Technical Article How to Simplify High-Voltage Power-Supply Design

Gerold Dhanabalan

High voltage power supplies are ubiquitous whether you are designing an AC/DC adapter or your high voltage on-board power supply for industrial applications. You find them commonly to step down your high voltage input voltage to a lower intermediate voltage before you power your point-of-load (POL) converters. The design of these front-end power supplies pose unique challenges from the requirements that they have. This post is intended to give you a basic understanding of high-voltage power-supply design, and how design tools can make it simple to design for these applications. There are three main things that you need while designing for your AC/DC or high-voltage DC/DC application.

1. Understand Your System Requirements.

Most of you know where your end equipment will be used and whether you will need a universal voltage range (85V to 265V) or region-specific voltages such as U.S. (120V), Japan (100V), U.K. (230V) or China (220V). Also, are you designing for a charger-type application or an on-board power supply? Are you designing for a supply that needs tight output-voltage regulation? What type of isolation requirements do you have?

The answers to each of these questions will help you make appropriate trade-offs while you design. Designing for universal voltage ranges ensures operability across different parts of the globe at the expense of higher voltage-/current-rated components, which come at a higher price and footprint. Charger-type supplies typically require a constant-voltage/constant-current (CV/CC) characteristic. So selecting a controller that meets this requirement is essential.

If your power supply requires tight regulation of the output, you need to consider secondary-side regulated controllers that tightly regulate the voltage on the secondary, versus primary-side controller regulators where the output could vary with changes in the transformer or secondary diode parameters. Certain applications require that your transformer provide a certain class of isolation for safer, robust end equipment.

1

TI's WEBENCH[®] High-Voltage Power Designer is an easy to use tool to design your AC/DC or HV-DC/DC applications. You simply enter your voltage and current requirements and find solutions that work for your application. With the optimizer dial, you can optimize your design for cost, footprint and efficiency based on your system needs. To get started, visit the WEBENCH panel on ti.com. Figure 1 shows a view of the power solutions generated by WEBENCH Power Designer.

Figure 1. WEBENCH Power Designer with High Voltage Solutions

Figure 2 shows an AC/DC flyback using primary-side regulation that provides a low-cost, low-footprint solution, as well as loose regulation of the output on the secondary. Figure 3 shows an AC/DC flyback in secondary-side regulation using optocoupler feedback, which is more expensive but provides tighter regulation on the secondary.

Figure 2. AC/DC Flyback with Primary-side Regulation

Figure 3. AC/DC Flyback with Secondary-side Regulation Using Optocoupler Feedback

2. Select the Right Topology/control Scheme.

At low power (greater than 10W and less than 100W), flyback is the most widely used topology. Forward and half-bridge topologies typically serve power levels from 100W to 500W, with full-bridge topologies serving >500W. Theoretically, you could build a flyback for high power levels too, but the voltage/current stress on the components makes this topology require higher voltage-/current-rated components, which are expensive and bulky. This paves the way for the natural adoption of other topologies at higher power levels.

You could design the controller to operate in continuous conduction mode (CCM) (the magnetizing current in the transformer does not reach zero), discontinuous conduction mode (DCM) (the magnetizing current reaches zero and stays zero till the next switching cycle), or transition mode (TM) (the magnetizing current reaches zero and the next switching cycle starts immediately). CCM is typical for higher power levels, while DCM and TM provide lower-loss solutions.

WEBENCH Power Designer saves you time and effort by creating the complete design for the topology using the necessary equations depending on the device and its operating mode. The tool also lets you evaluate efficiency and also other parameters such as output ripple, the RMS currents, losses etc. at various operating points within the design range.

3. Design Your Transformer.

One of the main things required in a good high-voltage power supply design is designing the transformer correctly for your applications. The transformer is generally the energy-conversion element in a high-voltage design, which also provides isolation between the primary and secondary.

By definition, transformers do not store energy, but transfer energy from the primary to the secondary. This is one of the main reasons why people refer to flyback transformers as coupled inductors, because components in the flyback topology store energy during the on-time of the switching cycle and then transfer that energy to the secondary during the off-time.

Transformers typically have a core (which is the magnetic element); the bobbin (or coil former), which is the plastic housing for the core (see Figure 4); and the wire that gets wound on the core-bobbin structure.

Figure 4. Core, Coil Former and Assembled Transformer

Assembled pre-built transformers are readily available from manufacturers with a fixed turns ratio (Ns/Np) and primary inductance (the magnetizing inductance of the transformer that causes energy to build up). Depending on the operating frequency and output power levels, the requirements for the primary inductance and the turns ratio vary widely, and a pre-assembled off-the-shelf transformer might not be available. In such cases, selecting a transformer core and bobbin and winding the transformer will be necessary. This requires an in-depth knowledge of transformer magnetics.

WEBENCH design tools now give you the ability to design the transformer by selecting the core and bobbin that meet the requirements and also provides the winding structure details as well. You can click on the transformer symbol in the schematic to view and download the transformer details and also to change the transformer core/ bobbin combination. Figure 5 shows a view of the transformer design window giving you the various core/bobbin combinations for a specific design requirement. You can also compare different transformers in terms of height, losses (core/copper losses), footprint and cost. If you have a preference for a specific core type or material, use the transformer listing to pick the one that is appropriate for your needs.

The transformer construction diagram gives you instructions on how to wind the transformer. This along with the transformer construction details table gives you information on the number of layers, strands, the AWG of the wire and more. You can also download the transformer design report as shown in Figure 6 to get this information. This will simplify your effort to build the transformer whether you are prototyping it yourself or having it wound by a transformer winding company.

Becommende Transformer (Bee Detail below): Coeff enset Bold 20 km Defan (C)					1	RANSFORMER D	ESIGNER							6
Care 30 View Database Deadlore 30 View	Recomme	ended Transformer (See Der	tails below): Core=B663	317G0000X127 , CollFormer=B	66208W1010T001									
Proprint Native Nativ	0	Core 30 View	Bobbin 30 View	Transformer Electrical Diagram	Transformer Constructio	n Diagram	3	ansformer Ele	ctrical Properties		1	iransformar Constru	ection Details	
Found 1 Apply Tap Vine Manufacturer Ofentation Care Max 1 Max 2	100	-	1 1			Prope	ey.		Valu		Property	140		
Select Apply Top View Manufacture Orientation Correntation Selection Topologies Correntation Selection Topologies Correntation Selection Topologies Selection Correntation Selection Selecti	III •		all			twice Print	y Induction (uFI)		780.		Primary Turns	54		
Search Found 4 Description Apply Top View Manufacturer Orientation Control (Lassed) Search				- 11	(000000	fund Flat	enally(T)		0.25		Primary AWG	27		
Second Core-description Apply Top Vine Manufacturer Orientation Core Type Core Type Transformer Material 151000 Transformer Apply Top Vine Core Top V E25537 N27 Fransformer Material 151000 Transformer Material 151000					00000000	Skin 0	epthones)		0.37		Prenary Insulation	Hea	wy Insulated Magn	et Wire
Select Apply Top View Manufacturer Orientation Correntation Top View Selection Correntation Top View Correntation Correntation Correntation Top View Correntation Correntation Correntation Correntation Correntation Correntation Correntation Correntation Correntation			1000	-	0000000	terione Core /	krea(mm2)		52.5		Printery Layers	3		
Convertee Apply Top View Manufacturer Orientation Convertee Seattlement Seatt		and the second second	1000		1/	treps	ency(keta)		58.8	· · · · ·	Primary Strands			
Stands Found Pland Stands Apply Top Vine Manufacturer Orientation Core Type Transformer Transformer Transformer Transformer Transformer Core Type Core Type N27 Stands Transformer Core Type Core Type Core Type Core Type Transformer <			1000	اك_	(0.0000)	CMax CMax	CMax		0.6	1	Secondary Turns	10		
Number View Franktioner Normany Residence Normany Residence <td colspan="2"></td> <td></td> <td>100 10 10 10 10 10 10 10 10 10 10 10 10</td> <td colspan="2">00000000 "**</td> <td>ry Peak CurrentLR</td> <td>ł.</td> <td>1.58</td> <td></td> <td>Secondary AWG</td> <td colspan="2">28</td> <td></td>				100 10 10 10 10 10 10 10 10 10 10 10 10	00000000 "**		ry Peak CurrentLR	ł.	1.58		Secondary AWG	28		
Secondary Leave Secondary Leavers			Contraction of the second		0000000+	North Print	Primary RNPS Current(A)			0.77	Secondary Insulation		Triple Involated	
Found 4 Brandlements Search Found 4 Brandlements Found 4 Brandlements Found 5 Found 6 Brandlement Transformer Essen(M) Core Core Manufal Core						Secon	Secondary Peak Current(A)		14.8		Secondary Layers		2	
Select Transformer Apply Top View Manufacturer Orientation Core Type Core Manufacturer Transformer Losser(M) Los	Search	Found 4	4 Transformers											
Converted43170000008127, Collformer=06432187018001812701 Adjød to Dessup Collformer=1054 Collformer=1054 V E25137 N27 59.29 A198 24.09 9.218 5 Collformer=06432187000008187, Collformer=0643288818181001 Collformer=1054 V E25137 N87 59.29 A198 24.09 9.218 9 Collformer=06432187000008187, Collformer=064328818181001 Conv=005517000008187, Collformer=1054 V E25137 N87 59.37 418 24 2.409 9.218 9 Conv=005517000008187, Collformer=05020801193104 Conv=1054, Collformer=1054 V E25137 N97 59.35 779 17.200 2.419 9,218 9 Conv=005517000008187, Collformer=050208018137, Collformer=0504018131101 Conv=0055170000008187, Collformer=1054 N E25137 N97 59.36 779 17.200 2.419 9,218 9 Conv=0055170000008187, Collformer=0050000008187, Collformer=0050000008187, Conv=00551700000008187, Collformer=00500000008187, N E25137 NH7 50.88 779 17.200 3.020 1.519 9	Select	Transformer	Apply	Top View	Manufacturer	Orientation	Core Type	Core Material	Transformer Cost(\$)	Transformer Footprintjmm2) Transformer Height(mm)	Transformer Losses(W)	Core Losses(W)	Copper Losses(W)
Conv=066317500000X127, Collformer=FDX Conv=TDX, Collformer=FDX V £25137 N87 96.37 416 28 3.826 1.516 5 Conv=066317500000X127, Collformer=FDX Conv=TDX, Collformer=FDX M £25137 N27 96.81 776 17.806 2.436 5.246 5 Conv=066317500000X127, Collformer=FDX Conv=TDX, Collformer=TDX M £25137 N27 96.81 776 17.806 2.436 5.246 5 Conv=066317500000X187, Collformer=TDX M £25137 N87 56.88 778 17.806 3.836 5.546 5	۲	Core-044317569908127 , Coliformer-0442049810107091	Apply to Design		Core=TDK, ColFormer*TDK	v.	625437	827	\$0.79	-01	28	2.420	1,210	1,210
Conv=066315000000127, Colliformar=050630000113700 Colliformar=0500000000000000000000000000000000000	0	Core=046317G000EX187 , Colf ormer=0462059410161001		-	Cone-TOK, ColiFormer=TDK	v	625437	NE7	\$0.37	425	26	3.029	1.510	1.510
Covi-0603/1008000187, Covi-1060, H £25137 N87 56.86 778 17.808 3.829 1.516 5	0	Core-866317689900137 , ColFormer-866398811197591		-	Core=TDK , ColFormer=TDK		625137	827	50.81	778	17.800	2.420	1,210	1,210
	0	Core=846317G00008187 , Colf/ormer=866208811107001		-	Core-TDK, CollFormer-TDK		625437	N87	50.80	779	17,808	3.629	1,510	5.510

Figure 5. Transformer Design Capability in WEBENCH

Figure 6. Transformer Design Report

Additional Resources

- Start a design in WEBENCH high voltage designer with TI's UCC28C42 high-performance, current-mode PWM controller.
- Access thousands of power supply reference designs from the TI Designs library.
- Download "Control Challenges for Low Power AC/DC Converters" from the 2014 Power Supply Design Seminar (myTI login required).

5

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated