another DSP (for example, EA6 of DSP0 may drive low and EA6 of DSP1 may drive high),
then there is a potential for device damage.

Internal reference number DSPvd00919.

Workaround: Provide an external bus switch or buffer logic to isolate each set of EMIF address lines.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

41

7 Silicon Revision 1.0 Known Design Exceptions to Functional Specifications

EDMA: SDINT and External Interrupts Not Received by EDMAAdvisory 1.0.7

Revision(s) Affected: 1.0

Details: The following interrupts are not routed to the corresponding channel in the EDMA: SDINT,
EXTINT4, EXTINT5, EXTINT6, and EXTINT7. EDMA channels 3 through 7, which are
synchronized by SDINT and EXTINT4 through EXTINT7, respectively, may therefore only be
used with manual synchronization by setting the sync event with a CPU write to the Event Set
Register (ESR).

These interrupts are routed to the CPU interrupt logic and will cause the correct bit in the CPU
interrupt flag register to be set.

Internal reference number DSPvd00820.

Workaround: Do not use the SDRAM timer or external interrupts to synchronize EDMA transfers. If these
events are required to trigger an EDMA transfer, configure the CPU to be interrupted by the
appropriate event and set the sync event manually by writing to the ESR.

EMIF: Potential Reset Problem When CLKOUT2 is Tied to ECLKINAdvisory 1.0.10

Revision(s) Affected: 1.0

Details: If ECLKIN is tied to CLKOUT2, CLKOUT2 may not be enabled at reset. Thus, ECLKOUT may
not be enabled either.

Internal reference number DSPvd00797.

Workaround: For prototype systems, multiple reset or power-up attempts may eventually reset the EMIF in
the correct state such that CLKOUT2 is driven correctly. For a more robust workaround, it will
be necessary to provide an independent ECLKIN signal or use external logic to force at least
one clock edge on the ECLKIN input before connecting CLKOUT2 to ECLKIN with logic.

SPRZ154LTMS320C6211/TMS320C6211B Silicon Errata

42

Access to Invalid Address in Interrupt Selector SpaceAdvisory 1.0.12

Revision(s) Affected: 1.0

Details: Accesses to invalid addresses (above 0x019c0008) in the interrupt selector peripheral space
will hang the DSP. This problem also occurs with emulator accesses. A common occurrence of
this problem is during debug if a memory operation is performed in the debugger using the
interrupt selector address as the target.

Internal reference number DSPvd00760

Workaround: Use the memory map option of Code Composer Studio to ensure that only the three physical
registers of the interrupt selector are mapped.

Interrupt Selector Values Reversed for McBSP InterruptsAdvisory 1.0.13

Revision(s) Affected: 1.0

Details: The interrupt selector values for the McBSP interrupts are connected opposite from the
documented value. The implementation uses interrupt selection mapping as shown in Table 2.

Internal Reference Number DSPvd00921

Table 2. Interrupt Selection Mapping

Interrupt Selection Number Interrupt Name Interrupt Description

01100b XINT1 McBSP1 transmit interrupt

01101b RINT1 McBSP1 receive interrupt

01110b XINT0 McBSP0 transmit interrupt

01111b RINT0 McBSP0 receive interrupt

Workaround: Set up McBSP-to-CPU interrupts according to the interrupt selection number values in Table 2.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright 2004, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

	Title Page - SPRZ154L
	REVISION HISTORY
	Contents
	1 Introduction
	1.1 Quality and Reliability Conditions
	1.2 Revision Identification

	2 Silicon Revision 3.1 Known Design Exceptions to Functional Specifications and Usage Notes
	2.1 Usage Notes for Silicon Revision 3.1
	2.2 Silicon Revision 3.1 Known Design Exceptions to Functional Specifications

	Advisory 3.1.1 EMIF: Async Read Setup Uses Write Setup Value
	Advisory 3.1.2 EMIF: Control Signals Not Inactive Before Asserting HOLDA
	Advisory 3.1.3 EMIF: One Cycle Asynchronous Write Setup
	Advisory 3.1.4 JTAG: Boundary Scan Shift-DR Register Is Latched on the Falling Edge of TCK
	Advisory 3.1.5 EDMA/L2 Controller: Potential EDMA Lockout From L2 SRAM
	Advisory 3.1.6 EMIF: Data Corruption can Occur in SDRAM When HOLD Feature is Used
	Advisory 3.1.7 EDMA: EDMA Blocked from Accessing L2 During Long String of Stores to the Same Bank in L2 RAM
	3 Silicon Revision 3.0 Known Design Exceptions to Functional Specifications and Usage Notes
	3.1 Usage Notes for Silicon Revision 3.0
	3.2 Silicon Revision 3.0 Known Design Exceptions to Functional Specifications

	Advisory 3.0.1 HPI: HPID Read/Write Accesses Must Be Terminated with a Fixed-Mode Access
	Advisory 2.2.2 HPI: Read Data Corrupted in Fixed-Address Mode and FETCH Read Requests
	4 Silicon Revision 2.2 Known DEsign Exceptions to Functional Specifocations
	Advisory 2.2.4 JTAG: Boundary Scan Does Not Function
	Advisory 2.2.6 HPI: Write Request During HPI Timeout Causes HPI Lock-Up
	Advisory 2.2.7 HPI: HRDY Behavior
	5 Silicon Revision 2.1 Known Design Exceptions to Functional Specifications
	6 Silicon Revision 1.1 Known Design Exceptions to Functional Specifications
	Advisory 1.1.1 EMIF: ARDY Sampled During Entire Strobe Period
	Advisory 1.1.3 Clock: CLKOUT1 Only Available in PLL x4 Mode
	Advisory 1.1.4 JTAG: Boundary Scan Output Shift
	Advisory 1.1.5 JTAG: TCK Always Required
	Advisory 1.1.6 nterrupt: EXT_INT4 Synchronized to CLKOUT2
	Advisory 1.1.8 HPI: Software Handshaking Causes Corrupt Read Data
	Advisory 1.1.9 EDMA: User PaRAM Access During EDMA Active Events May Corrupt PaRAM
	Advisory 1.1.14 EDMA: Interrupt 0 Incorrectly Set in CIPR
	Advisory 1.1.15 L1 Hangs on Access to SRAM Address Mapped as Cache
	Advisory 1.1.16 L1D Cache: Data Corruption if L1D Powered Up to Wrong State
	Advisory 1.1.17 EDMA: Extra Elements Transferred in Element Synchronization Mode (FS = 0)
	Advisory 1.1.18 EMIF: EMIF Address Lines Are In Undefined States Upon Exiting Reset - May Cause Problems in Shared Memory System
	7 Silicon Revision 1.0 Known Design Exceptions to Functional Specifications
	Advisory 1.0.7 EDMA: SDINT and External Interrupts Not Received by EDMA
	Advisory 1.0.10 EMIF: Potential Reset Problem When CLKOUT2 is Tied to ECLKIN
	Advisory 1.0.12 Access to Invalid Address in Interrupt Selector Space
	Advisory 1.0.13 Interrupt Selector Values Reversed for McBSP Interrupts
	IMPORTANT NOTICE

